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Abstract

Microengineering technologies and advanced biomaterials have extensive
applications in the field of regenerative medicine. In this chapter, we review
the integration of microfabrication techniques and hydrogel-based biomateri-
als in the field of dental, bone, and cartilage tissue engineering. We primarily
discuss the major features that make hydrogels attractive candidates to mimic
extracellular matrix (ECM), and we consider the benefits of three-dimen-
sional (3D) culture systems for tissue engineering applications. We then
focus on the fundamental principles of microfabrication techniques including
photolithography, soft lithography and bioprinting approaches. Lastly, we
summarize recent research on microengineering cell-laden hydrogel con-
structs for dental, bone and cartilage regeneration, and discuss future applica-
tions of microfabrication techniques for load-bearing tissue engineering.
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Abbreviations

2D Two dimensional

3D Three dimensional

BMP Bone morphogenetic protein

puCp Microcontact printing

DPSC Dental pulp stem cell

ECM Extracellular matrix

GelMA Gelatin methacrylate

HA Hydroxyapatite

MAPLE DW Matrix assisted pulsed laser
evaporation direct write

MSC Mesenchymal stem cell

PCL Poly-e-caprolactone

PDL Periodontal ligament

PDMS Polydimethylsiloxane

PD-PEGDA  Photodegradable PEG diacrylate

PEG Polyethylene glycol

PGA Polyglycolic acid

PLGA Poly-L-lactate-co-glycolic acid

PVA Poly(vinyl-alcohol)

RGD Arg-Gly-Asp

SCAP Stem cells from apical papilla

SHED Stem cells from human exfoli-
ated deciduous teeth

2.1  Introduction

Load-bearing tissues, namely bone, cartilage and
teeth, serve various physiological functions,
including mechanical support, protection, as well
as ion homeostasis (Gotfredsen and Walls 2007,
Confavreux et al. 2011; Chen et al. 2013).
Conditions such as trauma, infection or neo-
plasms impair the structures and functions of
these tissues, and in turn significantly impact the
life quality of patients (Gotfredsen and Walls
2007; Confavreux et al. 2011; Marcenes et al.
2013; Jackson et al. 2001). Medical treatments
currently available for bone and cartilage recon-
struction include grafts or artificial prostheses in
addition to stable fixation (Finkemeier 2002). For
tooth loss, dental implants or artificial crowns are
the major treatment options (Sunnegardh-
Gronberg et al. 2012). However, secondary infec-
tion, compromised biocompatibility, and the
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limited durability and accessibility of grafting
materials and artificial prostheses remain major
concerns (Finkemeier 2002; Puppi et al. 2010).
To overcome these limitations, novel approaches
that integrate stem cells and tissue engineering
may provide valuable treatment alternatives for
the regeneration of load-bearing tissues (Langer
and Vacanti 1993; Cortesini 2005).

Tissue engineering is an interdisciplinary
field that integrates biological sciences and bio-
engineering techniques to maintain, restore and
enhance tissue or organ functions (Langer and
Vacanti 1993). Tissue engineering approaches
are mainly based on the use of isolated cell sub-
stitutes, acellular scaffolding biomaterials to ini-
tiate the regeneration process, or cell-laden
biomaterials (Khademhosseini et al. 2006).
While each approach possesses unique advan-
tages, numerous challenges still exist such as the
lack of renewable cell sources, a shortage of suit-
able biomaterials with enhanced mechanical,
chemical, and biological properties, and an
inability of in vivo revascularization
(Khademhosseini et al. 2006; Langer and Vacanti
1999). The advancement of microfabrication
techniques and biomaterial science in the past
few years has paved the way to address some of
the shortcomings of conventional tissue engi-
neering (Khademhosseini et al. 2006).
Microscale technologies were originally devel-
oped for fabricating semiconductor and micro-
electronic devices (Whitesides et al. 2001). Due
to a wide range of length scale (i.e., 1-1,000 pm)
and high resolution, microscale technologies
provide a remarkable ability to facilitate the fab-
rication of miniaturized cell-laden constructs
(Zorlutuna et al. 2012). Moreover, these tech-
nologies enable the precise control of the micro-
environment, and organized vascularization for
delivery of oxygenation and nutrients within
engineered tissue constructs (Khademhosseini
et al. 2006; Zorlutuna et al. 2012; Nikkhah et al.
2012a). In addition, the integration of microscale
technologies with advanced biomaterials (e.g.,
hydrogels) promotes the development of high-
throughput miniaturized assays to determine
stem cell fate at single-cell level (Nikkhah et al.
2012a).
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To date, microfabrication techniques have
been applied for the development of load-bearing
tissues (Petersen et al. 2002; Pelaez-Vargas et al.
2011). Using these technologies, it is possible to
enhance cellular organization, tissue integration
and interfacial strength (Charest et al. 2006;
Gallant et al. 2007; Meredith et al. 2007; Kim
et al. 2013a). In particular, the interfacial strength
in cell-substrate interactions could be increased
through deposition and adsorption of extracellu-
lar matrix (ECM) proteins on micro- and nano-
scale patterned features (Kim et al. 2013b).
Furthermore, these technologies facilitate the
reciprocal cellular signaling, vascularization, and
the delivery of growth factors for load-bearing
tissue regeneration via precisely controlled spa-
tial and temporal features of the cellular microen-
vironment (Kim et al. 2013a; Gray et al. 2003;
Chung et al. 2007; Jager et al. 2008). This chapter
outlines the applications of microscale technolo-
gies and hydrogel-based biomaterials for engi-
neering load-bearing tissues. We first discuss the
unique benefits of hydrogels in the development
of engineered tissue constructs. Our discussion
then focuses on fundamental microfabrication
techniques, including photolithography, soft
lithography and bioprinting. We finally highlight
specific studies that are devoted toward the gen-
eration of cell-laden constructs for dental, bone
and cartilage regeneration.

2.2  Hydrogels: Artificial

Extracellular Matrices

The concept of tissue engineering stems from the
ability of dissociated cells to recapitulate in vivo
physiological functions under the appropriate
settings (Kim and Mooney 1998). Since the ECM
is important in tissue regeneration, an artificial
ECM is normally used in tissue engineering to
create a biomimetic microenvironment and to
direct cell/tissue functions (Kim and Mooney
1998; Cohen et al. 1993). To date, numerous
attempts have been made to develop synthetic or
natural based biomaterials that closely resemble
native ECM for tissue engineering applications
(Kim and Mooney 1998; Tabata 2009). In this

regard, hydrogels have attracted significant atten-
tion due to their suitable properties (Kim and
Mooney 1998). Hydrogels are polymeric net-
works that are formed from hydrophilic poly-
mers, and crosslinked to form insoluble gel
matrices, which preserve a large amount of water
(up to 99 %) (Peppas et al. 2006). The three-
dimensional (3D) microenvironment of hydro-
gels circumvents some of the limitations of
traditional two-dimensional (2D) cell culture sys-
tems (Petersen et al. 1992; Birgersdotter et al.
2005; Le Beyec et al. 2007). The biomimetic
microenvironment within hydrogel constructs
allows the diffusion of oxygen, nutrients and
waste, as well as the transport of soluble factors
(Slaughter et al. 2009). Due to their biocompati-
ble nature, hydrogels have been widely used in
regenerative medicine as an artificial ECM that
provides cells with an initiating niche and sup-
port cell-cell and cell-matrix interactions
(Slaughter et al. 2009).

Hydrogels can be fabricated from synthetic or
naturally-derived materials (Peppas et al. 2006).
Synthetic hydrogels (e.g., polyethylene glycol
[PEG], polyglycolic acid [PGA], polyvinyl alco-
hol [PVA]) have the advantages of reproducible
large-scale fabrication as well as tunable and
consistent properties, but lack cell-recognizable
motifs, such as Arg-Gly-Asp (RGD) (Kim and
Mooney 1998). On the other hand, naturally-
derived hydrogels (e.g., collagen, silk and hyal-
uronic acid) are attractive candidates for tissue
engineering due to their biocompatibility and
tunable biodegradability that support cell-matrix
interactions (Peppas et al. 2006; Annabi et al.
2014). Compared to synthetic hydrogels,
naturally-derived hydrogels offer a better opti-
mized 3D microenvironment that promotes cell
functions (e.g., attachment and proliferation)
(Slaughter et al. 2009). However, the concerns of
using naturally-derived hydrogels include low
mechanical strength, batch-to-batch variance,
and potential immunogenicity and contamination
(Annabi et al. 2014). To further strengthen the
mechanical properties of naturally-derived
hydrogels, the incorporation of functional groups
(e.g., acrylate) or other composites (e.g., syn-
thetic hydrogels and nanoparticles) have been
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studied (Ifkovits and Burdick 2007; Shin et al.
2013; DeKosky et al. 2010). Detailed descrip-
tions on the properties and comparisons of vari-
ous hydrogels are covered in previously published
review articles (Peppas et al. 2006; Annabi et al.
2014).

Mechanical properties are key parameters
when designing hydrogels for specific tissue
engineering applications. In particular, the
mechanical characteristics of hydrogel con-
structs, such as stiffness and ratio of stress/strain,
have been shown to significantly influence cell
behaviors (Huebsch et al. 2010; Baker and Chen
2012). Murine mesenchymal stem cells, for
instance, differentiated toward an osteogenic fate
in 3D RGD-modified hydrogels with stiffness
similar to native osteoid matrix, which ranged
from 11 to 30 kPa (Huebsch et al. 2010).
Similarly, other cell types (e.g., fibroblasts in
ligament and tendon) are capable of sensing
stress and strain in the surrounding ECM, and
respond accordingly by morphology, migration,
proliferation and differentiation (Riehl et al.
2012). Beyond serving as scaffolds that support
cell adhesion and promote cell-matrix interac-
tions, hydrogels also regulate the spatial distribu-
tion of effector soluble molecules (e.g.,
morphogens, cytokines and growth factors) and
gases through diffusive or convective transport as
well as sequestration (Baker and Chen 2012). In
this regard, techniques, such as microfabrication,
have proven instrumental in adjusting the physi-
cal features (e.g., geometry and topography) of
hydrogel constructs in order to support specific
functionalities of multiple cell types within an
organized tissue construct (Brock et al. 2003;
Albrecht et al. 2006). As a result, the utility of
cell-laden hydrogels in the field of regenerative
medicine has seen a marked surge.

2.3  Microfabrication Techniques
to Engineer Cell-Laden

Hydrogels

One notable groundbreaking innovation in the
field of tissue engineering is the use of microfab-
rication technology. So far, microfabrication
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techniques, including photolithography and soft
lithography, have been widely applied for pat-
terning or topographical guidance of cell-laden
contructs (Andersson and van den Berg 2004).
Tissue engineering has enormously benefited
from microfabrication technology in terms of
high flexibility, precise control in microenviron-
ment design, efficient performance and cost-
savings benefits due to the expediency for
high-throughput and faster  experiments
(Andersson and van den Berg 2004). Below, we
summarize the basic concepts and current appli-
cations of major microfabrication techniques.

2.3.1 Photolithography
Photolithography is a highly reliable microfabri-
cation technique to manipulate features accu-
rately at micro- and nano-scale (Liu Tsang et al.
2007; Shao and Fu 2014). In conventional photo-
lithography, a photoresist is spin-coated uni-
formly on a flat substrate followed by exposure
with UV light through a pre-fabricated photo-
mask (Tabata 2009). UV light alters the chemical
structure of a photoresist, further modifying its
solubility in the developer solution and transfer-
ring the pattern of the photomask on the flat sub-
strate (Borenstein et al. 2007). Through
photolithography, it is possible to precisely pat-
tern biomolecules or cells of interest on the sub-
strate surface by etching or lift-off process in
order to control the surface topographies
(Andersson and van den Berg 2004; Liu Tsang
et al. 2007). However, the major shortcoming of
conventional photolithography is the high sensi-
tivity of the procedure. Even the smallest dust
particle can distort the spreading of photoresist
molecules during the spinning process (Karp
et al. 2006). Therefore, it is mandatory to carry
out photolithography in a clean room (Karp et al.
20006) via relatively costly equipment (e.g. spin
coater, mask aligner and wet benches) (Hwang
et al. 2010).

On the other hand, hydrogel photolithography
can be used on the bench-top to build 3D cell-
laden constructs by the sequential patterning of
photocrosslinkable hydrogels (Andersson and
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van den Berg 2004; Liu Tsang et al. 2007).
Compared to conventional photolithography,
hydrogel photolithography is a fast, simple, and a
low-cost technique. Photocrosslinkable hydro-
gels (e.g., gelatin methacrylate [GeIMA], photo-
degradable PEG diacrylate [PD-PEGDA],
methacrylated tropoelastin) can be used to
manipulate cell behaviors (e.g., cell migration,
cell proliferation and cell differentiation) and
guide tissue organization (Khademhosseini et al.
2006; Moon et al. 2010a; Annabi et al. 2013). In
a study by Nikkhah et al., endothelial cells-
encapsulated GeIMA constructs were precisely
patterned with variable geometrical features
using photolithography. The outcome of this
study demonstrated that the cells rearranged
toward the periphery of the constructs and formed
highly organized cord-like structures that
expressed endothelial cell markers, CD31 and
VE-cadherin (Nikkhah et al. 2012b). This cord-
like structure could act as a template during
implantation to guide the formation of robust
vessels integrated with the host tissue (Nikkhah
et al. 2012b; Baranski et al. 2013).

2.3.2 SoftLithography

Soft lithography (i.e., microcontact printing,
microfluidic patterning) and replica molding
techniques refer to a set of non-photolithographic
approaches to develop 2D and 3D precisely
ordered constructs with resolutions up to
nanoscale (Whitesides et al. 2001; Yu and Ober
2003). In soft lithography, a prefabricated stamp
or mold made of elastomeric polymers, such as
polydimethylsiloxane (PDMS)), is used to pattern
biomolecules. On the other hand, replica molding
techniques enable creating microscale features of
heat-crosslinkable or photocrosslinkable hydro-
gels to control the distribution of the biomole-
cules or cells in a 3D microenvironment
(McMillan et al. 1999; Selimovic et al. 2012;
Occhetta et al. 2013).

Self-assembled monolayers, peptides and
ECM can be efficiently patterned on various
types of flat and curved surfaces using microcon-
tact printing (LCP) (James et al. 1998). This tech-

nique facilitates the patterning of several
molecules on a substrate using different stamps
(Bernard et al. 2000), as well as a molecular gra-
dient using stamps composed of arrays of high-
resolution patterns (Crozatier et al. 2006). When
using pCP, there are certain difficulties for pat-
terning proteins on structurally soft substrates
(e.g., hydrogels) (Damljanovic et al. 2005;
Burnham et al. 2006; Rape et al. 2011), such as
the stability of the biomolecules (Hynd et al.
2007). Therefore, a modified pCP process called
“soft protein lithography” has been developed for
patterning applications on hydrogel based sur-
faces (Polio et al. 2012; Turunen et al. 2013).
Microfluidic patterning refers to another set of
soft lithography techniques, through which pat-
terns can be created at desired locations of a sub-
strate by restricting the flow within the
microchannels formed by contacting a PDMS
stamp on the substrate (Vanapalli et al. 2009).
This technique was originally developed using
capillary flow, but was further extended to pattern
proteins and cells on larger channels (e.g., 100
pm) based on pressure-assisted flows. In this
approach, using multi-layer PDMS stamps, it is
possible to indirectly pattern different cell types
at desired locations on a substrate (Chiu et al.
2000) or to generate heterogeneous multi-layer
tissue constructs (Bernard et al. 2000; Vanapalli
et al. 2009; Kenis et al. 1999; Jeon et al. 2000).

2.3.3 Bioprinting

Bioprinting has been utilized as a powerful tool
to develop microscale engineered tissue con-
structs (Mironov et al. 2008; Moon et al. 2010b;
Xu et al. 2010). Although bioprinting falls under
the category of conventional microfabrication,
the application of this technology to pattern bio-
molecules and cells holds unique benefits
(Mironov et al. 2008). The major advantages of
bioprinting include a fast and automated fabrica-
tion process and the development of 3D multi-
layered constructs comprised of co-cultures of
different cell types on a single substrate (Moon
et al. 2010b; Mironov et al. 2003). Various types
of bioprinting systems, such as inkjet-based
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printing (Nakamura et al. 2005), laser printing
(Barron et al. 2004; Nahmias et al. 2005), acous-
tic cell encapsulation (Demirci and Montesano
2007a) and valve-based printing (Demirci and
Montesano 2007b; Song et al. 2010), have been
used so far for tissue engineering applications.
We refer readers to Chap. 1 of this book for more
detail (Tasoglu and Demirci 2013).

2.4  Applications
of Microfabrication
Technology in Regenerative

Dentistry

Teeth are highly mineralized organs used for var-
ious purposes, including mastication, phonetics
and esthetics (Volponi et al. 2010). Although the
morphology of teeth varies by species and loca-
tion within the oral cavity, there is only slight
variation in the composition of teeth, which con-
sists of enamel, dentin, pulp, cementum, and
periodontal ligament (PDL) (Yen and Sharpe
2008; Rodriguez-Lozano et al. 2012). Tooth loss
due to periodontal disease, caries, trauma, or
genetic predisposition remains a global health
issue, and can significantly affect quality of life
(Marcenes et al. 2013). Current treatment options
for missing teeth are prosthetic replacements,
such as crowns, bridges, dentures, and dental
implants. A potentially attractive strategy for
tooth replacement is tooth regeneration through
the integration of biomimetic scaffolds, stem
cells, cocktails of growth factors and micro- or
nano-engineering technologies. It has been previ-
ously shown that extracted tooth buds from
mouse embryos fully developed with correct ori-
entation, size and morphology after transplanting
into the diastema region of adult mice, suggest-
ing that adult oral cavity provides a suitable envi-
ronment for tooth regeneration (Ohazama et al.
2004). Furthermore, multiple cell types with
odontogenic potency, such as dental pulp stem
cells (DPSCs) (Gronthos et al. 2000) and stem
cells from human exfoliated deciduous teeth
(SHED) (Miura et al. 2003), have been identified
as potential cell sources for tooth regeneration.
These findings thus shed light on potential routes
for the creation of bioengineered teeth to replace
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missing teeth in adults, through various combina-
tions of embryonic tooth primordia and cultured
progenitor cells (Nakao et al. 2007).
Microfabrication may be particularly beneficial
for regenerating the highly organized tissues of
the tooth and periodontium since the microenvi-
ronment can be precisely controlled. In this sec-
tion, we outline current accomplishments,
challenges, and potential applications of micro-
fabrication techniques in regenerative dentistry.

2.4.1 Regeneration

of a Bioengineered Tooth

Odontogenesis is a strictly controlled develop-
mental process that involves epithelial-
mesenchymal interactions (O’Connell et al.
2012). To generate a whole tooth with its com-
plex and mineralized load-bearing structures, a
precisely-designed scaffold that can guide cell
assembly and tissue organization is critical
(Hacking and Khademhosseini 2009). With the
aid of microfabrication, cell-laden hydrogel con-
structs can be prepared and spatially arranged
with customized functional and architectural fea-
tures (Khademhosseini et al. 2006). The scaffold-
based approach typically involves harvesting,
expanding, and differentiating the cells in vitro,
seeding them onto pre-fabricated scaffolds, and
subsequently implanting them in vivo (Fig. 2.1a)
(Yen and Sharpe 2008; Yu et al. 2008).

To date, numerous biomaterials have been
used in tooth regeneration studies, such as PGA
(Duailibi et al. 2008), poly-L-lactate-co-glycolic
acid (PLGA) (Duailibi et al. 2008), and collagen
sponges (Fig. 2.1b) (Sumita et al. 2006). In one
scaffold-based approach, a bioengineered tooth
was generated by recombining and seeding dis-
sociated epithelial cells and mesenchymal cells
from an isolated embryonic tooth germ into a col-
lagen gel droplet, and essentially reproducing the
reciprocal epithelial-mesenchymal interactions
in early odontogenesis (Nakao et al. 2007). To
achieve the optimal size and morphology of teeth,
a pre-fabricated scaffold that anatomically
reflects the natural shape and size of a tooth has
also been explored. Kim et al., in particular, used
a 3D bioprinting technique to create a life-sized
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Dissociated
cells

Cell-laden
scaffold

Fig. 2.1 Application of microfabrication technology to
regenerative dentistry. (a) Schematic diagram of a scaffold-
based approach, typically involving harvest of epithelial
cells and mesenchymal cells from an embryonic tooth
germ, followed by dissociation, recombination, and seed-
ing onto a pre-fabricated tooth-shaped scaffold.
Subsequently, the cell-laden construct is transplanted
in vivo to generate a bioengineered tooth (Yen and Sharpe
2008) (Adapted from Yen and Sharpe with permission from
Cell and Tissue Research. Copyright © 2007 Springer).

tooth scaffold made of poly-e-caprolactone
(PCL) and hydroxyapatite = (HA) with
200-pm-diameter interconnecting microchannels
(Kim et al. 2010a). Moreover, the infusion of
stromal-derived factor-1 (SDF1) and bone mor-
phogenetic protein 7 (BMP7) into the microchan-
nels of the scaffold was shown to recruit
significantly more progenitor cells. Taken
together, these findings demonstrate the potential
of using a scaffold-based approach in regenera-
tive dentistry (Kim et al. 2010b).

(b) Application of microfabrication and novel biomaterials
to generate a bioengineered tooth. Upper panel: Scanning
electronic microscopy of the collagen sponge scaffold
(Sumita et al. 2006). Lower panel: A bioengineered tooth
that imitates anatomic tooth architecture formed 25-week
post-transplantation, revealing enamel (e), dentin (d),
cementum (ce) and pulp (p) (Sumita et al. 2006) (Adapted
from Sumita et al. with permission from Biomaterials.
Copyright © 2006 Elsevier)

It is also important to consider the disadvan-
tages of the scaffold-based approach for tooth
regeneration, such as interrupted cell-matrix
interactions, compromised biocompatibility, and
poor preservation of growth factors within pre-
fabricated scaffolds (Yu et al. 2008). However,
these issues can be addressed by introducing
alternative materials and modes of delivery. Cell-
matrix interactions and biocompatibility, for
instance, can be improved by using naturally-
derived hydrogels, such as collagen and gelatin
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(Slaughter et al. 2009). Furthermore, the micro-
encapsulation or binding of critical growth fac-
tors to pre-fabricated scaffolds can prevent the
unwanted diffusion of ligands (Carrasquillo et al.
2003; Lin et al. 2008), and this technique can
potentially be applied for tooth regeneration.

2.4.2 Regeneration of Dental Pulpal
Tissues

Regenerative endodontics aims to regenerate the
dental pulp, which consists of vital neuro-
vascular tissues. The integration of stem cells,
scaffolds, and growth factors provides a promis-
ing avenue for revascularization and pulp tissue
regeneration (Murray et al. 2007). In a recent
study, DPSCs and stem cells from the apical
papilla (SCAP) were seeded on a PLGA scaffold,
inserted into the root canal spaces of root frag-
ments, which were then implanted subcutane-
ously into immunocompromised mice. Three to
four months after implantation, histological anal-
ysis showed pulp-like tissue and vascularization
within the root canal spaces, as well as a continu-
ous layer of dentin-like calcified deposition along
the canal wall (Huang et al. 2010). While the
exogenous application of stem cells is a com-
monly studied approach, one study suggested
that an exogenous source may not be a critical
component in regenerative endodontics (Volponi
et al. 2010), and that proper vascularization may
be sufficient to home progenitor cells into an
empty canal for pulp regeneration.
Microfabrication techniques have already been
used to create vascular networks, and could
potentially be used to enhance revascularization
of the dental pulp in an organized and efficient
manner (Nikkhah et al. 2012b; Morgan et al.
2013). There are, however, no major studies thus
far that explore the use of microfabrication tech-
niques for tooth revascularization.

2.4.3 Regeneration of Periodontium

Teeth are supported and anchored by the peri-
odontium, which consists of cementum, peri-

C.-C.Lietal

odontal ligament (PDL), gingiva, and alveolar
bone. Since tooth loss occurs when these sup-
porting structures are impaired by inflammatory
conditions, such as severe periodontal disease,
the restoration of these tissues is crucial. While
more can be done, microfabrication has already
demonstrated useful benefits in various studies of
periodontal regeneration. Soft lithography, for
instance, has been used to create modified sur-
faces that encourage periodontium regeneration.
Pelaez-Vargas et al. demonstrated that micropat-
terned silica coatings on dental implant surfaces
were biocompatible and notably capable of guid-
ing the adhesion, spreading, and propagation of
osteoblast-like cells for periodontal tissues regen-
eration (Pelaez-Vargas et al. 2011). 3D bioprint-
ing has also been used to design a fiber-based
scaffold to facilitate the formation of bone-
ligament complexes that mimic the natural anat-
omy of the periodontium (Park et al. 2014;
Ivanovski et al. 2014; Lee et al. 2014). With
proper geometrical control, PDL fibers were
regenerated in their proper orientation, and
anchored in a cementum-like layer on the root
surface. A multiphasic scaffold is another
approach for regenerating the different compo-
nents of the periodontium in a cohesive structure,
and has only recently been considered (Ivanovski
et al. 2014). In one study, 3D bioprinting was
used to construct three continuous yet distinct
phases: 100-pm microchannels with recombinant
human amelogenin for the cementum/dentin
interface, 600-um microchannels with connec-
tive tissue growth factor for the PDL, and 300-
pm microchannels with bone morphogenetic
protein 2 for alveolar bone. The sizes of the
microchannels for each phase were specifically
chosen based on previous studies in fibro-osseous
tissues regeneration. After in vivo implantation
of the scaffold, PDL-like collagen fibers were
seen inserted into bone-like and cementum-like
tissues (Lee et al. 2014). The findings from
in vitro and in vivo studies using multiphasic
scaffolds, although promising, should be investi-
gated further before large animal and human
clinical trials.

Tooth and periodontium possess highly orga-
nized and complex structures. In this regard,
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microengineering can be particularly useful for
creating precisely designed platforms for dental
tissue regeneration. Although significant prog-
ress has been made thus far in regenerative den-
tistry, more studies are warranted to eventually
offer tooth and periodontium regeneration as a
treatment option in a dental practice.

2.5 Applications
of Microfabrication
Technology in Bone

Regeneration

Bone, which contributes to mechanical support
and protection of the organism, is a complex min-
eralized organ containing collagenous fibrous
matrix and nanocrystals of carbonated apatite
(Weiner and Wagner 1998; Nguyen et al. 2012).
In addition, bone plays critical biological roles in
our bodies, such as ion homeostasis and hemato-
poiesis (Confavreux et al. 2011). Current medical
management for severe bone damage consists of
bone grafts (autografts, allografts, or xenografts)
(Finkemeier 2002); however, several limitations
exist due to the limited accessibility of graft
materials, the morbidity of the donor sites, and
potential for transmission of infectious pathogens
(Simonds et al. 1992; Dimitriou et al. 2011). To
eliminate these complications and to improve
clinical outcome, novel biocompatible materials
have been investigated for bone tissue engineer-
ing (Baler et al. 2014). These materials include:
collagen (Geiger et al. 2003), calcium phosphate
(Bucholz et al. 1989), ceramics and cements
(Dorozhkin 2010), bioglasses (Bohner 2000),
bioactive glass ceramics (Kinnunen et al. 2000),
and a hybrid of PCL and nanocrystalline silicon-
substituted hydroxyapatite (nano-SiHA)
(Meseguer-Olmo et al. 2013). Studies have
shown that SiHA possesses great bioactive
behavior for bone formation (Porter et al. 2003),
and that the addition of nanocrystalline ceramic
particles can further enhance its biomineraliza-
tion (Meseguer-Olmo et al. 2013). These nano-
crystalline ceramic particles exhibit higher
surface areas, and therefore have an enhanced
dissolution rate and reactivity in contact with the

surrounding tissue fluids (Meseguer-Olmo et al.
2013). In addition to the chemical compositions
of the scaffolds, overall architecture of the con-
structs (e.g., density, pore shape, and pore size)
and osteo-inductive biomolecules (e.g., BMP
family members) rank among the other important
qualities that encourage bone regeneration
(Torricelli et al. 1999; Hutmacher 2000).

In addition to biocompatibility, biodegradabil-
ity and accessibility, an ideal biomaterial for
bone tissue engineering should meet other crite-
ria, such as low viscosity for bioinjection and
micromolding, and a capacity for incorporating
cells or growth factors (Nguyen et al. 2012;
Nguyen and Lee 2010). Injectable hydrogels,
such as calcium alginate containing nano-HA
(Tan et al. 2009) and nano-HA/PEG-PCL-PEG
hydrogel nanocomposites (Fu et al. 2009), pos-
sess tunable injectability, degradability and set-
ting time, and demonstrate in situ gelation
activity. As a result, these biomaterials have been
fabricated for bone tissue engineering, and sev-
eral strategies have been employed to further
enhance the calcification and mechanical strength
of cell-laden hydrogel constructs. The
incorporation of inorganic phases (e.g., calcium
phosphates and bioglasses) into hydrogels is a
common method to provide nucleation sites and
induce physiological biomineralization
(Kamitakahara et al. 2008; Gkioni et al. 2010;
Rea et al. 2004). Use of a polymeric hydrogel
backbone with anionic functional groups (e.g.
PO43*-, -COOH, and -OH groups), as well as
incorporation of growth factors and osteoblast-
like cells have also been suggested options to
induce mineralization (Gkioni et al. 2010).
Moreover, the degradation of hydrogel-based
biomaterials allows for the replacement with
newly-formed bone and for integration with sur-
rounding native bone, thus increasing overall
mechanical stability (Rezwan et al. 2006).

Microfabrication techniques have been utilized
to introduce physiochemical cues within the 3D
microenvironment (e.g., size, shape, porosity,
stiffness, roughness and topography), and to influ-
ence the behavior of mesenchymal stem cells
(MSCs) (Jiang et al. 2005). In recent studies,
using photolithography, photoreactive PVA was
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grafted on the polystyrene surfaces to construct
micropatterns and provide a biocompatible plat-
form for the long-term culture of MSCs. Bone
marrow-derived MSCs were then cultured on
these precisely-defined micropatterned PVA sur-
faces to investigate the effects of surface charge,
cell spreading, seeding density and cell-cell inter-
actions on MSC fate determination, including
adipogenic, chondrogenic and osteogenic differ-
entiation (Fig. 2.2a) (Wang et al. 2013; Lu et al.
2009; Song et al. 2011; Nedjari et al. 2014). In
addition, micropatterning was utilized for studies
in a single-cell level to reduce the heterogeneity
of MSCs (Chen 2014). The findings from this
study suggested that minimal cell-cell interac-
tions, large cell spreading area, and increased
contractility favored the osteogenic differentia-
tion of MSCs (Wang et al. 2013; Chen 2014). uCP
of biologically relevant ligands within cell-laden
hydrogel constructs is another promising approach
to achieve spatial control of ligand distribution
(Park and Shuler 2003; Corum et al. 2011). The
flexibility of pattern designs (e.g., shape and size)
allows the micropatterned 3D co-cultures of cells,
further facilitating cell proliferation and differen-
tiation (Torisawa et al. 2010). pCP has also been
applied to generate the micropatterns of bioactive
glass nanoparticles on chitosan membranes,
thereby regulating ionic release from these bioac-
tive glass nanoparticles, maintaining the local pH
value within the microenvironment, and enhanc-
ing biomineralization (Luz et al. 2012).

In addition, 3D bioprinting techniques have
been demonstrated to develop cell-laden scaf-
folds that exhibit anatomically-shaped architec-
ture, porosity and thickness for bone regeneration
(Fig. 2.2b) (Meseguer-Olmo et al. 2013;
Fedorovich et al. 2007; Murphy and Atala 2014).
To achieve zonal distribution of multiple cell
types, bioengineers have injected cell-laden
hydrogel constructs that are gelled in situ or pho-
topolymerized in layers, recapitulating the struc-
tures of native bone tissue (Fedorovich et al.
2007). Matrix assisted pulsed laser evaporation
direct write (MAPLE DW) has been utilized for
direct writing biomaterials and cells (Fig. 2.2¢c)
(Schiele et al. 2010; Doraiswamy et al. 2007).
This technique provides high accuracy in terms
of spatial resolution, and improves cell-material
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integration. Co-deposition of osteoblast-like cells
(MG63 cells) and bioceramic scaffold materials
using the MAPLE DW strategy demonstrated
that MG63 cells retained the viability and the
capacity for proliferation, indicating this effec-
tive strategy can potentially be employed in cell-
laden scaffolds for bone tissue engineering
(Doraiswamy et al. 2007). Bottom-up approaches
applying assembly of PCL and starch—-PCL
microfabricated sheets with human bone marrow
stem cells allowed precisely imprinting micro-
vasculatures and micropores (Lima et al. 2014).

2.6 Applications
of Microfabrication
Technology in Cartilage

Regeneration

Cartilage tissue creates a nearly frictionless sur-
face for joints to move and slide freely, but it may
experience undesirable excessive forces and
trauma (Jackson et al. 2001; Kim et al. 2012).
The degeneration of articular cartilage and the
associated osteoarthritis are one of the most prev-
alent age-related chronic conditions in the United
States, affecting approximately 80 % of people
older than 75 years old (Jackson et al. 2001).
Disability caused by cartilage damage is an eco-
nomic burden to the health care system, with a
direct medical cost of roughly $15 billion each
year (Jackson et al. 2001). Due to the avascularity
and low mitotic activity of cartilage, it has a par-
ticularly limited capacity for self-healing when
damaged (Buckwalter and Mankin 1998). The
mainstay of treatment to repair damaged carti-
lage is still surgical intervention, such as
arthroscopic lavage/debridement, autologous
chondrocyte implantation, and osteochondral
grafting (Kim et al. 2012). These surgical options
provide temporary symptom relief and improve
joint functions, but fail to fully restore damaged
cartilage tissue (Kim et al. 2012). To address this
limitation, bioengineering-based alternatives
have been proposed to create an appropriate
microenvironment and to regenerate cartilage tis-
sue through the incorporation of cells, biochemi-
cal factors, and biomaterials (Petersen et al.
2002).
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a--

Fig. 2.2 Application of microfabrication technology to
bone regeneration. (a) MSCs were cultured on the
micropatterned surfaces for 2 weeks for osteo-induction.
The Alkaline phosphatase (ALP) assay was used to inves-
tigate how different surface micropatterns influence
osteogenic efficiency. Purple and brown colors indicate
positive and negative staining for ALP, respectively (Wang
et al. 2013) (Adapted from Wang et al. with permission
from Journal of Biomedical Materials Research.
Copyright © 2013 Wiley Periodicals, Inc). (b)
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Radiographic analyses of cell-laden construct implanta-
tion for bone regeneration. Left panel: At outset. Right
panel: After 4 months (Meseguer-Olmo et al. 2013)
(Adapted from Meseguer-Olmo et al. with permission
from Journal of Biomedical Materials Research.
Copyright © 2012 Wiley Periodicals, Inc). (¢) Schematic
diagram of the MAPLE DW process (Doraiswamy et al.
2007) (Adapted from Doraiswamy et al. with permission
from Journal of Biomedical Materials Research.
Copyright © 2006 Wiley Periodicals, Inc)
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MSCs are an attractive cell source for carti-
lage regeneration due to their potential for chon-
drogenic differentiation under specific culture
conditions (e.g., supplementation with trans-
forming growth factor p [TGFf]) (Pittenger et al.
1999; Diekman et al. 2010; Lai et al. 2013).
Moreover, MSCs tend to commit to a chondro-
genic fate when encapsulated in micropatterned
constructs with high seeding density (Gao et al.
2010). In this regard, hydrogels can be applied as
either cell-laden constructs to promote cartilage
regeneration or cell-free implants to replace dam-
aged cartilage (Spiller et al. 2011; Scaglione
et al. 2014). Naturally-derived hydrogels, such as
hyaluronic acid (Spiller et al. 2011) and elastin-
like polypeptides (Mauck et al. 2000), are par-
ticularly appealing candidates due to their
compositional similarity to cartilage ECM
(Cushing and Anseth 2007). Furthermore, these
naturally-derived hydrogels are able to enhance
chondrogenic differentiation and proliferation
(Spiller et al. 2011). However, these types of
hydrogels are mechanically weak, and thus have
limited use as cell-free implants for cartilage
replacement (Spiller et al. 2011). Therefore,
hybrid hydrogels consisting of natural and syn-
thetic polymers have been suggested to strengthen
the compressive and wear properties of con-
structs (Neves et al. 2011; Nguyen et al. 2011;
Liao et al. 2013). In a study by Yasuda et al.,
double-network hydrogels of poly
(2-acrylamido-2-methylpropane sulfonic acid)
and poly(N,N-dimethyl acrylamide) were devel-
oped to imitate the collagen and glycosaminogly-
can components of cartilage. These hydrogels
exhibit low friction coefficients, and the com-
pressive moduli are similar to articular cartilage
(Yasuda et al. 2005). As the ECM of hyaline car-
tilage is a fiber-reinforced composite material,
various kinds of composite hydrogels have been
developed to mimic the mechanical and physical
characteristics of native cartilage (Marijnissen
et al. 2002; Chen et al. 2003; Ameer et al. 2002;
Slivka et al. 2001). Slivka et al. developed PLGA
hydrogels reinforced with polyglycolic acid
fibers with mechanical properties in the range of
native cartilage as a function of materials ratio
(Slivka et al. 2001).
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Since chondrocytes lose their phenotype and
become fibroblast-like cells when cultured in vitro
on traditional 2D cell culture substrates (Freed
et al. 1999), it is important to control cell-cell and
cell-ECM interactions, and to maintain the chon-
drogenic features of the cell-laden constructs
(Petersen et al. 2002). With micropatterning tech-
niques, it is possible to develop a well-defined
substrate that can guide the chondrogenic differ-
entiation of progenitor cells. Surface-patterned
scaffolds that were prefabricated to support chon-
drogenesis demonstrated the capacity to promote
adhesion, restrict spreading, maintain chondro-
cytic phenotypes and support the deposition of
cartilage ECM (e.g., aggregan) (Petersen et al.
2002). In another study employing PEG hydro-
gels and photolithography, 2D microarrays of
cell-adhesive circular domains (¢p=100 pm) sur-
rounded by PEG-coated cytophobic areas were
constructed to promote the aggregation and spher-
oid formation of chondrocytes (Otsuka et al.
2012). This approach demonstrated its capacity to
stimulate aggrecan production, and to maintain
the chondrocytic spheroids for more than a month
(Otsuka et al. 2012).

In addition to micropatterning techniques, 3D
cell-laden biomimetic microengineered con-
structs can be used to imitate the architectural
and mechanical characteristics of target organs or
tissues (e.g., cartilage) (Klein et al. 2009).
Articular cartilage exhibits zonal maturation with
variations in cell phenotype, matrix organization,
composition and mechanical properties along the
depth of the cartilage plate. Multi-layered photo-
crosslinkable hydrogels can be used to recreate
the biomimetic zonal maturation of articular car-
tilage (Nguyen et al. 2011; Sharma et al. 2007).
Photodegradable PEG-based hydrogels were
applied to encapsulate stem cells, and post-
gelation control of the constructs was demon-
strated to introduce dynamic temporo-spatial
changes and to affect cell migration and chondro-
genic differentiation (Kloxin et al. 2009). In
another study by Xu et al., a hybrid bioprinting/
electrospinning approach was utilized to develop
layer-by-layer chondrocyte-laden fibrin/collagen
hydrogel constructs for cartilage tissue engineer-
ing. Compared to the conventional bioprinting
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method, the proposed hybrid approach enhanced
mechanical properties of the constructs, main-
tained cell viability, and induced the deposition
of cartilage ECM both in vitro and in vivo (Xu
et al. 2013). Further refinement of this hybrid
technique to produce oriented fibers is envisioned
to guide chondrocyte growth and to construct
functional cartilage tissues.

Conclusion and Future
Perspectives

2.7

During the past decade, significant progress in
microfabrication and biomaterial science has been
made in developing complex biomimetic trans-
plantable constructs that can guide cell growth and
differentiation as well as tissue organization.
However, challenges still remain, such as achiev-
ing the precise control of 3D cell-laden constructs,
dynamic changes in microenvironment, and in the
enhancement of revascularization. The develop-
ment of improved scaffolds with customized phys-
ical characteristics is critical, and microfabrication
with higher resolution is likely to prove important.
Innovative and optimized microfabrication tech-
niques are essential for enriching specific biologi-
cal functions, such as cell seeding and
vascularization, as well as for facilitating the natu-
ral healing process in vivo. Beyond advances in
bioengineering, it is also attractive to incorporate
biochemical cues within 3D cell-laden constructs.
A thorough understanding of the underlying bio-
logical mechanisms for these load-bearing organs
development is thus a necessary pre-requisite. The
integration of biological insights and bioengineer-
ing technologies will help to significantly advance
the field of regenerative medicine.
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