Preface

The numerous attempts over the last 15-20 years to define a quantum Lie algebra
as an elegant algebraic object with a binary “quantum” Lie bracket have not been
evidently and widely accepted. Nevertheless, the g-deformations of the enveloping
algebras introduced independently by Drinfeld and Jimbo have profoundly impacted
the development of both the modern theory of quantum groups and the much older
mathematical theory of Hopf algebras. Although the definition of the Drinfeld—
Jimbo quantization is not simple, a clear common property unites all of these
quantizations, as well as those that appeared later in different multiparameter
versions articulated by Reshetikhin, Costantini, Varagnolo, Chin, Musson, and
Benkart, with the universal enveloping algebras. Especially, these quantizations as
Hopf algebras are generated by skew-primitive semi-invariants. This book is mainly
concerned with Hopf algebras possessing this property. Because the action on a
semi-invariant is defined by a character, we call such Hopf algebras character Hopf
algebras.

We treat the character Hopf algebras as universal enveloping algebras of
“quantum Lie algebras.” The quantum Lie algebra must be an algebraic object
located inside a character Hopf algebra. The Cartier—Kostant theorem asserts a
category equivalence between Lie algebras (in characteristic zero) and connected
co-commutative Hopf algebras. Given this equivalence, a Lie algebra corresponds
to the space of primitive elements. This correspondence provides a clear idea to treat
the space spanned by skew-primitive elements as a quantum Lie algebra.

To maintain the Cartier—Kostant category equivalence in characteristic p > 0,
one must consider an additional unary operation x +— x” on the Lie algebras.
Thus, we must consider not only binary operations (brackets) but also operations
involving one or various variables. In this manner, we develop the notion of quantum
Lie operation, a polynomial in noncommutative skew-primitive variables with
skew-primitive values. We thus consider the space spanned by the skew-primitive
elements and equipped with the quantum Lie operations as a quantum analog of a
Lie algebra.

vii



viii Preface

There are many reasons motivating the extension of research to operations
that replace the Lie bracket but that depend on greater numbers of variables,
for example, operations of n-Lie algebras introduced by V.T. Filippov and then
independently appearing under the name ‘“Nambu-Lie algebras” in theoretical
research on generalizations of Nambu mechanics.

Another group of problems requiring the generalization of Lie algebras corre-
sponds to research on skew derivations of noncommutative algebras. A noncommu-
tative version of the fundamental Dedekind algebraic independence lemma states
that the algebraic structure of a Lie algebra and operators with “inner” action
define all algebraic dependencies in ordinary derivations. This result was extended
to the field of skew derivations by Chen-Lian Chuang. His fundamental theorem
may be interpreted in the same manner, i.e., the algebraic structure and operators
with “inner” action define all algebraic dependencies in skew derivations. Hence,
the following question arises: Which algebraic structure corresponds to the skew
derivation operators? This question requires the consideration of n-ary operations
irreducible to bilinear operations.

A third group of problems concerning multivariable generalizations of the
Lie bracket appeared in nonassociative algebra. P.O. Miheev and L.V. Sabinin
demonstrated that a simply connected local analytic loop is determined by an
algebraic system consisting of a series of multilinear operations. These systems are
now called Sabinin algebras.

This book is intended as an introduction to the mathematics behind the phrase
“quantum Lie algebra.” Despite the complexity of the subject, we have attempted
to make this exposition accessible to a wide audience. We assume a standard
knowledge of linear algebra and some rudimentary knowledge of representation
theory. Most of the text will be accessible to graduate students in mathematics who
have completed an introductory course in linear algebra.

Chapter 1 is introductory in nature. It contains many basic definitions related to
noncommutative algebra that are used in subsequent chapters. Starting with Gauss
polynomials and Lyndon—Shirshov standard words, we discuss the foundations of
Grobner—Shirshov theory, which is the basic tool for investigating noncommutative
algebras specified by generators and defining relations. In this “combinatorial
paradigm,” the Poincaré—Birkhoff—Witt theorem obeys an elegant proof, whereas
the concepts of a skew group ring and crossed product can be perfectly analyzed.
We then introduce the braid monoid and the permutation group and consider the
set of shuffles as a transversal of a direct product of symmetric subgroups. Although
representation theory is not used intensively in this book, we formulate the theorems
of Maschke and Wedderburn as initial statements without proofs. The concept of a
character Hopf algebra is central to this monograph. In the combinatorial paradigm,
the free character Hopf algebra plays a crucial role. The notion of a combinatorial
rank appears in the analysis of generators for Hopf ideals, which are the defining
relations for Hopf algebras. We develop the bracket technique as an important tool
for performing calculations that allows one to preserve and apply the intuition of the
Lie algebra machinery. Coordinate differential calculi, filtered and associated graded
spaces, and specific fundamental concepts from P.M. Cohn theory are developed
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as tools for further applications. We conclude the chapter with notes that provide
the reader with an opportunity to learn more about the subjects we review in the
introductory chapter. We have constructed this chapter to be as self-contained as
possible. Some arguments are new, and the remaining chapters have not previously
appeared in book form.

In the second chapter, we demonstrate that every character Hopf algebra has
a PBW basis. Our proof intensively uses the coalgebraic structure, distinct from
the known Lusztig’s method, which uses the algebraic structure only. Because the
coproduct may not differ between a polynomial with a zero value and a polynomial
with a skew-primitive value, in establishing linear independence, we automatically
obtain important information regarding the skew-primitive polynomials.

In the third chapter, we review possible quantum deformations of the universal
enveloping algebras of Kac—Moody algebras. To this end, we associate a class 2
with a given Kac—-Moody algebra g. The class 2 consists of all character Hopf
algebras defined by the same number of relations and with the same degrees as
g has. 2 contains all known quantizations of g. We demonstrate that Hopf algebras
from 2( have the so-called triangular decomposition as coalgebras. If the generalized
Cartan matrix A of g is indecomposable, then up to a finite number of exceptional
cases, the algebraic structure is solely defined by one “continuous” parameter g
related to the symmetrization of A and one “discrete” parameter m related to the
modular symmetrizations of A.

In the fourth chapter, consistent with the main concept of the book, we treat the
skew-primitive polynomials as quantum Lie operations. We discuss linearization
and specialization processes and criteria for a polynomial to be classified as a
quantum Lie operation. We also classify multilinear quantum Lie operations in two,
three, and four variables. Although generally a bilinear bracket there does not exists
as an operation, a binary bracket exists that is an important and effective tool for the
investigation. Specifically, all quantum Lie operations can be expressed in terms of
that bracket. The bracket becomes a quantum operation only if characters that define
the action of group-like elements satisfy a multiplicative skew-symmetry condition.
In this case, the quantum Lie algebra transforms into a color Lie algebra.

The fifth chapter focuses on multilinear quantum Lie operations involving more
than four variables. We establish a necessary and sufficient existence condition
and the number of linearly independent operations that may exist and define the
principle n-linear operation which by permutations of variables spans the space of
all n-linear operations. The symmetric operations pose an opposite property, namely,
in the context of permutations of variables, they do not change their values up to
a scalar factor. We deduce that there are precisely (n — 2)! linearly independent
symmetric generic quantum Lie operations and at least one principle generic n-
linear operation. Although this chapter does not require specialized knowledge, it
demands persistence from the reader.

The main goal of the sixth chapter is a detailed construction of free braided Hopf
algebra and shuffle braided Hopf algebra on the tensor space of a given braided
space. We define a Nichols algebra as a subalgebra of the shuffle braided Hopf
algebra generated by the given braided space. All calculations are performed within
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the braid monoid but not in the braid group; therefore, the constructions remain valid
for a noninvertible braiding. We then consider braided Hopf algebras that appear in
the Radford decomposition of character Hopf algebras and discuss filtrations.

As previously mentioned, numerous definitions had been proposed for the
binary quantum analog of a Lie algebra. It is likely that only the Gurevich—-Manin
generalization up to Lie r-algebras represents a completely successful definition.
In the seventh chapter we consider this generalization and its particular cases,
specifically, Lie superalgebras and color Lie algebras. The PBW theorem for Lie
r-algebras transforms into a coalgebra isomorphism between universal enveloping
algebras of Lie r-algebras defined within the same braided space. We establish a
t-Friedrichs criterion and consider subalgebras of free Lie t-algebra.

In the field of nonassociative algebras, there are known generalizations of Lie
algebras with nonassociative envelopes. Many of these well-known generalizations
involve only one or two operations. In the eighth chapter, we consider nonassociative
primitive polynomials as operations for nonassociative Lie theory similar to how we
considered skew-primitive polynomials as operations for quantum Lie theory. I.P.
Shestakov and U.U. Umirbaev discovered infinitely many independent operations
of that type. The proof constructed in this chapter demonstrates that Shestakov—
Umirbaev primitive operations together with the commutator form a complete set
of nonassociative Lie operations.
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