Formalization of Error-Correcting Codes:
From Hamming to Modern Coding Theory

Reynald Affeldt!®) and Jacques Garrigue?

! National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
reynald.affeldt@aist.go. jp
2 Nagoya University, Nagoya, Japan
garrigue@math.nagoya-u.ac. jp

Abstract. By adding redundancy to transmitted data, error-correcting
codes (ECCs) make it possible to communicate reliably over noisy chan-
nels. Minimizing redundancy and (de)coding time has driven much
research, culminating with Low-Density Parity-Check (LDPC) codes. At
first sight, ECCs may be considered as a trustful piece of computer sys-
tems because classical results are well-understood. But ECCs are also
performance-critical so that new hardware calls for new implementa-
tions whose testing is always an issue. Moreover, research about ECCs is
still flourishing with papers of ever-growing complexity. In order to pro-
vide means for implementers to perform verification and for researchers
to firmly assess recent advances, we have been developing a formaliza-
tion of ECCs using the SSReflect extension of the Coq proof-assistant.
We report on the formalization of linear ECCs, duly illustrated with a
theory about the celebrated Hamming codes and the verification of the
sum-product algorithm for decoding LDPC codes.

1 Introduction

Error-correcting codes (ECCs) add redundancy to transmitted data to ensure
reliable communication over noisy channels. Low-Density Parity-Check (LDPC)
codes are ECCs discovered in 1960 by Gallager; they were not thoroughly studied
until they were shown in the nineties to deliver good performance in practice.
Since then, LDPC codes have found their way into modern devices such as hard-
disk storage, wifi communications, etc. and have motivated a new body of works
known as modern coding theory.

Implementations of ECCs cannot be crystallized as a generic library that can
be deemed correct because extensively tested. Because ECCs are performance-
critical, new implementations are required to take advantage of the latest hard-
ware, so that testing is always an issue. Also, research (in particular about LDPC
codes) is so active that correctness guarantees for cutting-edge ECCs are scat-
tered in scientific publications of ever-growing complexity.

A formalization of ECCs could help implementers and researchers. First, it
would make possible verification of concrete implementations. Today, an imple-
menter willing to perform formal verification should first provide a formal spec-
ification of what ECCs are supposed to achieve. In comparison, this is more

© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 17-33, 2015.
DOI: 10.1007/978-3-319-22102-1_2

18 R. Affeldt and J. Garrigue

difficult than verification of cryptographic functions whose specification requires
little infrastructure when they rely on number theory (e.g., [1]).

However, the formalization of ECCs is a difficult undertaking. They rely on
a vast body of mathematics: probabilities, graphs, linear algebra, etc. Teaching
material is rarely (if ever) structured as algebra textbooks: prose definitions
that look incomplete without the accompanying examples, algorithms written
in prose, hypotheses about the model that appear during the course of proofs,
etc. Monographs and research papers do not provide details for the non-expert
reader. It is therefore no wonder that researchers are seeking for means to firmly
assess the correctness of their pencil-and-paper proofs: our work is part of such
a project.

Still, there is previous work that we can take advantage of to formalize ECCs.
The SSREFLECT/MATHCOMP library [8] provides big operators to formalize
combinatorial results, a substantial formalization of linear algebra, and tools to
reason about graphs. The formalization of the foundational theorems of infor-
mation theory [2] provides us with basic definitions about channels and proba-
bilities. Last, we are fortunate enough to have colleagues, expert in ECCs, who
provided us with details about linear ECCs and LDPC codes [9, Chaps. 7 and 9].

To the best of our knowledge, our effort is the first attempt at a system-
atic formalization of ECCs inside a proof-assistant. In Sect. 3, we formalize basic
results about linear ECCs. Already at this point, some effort was spent in aug-
menting textbook definitions with their implicit assumptions. In Sect. 4, we for-
malize Hamming codes. In particular, we provide a concrete encoder and decoder
and express the error rate in terms of a closed formula. In Sect. 5, we formalize
the key properties of the sum-product algorithm, the standard algorithm for
efficient decoding of LDPC codes. Finally, in Sect. 6, we apply our formalization
to the verification of a concrete implementation of the sum-product algorithm,
making our work the first formal verification of a decoding algorithm for an
advanced class of ECCs.

2 Premises on Information Theory and Probabilities

2.1 Channels and Codes in Information Theory

We first recall basic definitions from [2].

The most generic definition of a code is as a channel code: a pair of
encoder/decoder functions with a finite type M for the message pieces to be
encoded. Encoded message pieces (codewords) are represented by row vectors
over a finite alphabet A (denoted by 'rV[A]_n in MATHCOMP). The decoder (that
may fail) is fed with the outputs of a noisy channel that are also represented by
row vectors (possibly over a different! alphabet B):

Definition encT := {ffun M — ’rV[A]_n}.
Definition decT := {ffun ’'rV[B]_n — option M}.
Record code := mkCode { enc : encT ; dec : decT }.

1A and B are different for example in the case of the binary erasure channel that
replaces some bits with an erasure.

Formalization of Error-Correcting Codes 19

A (discrete) noisy channel is modeled as a stochastic matrix that we formal-
ized as a function from the input alphabet A to probability distributions over
the output alphabet B:

Notation ” ¥4 (A, B)” := (A — dist B).

dist is the type of probability distributions. They are essentially functions from
some finite type to non-negative reals whose outputs sum to 1 (the big operator
S"_(x in P) £ x comes from MATHCOMP):
Record dist (A : finType) := mkDist {

pmf :> A — R+ ; (% "> R+" is a notation x*)

pmfl : > (a in A) pmf a =1 }.

Given a distribution P, the probability of an event (represented by a finite
set of elements: type {set A} in MATHCOMP) is formalized as follows:

Definition Pr P (E : {set A}) :=> (a in E) P a.

Communication of n characters is thought of as happening over the n'" exten-
sion of the channel, defined as a function from input vectors to distributions of
output vectors ({dist T} is a notation for the type of distributions; it hides a
function that checks whether T is a finite type):

Notation ” ¥4 (A, B)” := ('rV[A]_n — {dist ’rV[B]_n}).

In this paper, we deal with discrete memoryless channels (DMCs). It means
that the output probability of a character does not depend on preceding inputs.
In this case, the definition of the n'! extension of a channel W boils down to
a probability mass function that associates to an input vector x the following
distribution of output vectors:

Definition f (y : ’rV_n) :=J[L(i <mn) W (x /_ i) (y /- i).

where x /_ i represents the ith element of the vector x. The notation
W n (y | x) (W"(ylx) in pencil-and-paper proofs) is the probability for the
DMC of w that an input x (of length n) is output as y.

Finally, the quality of a code c for a given channel W is measured by its error
rate (notation: e.nq (W, c)), that is defined by the average probability of errors:

Definition ErrRateCond (W :¥74(A, B)) ¢ m :=

Pr (W" n (| enc ¢ m)) [set y | dec c y # Some m].
Definition CodeErrRate (W : % (A, B)) c :=

1 / INR #| M | *> (m in M) ErrRateCond W c m.

W n (] enc cm) is the distribution of outputs corresponding to the codeword
enc ¢ m of a message m sent other the DMC of W. [set y | dec ¢ y #Some m] is the
set of outputs that do not decode to m. INR injects naturals into reals.

2.2 Aposteriori Probability

Probabilities are used to specify the correctness of probabilistic decoders such
as the sum-product algorithm (see Sect. 5).

20 R. Affeldt and J. Garrigue

We first formalize the notion of aposteriori probability: the probability that
an input was sent knowing that some output was received. It is defined via the
Bayes rule from the probability that an output was received knowing that some
input was sent. For an input distribution P and a channel W, the aposteriori
probability of an input x given the output ¥ is:

P(z)W" (y|z)
2arean P()Wn(ylz")

We formalize aposteriori probabilities with the following probability mass
function:

PY(zly) ==

Definition den := > (x in’rV_n) P x * W "~ n (y | x).
Definition f x := P x * W "~ n (y | x) / den.

This probability is well-defined when the denominator is not zero. This is
more than a technical hindrance: it expresses the natural condition that,
since y was received, then necessarily a suitable x (i.e., such that P x #0 and
W " n (y | x) #£0) was sent beforehand. The denominator being non-zero is thus
equivalent to the receivable condition:

Definition receivable y:=[3 x, (P x # 0)A(W "~ n (y | x) #
0)].
In Coq, we denote aposteriori probabilities by P
proof that y is receivable.

Finally, the probability that the n§® bit of the input is set to b (0 or 1) given
the output y is defined by the marginal aposteriori probability (K is chosen so
that it is indeed a probability):

PYGly) =K Y PY(aly)

z€FY Tpo=b

(A A

W,H(x]|y) where His a

In Coq, we will denote this probability by P’_n0 *°" W, H (b | y) where H is
the proof that y is receivable. See [3] for complete formal definitions.

3 A Formal Setting for Linear ECCs

Linear ECCs are about bit-vectors, i.e., vectors over Fy (we use the nota-
tion ’F_2 from MATHCOMP). Their properties are mostly discussed in terms
of Hamming weight (the number of 1 bits) or of Hamming distance (the
number of bits that are different). In Coq, we provide a function wH
for the Hamming weight, from which we derive the Hamming distance:
DefinitiondHn (x y: 'rV_n) := wH (x — y).

3.1 Linear ECCs as Sets of Codewords

The simplest definition of a linear ECC is as a set of codewords closed by addition
(n is called the length of the code):

Formalization of Error-Correcting Codes 21

C1ez- - Ck messages €€z Ck

L

encoder

€12~ C - Cp

- decoder

noisy

(codeword) channel 1?7+ cp - cp (e.g., 2nd bit flipped)
Fig. 1. The setting of error-correcting codes
Record lcode0 n := mkLcodeO {
codewords :> {set’rV[’F_2]_n} ;
lclosed : addr_closed codewords }.

In practice, a linear ECC is defined as the kernel of a parity check matrix (PCM),
i.e., the matrix whose rows correspond to the checksum equations that codewords
fulfill (*m is multiplication and "T is transposition of matrices):

Definition syndrome (H: M[’F_2]_(m, n)) (y :’rV_n) := H *m y"T.
Definition kernel H := [set c | syndrome H ¢ = 0]|.

Since the kernel of the PCM is closed by addition, it defines a linear ECC:

Lemma kernel_add H : addr_closed (kernel H). Proof. ... Qed.
Definition lcodeO_kernel H := mkLcodeO (kernel_add H).

When H is a m x n matrix, k = n — m is called the dimension of the code.
A code is trivial when it is reduced to the singleton with the null vector:

Definition mnot_trivial := 3 cw, (cw € C) A (cw # 0).

When a linear ECC ¢ is not trivial (proof C_not_trivial below), one can define
the minimum distance between any two codewords, or, equivalently, the min-
imum weight of non-zero codewords, using SSREFLECT’s xchoose and arg_min
functions:

Definition non_O_codeword := xchoose C_not_trivial.
Definition min_wH_codeword :=

arg_min non_O_codeword [pred cw in C | wH cw # 0] wH.
Definition d_min := wH min_wH_codeword.

The minimum distance dp,;, defines in particular the number of errors Ld"‘ig_lj

that one can correct using minimum distance decoding (see Sect. 3.3):

Definition mdd_err_cor := (d_min. — 1)/2.

3.2 Linear ECCs with Coding and Decoding Functions

In practice, a linear ECC is not only a set of codewords but also a pair of coding
and decoding functions to be used in conjunction with a channel (see Fig.1
[5, p. 16]). We combine the definition of a linear ECC as a set of codewords
(Sect.3.1) and as a pair of encoding and decoding functions (i.e., a channel
code—Sect. 2.1) with the hypotheses that (1) the encoder is injective and (2) its
image is a subset of the codewords:

22 R. Affeldt and J. Garrigue

Record lcode n k : Type := mkLcode {
lcodeO_of :> 1lcodeO n ;
enc_dec :> code’F_2’F_2 rV[’F_2]_k n ;
enc_inj : injective (enc enc_dec) ;
enc_img : enc_img_in_code lcodeO_of (enc enc_dec) }.

enc_img_in_code is the hypothesis that the image of the messages (here,
'rV['F_2]_k) by the encoder (enc enc_dec) is included in the set of codewords
(here, 1code0_of). Note that k <n can be derived from the injectivity of the
encoder.

As indicated by Fig. 1, the decoder is decomposed into (1) a function that
repairs the received output and (2) a function that discards the redundancy bits:

Record lcodel n k := mkLcodel {
lcode_of :> lcode n k;
repair : repairT n ; (¥’rV[’F_2]_n — option (’rV[’F_2]_n) *)
discard : discardT n k ; (*¥’rV[’F_2]_n —’rV[’F_2]_k *)
dec_is_repair_discard
dec lcode_of = [ffun y = omap discard (repair y)];
enc_discard_is_id : cancel_on lcode_of (enc lcode_of) discard }.

enc_discard_is_id is a proof that discard followed by encoding enc is the identity
over the domain 1code_of.

Ezxample. The r-repetition code encodes one bit by replicating it r times. It has
therefore two codewords: 00---0 and 11---1 (r times). The PCM can be defined
as H = A||1 where A is a column vector of » — 1 1’s, and the corresponding
encoder is the matrix multiplication by G = 1| (—A)T. More generally, let A be
a (n— k) x k matrix, H = A[|1 and G = 1||(—A)T. Then H is the PCM of a
(n, k)-code with the (injective) encoding function = — z x G. Such a linear ECC
is said to be in systematic form (details in [3]).

3.3 The Variety of Decoding Procedures

There are various strategies to decode the channel output. Minimum distance
decoding chooses the closest codeword in terms of Hamming distance. When such
a decoder decodes an output y to a message m, then there is no other message m’
whose encoding is closer to y:

Definition minimum_distance_decoding :=
V y m, (dec ¢) y = Some m —
Vm’, di ((enc ¢) m) y < dH ((enc c) m’) y.

We can now formalize the first interesting theorem about linear ECCs [11,
p. 10] that shows that a minimum distance decoder can correct mdd_err_cor
(see Sect. 3.1) errors:

Lemma encode_decode m y : (dec C) y # None —
dH ((enc C) m) y < mdd_err_cor C_not_trivial —
(dec C) y = Some m.

Formalization of Error-Correcting Codes 23

For example, a repetition code can decode (r — 1)/2 errors (with r odd) since
minimum distance decoding can be performed by majority vote (see [3] for formal
proofs):

Definition majority_vote r (s : seq’F_2) : option F_2 :=
let cnt := num_occ 1\,s in
if r/2 < cnt then Some 1
else if (r/2 = cnt) A "~ odd r then Nomne

else Some 0.

Maximum Likelihood (ML) Decoding decodes to the message that is the
most likely to have been encoded according to the definition of the channel.
More precisely, for an encoder f, a ML decoder ¢ is such that W"(y|f(¢(y)) =
maxmen W (ylf(m)):

Definition maximum_likelihood_decoding :=
support (enc c) — V y, receivable WP y —
3 m, (dec c) y = Some m A
W™ n (y | (enc ¢) m) = \rmax_(m’ in M) W
n (y | (enc c) m’).

The assumption receivable W P y says that we consider outputs with non-zero
probability (see Sect.2.2). The assumption support (enc c) says that only code-
words can be input. Textbooks do not make these assumptions explicit but they
are essential to complete formal proofs.

ML decoding is desirable because it achieves the smallest error rate among
all the possible decoders [3, Lemma ML_smallest_err_rate]. Still, it is possible to
achieve ML decoding via minimum distance decoding. This is for example the
case with a binary symmetric channel (that inputs and outputs bits) with error
probability p < % Formally, for a code ¢ with at least one codeword:

Lemma MD_implies_ML : p < 1/2 — minimum_distance_decoding c¢ —
(V y, (dec c) y # None) — maximum_likelihood_decoding W c P.

Maximum aposteriori probability (MAP) decoding decodes to messages that
maximize the aposteriori probability (see Sect.2.2). MAP decoding is desirable
because it achieves ML decoding [3, lemma MAP_implies_ML]. Maximum posterior
marginal (MPM) decoding is similar to MAP decoding: it decodes to messages
such that each bit maximizes the marginal aposteriori probability. The sum-
product algorithm of Sect. 5 achieves MPM decoding.

4 Formalization of Hamming Codes and Their Properties

We formalize Hamming codes. In particular, we show that the well-known decod-
ing procedure for Hamming code is actually a minimum distance decoding and
that the error rate can be stated as a closed formula.

Formal Definition. Hamming codes are (n = 2™ — 1,k = 2™ — m — 1) linear
ECCs, i.e., one adds m extra bits for error checking. The codewords are defined

24 R. Affeldt and J. Garrigue

by the PCM whose columns are the binary representations of the 2 — 1 non-
null words of length m. For a concrete illustration, here follows the PCM of the
(7,4)-Hamming code:
0001111
hamH7,4: 0110011
1010101

Formally, for any m, we define the PCM using a function nat2bin_cV that builds
column vectors with the binary representation of natural numbers (e.g., for the
matrix H above, nat2bin_cV 3 1 returns the first column vector, nat2bin_cV 3 2
the second, etc.):

Definition hamH := \matrix_(i < m, j < n) (nat2bin_cV m j+1 i 0).
Definition hamC : lcode0 n := lcodeO_kernel hamH.

Minimum Distance. The minimum distance of Hamming codes is 3, and there-
fore, by minimum distance decoding, Hamming codes can correct 1-bit errors (by
the lemma encode_decode of Sect. 3.3). The fact that the minimum distance is 3
is proved by showing that there are no codewords of weights 1 and 2 (by analysis
of H) while there is a codeword of weight 3 (7 x 2773 = (1110 - - - 0)3). Hamming
codes are therefore not trivial and their minimum distance is 3:

Lemma hamming_not_trivial : not_trivial hamC.
Lemma minimum_distance_is_3 : d_min hamming_not_trivial = 3.

Minimum Distance Decoding. The procedure of decoding for Hamming
codes is well-known. To decode the output y, compute its syndrome: if it is
non-zero, then it is the binary representation of the index of the bit to flip back.
The function ham_detect computes the index i of the bit to correct and prepare
a vector to repair the error. The function ham_repair fixes the error by adding
this vector:

Definition ham_detect y :=

let i := bin2nat_cV (syndrome hamH y) i

if i is O then 0 else nat2bin_rV n (2 - (n —1i)).
Definition ham_repair : decT _ _ [ffun y =

let ret := y + ham_detect y in

if syndrome hamH ret = 0 then Some ret else Nomne].

Let ham_scode be a linear ECC using the ham_repair function. We can show that
it implements minimum distance decoding:

Lemma hamming_MD : minimum_distance_decoding ham_scode.
Tt is therefore an ML decoding (by the Lemma MD_implies_ML from Sect. 3.3).

The Encoding and Discard Functions. We now complete the formalization
of Hamming codes by providing the encoding and discard functions (as in Fig. 1).
Modulo permutation of the columns, the PCM of Hamming codes can be trans-
formed into systematic form sysH = sysA||1 (as explained in the example
about repetition codes in Sect. 3.2). This provides us with a generating matrix
sysG = 1|| (—sysA)T. For illustration in the case of the (7,4)-Hamming code:

Formalization of Error-Correcting Codes 25

0111(100 1000011
0100jj101

sysH; 4 = [1011|010 sysGr 4 =
’ 1101001 ’ 0010|110
0001|111

Let sysH_perm be the column permutation that turns H into sysH. The parity
check and generating matrices in systematic form are formalized as follows:
Definition sysH :’M[’F_2]_(m, n) := col_perm sysH_perm hamH.
Definition sysG :=

castmx (erefl, subnK (m_len m’)) (row_mx 1%:M (—sysA)"T).

(castmx is a cast that deals with dependent types.) The discard function in
systematic form is obvious:
Definition sysDiscard :'M['F_2]_(n — m, n) :=

castmx (erefl, subnK (m_len m’)) (row_mx 1%:M 0).

Using the column permutation sysH_perm the other way around, we can produce

the discard function and the generating matrix corresponding to the original
hamH:

Definition ham_discard := col_perm sysH_perm”—1 sysDiscard.
Definition hamG := col_perm sysH_perm —1 sysG.

Coupled with the ham_repair function above, hamG and ham_discard provides us
with a complete definition of Hamming encoders and decoders:

Definition ham_channel_code := mkCode
[ffun t = t *m hamG] [ffun x =
omap ham_discard (ham_repair _ x)].

Error Rate. Finally, we show, in the case of a binary symmetric channel W,
that the error rate (see Sect.2.1) of Hamming codes can be expressed as a closed
formula:

Lemma hamming_error_rate : p < 1/2 —

€cha (W, ham_channel_code) =

1—((1 —p) "n) —INRn=x*xp=x* ((1 —p) (n—-1)).

The existence of codes with arbitrary small error rates is the main result of
Shannon’s theorems. But Shannon’s proofs are not constructive. Our formaliza-
tion of Hamming codes with a closed formula for their error rate provides us
with a concrete candidate.

5 Formalization of the Properties of Sum-Product
Decoding

The sum-product algorithm provides efficient decoding for LDPC codes. It com-
putes for each bit its marginal aposteriori probability by propagating probabili-
ties in a graph corresponding to the PCM. We explain those graphs in Sect. 5.1,
the summary operator used to specify the sum-product algorithm in Sect. 5.2,
and the main properties of the sum-product algorithm in Sect. 5.3.

26 R. Affeldt and J. Garrigue

5.1 Parity Check Matrix as Tanner Graphs

The vertices of a Tanner graph correspond to the rows and columns of a parity-
check matrix H with an edge between m and n when H,, , = 1. Rows are called
function nodes and columns are called variable nodes. By construction, a Tanner
graph is bipartite.

Sets of successor nodes and subgraphs of Tanner graphs appear as indices of
big operators in the definitions and proofs of the sum-product algorithm.

Let g be a graph (formalized by a binary relation) and m and n be two
connected vertices. The subgraph rooted at the edge m—n is the set of vertices
reachable from m without passing through n:

Variables (V : finType) (g : rel V).

Definition except n := [rel xy | g x y A (x #n) A (y #n)].
Definition subgraph m n :=
[set v | g n m A connect (except n) m v].

For Tanner graphs, we distinguish successors and subgraphs of variable nodes
and of function nodes. We denote the successors of the function (resp. variable)
node mo (resp. n0) by ‘Vm0 (resp. ‘F n0). We denote the function nodes of the
subgraph rooted at edge m0—n0 by ‘F(m0, n0). Similarly, we denote the variable
nodes of the subgraph rooted at edge m0-n0 (to which we add n0) by ‘V(m0, no0).
Figure 2 provides an explanatory illustration, see [3] for complete definitions.

‘V m0 4
‘Fmo, no) , N

3 / \

' @ , n

& { ' ‘F nl
- — = !

. ‘ o M |

@ ¢

B H

Fig. 2. Successors and subtrees in an acyclic Tanner graph

‘V(m0, no0) |'

It will be important to distinguish acyclic Tanner graphs:
Definition acyclic g := V 1, 2 < size 1 — ~ path.ucycle g 1.

Technically, we will need to establish partition properties when proving the
properties of the sum-product decoding algorithm (see Sect.5.3 for a concrete
example).

5.2 The Summary Operator

Pencil-and-paper proofs in modern coding theory [12] make use of a special
summation called the summary operator [10]. It is denoted by) _ . and indicates

Formalization of Error-Correcting Codes 27

the variables not being summed over. This operator saves the practitioner “from
a flood of notation” [12, p. 49], for example by writing steps such as:

H Z - Z H . (1)

mo€F (ng) ~{no} ~{ng} mo€F(ng)

the reader being trusted to understand that both operators sum over different
sets.

We formalize the summary operator as a sum over vectors x such that x /_ i
is fixed using a default vector d when i ¢ s and write Y _(x # s, d) instead
of >
Definition summary (s : {set’I_n}) (d x :’rV[A]_n) :=

[Vi, (i € ": 8)=(x /_i=4d/_i)].

Notation ™y, (x'#’ s’,” d) e = O (x | summary s d x) e)

Indeed, >, can be understood as a sum over vectors [Zo;Z1;...;Zn—1] such
that z; is fixed when i € s. We found it difficult to recover the terseness of
the pencil-and-paper summary operator in a proof-assistant. First, the precise
set of varying x; is implicit; it can be inferred by looking at the x; appearing
below the summation sign but this is difficult to achieve unless one reflects most
syntax. Second, it suggests working with vectors = of varying sizes, which can
be an issue when the size of vectors appears in dependent types (tuples or row
vectors in MATHCOMP). Last, it is not clear about the values of z; when i € s.

In contrast, our formalization makes clear, for example, that in Eq. (1) the
first summary operator sums over V(mg,ng)\{no} while the second one sums
over [1,...,n]\{no} (see Sect.5.3 for the formalization). More importantly, we
can benefit from MATHCOMP lemmas about big operators to prove the properties
of the sum-product decoding thanks to our encoding (see Sect. 5.3).

Alternatively, our summary operator > _(x # s, d) e x can also be thought
as) . ek, "'meer e d[sy := x1]---[s|s := x|5] where d[i := b] represents
the vector d where index i is updated with b. Put formally (enum s below is the
list [s15802;- -+ ;5)5/]):

Definition summary_fold (s : {set ’'I_n}) d e :=

foldr (fun nO F t =), (b in ’F_2) F (t ‘[n0 := b])) e (enum s) d.
This is equivalent (3°_(x # s, d) e x = summary_fold s d e) but we found it easier
to use summary_fold to prove our implementation of the sum-product algorithm
in Sect. 6.

5.3 Properties of the Sum-Product Decoding

Correctness of the Estimation. Let us consider a channel W and a chan-
nel output y. With sum-product decoding, we are concerned with evaluating
P (bly) where b is the value of the nf" bit of the input codeword (see Sect. 2.2).
In the following, we show that it is proportional to the following quantity:

PXZ(My) X W(yno|b) H AUmg,no (b)

moEF(no)

28 R. Affeldt and J. Garrigue

Qmo.no (D) (formal definition below) is the contribution to the marginal aposte-
riori probability of the n{® bit coming from a subtree of the Tanner graph (we
assume that the Tanner graph is acyclic).

We now provide the formal statement. Let W be a channel. Let H be a
m x n PCM such that the corresponding Tanner graph is acyclic (hypothesis
acyclic_graph (tanner_rel H), where tanner_rel turns a PCM into the corre-
sponding Tanner graph). Let y be the channel output to decode. We assume
that it is receivable (hypothesis Hy below, see Sect.2.2). Finally, let d be the
vector used in the summary operator. Then the aposteriori probability P,gg (bly)
can be evaluated by a closed formula:

Lemma estimation_correctness (d : ’rV_n) nO :
let b := d /_ n0 in let P := ‘U C_not_empty in
P ’'_n0 ‘“°° W, Hy (b | y) =

Kmpp Hy * Kpp W H y * W b (y /_ n0) * [[.(m0O in ‘F n0) a mO0 nO d.

Kmpp and Kpp are normalization constants (see [3]). P is a uniform distribution.
The distribution ‘U C_not_empty of codewords has the following probability mass
function: cw — 1/|C] if cw € C and 0 otherwise. « is the marginal aposteriori
probability of the n§® bit of the input codeword in the modified Tanner graph
that includes only function nodes from the subgraph rooted at edge my—ngy and
in which the received bit y /_ n0 has been erased. The formal definition relies on
the summary operator:

Definition @ mO n0 d := > (x # ‘V(mO, n0) :\ n0 , d)

W _ (y# ‘V(m0, n0) :\ n0 | x # ‘V(mO, n0) :\ n0) x
[L(m1 in ‘F(mO, n0)) INR (6 (‘V ml) x).

d s x is an indicator function that performs checksum checks:

Definition 6 n (s : {set ’I_n}) (x : ’rV[’F_2]_n) :=
(\big[+%R/Zp0]_(n0 in s) x /_ n0) = ZpO.

Let us comment about two technical aspects of the proof of
estimation_correctness. The first one is the need to instrument Tanner graphs
with partition lemmas to be able to decompose big sums/prods. See the next
paragraph on lemma recursive_computation for a concrete example. The second
one is the main motivation for using the summary operator. We need to make
big sums commute with big prods in equalities like:

[L(mO in ‘F n0) > (x # ‘V(mO, n0) :\ n0 , d) ... =
S (x # setT :\ no , d) [[L(mO in ‘F noO)

Such steps amount to apply the MATHCOMP lemma big_distr_big_dep together
with technical reindexing. This is one of our contributions to provide lemmas for
such steps.

Recursive Computation of a’s. The property above provides a way to evalu-
ate PV (bly) but not an efficient algorithm because the computation of tm n, (b)
is about the whole subgraph rooted at the edge my—ng. The second property that
we formalize introduces § probabilities such that o’s (resp. 4’s) can be computed
from neighboring ’s (resp. o’s). This is illustrated by Fig. 3 whose meaning will
be made clearer in Sect. 6. We define § using « as follows:

Formalization of Error-Correcting Codes 29

Definition 8 n0 mO (d : ’rV_mn) :=
W (d /_ n0) (y /- n0) % [[.(m1l in ‘F nO0 :\ mO) « ml nO 4.

We prove that «’s can be computed using (’s by the following formula (we
assume the same setting as for the Lemma estimation_correctness):

Lemma recursive_computation mO n0O d : n0 € ‘V mO0 —

am0 n0 d =) (x # ‘Vm0 :\ nO , d)

INR (6 (‘V m0) x) * [[.(n1 in ‘V mO :\ nO0) 8 nl m0 x.

This proof is technically more involved than the lemma estimation_correctness
but relies on similar ideas: partitions of Tanner graphs to split big sums/prods
and commutations of big sums and big prods using the summary operator. Let
us perform the first proof step for illustration. It consists in turning the inner
product of o messages [[_(m1 in ‘F(m0, n0) :\ m0) INR (§ (‘V m1) x) into:
[L(nt in ‘V m0 :\ n0) [[L(ml in ‘F nl :\ mO)

[L(m2 in ‘F(m1, n1)) INR (6 (‘V m2) x)
This is a consequence of the fact that ‘F(m0, n0) :\ m0 can be partitioned (when
H is acyclic) into smaller ‘F(m1, n1) where n1 is a successor of m0 and ml is a
successor of ni1, i.e.; according to the following partition:
Definition Fgraph_part_Fgraph mO nO : {set {set ’I_m}} :=

(fun n1 = (J_(m1 in ‘F nl :\ m0) ‘F(m1, nl)) @: ((‘V m0) :\ no0).
Once Fgraph_part_Fgraph m0 n0 has been shown to cover ‘F(m0, n0) :\ n0 with
pairwise disjoint sets, this step essentially amounts to use the lemmas
big_trivIset and big_imset from MATHCOMP. See [3, tanner_partition.v] for

related lemmas.
®K aum./l”(())» B”“‘m“ (O)P
('(//m.rlH (1) Bm).rm) (1)

ﬁ”l-’”u(o)* B"z-”u) (0)‘ ﬁ”l-’”u (0)
ﬁn, g (1) an.nu; (1) ﬁnl g (1)

Oy .y 1()\./ 4\ \a/,,i_/,i,m).
iy ny (1) iy s (1)
Onyny (0), Oy iy (0),

Oy .y 1) Oy, (1)

a//l o { ()),
Oy, (1)

Fig. 3. Illustrations for sumprod_up and sumprod_down. Left: sumprod_up computes
the up links from the leaves to the root. Right: sumprod_down computes the down link
of edge mo—n2 using the 8’s of edges mo—n; (i # 2).

6 Implementation and Verification of Sum-Product

Decoding

An implementation of sum-product decoding takes as input a Tanner graph and
an output y, and computes for all variable nodes, each representing a bit of the

30 R. Affeldt and J. Garrigue

decoded codeword, its marginal aposteriori probability. One chooses to decode
the nf" bit either as 0 if P} (0ly) > P}V (1]y) or as 1 otherwise, so as to perform
MPM decoding.

The algorithm we implement is known in the literature as the forward/back-
ward algorithm and has many applications [10]. It uses the tree view of an acyclic
Tanner graph to structure recursive computations. In a first phase it computes
a’s and 3’s (see Sect. 5.3) from the leaves towards the root of the tree, and then
computes a’s and 3’s in the opposite direction (starting from the root that time).
Figure 3 illustrates this.

Concretely, we provide Coq functions to build the tree, compute a’s and 3’s,
and extract the estimations, and prove formally that the results indeed agree
with the definitions from Sect. 5.3.

Definition of the Tree. Function nodes and variable nodes share the same
data structure, and are just distinguished by their kind.

Definition R2 := (R % R)%type.

Inductive kind : Set := kf | kv.

Fixpoint negk k := match k with kf = kv | kv = kf end.
Inductive tag : kind — Set := Func : tag kf | Var : R2 —
tag kv.

Inductive tn_tree (k : kind) (U D : Type) : Type :=
Node { node_id : id; node_tag : tag k;
children : seq (tn_tree (negk k) U D);
up : U; down : D }.

This tree is statically bipartite, thanks to the switching of the kind for the
children. Additionally, in each variable node, node_tag is expected to contain the
channel probabilities for this bit to be 0 or 1, i.e., the pair (W (yn,[0), W (yn,|1))-
The up and down fields are to be filled with the values of o and 8 (according to
the kind), going to the parent node for up, and coming from it for down. Here
again we will use pairs of the 0 and 1 cases. Note that the values of a’s and (§’s
need not be normalized.

Computation of a and (. The function a_p takes as input the tag of the source
node, and the a’s and A’s from neighboring nodes, excluding the destination,
and computes either o or (3, according to the tag. Thanks to this function,
the remainder of the algorithm keeps a perfect symmetry between variable and
function nodes.

Definition a_op (out inp : R2) :=
let (o0o,0’) := out in let (i,i’) := inp in

(o%i 4+ o’%i’, oxi’ + o’x*i).
Definition fB_op (out inp : R2) :=
let (o0o,0’) := out in let (i,i’) := inp in (oxi, o’xi’).

Definition a_8 k (t : tag k) : seq R2 — R2 :=
match t with
| Func = foldr a_op (1,0)
| Var v = foldl B_op v
end.

Formalization of Error-Correcting Codes 31

The definition for g is clear enough: assuming that v contains the channel proba-
bilities for the corresponding bit, it suffices to compute the product of these prob-
abilities with the incoming «’s. For «, starting from the recursive_computation
lemma, we remark that assuming a bit to be 0 leaves the parity unchanged, while
assuming it to be 1 switches the parities. This way, the sum-of-products can be
computed as an iterated product, using a_op. This optimization is described
in [10, Sect. 5-E]. We will of course need to prove that these definitions compute
the same a’s and (’s as in Sect. 5.3.

Propagation of « and (. sumprod_up and sumprod_down compute respectively
the contents of the up and down fields.

Fixpoint sumprod_up {k} (n : tn_tree k unit unit)
tn_tree k R2 unit :=

let children’ := map sumprod_up (children n) in

let up’ := a_f (node_tag n) (map up children’) in

Node (node_id n) (node_tag n) children’ up’ tt.
Fixpoint seqs_butl (a b : seq R2) :=

if b is hut then (at+t):iiseqs_butl (rcoms a h) t else [::].
Fixpoint sumprod_down {k} (n : tn_tree k R2 unit)

(from_above : option R2) : tn_tree k R2 R2 :=

let (arg0, down’) :=

if from_above is Some p then ([up],p) else ([:],(1,1)) in
let args := seqgs_butl arg0 (map up (children n)) in
let funs := map

(fun n’ 1 = sumprod_down n’ (Some (a_f (node_tag n) 1)))
(children n) in

let children’ := apply_seq funs args in
Node (node_id n) (node_tag n) children’ (up n) down’.
Definition sumprod {k} n := sumprod_down (@sumprod_up k n) None.

The from_above argument is None for the root of the tree, or the § coming from the
parent node otherwise. apply_seq applies a list of functions to a list of arguments.
This is a workaround to allow defining sumprod_down as a Fixpoint.

Building the Tree. A parity-check matrix H and the probability distribution
W for each bit (computed from the output y and the channel W) is turned into a
tn_tree, using the function build_tree, and fed to the above sumprod algorithm:

Variables (W : ¢54('F_2, B)) (y : ’rV[B]_mn).
Let W n0 := (W 0 (y /_ n0), W1 (y /_ n0)).
Let computed_tree := sumprod (build_tree H rW (k := kv) ord0).

Extraction of Estimations. We finally recover normalized estimations from
the tree:

Definition normalize (p : R2) :=

let (pO, pt) := p in (p0 / (pO + p1), pt / (PO + p1)).
Fixpoint estimation {k} (n : tn_tree k R2 R2) :=

let 1 := flatten (map estimation (childremn n)) in

if node_tag n is Var _ then

32 R. Affeldt and J. Garrigue

(node_id n, normalize (B_op (up n) (down n))) = 1
else 1 (* node_tag n is Func *).

Correctness. The correctness of the algorithm above consists in showing that
the estimations computed are the intended aposteriori probabilities:

Let estimations := estimation computed_tree.
Definition esti_spec n0 (x : ’rV_m) :=

(‘U C_not_empty) '_ n0 ‘" W, Hy (x /_ n0 | y).
Definition estimation_spec := uniq (unzipl estimatioms) A

V n0, (inr nO, pOl (esti_spec n0) n0) € estimations.

where p01 £ n0 applies £, to a vector whose nj® bit is set to 0 and 1.

Theorem estimation_ok in [3, ldpc_algo_proof.v] provides a proof of
this fact. As key steps, it uses the lemmas recursive_computation and
estimation_correctness from Sect.5.3.

Concrete Codes. All proofs of probabilistic sum-product decoding assume
the Tanner graph to be acyclic [10]. In practice codes based on acyclic graphs
are rare and not very efficient [7]. We tested our implementation with one of
them [3, sumprod_test.ml].

In the general case where the Tanner graph contains cycles, one would use
an alternative algorithm that computes the a’s and (3’s repeatedly, propagating
them in the graph until the corrected word satisfies the parity checks, failing if
the result is not reached within a fixed number of iterations [10, Sect.5]. This
works well in practice but there is no proof of correctness, even informal. In place
of this iterative approach, one could also build a tree approximating the graph,
by unfolding it to a finite depth, and apply our functional algorithm.

7 Related Work

Coding theory has been considered as an application of the interface between
the Isabelle proof-assistant and the Sumit computer algebra system [4]. In order
to take advantage of the computer algebra system, proofs are restricted to a cer-
tain code length. Though the mathematical background about polynomials has
been formally verified, results about coding theory are only asserted. In com-
parison, we formally verify much more (generic) lemmas. Yet, for example when
proving that certain bitstrings are codewords, we found ourselves performing
formal proofs close to symbolic computation. With this respect, we may be able
in a near future to take advantage of extensions of the MATHCOMP library that
provide computation [6].

8 Conclusion

In this paper, we have proved the main properties of Hamming codes and sum-
product decoding. It is interesting to contrast the two approaches, respectively
known as classical and modern coding theory.

Formalization of Error-Correcting Codes 33

For Hamming codes, we could provide an implementation of minimal-distance
decoding, and prove that it indeed realizes maximum likelihood decoding, i.e.,
the best possible form of decoding.

For sum-product decoding, which provides the basis for LDPC codes, one can
only prove that the sum-product algorithm allows to implement MPM decoding.
However, this is two steps away from maximum likelihood: the proof is only valid
for acyclic Tanner graphs, while interesting codes contain cycles, and MPM is an
approximation of MAP decoding, with only the latter providing maximum like-
lihood. Yet, this “extrapolation” methodology does work: sum-product decoding
of LDPC codes is empirically close to maximum likelihood, and performs very
well in practice.

Acknowledgments. T. Asai, T. Saikawa, K. Sakaguchi, and Y. Takahashi con-
tributed to the formalization. The formalization of modern coding theory is a collabo-
ration with M. Hagiwara, K. Kasai, S. Kuzuoka, and R. Obi. The authors are grateful
to the anonymous reviewers for their comments. This work is partially supported by a
JSPS Grant-in-Aid for Scientific Research (Project Number: 25289118).

References

1. Affeldt, R., Nowak, D., Yamada, K.: Certifying assembly with formal security
proofs: the case of BBS. Sci. Comput. Program. 77(10-11), 1058-1074 (2012)

2. Affeldt, R., Hagiwara, M., Sénizergues, J.: Formalization of Shannon’s theorems.
J. Autom. Reason. 53(1), 63-103 (2014)

3. Affeldt, R., Garrigue, J.: Formalization of error-correcting codes: from Hamming
to modern coding theory. Coq scripts. https://staff.aist.go.jp/reynald.affeldt/ecc

4. Ballarin, C., Paulson, L.C.: A pragmatic approach to extending provers by com-
puter algebra—with applications to coding theory. Fundamenta Informaticae 34(1-
2), 1-20 (1999)

5. Betten, A., Braun, M., Fripertinger, H., Kerber, A., Kohnert, A., Wassermann,
A.: Error-Correcting Linear Codes-Classification by Isometry and Applications.
Springer, Heidelberg (2006)

6. Dénes, M., Mortberg, A., Siles, V.: A refinement-based approach to computational
algebra in Coq. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp.
83-98. Springer, Heidelberg (2012)

7. Etzion, T., Trachtenberg, A., Vardy, A.: Which codes have cycle-free Tanner
graphs? IEEE Trans. Inf. Theory 45(6), 2173-2181 (1999)

8. Gonthier, G., Mahboubi, A., Tassi, E.: A small scale reflection extension for the
Coq system. Technical report RR-6455, INRIA (2008). Version 14, March 2014

9. Hagiwara, M.: Coding theory: mathematics for digital communication. Nippon
Hyoron Sha (2012) (in Japanese)

10. Kschischang, F.R., Frey, B.J., Loeliger, H.-A.: Factor graphs and the sum-product
algorithm. IEEE Trans. Inf. Theory 47(2), 498-519 (2001)

11. MacWilliams, F.J.; Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-
Holland, Amsterdam (1977). 7th impression (1992)

12. Richardson, T., Urbanke, R.: Modern Coding Theory. Cambridge University Press,
Cambridge (2008)

https://staff.aist.go.jp/reynald.affeldt/ecc

2 Springer
http://www.springer.com/978-3-319-22101-4

Interactive Theorem Proving

&th International Conference, TP 2015, Nanjing, China,
August 24-27, 2015, Proceedings

Urban, C.; Zhang, X. (Eds.)

2015, X, 469 p. 63 illus., Softcover

ISEM: 978-3-319-22101-4

	Formalization of Error-Correcting Codes: From Hamming to Modern Coding Theory
	1 Introduction
	2 Premises on Information Theory and Probabilities
	2.1 Channels and Codes in Information Theory
	2.2 Aposteriori Probability

	3 A Formal Setting for Linear ECCs
	3.1 Linear ECCs as Sets of Codewords
	3.2 Linear ECCs with Coding and Decoding Functions
	3.3 The Variety of Decoding Procedures

	4 Formalization of Hamming Codes and Their Properties
	5 Formalization of the Properties of Sum-Product Decoding
	5.1 Parity Check Matrix as Tanner Graphs
	5.2 The Summary Operator
	5.3 Properties of the Sum-Product Decoding

	6 Implementation and Verification of Sum-Product Decoding
	7 Related Work
	8 Conclusion
	References

