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Abstract. We present a tensor-based method to decompose a given set
of multivariate functions into linear combinations of a set of multivari-
ate functions of linear forms of the input variables. The method pro-
ceeds by forming a three-way array (tensor) by stacking Jacobian matrix
evaluations of the function behind each other. It is shown that a block-
term decomposition of this tensor provides the necessary information
to block-decouple the given function into a set of functions with small
input-output dimensionality. The method is validated on a numerical
example.
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1 Introduction

1.1 Problem Statement

The problem we study in the current paper is how to decompose a given mul-
tivariate vector-valued function f(u) into a (parametric) representation of the
form

f(u) =
[
W1 · · · WR

]

⎡

⎢
⎣

g1(VT
1u)

...
gR(VT

Ru)

⎤

⎥
⎦ , (1)

where gi(xi) : R
mi → R

ni map from mi inputs to ni outputs, Wi ∈ R
N×ni

and Vi ∈ R
M×mi , with i = 1, . . . , R. Figure 1 is a schematical representation of

the proposed structure. The case in which all gi(xi) are univariate functions is
related to the Waring decomposition [1,9] and is discussed in [5]. The current
paper considers the case of block-decoupling with the internal functions gi(xi)
being multivariate vector-valued functions. It is assumed that the decomposi-
tion (1) exists (in the exact sense).

c© Springer International Publishing Switzerland 2015
E. Vincent et al. (Eds.): LVA/ICA 2015, LNCS 9237, pp. 14–21, 2015.
DOI: 10.1007/978-3-319-22482-4 2



Block-Decoupling Multivariate Polynomials 15

Fig. 1. The block-decoupling problem statement. From the polynomial mapping y =
f(u) we wish to find V = [Vi] and W = [Wi] and the mappings gi(xi) such that
f(x) =

∑R
i=1 Wigi(V

T
i u).

1.2 When and Why is a Block-Decoupling Favorable?

A block-decoupling (1) is a natural representation of a nonlinear mapping when
inherent coupling among some internal variables exists, for instance due to under-
lying physics. Rather than unraveling the function into univariate branches,
solely to be able to decouple the variables, it may be desirable to keep sets
of variables together (see Example 1). Moreover, the introduction of (possibly
many) internal branches may increase the parametric complexity of the function
representation, which is undesirable. Therefore, block-decoupling (1) may also
contribute to reducing parametric complexity.

Let us look at a simple case where we derive ‘manually’ from a coupled func-
tion its fully decoupled representation. We will see that full decoupling requires
the introduction of several branches gi(xi). This example serves as a justification
to prefer a block-decoupling over full decoupling.

Example 1. To fully decouple the function f(u1, u2) = u2
1u2, one needs to intro-

duce three univariate branches. Indeed, it is easy to see that we have

u2
1u2 =

1
6

(
(u1 + u2)

3 − (u1 − u2)
3
)

− 1
3
u3
2,

from which we conclude that f(u1, u2) = u2
1u2 can be fully decoupled as the sum

of three univariate functions g1(x1) = 1/6x3
1, with x1 = u1+u2, g2(x2) = −1/6x3

2

with x2 = u1 − u2 and g3(x3) = −1/3x3
3 with x3 = u2. In more complicated

cases, full decoupling may require the introduction of more univariate functions
gi(xi) than block-decoupled vector-valued functions gi(xi). ♦

2 Method

2.1 Block-Diagonalization of Jacobian Matrices

We assume that f(u) can be written as in (1). Although we will describe the
method for the case that f(u) is polynomial, the method can easily be generalized
to the non-polynomial case, and is applicable as long as the derivatives of f(u)
can be obtained.
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The task at hand is to decompose f(u) into blocks of multivariate functions
as in (1). The method generalizes the result of [5] and proceeds by collecting first-
order information of f(u) in a set of sampling points u(k). The first-order infor-
mation is obtained from the Jacobian of f(u), denoted by Jf (u) and defined as

Jf (u) =

⎡

⎢
⎣

∂f1
∂u1

(u) . . . ∂f1
∂uM

(u)
...

. . .
...

∂fN

∂u1
(u) . . . ∂fN

∂uM
(u)

⎤

⎥
⎦ . (2)

Applying the chain rule of differentiation to f(u) =
∑R

i=1 Wigi(VT
i u) leads to

Jf (u) =
[
W1 . . . WR

]

⎡

⎢
⎣

Jg1(V
T
1u)

. . .
JgR

(VT

Ru)

⎤

⎥
⎦

⎡

⎢
⎣

VT
1
...

VT

R

⎤

⎥
⎦ , (3)

where the Jgi
(xi) are defined similar to (2).

2.2 Computing Wi, Vi and Hi

From (3) it follows that finding from the Jacobian evaluations Jf (u(k)) the matri-
ces Wi, Vi and the functions gi(xi), amounts to solving a simultaneous matrix
block-diagonalization problem. By evaluating the Jacobian of f(u) in a set of
K sampling points u(k) we obtain a collection of Jacobian matrices Jf (u(k)),
k = 1, . . . ,K, which are stacked behind each other into the N × M × K tensor
J =

{
Jf (u(1)), . . . ,Jf (u(K))

}
. The recent years have seen an increased research

interest in tensor decompositions [2,8], which can be seen as higher-order exten-
sions of well-known matrix decompositions such as the singular value decompo-
sition [6]. The tensor decomposition that will be of interest for the current task
is the block-term decomposition (BTD) in rank(ni,mi, ·)-terms [3,4,10,12], as it
can be used to compute the simultaneous block-diagonalization of the Jacobian
tensor J . The BTD of J in rank(ni,mi, ·)-terms is the decomposition of J into

J =
R∑

i=1

Hi •1 Wi •2 Vi, (4)

where •i denotes the mode-i tensor product, and Wi and Vi are defined as above.
The ni × mi × K core tensors Hi contain in the slices the Jacobians Jgi

(x(k)),
with x(k)

i = VT
i u(k). Figure 2 gives a graphical overview of the method.

2.3 Uniqueness

A lack of global uniqueness of the BTD can be expected because one can intro-
duce nonsingular transformations Si and Ti in the R terms of (4) to obtain the
(equivalent) decomposition J =

∑R
i=1

(Hi •1 T−1
i •2 S−1

i

) •1 (WiTi) •2 (ViSi).
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Fig. 2. Visual representation of the decomposition method. From the first-order infor-
mation of f(u) a tensor consisting of Jacobian matrices is constructed. The block-term
decomposition of this tensor results in the factors Vi, Wi and the core tensors Hi

from which the decoupling of f(u) can be found.

The uniqueness properties of BTD are discussed in [3,4], however, the case
rank(ni,mi, ·) is not included. It is expected that uniqueness conditions along
the lines of [4] can be obtained for the rank(ni,mi, ·) case, but this is beyond the
scope of the current paper. During numerical experiments (using Tensorlab [11])
we have not encountered uniqueness issues—it seems safe to claim that cases
with relatively small R are not problematic. In terms of decomposition (1), the
effects of rotational ambiguities due to Si and Ti are easy to understand as
well. Let us consider the R = 1 case f(u) = Wg(VTu), in which we insert ST

and T and their inverses as f(u) = WTT−1g(S−TSTVTu) = W̃g̃(ṼTu), where
W̃ = WT, ṼT = STVT and g̃(x) = T−1g(S−Tx). Both representations are
equivalent, and the factors V and W can only be obtained up to linear trans-
formations. The internal function g(x) has undergone both a change of input
variables due to S−T as well as a linear transformation at the output due to
T−1, but the identified g̃ is still polynomial of the same degree as the true g.

2.4 Recovering the Coefficients of gi(xi)

A parameterization of the internal functions gi(x) can be obtained using inter-
polation. Since the internal functions gi(x) are polynomial, the coefficients of
gi(x) can be obtained from solving a system of linear equations. We will illus-
trate the main idea by means of a simple example, from which a general method
can easily be derived.
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Example 2. Consider a function f(u) = Wg(VTu) with R = 2, m1 = 2, m2 = 1,
n1 = n2 = 1 that maps from M inputs to N outputs. Furthermore assume that
g11(x11, x12), g12(x11, x12) and g2(x2) are polynomial of (total) degree two. Then
f(u) can then be parameterized as

f(u)=W

⎡

⎣
1 x11 x12 x2

11 x11x12 x2
12

1 x11 x12 x2
11 x11x12 x2

12

1 x2 x2
2 x3

2

⎤

⎦

︸ ︷︷ ︸
G(VTu)

⎡

⎣
c11
c12
c2

⎤

⎦,

illustrating how the coefficients c11, c12 and c2 appear linearly in the expression.
For each of the operating points u(k) the above expression can be obtained. We
stack them on top of each other into an overdetermined (assuming K � 1)
system of linear equations in the coefficients c11, c12 and c2 as

⎡

⎢
⎣

f(u(1))
...

f(u(K))

⎤

⎥
⎦ =

⎡

⎢
⎣

W
. . .

W

⎤

⎥
⎦

⎡

⎢
⎣

G(VTu(1))
...

G(VTu(K))

⎤

⎥
⎦

⎡

⎣
c11
c12
c2

⎤

⎦ .

♦

2.5 Algorithm Summary

The complete block-decoupling procedure is summarized as follows.

1. Evaluate the Jacobian matrix Jf (u) in a set of K sampling points u(k), k =
1, . . . ,K (Sects. 2.1 and 2.2).

2. Stack the Jacobian matrices into an N × M × K tensor J (Sect. 2.2).
3. Compute the rank(ni,mi, ·) block-term decomposition of J , resulting in the

factors Wi, Vi and the core tensors Hi (Sect. 2.2).
4. Recover the coefficients of the internal functions gi(xi) by solving a linear

system (Sect. 2.4).

3 Numerical Example

We will now illustrate the method by means of a numerical example.

Example 3. We assume that a multivariate vector-valued function f(s) is given
that has an underlying representation of the form (1)

f(u) = Wg(V
T

u) = w1g1(V
T

1u) + w2g2(v
T

2u), (5)

with V =
[
V1 v2

]
and W =

[
w1 w2

]
as

V =

⎡

⎢
⎢
⎣

1 0 1
−2 1 −2

3 −1 0
−1 1 3

⎤

⎥
⎥
⎦ , W =

⎡

⎢
⎢
⎣

0 1
1 3

−1 2
3 0

⎤

⎥
⎥
⎦ , (6)
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Fig. 3. Jacobians of g1(x11, x12) and g2(x2), obtained from the core tensors H1 and
H2, which were computed using the BTD (with xi = VT

i u).
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and
g1(x11, x12) = x3

11x12 − 2x3
11 − x2

11x12 + 4x2
12,

g2(x2) = x4
2 − 2x3

2 + 3x2
2,

(7)

in which the ‘true’ representation is denoted by barred symbols.
The sampling points u(k) are generated by combining for each of the four

inputs u1, . . . , u4 seven equidistant points in the interval [−2, 2], such that K =
74. We sample the Jacobian Jf (u) in the K = 2401 sampling points and stack
the Jacobian matrices Jf (u(k)), k = 1, . . . ,K into the tensor J .

Tensorlab [11] is used to compute the BTD with core tensor dimensions
1 × 2 × K and 1 × 1 × K, from which we obtain the factors V =

[
V1 v2

]
and

W =
[
w1 w2

]
as

V =

⎡

⎢
⎢
⎣

7.5051 −5.2297 −3.1489
−8.2850 14.7523 6.2978
15.7901 −19.9820 0.0000
−0.7799 9.5226 −9.4467

⎤

⎥
⎥
⎦ , W =

⎡

⎢
⎢
⎣

0.0000 1.4249
−9.8728 4.2748

9.8728 2.8499
−29.6183 0.0000

⎤

⎥
⎥
⎦ . (8)

Notice that the factors V and W do not exactly correspond to the underlying
factors V and W, but they are equal up to a similarity transformation. For the
vectors v2, w1 and w2 this means that they are equal to the underlying ones
up to scaling. The core tensors H1 and H2 contain in their frontal slices the
Jacobians of g1(x11, x12) and g2(x2), for each of the K operating points, i.e.,
x(k)

i = VT
i u(k). Figure 3 is a graphical representation obtained by plotting the

entries in the fibers of Hi versus x(k)
i = VT

i u(k).
We then compute the coefficients of the recovered g1(x11, x12) and g2(x2)

from the solution of a Vandermonde-like linear system as in Sect. 2.4 (resulting
in a norm-wise error on the residual of 2.1207 × 10−7). From the recovered V1,
v2, w1 and w2, and the internal functions g1(x11, x12) and g2(x2) we reconstruct
the function f(u) = w1g1(VT

1u) + w2g2(vT
2u) with a relative norm-wise error

on the coefficients of 2.7562 × 10−10 comparing to f(u). ♦

4 Conclusions and Perspectives

We have presented a method to decouple a given set of multivariate polynomials
into linear combinations of multivariate polynomials with smaller dimensional-
ity, acting on linear forms of the input variables. By considering the first-order
information of the given function in a set of sampling points, we have shown
that the problem reduces to the simultaneous block-diagonalization of a set of
Jacobian matrices. The block-term tensor decomposition is used to compute the
decomposition. The method is illustrated on a numerical example.

Ongoing work is concerned with applying the block-decoupling method to
nonlinear block-oriented system identification, where we investigate how to
unravel from a black-box nonlinear state-space model the nature of the static
nonlinearities [7]. Other open questions include how the decoupling method can
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be used to simplify or approximate a given multivariate vector-valued function,
and how uncertainty on the function f(u) can be taken into account.
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