
Chapter 2
Poincaré-Birkhoff-Witt Basis

Abstract In this chapter, we demonstrate that every character Hopf algebra has a
PBW basis. A Hopf algebra H is referred to as a character Hopf algebra if the group
G of all group-like elements is commutative and H is generated over k ŒG� by skew-
primitive semi-invariants, whereas a well-ordered subset V � H is a set of PBW
generators of H if there exists a function h W V ! ZC [ f1g; called the height
function, such that the set of all products

gv
n1

1 v
n2

2 � � � vnk
k ;

where g 2 G; v1 < v2 < : : : < vk 2 V; ni < h.vi/; 1 � i � k is a basis of H:

In this chapter, we demonstrate that every character Hopf algebra has a PBW basis.
According to Definition 1.11, a Hopf algebra H is referred to as a character Hopf
algebra if the group G of all group-like elements is commutative and H is generated
over k ŒG� by skew-primitive semi-invariants.

Definition 2.1 A well-ordered subset V of a character Hopf algebra H is considered
a set of PBW generators of H if there exists a function h W V ! ZC [ f1g; called
the height function, such that the set of all products

gv
n1

1 v
n2

2 � � � vnk
k ; (2.1)

where g 2 G; v1 < v2 < : : : < vk 2 V; ni < h.vi/; 1 � i � k is a basis of H: The
value h.v/ is referred to as the height of v in V:

For example, the standard words, due to Theorem 1.1, form a set of PBW
generators with infinite heights of the free character Hopf algebra GhXi: This fact
provides an idea concerning how to find the PBW basis of an arbitrary character
Hopf algebra.

We establish a homomorphism GhXi ! H of the character Hopf algebras. The
values of elements (2.1) in H span all of H but may be linearly dependent. If the
value of a standard word v is a linear combination of the monomials (2.1) with
vi < v; then the values of elements (2.1), where vi ¤ v; continue to span H: Hence,
the set of all standard words may be reduced to the set of “hard” standard words,
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72 2 Poincaré-Birkhoff-Witt Basis

i.e., standard words v whose values in H are not linear combinations of (2.1) with
vi < v:

Then, one must demonstrate that the increasing products of “hard” standard
words are linearly independent in H: For this task, we must use the coproduct. If
U is such a linear combination, then we may (somehow) find its coproduct in the
free character Hopf algebra

�.U/ D U ˝ 1C
X

U0
i ˝U00

i C g˝ U; g 2 G:

If U D 0 in H; then in H ˝ H we have the equality

X
U0

i ˝ U00
i D 0: (2.2)

This equality of tensors provides one equation corresponding to each basis element
of the space spanned by all U00

i : Because the U00
i ’s have degrees less than that of U,

we may theoretically decompose them in linear combinations of increasing products
of “hard” standard words that are already linearly independent in H (by induction).
This amount of information is sufficient for obtaining the required contradiction.

Because of technical reasons, it was impossible to realize these considera-
tions directly for “hard” standard words; Instead, developing the above logic for
nonassociative standard words seemed possible, interpreting the bracket as the
skew commutator of polynomials. Surprisingly, after this logic was developed,
demonstrating that the “hard” standard words are indeed the PBW generators
became straightforward.

The equality (2.2) is not equivalent to setting U to be zero but does indicate that U
is skew-primitive. In other words, while solving the above system of equations, we
will obtain information on the skew-primitive elements of character Hopf algebras.
This information is given in Theorem 2.3.

2.1 PBW Bases of the Free Character Hopf Algebra

Let GhYi D GhXi be the free character Hopf algebra, see Sect. 1.5.3. Recall that
xi; i 2 I are free variables with the coproduct given by

�.xi/ D xi ˝ 1C gi ˝ xi; �.gi/ D gi ˝ gi; (2.3)

whereas associated with each variable xi is a character �i W G ! k� such that
g�1xig D �i.g/gxi; for all g 2 G; see (1.66).

For every word u in X let gu denotes a group-like element that appears from u
by replacing each xi with gi: Similarly, �u is a character that appears from u by
replacing each xi with �i: Because both the group G and the group of characters are
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commutative, the values gu; �u are defined on the set of all homogeneous elements
in each xi 2 X: For a pair u; v of homogeneous polynomials in X put

pu;v D �u.gv/: (2.4)

Obviously, the following equalities hold:

puv;w D pu;wpv;w; pu;vw D pu;vpu;w: (2.5)

Sometimes it is more convenient to denote this bimultiplicative operator by p.u; v/.
Of course, the operator p.-; -/ is completely defined by the parameters pik D �i.gk/:

In terms of this operator, the brackets (1.67) take the form

Œu; v� D uv � pu;vvu; Œu; v�� D uv � p�1
v;uvu: (2.6)

Lemma 2.1 The brackets Œ; � satisfy the following “Jacobi identity”W

ŒŒu; v�; w� D Œu; Œv; w��C p�1
w;vŒŒu; w�; v�C . pv;w � p�1

w;v/Œu; w� � v; (2.7)

where � stands for usual multiplication in the free algebra.

Proof We have

ŒŒu; v�; w� D Œuv � pu;vvu; w� D uvw� puv;wwuv � pu;vvuwC pu;vpvu;wwvu:

Under the substitution w$ v; this equality becomes

ŒŒu; w�; v� D uwv � puw;vvuw � pu;wwuv C pu;wpwu;vvwu:

Similarly,

Œu; Œv; w�� D Œu; vw � pv;wwv� D uvw � pu;wvvwu � pv;wuwv C pv;wpu;wvwvu;

and

Œu; w� � v D uwv � pu;wwuv:

It remains to compare the coefficients at all six permutations of uvw in (2.7).

uvw W 1 D 1I
wuv W �puv;w D �p�1

w;vpu;w C .pv;w � p�1
w;v/pu;wI

vuw W �pu;v D �p�1
w;vpuw;vI

wvu W pu;vpvu;w D pv;wpu;wvI
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uwv W 0 D p�1
w;v � pv;w C .pv;w � p�1

w;v/I
vwu W 0 D p�1

w;vpu;wpwu;v � pu;vw:

ut
Lemma 2.2 The following formulas link the brackets to multiplication:

Œu; v � w� D Œu; v� � wC pu;vv � Œu; w�; (2.8)

Œu � v; w� D pv;wŒu; w� � v C u � Œv; w�: (2.9)

Proof We have, Œu; v � w� D uvw � pu;vwvwu D uvw � pu;vvuw C pu;vvuw �
pu;vpu;wvwu D Œu; v� � wC pu;vv � Œu; w�: Similarly, Œu � v; w� D uvw � puv;wwuv D
uvw � pv;wuwv C pv;wuwv � puv;wwuv D u � Œv; w�C pv;wŒu; w� � v: ut
Definition 2.2 A super-letter is a polynomial that equals a standard nonassociative
word where the brackets Œ; � are defined in (2.6).

Every noncommutative polynomial f in X is a linear combination of different
words f D P

˛iui: Recall that a leading word of f is the maximal word ui that
occurs in this decomposition with nonzero coefficient.

Lemma 2.3 A leading word of a super-letter Œu� with respect to the lexicographical
order is the word u; and it occurs in the decomposition of Œu� with coefficient 1.

Proof We use induction on length. If Œu� D ŒŒv�Œw�� then the super-letter Œu� equals
Œv�Œw� � pu;wŒw�Œv�. By the inductive hypothesis, Œv� and Œw� are homogeneous
polynomials with the leading words v and w, respectively. The leading word with
respect to the lexicographical order of a product of two homogeneous polynomials
equals the product of leading words of the factors. Therefore, the leading word of
Œv�Œw� equals vw and has coefficient 1; the leading word of Œw�Œv� equals wv and is
less than vw because vw D u is a standard word. ut
The proven Lemma demonstrates that different standard words u and v define
distinct super-letters Œu� and Œv�: We define the order on the set of all super-letters
thus:

Œu� > Œv� ” u > v: (2.10)

Definition 2.3 A word in super-letters is called a super-word. A super-word is said
to be increasing if it has the form

W D Œu1�
k1 Œu2�

k2 � � � Œum�km ; (2.11)
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where u1 < u2 < : : : < um. On the set of all super-words, we fix the lexicographic
order defined by the ordering of super-letters in (2.10).

Lemma 2.4 An increasing super-word W D Œw1�k1 Œw2�k2 � � � Œwm�km is greater than
an increasing super-word V D Œv1�m1 Œv2�m2 � � � Œvk�

mk if and only if the word w D
wk1

1 wk2

2 � � �wkm
m is greater than the word v D v

m1

1 v
m2

2 � � �vmk
k . Moreover, the leading

word of the polynomial W; when decomposed into a linear combinations of words,
equals w and has coefficient 1.

Proof Let W > V . Then w1 � v1 in view of the ordering of super-letters. If w1 D v1,
we can remove one factor from the left of both V and W, and then proceed by
induction. Therefore, we will put w1 > v1: If w1 is not the beginning of v1, then the
inequality w1 > v1 can be multiplied from the right by suitable distinct elements,
which yields w > v; as required.

Let v1 D w1T; T D .wk1�1
1 wk2

2 � � �wks�1

s�1 /wl
s � v0

1, where 0 � l < ks. Here ws is
not a beginning of v0

1; whereas the term between the parentheses may be missing (in
this case s D 1, l > 0/:

If v0
1 is a nonempty word, then v0

1 < v1 < w1 � ws because v1 is standard.
The inequality v0

1 < ws implies av0
1b < awsc for all words a; b; c because ws is

not a beginning of v0
1: Taking a D .wk1

1 wk2

2 � � �wks�1

s�1 /wl
s and suitable b; c; we obtain

v < w:

Let v0
1 is the empty word. If l > 0, then the word v1 should be greater than its

end ws: Therefore, w1 > v1 > ws, which contradicts the fact that w1 � ws is valid
for all s � 1. If l D 0, then s > 1 because v1 begins with w1. It follows that v1 is
greater than its end ws�1, which is again a contradiction with w1 > v1 > ws�1.

The second part of the lemma follows from Lemma 2.3 and the fact that the
leading word of a product of homogeneous polynomials equals the product of
leading words of the factors. ut
Remark 2.1 We stress that the above lemma cannot be extended to all super-words,
for example if x1 > x2 > x3; then Œx1� � Œx3� > Œx1x2� and x1x3 < x1x2.

Lemma 2.5 Let u; u1 be standard words and u > u1: The polynomial ŒŒu�; Œu1�� is a
linear combination of super-words in the super-letters Œw� such that uu1 � w > u1;

in which case the constitution of the super-words equals the constitution of uu1.

Proof If the nonassociative word ŒŒu�Œu1�� is standard then it defines a super-letter
Œw� and uu1 D w > u1 by Lemma 1.4. In particular, the lemma is valid if u and u1

are letters. We can therefore proceed by induction on the length of uu1.
Suppose that the lemma is true if the length of uu1 is less than m. Choose a pair

u; u1 with a greatest word u; so that the polynomial ŒŒu�; Œu1�� does not enjoy the
required decomposition and the length of uu1 equals m. Then the nonassociative
word ŒŒu�Œu1�� is not standard. By Lemma 1.10, we have Œu� D ŒŒu3�Œu2�� with
u2 > u1.



76 2 Poincaré-Birkhoff-Witt Basis

We fix the notation for super-letters Ui D Œui�, i D 1; 2; 3. By Jacobi
identity (2.1), we can write

ŒŒU3; U2�; U1� D ŒU3; ŒU2; U1��C p�1
u1;u2

ŒŒU3; U1�; U2�

C.pu2;u1 � p�1
u1;u2

/ŒU3; U1� � U2: (2.12)

We have u3 > u > u2 > u1. By the inductive hypothesis, ŒU3; U1� can be represented
as

P
i

˛i
Q
k

Œwik�, where u3 > u3u1 � wik > u1. Using Lemma 1.7, we obtain

u > uu1 > u3u1 � wikI that is, all super-letters Œwik� satisfy the requirements of
the present lemma. Furthermore, the word u cannot be the beginning of u2; and so
u > u2 implies uu1 > u2: Thus, the super-letter U2, too, satisfies the requirements.
Consequently, the second [in view of (2.6)] and third summands of (2.12) have the
required decomposition.

Using the inductive hypothesis, for the first summand we obtain

ŒU2; U1� D
X

i

ˇi

Y

k

Œvik�; (2.13)

where u2u1 � vik > u1. By Lemma 1.7, uu1 > u2u1 � vikI that is, the super-letters
Œvik� satisfy the conditions of the lemma. Rewrite the first summand using skew-
derivation formula (2.8), with the first factor replaced by (2.13). In this way, the first
summand turns into a linear combination of words in the super-letters Œvik� and skew
commutators ŒŒu3�; Œvik ��. Because u3 > u > u2 > vik and the length of vik does not
exceed that of u2u1; the inductive hypothesis applies to yield

ŒŒu3�; Œvik�� D
X

j

�j

Y

t

Œwjt�; (2.14)

where u3 > u3vik � wjt > vik. In this case u2u1 � vik implies

uu1 D u3u2u1 � u3vik � wjtI

in addition, wjt > vik > u1, i.e., the super-letters Œwjt� also satisfy the conditions.
ut

Lemma 2.6 Every nonincreasing super-word W is a linear combination of lesser
increasing super-words of the same constitution whose super-letters all lie .not
strictly/ between the greatest and the least super-letters of W:

Proof We proceed by induction on the length of the super-word. Assume that the
lemma is true for super-words of length � t, and let W D UU1 � � � Ut be a least
super-word of length tC 1 for which our lemma fails.

If the super-word U1 � � � Ut is not increasing, then by the inductive hypothesis it is
a linear combination of lesser increasing super-words Wi: In this case UWi < W; and
according to the choice of W; all super-words UWi have the required representation.
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Let

W D UUk1

1 � � �Ukt
t ; U1 < U2 < : : : < Ut: (2.15)

If U � U1; then W is increasing, and there is nothing to prove. Let U > U1. Then

W D ŒU; U1�U
k1�1
1 � � �Ukt

t C pu;u1 U1UUk1�1
1 � � �Ukt

t : (2.16)

The second summand is less than W as a super-word, and so we can write it in the
required form. By Lemma 2.5, the factor ŒU; U1� in the first term can be represented
as

P
i

˛i
Q
s

Œwis�, where the super-letters Œwis� are less than U. Consequently, the

super-words
Q
s

Œwis�U
k1�1
1 � � �Ukt

t are less than WI that is, the first term has the

required representation too. ut
Theorem 2.1 The set of all super-words

Œu1�n1 Œu2�
n2 � � � Œuk�

nk ; (2.17)

where u1 < u2 < : : : < uk are standard words, forms a basis of k hXi:
Proof Since by definition all words of length one are standard, the letters xi D Œxi�

are super-letters. Hence, by Lemma 2.6, every polynomial is a linear combination of
increasing super-words. It remains to prove that the set of all increasing super-words
is linearly independent. Let

X

i

˛iWi D 0 (2.18)

and assume that W D Œw1�k1 Œw2�k2 � � � Œwm�km is a leading super-word in (2.18). By
Lemma 2.4, the leading word of W equals w D wk1

1 wk2

2 � � �wkm
m . This word occurs

exactly once in (2.18). Suppose, to the contrary, that W does also occur in the
decomposition of V D Œv1�m1 Œv2�m2 � � � Œvk�

mk : Then the word w is less than or equal
to the leading word v D v

m1

1 v
m2

2 � � �vmk
k in the decomposition of V , which contradicts

the fact that W > V by Lemma 2.4. ut

2.2 Coproduct on Super-Letters

Theorem 2.1 demonstrates that the super-letters are PBW generators of infinite
height for the free character Hopf algebra GhXi: Our next goal is to describe
properties of the coproduct of these PBW generators.
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Lemma 2.7 The coproduct of a super-letter W D Œw� has a representation

�.Œw�/ D Œw�˝ 1C gw ˝ Œw�C
X

i

˛ig.W 00
i /W 0

i ˝W 00
i ; (2.19)

where W 0
i are nonempty words in less super-letters than is Œw�: Moreover, the sum

of constitutions of W 0
i and W 00

i equals the constitution of V: Here g.u/ denotes the
group-like element gu:

Proof We use induction on the length of a word w. For letters, there is nothing to
prove. Let W D ŒU; V�, U D Œu�, and V D Œv�. Assume that the decompositions

�.U/ D U ˝ 1C gu ˝ U C
X

i

˛ig.U00
i /U0

i ˝ U00
i ; (2.20)

and

�.V/ D V ˝ 1C gv ˝ V C
X

j

ˇjg.V 00
j /V 0

j ˝ V 00
j (2.21)

satisfy the requirements of the lemma. Using (2.6) and properties of p, we can write

�.W/ D �.U/�.V/� pu;v�.V/�.U/ D W ˝ 1C gw ˝W

C.1 � pu;vpv;u/guV ˝ U C
X

ˇjp.U; V 00
j /g.V 00

j /ŒU; V 0
j �˝ V 00

j

C
X

ˇjgug.V 00
j /V 0

j ˝ .UV 00
j � pu;vp.V 0

j ; U/V 00
j U/

C
X

˛ig.U00
i /.U0

i � V � pu;vp.V; U00
i /V � U0

i/˝ U00
i

C
X

˛ip.U0
i ; V/gvg.U00

i /U0
i ˝ ŒU00

i ; V�

C
X

˛iˇjg.U00
i V 00

j /.p.U0
i ; V 00

j /U0
i V

0
j ˝ U00

i V 00
j

�pu;vp.V 0
j ; U00

i /V 0
j U

0
i ˝ V 00

j U00
i /: (2.22)

Collecting similar terms in this formula was result in the canceling of terms of the
form gvU ˝ V only. We claim that all left parts of the remaining tensors in (2.22)
admit the required decomposition. First, in view of the inductive hypothesis, all
super-letters of all super-words V 0

j are less than V , which are in turn less than W
because v is the end of a standard word w. Moreover, by the inductive hypothesis
again, u cannot be the beginning of any word u0 such that the super-letter Œu0� would
occur in super-words U0

i . Therefore, u > u0 implies uv > u0 and W > Œu0�. Thus, all
but the first and fourth super-words on the left-hand sides of all tensors depend only
on super-letters which are less than W.
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We want to apply Lemma 2.5 to the fourth tensor. Let V 0
j D

Q
k

Vik,

where Vik D Œvik� are less than V . By Eq. (2.8), the polynomial ŒU; V 0
j � is a linear

combination of words in the super-letters Vik and skew commutators ŒU; Vik�. By
Lemma 2.5, each of these commutators is a linear combination of words in the
super-letters Œv0� such that v0 � uvik. In view of vik < v, we obtain v0 < uv D w.

The statement concerning the constitutions follows immediately from for-
mula (2.22) and the inductive hypothesis. ut
Lemma 2.8 The coproduct of a super-word W has a decomposition

�.W/ D W ˝ 1C g.W/˝W C
X

i

˛ig.W 00
i /W 0

i ˝W 00
i ; (2.23)

where the sum of constitutions of W 0
i and W 00

i equals the constitution of W:

Proof It suffices to observe that � is an homomorphism of algebras. Here, we can
no longer assert that W 0

i < W. ut
Lemma 2.9 If Œw� is a super-letter, then

�.Œw�m/ D
mX

jD0

hm

j

i

q
gm�j

w Œw�j ˝ Œw�m�j C
X

i

˛ig.Vi/Ui ˝ Vi; (2.24)

where
hm

j

i

q
are the Gauss polynomials considered in Sect. 1.1 with q D p.w; w/;

whereas the super-words Ui are less than Œw�m with respect to the lexicographical
ordering of words in super-letters.

Proof After developing of the product, the mth power of the right hand side of (2.19)
takes the form (2.24), where each of Ui is a product of m super-words some of
whom equal to Œw� (but not all of them!) and others equal to some of the W 0

i ’s. By
Lemma 2.7, all super-letters that occur in Wi are less than Œw�: Hence, the super-
word Ui is less than Œw�m with respect to the lexicographical ordering of words in
super-letters. ut

2.3 Hard Super-Letters

Consider a character Hopf algebra H: By definition H is generated over kŒG� by
skew-primitive semi-invariants bi; i 2 I:

�.bi/ D bi ˝ hi C fi ˝ bi; hi; fi 2 G; big D �bi .g/ � gbi; g 2 G; i 2 I: (2.25)

As the skew-primitive elements are closed with respect to the multiplication by
group-like elements, we may normalize the generators, ai D h�1

i bi; diminishing
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the number of group-like elements related to them:

�.h�1
i bi/ D h�1

i u˝ 1C h�1
i fi ˝ h�1

i bi:

In what follows, we fix a set of normalized skew-primitive generators faig; so that

�.ai/ D ai ˝ 1C gi ˝ ai; �.gi/ D gi ˝ gi; aig D �ai .g/ � gai; g 2 G; i 2 I:
(2.26)

Let GhXi; X D fxi j i 2 Ig be the free character Hopf algebra such that �i D �ai

and gi D gai , i 2 I: Then there exists a natural homomorphism of Hopf algebras

' W GhXi ! H; (2.27)

which maps xi to ai; i 2 I:

Definition 2.4 Let � be a well-ordered additive (commutative) monoid. With each
xi; i 2 I we associate a nonzero element di 2 �: The D-degree of a word, a
super-letter, a super-word, or more generally, a homogeneous polynomial f in X
of a constitution fmi j i 2 Ig is

D. f / D
X

i

midi D
X

i

di degi. f /: (2.28)

In what follows, we fix a well-ordered monoid � and elements di D D.xi/. For
example, � may be the monoid related to the constitution given in the construction
after Definition 1.3. For the first reading, one may suppose that � D ZC is the
monoid of nonnegative integer numbers, whereas di D 1: However, we should stress
that the resulting set of PBW generators and its properties essentially depend on the
chosen D-degree function.

Lemma 2.10 The set X�
m of all words of a fixed D-degree m is well-ordered with

respect to the lexicographical order.

Proof We note, first, that � has no negative elements: if a < 0; then there appears
an infinite descending chain 0 > a > 2a > 3a > : : : : Additionally, � has the
cancelation property, aC x D aC y implies x D y: if x > y; then aC x > aC y:

Let F be a subset of X�
m: As hX; <i is well-ordered, the set A of all first letters of

words from F has a least element, say, x1 2 X: If x1u; x1v 2 F; then D.x1/CD.u/ D
D.x1/C D.v/ D m: Hence, D.u/ D D.v/ < m because D.v/ � m and D.x1/ > 0

would imply D.x1/ C D.v/ > m: By these reasons, we may apply the induction
supposition to the set B D fu 2 X� j x1u 2 Fg: If u0 is a least element of B; then
x1u0 is a least element of F: ut
Definition 2.5 A G-super-word is a product of the form gW, where g 2 G and W
is a super-word. The degree, constitution, length, and other concepts which apply
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with G-super-words are defined by the super-word W. In other words, we assume
that the D-degree and the constitution of g 2 G are equal to zero. In view of (2.26),
every product of super-letters and group-like elements equals a linear combination
of G-super-words of the same constitution.

Definition 2.6 A super-letter Œu� is said to be hard if its value '.Œu�/ in H is not
a linear combination of values of words of the same D-degree in less super-letters
than is Œu� and of G-super-words of a lesser D-degree.

We are remanded that a primitive tth root of 1 is an element ˛ 2 k such that
˛t D 1 and ˛r ¤ 1 for all r; 1 � r < t: In particular, 1 is the 1st primitive root of 1:

Definition 2.7 We say that the height of a super-letter Œu� of D-degree d 2 � equals
h D h.Œu�/ if h is the smallest natural number such that:

(1) pu;u is a primitive tth root of 1 and either h D t or h D tlr; where l is the
characteristic of k.

(2) the value in H of Œu�h is a linear combination of values of super-words of D-
degree hd in less super-letters than is Œu� and of G-super-words of a lesser D-
degree.

If, for the super-letter Œu�, the number h with the above properties does not exist,
then we say that the height of Œu� is infinite.

Theorem 2.2 The set of values in H of all G-super-words W in the hard super-
letters Œui�;

W D gŒu1�
n1 Œu2�n2 � � � Œuk�

nk ; (2.29)

where g 2 G; u1 < u2 < : : : < uk; ni < h.Œui�/; forms a basis of H:

The proof will proceed through a number of lemmas. For brevity, we call a G-
super-word (2.29) restricted if each of the numbers ni is less than the height of Œui�:

A super-word (a G-super-word) is said to be admissible if it is increasing restricted
and is a word in hard super-letters only.

First of all, we have to demonstrate that every element of H is a linear
combination of values of admissible G-super-words. Clearly, every element is a
linear combination of values of not necessarily admissible G-super-words because
each variable xi is a super-letter, xi D Œxi�: In fact, there exist a natural diminishing
procedure, based on Lemma 2.5 and on the definitions of hard super-letters and their
heights, that allows one to find the required linear combination.

Lemma 2.11 The value of each non-admissible super-word of D-degree d is a
linear combination of values of lesser admissible super-words of D-degree d and
of admissible G-super-words of a lesser D-degree. Also, all super-letters occurring
in the super-words of D-degree d of this linear combination are less than or equal
to a greatest super-letter of the super-word given.
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Proof Assume that the lemma is valid for super-words of D-degree < m. Let W
be a least super-word of D-degree m for which the required representation fails. By
Lemma 2.6, the super-word W is increasing. If it has a non-hard super-letter, by
definition, we can replace it with a linear combination of G-super-words of a lesser
D-degree and of words in less super-letters of the same D-degree. Developing the
product turns W into a linear combination of G-super-words of a lesser D-degree
and of lesser super-words of the same D-degree, a contradiction with the choice
of W: If W contains a subword Œu�k, where k equals the height of Œu�, then we can
replace it as is specified above, which gives us a contradiction again. Thus the W is
itself increasing restricted and is a word in hard super-letters only. ut

In order to prove Theorem 2.2, it remains to show that admissible G-super-words
are linearly independent. Consider an arbitrary linear combination T of admissible
G-super-words and let U D Vn1

1 Vn2

2 � � �Vnk
k be its leading (maximal) super-word of

D-degree m. Multiplying, if necessary, that combination by a group-like element,
we can assume that U occurs once without a group-like element:

T D U C
rX

jD1

˛jgjU C
X

i D.i1;i2;:::;is/

˛ i g i W i; W i D Vni1
i1 Vni2

i2 � � �Vnis
is : (2.30)

In the next three lemmas, we accept the following assumptions on m; U and r :

1. The admissible G-super-words of D-degree < m are linearly independent;
2. The admissible G-super-words of D-degree m which are less than U are linearly

independent modulo the space spanned by G-super-words mentioned in 1;
and, if r > 0; then

3. The super-words gj U; 1 � j � r are linearly independent modulo the space
spanned by G-super-words mentioned in 1 and 2.

In view of these assumptions and Lemma 2.11, every super-word of D-degree
m which is less than U, and every super-word of D-degree < m, can be uniquely
decomposed into a linear combination of admissible G-super-words. For brevity,
such will be referred to as a basis decomposition.

Lemma 2.12 Under the assumptions 1, 2, 3, if the value of T in H is a skew-
primitive element, then r D 0 and g i D 1 for all i such that D.W i/ D m:

Proof Rewrite the linear combination T as follows:

T D U C
X

i 2I

˛ ig iW i CW 0; (2.31)

where g iW i are distinct G-super-words of D-degree m in (2.30) (including ˛j gj U/

and W 0 is a linear combination of G-super-words of D-degree < m. In the expression

�. T /� T ˝ ht � ft ˝ T; ht; ft 2 G (2.32)
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consider all tensors of the form gW ˝ : : : , where D.W/ D m: By Lemma 2.8, the
sum of all such tensors equals

X

i 2I

˛ ig i W i ˝ g i �
X

i 2I

˛ ig i W i ˝ 1 D
X

i 2I

˛ ig i W i ˝ .gi � 1/: (2.33)

By assumptions 1, 2, 3, the elements g i W i; i 2 I are linearly independent modulo
all left parts of tensors of D-degree < m in (2.32). Therefore, if (2.32) vanishes in
H; then either ˛ i D 0 or g i D 1 for every i 2 I, as required. ut
Lemma 2.13 Under the assumptions 1, 2, 3, if T is a skew-primitive element, then
U D Œu�h and all super-words of D-degree m except U are words in less super-letters
than Œu� is.

Proof By the preceding lemma, we can assume that

T D
X

i D.i1;i2;:::;is/

˛ i g i W i; W i D Vni1
i1 Vni2

i2 � � �Vnis
is ; (2.34)

where one of the W i ’s is U; whereas Vij D Œvij� are hard super-letters, ˛ i are nonzero
coefficients, and g i D 1 if W i is of D-degree m. By Lemma 2.7, we have

�.g i W i/ D .g i ˝ g i/

sY

jD1

.Vij ˝ 1C gij ˝ Vij C
X

�

gij � V 0
ij � ˝ V 00

ij � /nij ; (2.35)

where V 0
ij � < Vij and deg V 0

ij � C deg V 00
ij � D deg Vij.

Let Œu� be the greatest super-letter occurring in super-words of D-degree m
in (2.34). Because all super-words of (2.34) are increasing, this super-letter stands
at the end of some super-words W i, i.e., Œu� D Vis. If one of these super-words
depends only on Œu�I that is, Wi D Œu�h, then W i is a leading super-word, W i D U as
required. Therefore, we assume that every super-word of D-degree m ending with
Œu� is a word in more than one different super-letters.

Let h D nis be the largest exponent of Œu� in (2.34). Consider all tensors of the
form gŒu�k ˝ : : : obtained in (2.35) by removing the parentheses and applying the
basis decomposition to all left parts of tensors in all terms except T ˝1 (all of these
terms are of D-degree < m).

All left parts of tensors which appear in (2.35) removing the parentheses arise
from the G-super-word giV

ni1
i1 Vni2

i2 � � �Vnis
is by replacing some of the super-letters Vij

either with group-like element gij or with G-super-word gij� V 0
ij� of a lesser D-degree

in less super-letters. The right parts are, respectively, products obtained by replacing
super-letters Vij with super-words V 00

ij� multiplied from the left by gi.
Let gR ˝ g0S be a resulting tensor under the replacements above and followed

then basis decomposition.
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If D.R/ < hD.u/; then its basis decomposition may give rise to terms of the
form gŒu�k ˝ : : : . In this case, however, D.S/ < .m � h/D.u/ because the sum of
D-degrees of both parts of the tensors either remains equal to m or decreases.

If D.R/ < hD.u/; or R is itself less than Œu�h as a super-word, then the basis
decomposition of R have no terms of the form gŒu�hI see Lemma 2.9.

If D.R/ D hD.u/; while D.W i/ < m; then R can be greater than or equal to Œu�h;

but in this case D.S/ < .m � h/D.u/ because D.R/CD.S/ � D.W i/ < m:

If D.R/ D hD.u/; while D.W i / does not end with Œu�hI that is, W i D W 0
iŒu�r; 0 �

r < h and W 0
i ends with a lesser than Œu� supper-letter, then S is less than Œu�h because,

due to Lemma 2.7, its first super-letter is less than Œu� W if all super-letters of W 0
i are

replaced with group-like elements, then D.R/ � D.Œu�r/ < hD.u/:

Finally, if W i D W 0
iŒu�h; then a super-word R of D-degree hD.u/, which is greater

than or equal to Œu�h, may appear only if all super-letters of the super-word W 0
i are

replaced with group-like elements, but Œu� is not. Here, the resulting tensor is of the
form g i g.W 0

i /Œu�h ˝ g i W 0
i:

We fix an index i such that W i ends with Œu�h: Then the sum of all tensors of the
form g i g.W 0

i/Œu�h ˝ : : : in �.T/ � T˝ ht is equal to

gig.W 0
i /Œu�h ˝ .

X

j

˛ j g j W 0
j C W00/; (2.36)

where W00 is a linear combination of basis elements of D-degree less than
.m � h/D.u/, and j runs through the set of all indices such that W j D W 0

j Œu�h,
g j g.W 0

j / D g i g.W 0
i/, and D.W j/ D .m � h/D.Œu�/.

Because W 0
j are distinct nonempty basis super-words of D-degree .m � h/D.u/;

the value of tensor (2.36) in H is nonzero. A contradiction. ut
Lemma 2.14 Under the conditions of the above lemma, pu;u is a tth primitive root
of 1 with t � 1 and h D t; or the characteristic of k equals l > 0 and h D tlk:

Proof By Lemma 2.13, the linear combination T can be written in the form

T D Œu�h C
X

i D.i1;i2;:::;is/

˛ ig iW i; W i D Vni1
i1 Vni2

i2 � � �Vnis
is ; (2.37)

where Œu� is greater than all super-letters Vij for W i of D-degree m. First let � D
1C puu C p2

uu C : : :C ph�1
uu ¤ 0 and assume h > 1.

In the basis decomposition of �. T / � T ˝ 1, consider tensors of the form
Œu�h�1˝: : : . All super-letters Vij in super-words of D-degree m are less than or equal
to Œu�; therefore, tensors of this form may appear under the basis decomposition of a
tensor of �.W i /�W i ˝ 1; Vi D Vni1

i1 Vni2
i2 � � �Vnis

is ; only if either the left part of that
tensor is of D-degree greater than .h � 1/D.u/ or Wi is of D-degree less than m. In
either case, the right part is of less D-degree than is Œu�. As above, if we remove the
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parentheses in

�.Œu�h/ D .Œu�˝ 1C gu ˝ Œu�C
X

	

g	 U0
	 ˝ U00

	 /h; (2.38)

we see that the left parts of the resulting tensors arise from the super-word Œu�h by
replacing some super-letters Œu� either with gu or with G-super-words g	 U0

	 of a
lesser D-degree in less super-letters than is Œu�. It follows that a super-word of D-
degree .h�1/D.u/ which is greater than or equal to Œu�h�1 appears only if exactly one
super-letter is replaced with a group element. Using the commutation rule Œu�sgu D
ps

u;uguŒu�s, we see that the sum of all tensors of the form guŒu�k�1 ˝ : : : equals

guŒu�k�1 ˝ .�Œu�C F C W /; (2.39)

where F is a linear combination of super-words in less than Œu� super-letters, and
W is a linear combination of basis G-super-words of D-degree less than D.u/.
Consequently, (2.32) is nonzero provided that � ¤ 0:

Now let � D 0. In this case ph
u;u D 1. Therefore, pu;u is a tth primitive root of 1;

and h D t � q or, if k has a characteristic l > 0; then h D tlr � q with q; t ¤ 0 .mod l/.
Our aim is to demonstrate that q D 1: Let h0 D h=q:

The commutation rule .Œu�˝ 1/ � .gu ˝ Œu�/ D pu;u.gu ˝ Œu�/ � .Œu�˝ 1/ implies

.Œu�˝ 1C gu ˝ Œu�/h0 D Œu�h
0 ˝ 1C gh0

u ˝ Œu�h
0

: (2.40)

If we remove the parentheses in

�.Œu�h
0

/ D ..Œu�˝ 1C gu ˝ Œu�/C
X

i

g.U00
i /U0

i ˝ U00
i /h0

; (2.41)

then Lemma 2.9 implies

�.Œu�h
0

/ D Œu�h
0 ˝ 1C gh0

u ˝ Œu�h
0 C

X

�

g.U00
� /U0

� ˝ U00
� ; (2.42)

where all super-words U0
� are less than Œu�h

0

(in particular, U0
� ¤ Œu�d; d < h0) and

D.U0
� / < h0 � D.u/.

This allows us to treat Œu�h
0

in (2.37) as a single block, or as a new formal super-
letter fŒu�h

0g such that fŒu�h
0g < Œu�, and fŒu�h

0g > Œvij� if uh0

> vij (the latter
inequality is equivalent to u > vij by Lemma 1.5):

T D fŒu�h
0gq C

X

i

˛igiV
ni1
i1 Vni2

i2 � � �Vnis
is : (2.43)
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Considering that p.Œu�h
0

; Œu�h
0

/ D ph0�h0

u;u D 1, we have

�1 D 1C p.Œu�h
0

; Œu�h
0

/C : : :C p.Œu�h
0

; Œu�h
0

/q�1 D q ¤ 0 .mod l/:

As in the case above, assuming that fŒu�h
0g is a single block, we can compute the

sum of all tensors of the form gh0

u fŒu�h
0gq�1 ˝ : : : in the basis decomposition of

�.T/� T˝ 1 (provided that q > 1/:

gh0

u fŒu�h
0gq�1 ˝ .q � fŒu�h

0g C F CW/; (2.44)

where F is a linear combination of super-words in less than Œu�h
0

super-letters, and
W is a linear combination of basis G-super-words of less D-degree than is Œu�h

0

. By
the induction hypothesis, tensor (2.44) is nonzero in H ˝ H, and so is (2.32). ut

Now we are ready to complete the proof of Theorem 2.2 by induction on m; U;

and r: The least super-word of the minimal D-degree is a least variable xi with
minimal di: In (2.30), the minimal value of r is zero. For these values of the induction
parameters, we have TD xi: If xi D 0 in H then U D Œxi� is not a hard super-letter.

If under the induction assumptions 1, 2, 3, we have T D 0 in H; then value of T
is a skew-primitive element. By Lemmas 2.13, 2.14, the equality T D 0 takes the
form

Œu�h D �
X

i D.i1;i2;:::;is/

˛ i g i W i; W i D Vni1
i1 Vni2

i2 � � �Vnis
is ;

where Vij < Œv� if D.W i/ D D.Œu�h/; whereas for h there are just the following
options: h D 1I or pu;u is a primitive tth root of 1, and either h D t or, in case when
the characteristic l is positive, h D tlk

If h D 1; then Definition 2.6 implies that Œu� is not hard. In other cases,
Definition 2.7 implies that the height of Œu� is less than h: Theorem 2.2 is proved.

The skew-primitive elements in character Hopf algebras have a special form in
the basis decomposition related to hard super-letters. We are remanded that if a 2
kŒG� is a skew-primitive element, then a is proportional to h � f ; see Lemma 1.19.

Theorem 2.3 If a … k ŒG� is a skew-primitive element, then a D ˛g '. T /; where
0 ¤ ˛ 2 k; g 2 G; and T has the following expansion:

T D Œu�h C
X

˛iWi C
X

ˇj gj W 0
j : (2.45)

Here, Œu� is a hard super-letter, Wi are basis super-words in super-letters less than
Œu�; D.Wi/ D hD.Œu�/; and D.W 0

j / < hD.Œu�/: Moreover, if pu;u is not a root of 1;

then h D 1I if pu;u is a primitive tth root of 1; then h D 1; or h D t; or .in case of
characteristic l > 0/ h D tlk:
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Proof By Theorem 2.2, the element a is a linear combination of values of increasing
restricted G-super-words, a D '. T0/;

T0 D ˛gU C
kX

iD1

�igiWi CW 0; ˛ ¤ 0; (2.46)

where gU; giWi are admissible G-super-words of maximal degree, and either U >

Wi or U D Wi but gi ¤ g: Considering that, due to Theorem 2.2, assumptions 1, 2,
3 are universally true, we may apply Lemmas 2.12–2.14 to T D ˛�1g�1 T0: ut

2.4 Monomial PBW Basis

In this section, we prove that values of standard words corresponding to hard super-
letters form a set of PBW generators for H also. Additionally we find some criterion
for a super-letter Œu� to be hard in terms of the values of monomials. This criterion
allows one to forget about skew brackets while computing the hard super-letters.

We keep the notations of the above section. In particular, H is a Hopf algebra
generated by an Abelian group G of all group-like elements and by skew-primitive
semi-invariants a1; : : : ; an with which degrees d1; : : : ; dn are associated. We fix the
homomorphism of Hopf algebras ' W GhXi ! H; xi 7! ai; 1 � i � n:

Let w be an arbitrary word. By Theorem 1.1, there exists a unique decomposition
of the word w in the product: w D wn1

1 � wn2

2 � : : : � wnm
m ; where wi; 1 � i � m are

standard words such that w1 < w2 < : : : < wm: Let W D Œw1�n1 � Œw2�n2 � : : : � Œwm�nm :

Lemma 2.15 If the super-word W is admissible, then the leading super-word of the
basis decomposition of '.w/ is precisely W and it occurs with the coefficient 1 only.
If W is not admissible, then each super-word of the basis decomposition of '.w/

either is less than W or is of a lesser D-degree.

Proof Lemma 2.4 implies that the leading word of the polynomial W is precisely
w: Hence, W � w is a linear combination of words that are less than w:

If W is admissible, then the decomposition w D W C .w � W/ allows one to
perform the evident induction.

If W is not admissible, then by Lemma 2.9, there is a decomposition '.W/ DP
j ˛j gj '.Wj /; where Wj are admissible super-words and for each j either Wj < W

or D.Wj / < D.w/: Let Wj D Œw1j�
n1 � Œw2j�

n2 � : : : � Œwmj�
nmj and wj D wn1

1j � : : : �wnmj

mj :

Lemma 2.4 implies that wj < w provided that D.wj / D D.w/: Thus, we have a
representation of '.w/ as a linear combination of lesser words of the same D-degree
and G-words of lesser D-degree:

'.w/ D '.w�W/C
X

j

˛j gj '.wj / �
X

j

˛j gj '.Wj � wj /: (2.47)

The induction applies. ut
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Theorem 2.4 The set of values in H of all G-words

gun1

1 � un2

2 � : : : � unk
k ; (2.48)

where g 2 G; u1 < u2 < : : : < uk are standard words such that Œui� are hard
super-letters, ni < h.Œui�/ forms a basis of H:

Proof Suppose that values of all words of degree < m belong to the space H0

spanned by (2.48). Among the words of D-degree m; let w be the minimal one with
respect to the lexicographic order, such that '.w/ … H0: If W is admissible, then w
itself has the form (2.48). If W is not admissible, than by induction (2.47) implies
that '.w/ 2 H0: Hence, H0 D H:

Let wj ; j 2 J be different words of the type (2.48); that is, wj D wn1

1j � : : : �
w

nmj

mj ; whereas Wj D Œw1j�
n1 � Œw2j�

n2 � : : : � Œwmj�
nmj are admissible super-words. By

Lemma 2.15, the super-word Wj is a leading super-word of the PBW decomposition
wj D Wj CP

i ˛ijWij: Let Wk is the maximal super-word among the Wj’s of maximal
D-degree. Considering that different Wj; Wij; j 2 J are linearly independent in H;

we obtain that a linear dependence

X

j2J; t2T

˛jthjt'.wj / D 0; 0 ¤ ˛jt 2 k; hjt 2 G; (2.49)

would imply
P

t2T ˛ktgkt'.Wk/ D 0: This contradicts to Theorem 2.2. ut
Corollary 2.1 A super-letter Œu� is hard if and only if the value of u is not a linear
combination of values of lesser words of D-degree D.u/ and of G-words of a lesser
D-degree.

Proof Let '.u/ D P
i ˛i'.wi/ C u0, ˛i 2 k; where wi < u; D.wi/ D D.u/ and

D.u0/ < D.u/. By Lemma 2.15, we obtain u D Œu� CP
j ˇj Uj where the super-

words Uj are less than Œu�:

Let wi D wn1

1i � wn2

2i � : : : � wnmi
mi ; where wki; 1 � k � mi are standard words such

that w1i < w2i < : : : < wmi; and let Wi D Œw1i�
n1 � Œw2i�

n2 � : : : � Œwmi�
nmi : Lemma 2.15

demonstrates that all super-words V of the basis decomposition of wi are less than
or equal to Wi unless D.V/ < D.wi/: Because u > wi, by Lemma 2.4, we have
Œu� > Wi; for all i:

Therefore Œu� is greater than all super-words of degree D.u/ in the basis decom-
position of

P
i ˛i'.wi/: Thus, Theorem 2.2 implies that '.u/ ¤P

i ˛i'.wi/C u0:

Conversely, if '.Œu�/ DP
˛i'.Wi/CU0, where Wi depends on super-letters less

than Œu� only, and D.U0/ < D.u/; then

'.u/ D '.Œu�/C '.u� Œu�/ D
X

˛i'.Wi/C U0 C '.u � Œu�/:

Due to Lemma 2.4, the latter polynomial has no one monomial whose D-degree
equals D.u/ and which is greater than or equal to u. ut
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2.5 Serre Skew-Primitive Polynomials

In this section, using Theorem 2.3, we shall describe all skew-primitive polynomials
in two variables linear in one of them. We keep notation of Sect. 1.5.3:

�.yi/ D yi ˝ hi C fi ˝ yi; yig D �i.g/gyi; hi; fi; g 2 G; i D 1; 2:

We know that Ghy1; y2i as a Hopf algebra with group G of group-like elements is
completely defined by the following four parameters

pik D q�1
ik q 0

ik D �i.h�1
k fk/; 1 � i; k � 2 (2.50)

related to the normalized skew-primitive generators x1 D h�1
1 y1; x2 D h�1

2 y2

because Ghy1; y2i D Ghx1; x2i:
Theorem 2.5 There exists a nonzero linear in y1 skew-primitive element W of
degree n in y2 if and only if either

p12p21 D p1�n
22 (2.51)

or p22 is a primitive mth root of 1; mjn; and

pm
12pm

21 D 1: (2.52)

If one .or both/ of these conditions is satisfied, then

W D ˛g Œ: : : ŒŒ y1; y2�; y2�; : : : ; y2�; ˛ 2 k; g 2 G; (2.53)

where the brackets are defined in (1.67).

Proof Let W be a skew-primitive element of constitution .1; n/: By Theorem 2.3
the element W has a representation (2.45) up to a factor ˛g: Considering that
the free character Hopf algebra is homogeneous in each variable, there are no
terms W 0

s in that representation. There exist only one standard word of constitution
.1; n/: this is x1xn

2: The standard alignment of brackets is precisely Œx1xn
2� D

ŒŒ: : : ŒŒx1x2�x2�; : : :�x2�: Hence, (2.45) reduces to W D ˛g Œx1xn
2�: Due to Lemma 1.21,

the G-super-word h1hn
2Œx1xn

2� becomes Œy1yn
2� up to a scalar factor if we distribute the

group-like factors among the variables using the commutation rules (1.62):

h1hn
2ŒŒ: : : ŒŒx1; x2�; x2�; : : :�; x2� � ŒŒ: : : ŒŒy1; y2�; y2�; : : :�; y2�: (2.54)

This proportion proves (2.53).
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It remains to analyze when Œx1xn
2� is skew-primitive. By induction on n we shall

prove the following explicit coproduct formula

�.Œx1xn
2�/ D Œx1xn

2�˝ 1C
nX

kD0

˛
.n/
k g1gn�k

2 xk
2 ˝ Œx1xn�k

2 �; (2.55)

˛
.n/
k D

�
n

k

�

p22

�
n�1Y

sDn�k

.1 � p12p21ps
22/: (2.56)

If n D 0; then the equality reduces to �.x1/ D x1˝ 1C g1˝ x1; whereas ˛
.0/
0 D 1:

Moreover, it is clear that ˛
.n/
0 D 1 for all n: We have,

�.Œx1xn
2�/ � .x2 ˝ 1/ D Œx1xn

2�x2 ˝ 1C
nX

kD0

˛
.n/
k g1gn�k

2 xkC1
2 ˝ Œx1xn�k

2 �; (2.57)

�.Œx1xn
2�/ � .g2 ˝ x2/ D Œx1xn

2� g2 ˝ x2 C
nX

kD0

˛
.n/
k g1gn�k

2 xk
2 g2 ˝ Œx1xn�k

2 �x2;

(2.58)

.x2 ˝ 1/ ��.Œx1xn
2�/ D x2Œx1xn

2�˝ 1C
nX

kD0

˛
.n/
k x2 g1gn�k

2 xk
2 ˝ Œx1xn�k

2 �; (2.59)

.g2 ˝ x2/ ��.Œx1xn
2�/ D g2Œx1xn

2�˝ x2 C
nX

kD0

˛
.n/
k g1gn�kC1

2 xk
2 ˝ x2Œx1xn�k

2 �:

(2.60)

In the second and third relations we may move the group-like factors to the left:

Œx1xn
2�g2 D p12pn

22 g2Œx1xn
2�; xk

2 g2 D pk
22 g2 xk

2; x2 g1gn�k
2 xk

2

D p21pn�k
22 g1gn�kC1

2 xkC1
2 :

Using all that relations, we develop the coproduct of

Œx1xnC1
2 � D Œx1xn

2�x2 � p12pn
22 x2Œx1xn

2�

taking into account that �.x2/ D x2 ˝ 1C g2 ˝ x2: The sums of (2.57) and (2.59)
provide the tensors

nX

kD0

˛
.n/
k .1 � p12p21p2n�k

22 /g1gn�k
2 xkC1

2 ˝ Œx1xn�k
2 �;
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whereas the sums of (2.57) and (2.59) produce the following ones:

nX

kD0

˛
.n/
k pk

22 g1gn�kC1
2 xk

2 ˝ Œx1xn�kC1
2 �:

The first term of (2.58) cancels with the first term of (2.60). Finally, we arrive to a
formula (2.55) with n nC 1 and coefficients

˛
.nC1/
k D ˛

.n/
k�1 .1 � p12p21p2n�kC1

22 /C ˛
.n/
k pk

22; k � 1; ˛
.nC1/
0 D 1: (2.61)

To prove the coproduct formula (2.55), it remains to check that values (2.56) satisfy
the above recurrence relations. To this end, we shall check the equality of the
following two polynomials in commutative variables 
; q W

�
nC1

k

�

q

� .1� 
qn/ D
�

n

k�1

�

q

� .1� 
q2n�kC1/C
�

n

k

�

q

� .1 � 
qn�k/ � qk: (2.62)

If 
 D 0; then the equality reduces to the first q-Pascal identity (1.2). Let us compare
the coefficients at 
;

�
nC1

k

�

q

� qn D
�

n

k�1

�

q

� q2n�kC1 C
�

n

k

�

q

� qn�k � qk:

This equality differs from the second q-Pascal identity (1.3) just by a common factor
qn: Hence, the equality (2.62) is valid.

If we multiply both sides of (2.62) by
Qn�1

sDn�kC1.1 � 
qs/ and next replace the
variables q  p22; 
  p12p21; then we obtain precisely (2.61) for values (2.56).
The proof of (2.55) is complete.

Each ˛
.n/
k ; 1 � k � n defined by (2.56) has a factor 1� p12p21pn�1

22 : In particular,
if p12p21 D p1�n

22 ; then all of these coefficients are zero, whence Œx1xn
2� is a skew-

primitive polynomial.
If p22 is a primitive mth root of 1; mjn; and pm

12pm
21 D 1; then p12p21 is a power

of p22I that is, p12p21ps
22 D 1 for some s; 0 � s < m: This implies that the productQn�1

sDn�k.1 � p12p21ps
22/ equals zero provided that k � m: If k < m; then Lemma 1.1

applies.
Conversely, suppose that all coefficients ˛

.n/
k ; 1 � k � n are zero. In particular,

˛
.n/
1 D .1 � p12p21pn�1

22 /pŒn�
22 D 0: Therefore, if p12p21 ¤ p1�n

22 ; then pŒn�
22 D 0: This

implies pn
22 D 1I that is, p22 is a primitive mth root of 1 and mjn: In this case, the

equality ˛
.n/
n D Qn�1

sD0.1 � p12p21ps
22/ D 0 implies that 1 � p12p21ps

22 D 0 for some
s; 0 � s < n: Hence, .p12p21/

m D p�sm
22 D 1 which is required. ut



92 2 Poincaré-Birkhoff-Witt Basis

Corollary 2.2 If one of the existence conditions of the above theorem holds then

Œ: : : ŒŒy1; y2�; y2�; : : : ; y2� � Œy2; Œy2; : : : ; Œy2; y1� : : :��: (2.63)

Proof By Lemma 1.21, we have

Œy2; Œy2; : : : ; Œy2; y1� : : :�� � h1hn
2Œx2; Œx2; : : : ; Œx2; x1� : : :��: (2.64)

This lemma and (2.54) imply that it suffices to demonstrate (2.63) under the
substitution yi  xi:

Let us introduce the opposite order, x2 > x1: There exist only one standard word
of constitution .1; n/ with respect to this ordering of variables, xn

2x1; whereas the
standard alignment of brackets is Œx2Œx2 : : : Œx2; x1� : : :��: As Œ: : : ŒŒx1; x2�; x2� : : : ; x2�

is skew-primitive, it has a representation (2.45) where all summands have the same
constitution, .1; n/: By definition of the lexicographical order x2 > xn

2x1: Hence, x2

does not occur in (2.45) as a super-letter. Since every addend has degree 1 in x1; it
follows that (2.45) reduces to T D ˛Œxn

2x1�: ut

2.5.1 Examples

In this subsection, we consider in more detail the above-described binary skew-
primitive polynomials with n � 3 and study the Hopf algebras set up by those
polynomials (as defining relations).

We fix two normalized skew-primitive variables x1; x2 such that

�.xi/ D xi ˝ 1C gi ˝ xi; i D 1; 2:

Respectively, we put pis D �i.gs/; i; s D 1; 2 so that

x1g1 D p11g1x1; x1g2 D p12g2x1; x2g1 D p21g1x2; x2g2 D p22g2x2:

We always suppose that the variables are ordered so that x1 > x2:

Example 2.1 If n D 1; then the existence condition of Theorem 2.53 reduces to
p12p21 D 1: Under that condition the skew commutator Œx1; x2� D x1x2 � p12x2x1 is
a skew primitive element. We have Œx1; x2� D �p12Œx2; x1�; which is the particular
case of the general formula (2.63). The Hopf algebra H defined by the relation
Œx1; x2� D 0 is the skew group ring R �G; where G is the group generated by g1; g2

and R is the so-called algebra of quantum polynomials

R D f
X

m;n

˛m;nxm
2 xn

1 j x1x2 D p12x2x1g:
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Obviously, x1 and x2 are the PBW-generators of H: To see this formally, we may
apply Composition Lemma (Theorem 1.2). Indeed, Œx1; x2� D 0 is a Gröbner-
Shirshov system of relations because there are no compositions at all. Hence, by
Composition Lemma, the set ˙ of all words without subword x1x2 is a basis of R:

Of course, ˙ D fxm
2 xn

1 jm; n � 0g:
Example 2.2 If n D 2; then the existence condition of Theorem 2.53 reduces to

.p12p21 D p�1
22 / _ .p12p21 D 1 & p22 D �1/: (2.65)

Under that condition, the polynomial

ŒŒx1; x2�; x2� D x1x2
2 � p12.1C p22/x2x1x2 C p2

12p22x2
2x1

is a skew primitive element. In this case, the general formula (2.63) takes the form
Œx2; Œx2; x1�� D p2

12p22ŒŒx1; x2�; x2�: Similarly, condition

.p12p21 D p�1
11 / _ .p12p21 D 1 & p11 D �1/ (2.66)

implies that

Œx1; Œx1; x2�� D x2
1x2 � p12.1C p11/x1x2x1 C p2

12p11x2x2
1

is a skew-primitive element and Œx1; Œx1; x2�� D p2
12p11ŒŒx2; x1�; x1�:

If both polynomials are skew-primitive, then we may consider the Hopf algebra
H defined by relations ŒŒx1; x2�; x2� D 0 and Œx1; Œx1; x2�� D 0: Of course, H D R�G;

where R is the algebra defined by the same relations, and G; as above, is the group
generated by g1; g2:

If p11 D p22; then the algebra R is precisely the algebra AC
2 considered in

Example 1.1, where ˛ D �p12.1 C p22/; ˇ D p2
12p22: In Example 1.1, we have

seen that the system of relations

ŒŒx1; x2�; x2� D 0; Œx1; Œx1; x2�� D 0

is closed with respect to the compositions, and

˙ D fxm
2 .x1x2/

nxk
1 jm; n; k � 0g

is a basis of R: In other words, the elements x2; x1x2; x1 form a set of PBW
generators for H over G: Corollary 2.1 implies that all hard super-letters are
precisely x2; Œx1x2�; x1; and they form a set of PBW generators for H over G as
well.

We stress that the existence conditions (2.65), (2.66) imply p11 D p22 unless
p22 D p12p21 D 1; p11 D �1 or p22 D �1; p12p21 D p11 D 1:
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Example 2.3 Note that ŒŒŒx1; x2�; x2�; x2� is precisely the Lyndon–Shirshov standard
word Œx1x3

2� with the standard alignment of brackets. Due to Theorem 2.53 the
polynomial Œx1x3

2� is skew-primitive if either p12p21 D p�2
22 or p22 D � is a primitive

third root of 1 and p12p21 2 f1; �2g: Under that condition the polynomial

Œx1x3
2� D x1x3

2 � p.1C qC q2/x2x1x2
2 C p2.qC q2 C q3/x2

2x1x2 � p3q3x3
2x1;

where p D p12; q D p22 is skew-primitive, and (2.63) takes the form

Œx1x3
2� D �p3q3Œx2; Œx2; Œx2; x1���:

If p�1
11 D p12p21 D p�2

22 ; then both Œx1x3
2� and Œx2

1x2� are skew-primitive
polynomials. Consider the Hopf algebra H defined by two relations: Œx1x3

2� D 0;

and Œx2
1x2� D 0: These relations have the form (1.22) considered in Example 1.2

with

˛ D �p.1Cq2/; ˇ D p2q2; � D �p.1CqCq2/; ı D p2.qCq2Cq3/; " D �p3q3;

whereas before, we put for short p D p12; q D p22: If we define � D �pq; then
these parameters satisfy the following relations (1.23):

ˇ D �2; � D ˛ C �; ı D ��; " D �3:

In Example 1.2, we observed that the system of relations Œx1x3
2� D 0 and Œx2

1x2� D 0

becomes closed with respect to the compositions if we add one new relation, (1.27),
which is a consequence of the two initial ones. Hence the set

˙ D fxm
2 .x1x2x2/

n.x1x2/
kxs

1 jm; n; k; s � 0g

is a basis of R: In other words, the elements x2; x1x2
2; x1x2; x1 form a set of PBW-

genrators for H over G: Respectively, Corollary 2.1 implies that all hard super-letters
are precisely x2; Œx1x2

2�; Œx1x2�; x1; and they form a set of PBW-generators of H over
G also.

Interestingly, by Proposition 1.3 we may replace the very new relation with any
other relation with the same leading word. The leading word, x1x2x1x2

2; is standard,
and one may show (here we omit the detailed calculations) that Œx1x2x1x2

2� D 0

is a relation for R: Therefore the three relations Œx1x3
2� D 0, Œx2

1x2� D 0; and
Œx1x2x1x2

2� D 0 is a Gröbner–Shirshov system of defining relations for R: Here
Œx1x2x1x2

2� D ŒŒx1x2�ŒŒx1x2�x2�� has the standard alignment of brackets.
There exist five exceptional cases, when Œx1x3

2�; Œx2
1x2� are still skew-primitive but

p11 ¤ p2
22: They are: p11 D p12p21 D 1; p22 D �I p11 D p22 D �; p12p21 D �2I and

p11 D �1; p12p21 D 1; p22 2 f1;�1; �gI here, � is the third primitive root of 1: The
analysis of each one of these cases is much easier than that of Example 1.2, and we
let the reader find the PBW-generators and Gröbner-Shirshov systems of relations
as an exercise.
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2.6 Chapter Notes

Examples 2.2 and 2.3 above are particular cases of quantizations of Lie algebras.
Gröbner-Shirshov systems of defining relations for quantizations of Lie algebras of
infinite series An; Bn; Cn; Dn were found by the author [128] using as a basic tool
the PBW theorem proved in this chapter. Interestingly, all relations in those systems
have the form Œu� D 0; where Œu� is a standard word with standard alignment of
brackets. Independently, Chen et al. [48] found the Gröbner-Shirshov systems for
quantizations Uq.sln/ of type An by means of the specific PBW basis constructed by
Rosso [195] and Yamane [234].

There are many publications on the construction of a PBW basis for Hopf
algebras. The first PBW-type theorem for Drinfeld-Jimbo quantizations (see the
next chapter) appeared in the pioneering paper by Jimbo [106], which discusses
Uq.sl2/ in detail. Rosso [195] and Yamane [234] independently constructed the
PBW basis for Drinfeld–Jimbo algebras Uq.sln/ of type An; n > 2: Thereafter,
G. Lusztig, in his fundamental works [151–153], determined the PBW bases for
arbitrary Drinfeld-Jimbo and Lusztig quantum enveloping algebras. These bases
and their modifications have been considered in a number of subsequent papers,
e.g., Kashiwara [119], Concini et al. [58], Berger [28], Towber [224], Bautista
[21], Gavarini [84], Chari and Xi [47], Reineke [192], Leclerc [146], Bai and Hu
[19]. An original approach based on the Ringel-Hall algebras was also advanced in
[59, 60, 194].

The general statement given in Theorem 2.2 can be attributed to the author
[124]. This PBW-type theorem was found to be essential in the construction of
the Weyl groupoid by Heckenberger [91] corresponding to a Nichols algebra (see
Sect. 6.7 below) of diagonal type. This groupoid was crucial in classifying such
Nichols algebras [90]. In turn, knowledge of these Nichols algebras is important to
perform the lifting method developed by N. Andruskiewitsch and H.-J. Schneider
for classifying pointed Hopf algebras [4] .

Theorem 2.2 was generalized in two different directions by Ufer [225], and
by Graña and Heckenberger [87] using similar methods. Instead of character
Hopf algebras, S. Ufer considered braided Hopf algebras (see Chap. 6 below)
with “triangular” braidings, whereas M. Graña and I. Heckenberger replaced the
skew-primitive generators with irreducible Yetter–Drinfeld modules and obtained a
factorization of the Hilbert series for a wide class of graded Hopf algebras, where
the factors are parametrized by Lyndon–Shirshov words in a manner similar to how
the PBW generators are parametrized in Theorem 2.2. In [97], I. Heckenberger and
H. Yamane modified Theorem 2.2 based on the work of G. Lusztig by using the
concept of the Weyl groupoid.

Returning to the main idea of the proof of Theorem 2.2, the right and left
sides of the tensors in (2.2) were used differently, although we required detailed
information (given in Lemma 2.9) about the left sides only. This information
provides a noteworthy idea for applying the method to subalgebras R of H such
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that �.R/ � R ˝ H: A subspace that obeys the latter property is known as a right
coideal.The author developed this idea in [133] by proving the following statement:

Theorem 2.6 Every right coideal subalgebra of a character Hopf algebra H that
contains all group-like elements of H has a PBW basis that can be extended up to a
PBW basis of H:

One reason that one-sided coideal subalgebras are important is that Hopf algebras
do not have a sufficient number of Hopf subalgebras. The straightforward idea to
consider Hopf subalgebras as “quantum subgroups” appeared to be inappropri-
ate, whereas the one-sided coideal subalgebras are more precise. The one-sided
comodule subalgebras, not the Hopf subalgebras, are found to be the Galois objects
in the Galois theory for Hopf algebra actions (Milinski [173, 174], see also a
detailed survey by Yanai [235]). In particular, the Galois correspondence theorem
for the actions on free algebra establishes a one-to-one correspondence between
right coideal subalgebras and intermediate free subalgebras (see Ferreira et al.
[73]). In a detailed survey [147], G. Letzter provides a panorama of the use of
one-sided coideal subalgebras in constructing quantum symmetric pairs to form
Harish-Chandra modules and produce quantum symmetric spaces.

The importance of this concept led to a project to classify one-sided coideal
subalgebras of Drinfeld–Jimbo quantizations. In fact, the proof of Theorem 2.6
yields sufficient additional information to try to attempt this classification for the
subalgebras containing all group-like elements.

In a series of papers by Lara Sagahón, Garza Rivera and the author [134, 135,
139, 140], using the parallelization technique for supercomputers, this program
was developed for a multiparameter version of the Drinfeld–Jimbo and Lusztig
quantizations of types An and Bn: It was found in [135, 139] that in these cases
the number of right coideal subalgebras of the positive Borel part UC

q .g/ coincides
with the order of the Weyl group.

The latter statement was extended to arbitrary quantizations of finite type by
Heckenberger and Schneider [96]. The right coideal subalgebras in that case are
the well-known spaces UCŒw� defined by the elements w of the Weyl group,
which was used by Lusztig [153] to establish a PBW basis for UC

q .g/: This
establishment represents an outstanding achievement of a general theory developed
by N. Andruskiewitsch, I. Heckenberger, and H.-J. Schneider in a number of papers
[5, 92, 95, 96]. Generally, this theory is a categorical version of the fundamental
theory of Lusztig’s automorphisms. More precisely, instead of the skew-primitive
generators x1; : : : ; xn the authors consider irreducible finite-dimensional Yetter–
Drinfeld modules V1; : : : ; Vn over a Hopf algebra H with bijective antipode, and
in place of the Weyl group is the Weyl groupoid theorized by I. Heckenberger. The
theory includes a PBW theorem for the related Nichols algebras and their right
coideal subalgebras.

Using these results as a starting point, Heckenberger and Kolb [94] classified all
homogeneous right coideal subalgebras for a quantized enveloping algebra UC

q .g/

of a complex semisimple Lie algebra g with deformation parameter q not a root of
unity.
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Using the computer algebra program to compute the commutative and non-
commutative rings and modules FELIX [6, 72], they determined the number of
different right coideal subalgebras when the order jWj of the Weyl group was less
than one million, thus confirming results of [139] for the case An and reducing the
error in the explicit computer calculations for the case Bn presented in [140]. These
numbers jCoj are given in the tables below.

Type A2 A3 A4 A5 A6 A7 A8 E6 F4 G2

jWj 6 24 120 720 5040 40;320 362;880 51;840 1152 12

jCoj 26 252 3368 58;810 1;290;930 34;604;844 1;107;490;596 38;305;190 91;244 68

B2 B3 B4; C4 B5; C5 B6; C6 B7; C7 D4 D5 D6 D7

8 48 384 38;400 46;080 645;120 192 1920 23;040 322;560

38 664 17;848 672;004 33;369;560 2;094;849;020 6512 238;720 11;633;624 720;453;984

It is likely that the same numbers remain true for multiparameter and “small”
versions of the quantizations. Heckenberger and Kolb [93] recently extended their
work on classification problem by considering right coideal subalgebras that do not
contain all group-like elements.
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