
Hardware Implementations of Finite Automata
and Regular Expressions

Extended Abstract

Bruce W. Watson(B)

FASTAR Group, Department of Information Science, Stellenbosch University,
Stellenbosch, South Africa

bruce@fastar.org

1 Introduction

This extended abstract sketches some of the most recent advances in hardware
implementations (and surrounding issues) of finite automata and regular expres-
sions. The traditional application areas for automata and regular expressions are
compilers, text editors, text programming languages (for example Sed, AWK,
but more recently Python, and Perl), and text processing in general purpose
languages (such as Java, C++ and C#). In all these cases, while the regular
expression implementation should be efficient, it rarely forms the performance
bottleneck in resulting programs and applications. Even more exotic application
areas such as computational biology are not particularly taxing on the regular
expression implementation — provided some care is taken while crafting the
regular expressions [5].

One application domain stands out in its requirement of very high perfor-
mance — regular expression processing of network traffic. Such processing is
required in a variety of contexts: network security (intrusion detection and pre-
vention), protocol detection, policy enforcement, load balancing/traffic differen-
tiation, and quality of service. Given that it usually involves regular expression
pattern matching over the network packet ‘payload’, it is often known as deep
packet inspection (DPI). Currently, all network equipment vendors (and several
software vendors) provide DPI products using regular expressions. Despite its
age, [11] still gives the best introduction to the algorithmic and implementation
intricacies of networks.

Current network speeds at a typical switch are 40 Gbits/s. Full regular
expression processing must therefore be done at 4 Gbytes/s after accounting
for overheads — one byte per clock cycle on a fast 4 GHz processor. The
latency requirements vary per application (e.g. telephony and banking require
low latency, while video and music streaming can allow for higher latency pro-
vided the variability is low) — meaning that significantly delaying a packet
for processing is typically unacceptable. Network packet sizes vary dramatically
from hundreds of bytes to tens of kilobytes. Packets from various network flows
(e.g. some from a web-browsing session, ftp, mail, and a web application) are
interspersed and may arrive out of order, implying that any regular expression
c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 13–17, 2015.
DOI: 10.1007/978-3-319-22360-5 2



14 B.W. Watson

processor must ‘context switch’ appropriate at the beginning and end of a new
packet. Lastly, the number of regular expressions (relatively small Perl-like reg-
ular expressions) being matched is usually in the range from a few hundred to a
few thousand, making it infeasible to deal with them individually. Occasionally,
the regular expression set changes, giving the additional challenge of updating
the processor, either in batch mode or incrementally when only few of the regular
expressions have been edited.

Unfortunately, from a performance perspective, network speed and volume
has been outpacing Moore’s law for computational performance.

2 Typical Solutions

As mentioned earlier, Varghese [11] remains an excellent introduction to the algo-
rithmics and implementation aspects of high-performance networking, including
regular expression processing. Recently, [14] gives an overview of the latest devel-
opments in DPI for networking in virtualized (and cloud-based) environments.
Essentially, all solutions share a common set of abstractions grounded in formal
languages, and then vary based on implementation.

2.1 Abstractions

While occasional attempts have been made to implement regular expressions
directly in hardware1, most require the ‘compilation’ of the regular expression(s)
to some form of finite automaton, with the predictable tradeoffs:

– Nondeterministic automata — requiring space linear in the size of the regular
expressions. DPI does not allow for backtracking simulation of the automaton,
meaning that all paths are pursued in parallel (processing a byte can take
up to time linear in the size of the automaton) and the ‘current state set’ is
a significant data-structure overhead which must be stored/restored during
context (also potentially taking time linear in the size of the automaton).

– Deterministic automata — requiring space potentially exponential in the size
of the regular expression. Processing a byte of network traffic requires a small
number of clock cycles (largely independent in the size of the automaton,
though memory caching can affect this slightly), as does a context switch.

2.2 Implementations

The above-mentioned abstractions underlie most of the software implementa-
tions of DPI2. While there is some variation in the CPU speed, cache memory,

1 Most such attempts decompose the regular expressions in a set of much smaller ones
which are then mapped to content-addressable memory (CAM) implementations.
None of these implementations have yet proven competitive in practice.

2 See [13] for one of many treatments of automata and regular expression implemen-
tations in software.



Hardware Implementations of FAs and REs 15

etc., eventually all such implementations are outpaced by the network traffic,
leading DPI implementers to consider acceleration options.

The first option is to use the graphics processing unit (GPU) [8]. Numerous
such DPI accelerations can be found in the literature (indeed, it appears to be
a favourite student project), all showing impressive performance improvements
in large packets arriving in-order. The architecture of the GPU (SIMD, mean-
ing that numerous smaller processing elements execute the same instructions
in lockstep) and the interface to the CPU (network traffic being transferred
over this interface) impair the performance in realistic networks, which involve
widely varying packet sizes and frequent context switches. This largely limits
GPU accelerations to open-source and software only DPI.

Instead of a general purpose CPU, most network equipment vendors use
domain-specific network processing units (NPUs)3. Most NPUs have been
designed for the breadth of packet processing tasks (routing, packet verification,
etc.), with relatively little memory and silicon real-estate devoted to DPI, and
such DPI implementations tend to suffer from the same performance limitations
as on CPUs4.

Any remaining acceleration is only achievable with custom hardware, which
broadly falls into two categories: reconfigurable hardware5 and application specific
integrated circuits (ASICs). Several vendors provide for FPGA solutions, and
the relatively low cost of implementation makes it also an attractive student
project [7, Chapter 34]. The regular expression set is usually compiled on a
CPU (see [12] for a variety of such compilation algorithms) to an automaton
or to circuit structures encoding the automaton, which are then downloaded to
the FPGA. The chosen circuit structures are usually optimized for high-speed
processing (fewest clock cycles per byte of network traffic), or least silicon real-
estate — though the cost of updating the regular expressions is usually high due
to the compilation on the CPU and the CPU-FPGA bandwidth for reconfiguring
the FPGA.

ASIC solutions typically use a circuit structure resembling a generic automa-
ton (with additional circuitry to simulate it), allowing for rapid updating of the
automaton as the regular expressions are changed. As such, the ASIC solution
has only a few advantages over FPGAs: higher density and performance, lower
volume costs and lower power consumption, but much higher development costs.

2.3 Gaps in Current Solutions

Clearly, all current solutions involve trading off byte-processing time against
silicon real-estate, and the ease of updating the regular expression set.

3 See the websites of prominent vendors such as Cisco, Netronome (which took over
Intel’s NPU product line) and IBM.

4 A notable exception is Netronome’s NPU which includes SIMD processing — in turn
having the same performance characteristics as DPI on GPUs.

5 In the form of field programmable gate arrays (FPGAs).



16 B.W. Watson

3 New Implementations

Homogeneous automata6 are (not necessarily deterministic) ones in which any
given state has in-transitions on the same alphabet symbol (byte). This allows
for an efficient encoding of the transition relation — without node labels, as an
adjacency matrix — and with a mapping from each state to ‘its symbol’. The
bit-matrix and -vector operations (see [13] for implementation details, then in
software) map extremely efficiently to digital circuits and will be discussed in
detail in this talk. In particular, the bit vectors are linear in the total regular
expression size and allow for single clock cycle bit-vector operations to pursue all
nondeterministic automaton paths simultaneously. Furthermore, context switch-
ing can be done rapidly using burst transfers of the bit-vector to/from memory.

Interestingly, dual homogeneous automata7 enjoy a similarly compact encod-
ing. The resulting mapping is subtly different from that of homogeneous
automata, with occasional circuit real-estate and power savings.

The compilation algorithm mapping a regular expression to a homogeneous
automaton is virtually identical to that mapping to a dual homogeneous one.
Our most recent work (included in this talk) encodes the compilation algorithm
in the circuitry with a minimal overhead. For the first time, this enables an
embedded DPI device to be fed regular expressions for compilation directly in
silicon — a significant win over first compiling on a CPU and then downloading
the automaton (which is typically much larger than the regular expression).

4 Ongoing and Future Work

Brzozowski’s algorithm for constructing a deterministic automaton are both ele-
gant and efficient in practice [3]. Recent work led by Strauss and Kourie [10]
has given a parallel version of Brzozowski’s algorithm as communicating sequen-
tial processes (CSP). Coincidentally, Brzozowski’s career has included lines of
research into mapping CSP-like programs to delay-insensitive (unclocked) cir-
cuits — see [4], though numerous others have also worked on such mappings
and circuitry. This talk also covers the use of such mappings to directly compile
Brzozowski’s construction algorithm to a delay-insensitive circuit.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and Tools.
Addison-Wesley, Reading (1988)

2. Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theoret-
ical Comput. Sci. 48, 117–126 (1986)

6 These automata (and variants thereof) were discovered by [1,2,6,9] and are detailed
in most treatments of automata construction algorithms.

7 Where any given state has out-transitions on the same alphabet symbol, see [12]
where they are referred to as reduced finite automata.



Hardware Implementations of FAs and REs 17

3. Brzozowski, J.A.: Regular expression techniques for sequential circuits. Ph.D.
thesis, Princeton University, Princeton, New Jersey, June 1962

4. Brzozowski, J.A., Seger, C.J.: Asynchronous Circuits. Springer (1995)
5. Friedl, J.: Mastering Regular Expressions, 3rd edn. O’Reilly Media Inc., Sebastopol

(2006)
6. Glushkov, V.: The abstract theory of automata. Russ. Math. Surveys 16, 1–53

(1961)
7. Hauck, S., DeHon, A. (eds.): Reconfigurable Computing: The Theory and Practice

of FPGA-Based Computation. Morgan Kaufmann, San Francisco (2007)
8. Kirk, D.B., Hwu, W.M.W.: Programming Massively Parallel Processors: A Hands-

On Approach. Morgan Kaufmann, San Francisco (2010)
9. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.

IEEE Trans. Electron. Comput. 9(1), 39–47 (1960)
10. Strauss, T., Kourie, D.G., Watson, B.W.: A concurrent specification of Brzo-

zowski’s DFA construction algorithm. Int. J. Found. Comput. Sci. 19(1), 125–135
(2008)

11. Varghese, G.: Network Algorithmics: An Interdisciplinary Approach to Designing
Fast Networked Devices. Morgan Kaufmann, San Francisco (2004)

12. Watson, B.W.: A taxonomy of finite automata construction algorithms. Technical
Report 43, Faculty of Computing Science, Eindhoven University of Technology, the
Netherlands (1993)

13. Watson, B.W.: The design of the FIRE Engine: A C++ toolkit for FInite automata
and Regular Expressions. Technical Report 22, Faculty of Computing Science,
Eindhoven University of Technology, the Netherlands (1994)

14. Watson, B.W.: Elastic deep packet inspection. In: Brangetto, P., Maybaum, M.,
Stinissen, J. (eds.) 6th International Conference on Cyber Conflict, pp. 241–253.
IEEE, Tallinn (2014)



http://www.springer.com/978-3-319-22359-9


	Hardware Implementations of Finite Automata and Regular Expressions
	1 Introduction
	2 Typical Solutions
	2.1 Abstractions
	2.2 Implementations
	2.3 Gaps in Current Solutions

	3 New Implementations
	4 Ongoing and Future Work
	References


