Chapter 2
Poincaré-Birkhoff-Witt Basis

Abstract In this chapter, we demonstrate that every character Hopf algebra has a
PBW basis. A Hopf algebra H is referred to as a character Hopf algebra if the group
G of all group-like elements is commutative and H is generated over k [G] by skew-
primitive semi-invariants, whereas a well-ordered subset V € H is a set of PBW
generators of H if there exists a function & : V — Z1 U {oo}, called the height
function, such that the set of all products

ny, na ng
gvl v2 oo ‘Uk s

whereg € G, vi<vy<...<w €V, n <h(v),l <i<kisabasisof H.

In this chapter, we demonstrate that every character Hopf algebra has a PBW basis.
According to Definition 1.11, a Hopf algebra H is referred to as a character Hopf
algebra if the group G of all group-like elements is commutative and H is generated
over k [G] by skew-primitive semi-invariants.

Definition 2.1 A well-ordered subset V of a character Hopf algebra H is considered
a set of PBW generators of H if there exists a function & : V — Z U {oo}, called
the height function, such that the set of all products
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whereg € G, vi<vy <...<v €V, n; <h(v;),l <i<kisabasis of H. The
value h(v) is referred to as the height of v in V.

For example, the standard words, due to Theorem 1.1, form a set of PBW
generators with infinite heights of the free character Hopf algebra G(X). This fact
provides an idea concerning how to find the PBW basis of an arbitrary character
Hopf algebra.

We establish a homomorphism G(X) — H of the character Hopf algebras. The
values of elements (2.1) in H span all of H but may be linearly dependent. If the
value of a standard word v is a linear combination of the monomials (2.1) with
v; < v, then the values of elements (2.1), where v; # v, continue to span H. Hence,
the set of all standard words may be reduced to the set of “hard” standard words,
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i.e., standard words v whose values in H are not linear combinations of (2.1) with
v; <.

Then, one must demonstrate that the increasing products of “hard” standard
words are linearly independent in H. For this task, we must use the coproduct. If
U is such a linear combination, then we may (somehow) find its coproduct in the
free character Hopf algebra

AU)=U®1+Y URU/+g®U, g€G.
If U =01in H, then in H @ H we have the equality
Y uieUu! =o. (2.2)

This equality of tensors provides one equation corresponding to each basis element
of the space spanned by all U”. Because the U’’s have degrees less than that of U,
we may theoretically decompose them in linear combinations of increasing products
of “hard” standard words that are already linearly independent in H (by induction).
This amount of information is sufficient for obtaining the required contradiction.

Because of technical reasons, it was impossible to realize these considera-
tions directly for “hard” standard words; Instead, developing the above logic for
nonassociative standard words seemed possible, interpreting the bracket as the
skew commutator of polynomials. Surprisingly, after this logic was developed,
demonstrating that the “hard” standard words are indeed the PBW generators
became straightforward.

The equality (2.2) is not equivalent to setting U to be zero but does indicate that U
is skew-primitive. In other words, while solving the above system of equations, we
will obtain information on the skew-primitive elements of character Hopf algebras.
This information is given in Theorem 2.3.

2.1 PBW Bases of the Free Character Hopf Algebra

Let G(Y) = G(X) be the free character Hopf algebra, see Sect. 1.5.3. Recall that
x;, i € I are free variables with the coproduct given by

Ax) =xi®1+g8®x;, Ag) =38 g (2.3)

whereas associated with each variable x; is a character y' : G — k* such that
g 'xig = yi(g)gx;, forall g € G, see (1.66).

For every word u in X let g, denotes a group-like element that appears from u
by replacing each x; with g;. Similarly, y“ is a character that appears from u by
replacing each x; with x'. Because both the group G and the group of characters are
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commutative, the values g,, y* are defined on the set of all homogeneous elements
in each x; € X. For a pair «, v of homogeneous polynomials in X put

Puv = X"(8v)- (2.4)
Obviously, the following equalities hold:
Puvw = PuwPows  Puww = PupPuw- (2.5)
Sometimes it is more convenient to denote this bimultiplicative operator by p(y, v).
Of course, the operator p(-, -) is completely defined by the parameters pix = x'(gx)-
In terms of this operator, the brackets (1.67) take the form

[, v] = uv — pyyvu, [u,v]* = uv —p;ivu. (2.6)

Lemma 2.1 The brackets [,] satisfy the following “Jacobi identity”:
(. v].w) = [ [ W] + o e W] 0]+ (P — Py e w] - v, 2.7

where - stands for usual multiplication in the free algebra.

Proof We have

[[e, v], w] = [uv — pypvu, W] = UVW — Dy WUV — Py y VUW + Py y Py wWUU.
Under the substitution w < v, this equality becomes

[, W], v] = UWV — Pryy L VUW — Py WUV ~+ Dy soPr.o VWU

Similarly,

[, [v, W]] = [u, YW — Py wWV] = UVW — Py UWU — Py oUWV + Py oDy sy WO,
and

[u, W] - v = uwv — p,,,,wiv.

It remains to compare the coefficients at all six permutations of uvw in (2.7).

uw: 1=1;
. _ —1 -1 .
WUV © —Puyw = —PyyPuw + (Pv.w _pw,u)Pu,m
. _ —1 .
vuUw . —pyy = _pmvpuvv,va

wou o PuyPouw = PvwPuwvs
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uwv . 0= p;lv — Pow + (Pv,w _pvjlv)’

. |
vwu: 0= PwyPuwPwuy — Puow-

O

Lemma 2.2 The following formulas link the brackets to multiplication:
[, v-w] = [u,v] - W+ puyv - [u,w], (2.8)
[u-v,w] = pylu,w]-v+u-[v,w] (2.9)
Proof We have, [u,v - w| = uvow — p,,, WU = UUW — Dy, VUW ~+ D, VUW —
DPuvPuwWlt = [u,v] - w + p, v - [u, w]. Similarly, [u - v, w] = uow — p,, ywuv =
UVW — Py UWU + Dy UWU — Py wWHY = U - [U, W] + py i, W] - v. O

Definition 2.2 A super-letter is a polynomial that equals a standard nonassociative
word where the brackets [, ] are defined in (2.6).

Every noncommutative polynomial f in X is a linear combination of different
words f = Y a;u;. Recall that a leading word of f is the maximal word »; that
occurs in this decomposition with nonzero coefficient.

Lemma 2.3 A leading word of a super-letter [u] with respect to the lexicographical
order is the word u, and it occurs in the decomposition of [u] with coefficient 1.

Proof We use induction on length. If [u] = [[v][w]] then the super-letter [u] equals
[v][w] — puw[w][v]. By the inductive hypothesis, [v] and [w] are homogeneous
polynomials with the leading words v and w, respectively. The leading word with
respect to the lexicographical order of a product of two homogeneous polynomials
equals the product of leading words of the factors. Therefore, the leading word of
[v][w] equals vw and has coefficient 1; the leading word of [w][v] equals wv and is
less than vw because vw = u is a standard word. O

The proven Lemma demonstrates that different standard words u and v define
distinct super-letters [u] and [v]. We define the order on the set of all super-letters
thus:

] > [v] <= u>v. (2.10)

Definition 2.3 A word in super-letters is called a super-word. A super-word is said
to be increasing if it has the form

W = [11] 2] -+ [uyn]*. @2.11)
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where u; < up < ... < u,. On the set of all super-words, we fix the lexicographic
order defined by the ordering of super-letters in (2.10).

Lemma 2.4 An increasing super-word W = [w ¥ [w2] - - - [w,]*" is greater than
an increasing super-word V.= [v1|™ [v2]"2 - - - [vk]™ if and only if the word w =
wWiWA - owhn i greater than the word v = v} v} ---v}*. Moreover; the leading
word of the polynomial W, when decomposed into a linear combinations of words,

equals w and has coefficient 1.

Proof LetW > V. Thenw; > v; in view of the ordering of super-letters. If w; = vy,
we can remove one factor from the left of both V and W, and then proceed by
induction. Therefore, we will put w; > v;. If w; is not the beginning of v, then the
inequality w; > v; can be multiplied from the right by suitable distinct elements,
which yields w > v, as required.

Letv, = wiT, T = W'k Wb hwl - vf, where 0 < I < k,. Here w; is
not a beginning of v}, whereas the term between the parentheses may be missing (in
this case s = 1,1 > 0).

If v is a nonempty word, then v{ < v; < w; < w;, because v; is standard.
The inequality vj < wy implies av|b < aw,c for all words a, b, ¢ because w; is
not a beginning of v}. Taking a = (W\'w& ---w5=")w! and suitable b, ¢, we obtain
v < w.

Let v| is the empty word. If / > 0, then the word v; should be greater than its
end w,. Therefore, w; > v; > w,, which contradicts the fact that w; < wy is valid
forall s > 1. If [ = 0, then s > 1 because v; begins with w,. It follows that v, is
greater than its end w,_;, which is again a contradiction with w; > v; > w,_;.

The second part of the lemma follows from Lemma 2.3 and the fact that the
leading word of a product of homogeneous polynomials equals the product of
leading words of the factors. O

Remark 2.1 We stress that the above lemma cannot be extended to all super-words,
for example if x; > x; > x3, then [x{] - [x3] > [x1x2] and x1x3 < x1x,.

Lemma 2.5 Let u, u; be standard words and u > uy. The polynomial [[u], [u1]] is a
linear combination of super-words in the super-letters [w] such that uu; > w > uy,
in which case the constitution of the super-words equals the constitution of uu,.

Proof 1If the nonassociative word [[u][u;]] is standard then it defines a super-letter
[w] and uu; = w > u; by Lemma 1.4. In particular, the lemma is valid if u and u;
are letters. We can therefore proceed by induction on the length of uu;.

Suppose that the lemma is true if the length of uu; is less than m. Choose a pair
u,u; with a greatest word u, so that the polynomial [[u], [#;]] does not enjoy the
required decomposition and the length of uu; equals m. Then the nonassociative
word [[¢][u;]] is not standard. By Lemma 1.10, we have [u] = [[u3][u:]] with
uy > Uj.
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We fix the notation for super-letters U; = [u], i = 1,2,3. By Jacobi
identity (2.1), we can write

[[Us, Us). Ui] = [Us, [U. Uil + p,,)},, [[Us. UL Us)
+Purar = Py ) [U3. Ur] - Us. (2.12)

We have u3 > u > u, > uy. By the inductive hypothesis, [Us, U] can be represented
as Y o; [[[wi], where us > wuzu; > wy > wuy. Using Lemma 1.7, we obtain
i k

u > uuy > usu; > wy; that is, all super-letters [wy] satisfy the requirements of
the present lemma. Furthermore, the word u cannot be the beginning of u,, and so
u > up implies uu; > u,. Thus, the super-letter U, too, satisfies the requirements.
Consequently, the second [in view of (2.6)] and third summands of (2.12) have the
required decomposition.

Using the inductive hypothesis, for the first summand we obtain

(U2, 0] =) Bi [ Jlvad, (2.13)
i k

where uou; > vy > up. By Lemma 1.7, uu; > uyu; > vy; that is, the super-letters
[vik] satisfy the conditions of the lemma. Rewrite the first summand using skew-
derivation formula (2.8), with the first factor replaced by (2.13). In this way, the first
summand turns into a linear combination of words in the super-letters [v;] and skew
commutators [[u3], [vi]]. Because us > u > u, > vy and the length of vy does not
exceed that of u,u;, the inductive hypothesis applies to yield

[ls]. fwad] = > v [ Jiwil. (2.14)

where uz > uzvyg > wj; > vi. In this case uu; > vy implies
UUy = Uslpll] = UzVjx = Wi,

in addition, w;; > vy > uy, i.e., the super-letters [wj;] also satisfy the conditions.
O

Lemma 2.6 Every nonincreasing super-word W is a linear combination of lesser
increasing super-words of the same constitution whose super-letters all lie (not
strictly) between the greatest and the least super-letters of W.

Proof We proceed by induction on the length of the super-word. Assume that the
lemma is true for super-words of length < ¢, and let W = UU, --- U, be a least
super-word of length ¢ 4+ 1 for which our lemma fails.

If the super-word U, - - - U, is not increasing, then by the inductive hypothesis it is
a linear combination of lesser increasing super-words W;. In this case UW; < W, and
according to the choice of W, all super-words UW; have the required representation.
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Let
W=uUU{"---UR U <Uy<...<U,. (2.15)
If U < Uy, then W is increasing, and there is nothing to prove. Let U > U;. Then
W=[U U U U 4 p, U UYL UR, (2.16)

The second summand is less than W as a super-word, and so we can write it in the

required form. By Lemma 2.5, the factor [U, U] in the first term can be represented

as Y a; [[[wis], where the super-letters [w;] are less than U. Consequently, the
i

s
ki—1
1

super-words [[[wis]U --Uf’ are less than W; that is, the first term has the

s
required representation too. O

Theorem 2.1 The set of all super-words
1] [ua]™ - - fue] ™, (2.17)

where u; < up < ... < uy are standard words, forms a basis of k (X).

Proof Since by definition all words of length one are standard, the letters x; = [x;]
are super-letters. Hence, by Lemma 2.6, every polynomial is a linear combination of
increasing super-words. It remains to prove that the set of all increasing super-words
is linearly independent. Let

Z(X,’Wi =0 (218)

and assume that W = [w]% [wy]%2 - - - [w,,]* is a leading super-word in (2.18). By
Lemma 2.4, the leading word of W equals w = wi'wh2 .- wkn. This word occurs
exactly once in (2.18). Suppose, to the contrary, that W does also occur in the
decomposition of V = [v]™ [v2]™ - - - [vg]™. Then the word w is less than or equal
to the leading word v = v{"' vy - -- v} in the decomposition of V, which contradicts

the fact that W > V by Lemma 2.4. O

2.2 Coproduct on Super-Letters

Theorem 2.1 demonstrates that the super-letters are PBW generators of infinite
height for the free character Hopf algebra G(X). Our next goal is to describe
properties of the coproduct of these PBW generators.
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Lemma 2.7 The coproduct of a super-letter W = [w] has a representation

A = W] ® 1+ g ® [W] + ) aig(WH)W, @ W/, (2.19)

where W, are nonempty words in less super-letters than is [w]. Moreover, the sum
of constitutions of W! and W!' equals the constitution of V. Here g(u) denotes the
group-like element g, .

Proof We use induction on the length of a word w. For letters, there is nothing to
prove. Let W = [U, V], U = [u], and V = [v]. Assume that the decompositions

AU =UR1+g,QU+ Y aig(U)U;® U}, (2.20)

and

AV)=VR1+g,®V+Y BsVIVieV @21)

J

satisfy the requirements of the lemma. Using (2.6) and properties of p, we can write
AW) = A(U)AV) = pur ANAU) =WR1+g, W
+(1 = puspoa)gV @ U+ Y Bip(U. VI)g(V)IU. V] ® V/'
+ " Bigug(V/)V] ® (U] = puop(V]. U)V]'U)
+ Y 0ig(U)U} -V = puwp(V. U]V - U} ® U/
+3 ap(U], V)gug(UHU, ® [U. V]
+ Y BV UL VU, @ ULV
—pup(V}, U)VIU; @ V/'UY). (2.22)

Collecting similar terms in this formula was result in the canceling of terms of the
form g,U ® V only. We claim that all left parts of the remaining tensors in (2.22)
admit the required decomposition. First, in view of the inductive hypothesis, all
super-letters of all super-words Vz/ are less than V, which are in turn less than W
because v is the end of a standard word w. Moreover, by the inductive hypothesis
again, u cannot be the beginning of any word 1’ such that the super-letter [1'] would
occur in super-words U. Therefore, u > ' implies uv > u’ and W > [/]. Thus, all
but the first and fourth super-words on the left-hand sides of all tensors depend only
on super-letters which are less than W.
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We want to apply Lemma 2.5 to the fourth tensor. Let Vi = []Vy,
‘ k

where Vi = [vi] are less than V. By Eq. (2.8), the polynomial [U, Vj’] is a linear
combination of words in the super-letters Vi, and skew commutators [U, Vy]. By
Lemma 2.5, each of these commutators is a linear combination of words in the
super-letters [v'] such that v/ < uvy. In view of vy < v, we obtain v/ < uv = w.
The statement concerning the constitutions follows immediately from for-
mula (2.22) and the inductive hypothesis. O

Lemma 2.8 The coproduct of a super-word W has a decomposition

AW) =W 1+g(W) @ W+ Y aig(W)W @ W, (2.23)

1

where the sum of constitutions of W! and W!" equals the constitution of W.

Proof It suffices to observe that A is an homomorphism of algebras. Here, we can
no longer assert that W/ < W. o

Lemma 2.9 If [w] is a super-letter, then

A" = Y] e ol @ " + Y g (VUi @ Vi (224)
—Ljdq -
Jj=0 i
where [m] are the Gauss polynomials considered in Sect. 1.1 with g = p(w,w),
j g

whereas the super-words U; are less than [w]™ with respect to the lexicographical
ordering of words in super-letters.

Proof After developing of the product, the mth power of the right hand side of (2.19)
takes the form (2.24), where each of U; is a product of m super-words some of
whom equal to [w] (but not all of them!) and others equal to some of the W/’s. By
Lemma 2.7, all super-letters that occur in W; are less than [w]. Hence, the super-
word U; is less than [w]” with respect to the lexicographical ordering of words in
super-letters. O

2.3 Hard Super-Letters

Consider a character Hopf algebra H. By definition H is generated over k[G] by
skew-primitive semi-invariants b;,i € I:

Ab) =biQhi+f @b;, hi.fi € G, big= x"(g)-gbi, g€ G, iel. (2.25)

As the skew-primitive elements are closed with respect to the multiplication by
group-like elements, we may normalize the generators, ¢; = h; 'b;, diminishing
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the number of group-like elements related to them:
A7 'b) = h7'u® 1+ hi'f ® hy'by.
In what follows, we fix a set of normalized skew-primitive generators {a;}, so that

Aa)=a;® 1+ g ®a;, Alg) =g ®g, aig= x"(g)-gai, g€ G, i€l
(2.26)

Let G(X), X = {x;|i € I} be the free character Hopf algebra such that y' = y%
and g; = gq;, I € I. Then there exists a natural homomorphism of Hopf algebras

¢:G(X)— H, (2.27)

which maps x; to a;, i € I.

Definition 2.4 Let I" be a well-ordered additive (commutative) monoid. With each
x;, i € I we associate a nonzero element d; € I. The D-degree of a word, a
super-letter, a super-word, or more generally, a homogeneous polynomial f in X
of a constitution {m; | i € I} is

D(f) =) md; =) dideg,(f). (2.28)

In what follows, we fix a well-ordered monoid I" and elements d; = D(x;). For
example, I" may be the monoid related to the constitution given in the construction
after Definition 1.3. For the first reading, one may suppose that I = Z7T is the
monoid of nonnegative integer numbers, whereas d; = 1. However, we should stress
that the resulting set of PBW generators and its properties essentially depend on the
chosen D-degree function.

Lemma 2.10 The set X, of all words of a fixed D-degree m is well-ordered with
respect to the lexicographical order.

Proof We note, first, that I" has no negative elements: if a < 0, then there appears
an infinite descending chain 0 > a > 2a > 3a > .... Additionally, I" has the
cancelation property,a +x = a + y implies x = y: if x > y, thena +x > a + y.
Let F be a subset of X'. As (X, <) is well-ordered, the set A of all first letters of
words from F has a least element, say, x; € X. If xju, xjv € F, then D(x;)+D(u) =
D(x1) + D(v) = m. Hence, D(u) = D(v) < m because D(v) > m and D(x;) > 0
would imply D(x;) + D(v) > m. By these reasons, we may apply the induction
supposition to the set B = {u € X*|xju € F}. If up is a least element of B, then
XU 1s a least element of F. O

Definition 2.5 A G-super-word is a product of the form gW, where g € G and W
is a super-word. The degree, constitution, length, and other concepts which apply
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with G-super-words are defined by the super-word W. In other words, we assume
that the D-degree and the constitution of g € G are equal to zero. In view of (2.26),
every product of super-letters and group-like elements equals a linear combination
of G-super-words of the same constitution.

Definition 2.6 A super-letter [¢] is said to be hard if its value ¢([¢]) in H is not
a linear combination of values of words of the same D-degree in less super-letters
than is [u] and of G-super-words of a lesser D-degree.

We are remanded that a primitive 7th root of 1 is an element ¢ € k such that
o' =landa” # 1forallr, 1 <r <t In particular, 1 is the 1st primitive root of 1.

Definition 2.7 We say that the height of a super-letter [u] of D-degree d € I" equals
h = h([u]) if h is the smallest natural number such that:

(1) puu is a primitive rth root of 1 and either h = t or h = tl", where [ is the
characteristic of k.

(2) the value in H of [u]" is a linear combination of values of super-words of D-
degree hd in less super-letters than is [¢] and of G-super-words of a lesser D-
degree.

If, for the super-letter [u], the number A with the above properties does not exist,
then we say that the height of [u] is infinite.

Theorem 2.2 The set of values in H of all G-super-words W in the hard super-
letters [u;],

W = glu]" [ua]™ - - - [ua]™, (2.29)

where g € G, uy < uy < ...<uy, n; <h([u]), forms a basis of H.

The proof will proceed through a number of lemmas. For brevity, we call a G-
super-word (2.29) restricted if each of the numbers #; is less than the height of [u;].
A super-word (a G-super-word) is said to be admissible if it is increasing restricted
and is a word in hard super-letters only.

First of all, we have to demonstrate that every element of H is a linear
combination of values of admissible G-super-words. Clearly, every element is a
linear combination of values of not necessarily admissible G-super-words because
each variable x; is a super-letter, x; = [x;]. In fact, there exist a natural diminishing
procedure, based on Lemma 2.5 and on the definitions of hard super-letters and their
heights, that allows one to find the required linear combination.

Lemma 2.11 The value of each non-admissible super-word of D-degree d is a
linear combination of values of lesser admissible super-words of D-degree d and
of admissible G-super-words of a lesser D-degree. Also, all super-letters occurring
in the super-words of D-degree d of this linear combination are less than or equal
to a greatest super-letter of the super-word given.
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Proof Assume that the lemma is valid for super-words of D-degree < m. Let W
be a least super-word of D-degree m for which the required representation fails. By
Lemma 2.6, the super-word W is increasing. If it has a non-hard super-letter, by
definition, we can replace it with a linear combination of G-super-words of a lesser
D-degree and of words in less super-letters of the same D-degree. Developing the
product turns W into a linear combination of G-super-words of a lesser D-degree
and of lesser super-words of the same D-degree, a contradiction with the choice
of W. If W contains a subword [u]*, where k equals the height of [u], then we can
replace it as is specified above, which gives us a contradiction again. Thus the W is
itself increasing restricted and is a word in hard super-letters only. O

In order to prove Theorem 2.2, it remains to show that admissible G-super-words
are linearly independent. Consider an arbitrary linear combination T of admissible
G-super-words and let U = V{'V,2 ... V;* be its leading (maximal) super-word of
D-degree m. Multiplying, if necessary, that combination by a group-like element,
we can assume that U occurs once without a group-like element:

T=U+Y agU+ Y  oigiWi Wi=ViVi.. Ve (2.30)

is
j=1 i=(il,i2,...,is)

In the next three lemmas, we accept the following assumptionsonm, U and r:

1. The admissible G-super-words of D-degree < m are linearly independent;
2. The admissible G-super-words of D-degree m which are less than U are linearly
independent modulo the space spanned by G-super-words mentioned in 1;
and, if » > 0, then
3. The super-words g; U, 1 < j < r are linearly independent modulo the space
spanned by G-super-words mentioned in 1 and 2.

In view of these assumptions and Lemma 2.11, every super-word of D-degree
m which is less than U, and every super-word of D-degree < m, can be uniquely
decomposed into a linear combination of admissible G-super-words. For brevity,
such will be referred to as a basis decomposition.

Lemma 2.12 Under the assumptions 1, 2, 3, if the value of T in H is a skew-
primitive element, then r = 0 and g; = 1 for all i such that D(W;) = m.

Proof Rewrite the linear combination T as follows:

T=U+) aigiWi+ W, (2.31)

i€l

where g;W; are distinct G-super-words of D-degree m in (2.30) (including o; g; U)
and W’ is a linear combination of G-super-words of D-degree < m. In the expression

AT)-TOh—-fi®T, h, 1 €G (2.32)
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consider all tensors of the form gW ® ..., where D(W) = m. By Lemma 2.8, the
sum of all such tensors equals

Z“igiwi ®gi_zaigiwi ®1= Zaigiwi ® (gi—1). (2.33)

iel iel i€l

By assumptions 1, 2, 3, the elements g; W;, i € I are linearly independent modulo
all left parts of tensors of D-degree < m in (2.32). Therefore, if (2.32) vanishes in
H, then either «; = Oorg; = 1 foreveryi € I, as required. O

Lemma 2.13 Under the assumptions 1, 2, 3, if T is a skew-primitive element, then
U = [u]" and all super-words of D-degree m except U are words in less super-letters
than [u] is.

Proof By the preceding lemma, we can assume that

T= Z aigiWi, Wi = Vi' Vi - Vie, (2.34)
i=(i1,i2,....is)

where one of the W; ’s is U, whereas V;; = [v;] are hard super-letters, r; are nonzero

coefficients, and g; = 1 if W; is of D-degree m. By Lemma 2.7, we have

A@iWi) = (2 @) [[(Vi @ 1485 ® Vs + D _g5jaVijg ® Vi)™, (2.35)
j=1 0

where Vi’j@ < Vj; and deg sz/jO + deg Vi/j/O = deg Vj;.

Let [u] be the greatest super-letter occurring in super-words of D-degree m
in (2.34). Because all super-words of (2.34) are increasing, this super-letter stands
at the end of some super-words Wj, i.e., [u] = Vj,. If one of these super-words
depends only on [u]; that is, W; = [u]", then W; is a leading super-word, W; = U as
required. Therefore, we assume that every super-word of D-degree m ending with
[t] is a word in more than one different super-letters.

Let & = n;, be the largest exponent of [¢] in (2.34). Consider all tensors of the
form g[u]* ® ... obtained in (2.35) by removing the parentheses and applying the
basis decomposition to all left parts of tensors in all terms except T ® 1 (all of these
terms are of D-degree < m).

All left parts of tensors which appear in (2.35) removing the parentheses arise
from the G-super-word g;Vi' Vi3> - -- Vi by replacing some of the super-letters V;;
either with group-like element g;; or with G-super-word g;jg Vi’j@ of alesser D-degree
in less super-letters. The right parts are, respectively, products obtained by replacing
super-letters V;; with super-words Vi/j/@ multiplied from the left by g;.

Let gR ® g'S be a resulting tensor under the replacements above and followed
then basis decomposition.
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If D(R) < hD(u), then its basis decomposition may give rise to terms of the
form g[u]* ® . ... In this case, however, D(S) < (m — h)D(u) because the sum of
D-degrees of both parts of the tensors either remains equal to m or decreases.

If D(R) < hD(u), or R is itself less than [u]" as a super-word, then the basis
decomposition of R have no terms of the form g[u]"; see Lemma 2.9.

If D(R) = hD(u), while D(W;) < m, then R can be greater than or equal to [u]",
but in this case D(S) < (m — h)D(u) because D(R) + D(S) < D(W;) < m.

If D(R) = hD(u), while D(W; ) does not end with [u]"; thatis, W; = Wi}[u]", 0 <
r < hand W] ends with a lesser than [u] supper-letter, then S is less than [u]" because,
due to Lemma 2.7, its first super-letter is less than [u] : if all super-letters of W} are
replaced with group-like elements, then D(R) < D([u]") < hD(u).

Finally, if W; = W; [u]", then a super-word R of D-degree hD(u), which is greater
than or equal to [«]", may appear only if all super-letters of the super-word Wi are
replaced with group-like elements, but [¢] is not. Here, the resulting tensor is of the
form g; g(W))[u)" ® gi W}

We fix an index i such that W; ends with [u]". Then the sum of all tensors of the
form g; g(W))[u]" ® ...in A(T) — T ® h, is equal to

gigW)" ® Y ajgj Wi + W), (2.36)
J

where W” is a linear combination of basis elements of D-degree less than
(m — h)D(u), and j runs through the set of all indices such that W; = W} [u]”,
gj8(W5) = gig(W)), and D(Wy) = (m — h)D([u]).

Because W} are distinct nonempty basis super-words of D-degree (m — h)D(u),
the value of tensor (2.36) in H is nonzero. A contradiction. O

Lemma 2.14 Under the conditions of the above lemma, p,, is a tth primitive root
of 1 witht > 1 and h = t, or the characteristic of k equals | > 0 and h = tI*.

Proof By Lemma 2.13, the linear combination T can be written in the form
T=[u"+ >  agiWi W, =Vivg. ..V (2.37)

is °
i=(il,i2,...,is)

where [u] is greater than all super-letters V;; for W; of D-degree m. First let £ =
L+ pu+pi, + ...+ plt # 0and assume h > 1.

In the basis decomposition of A(T) — T ® 1, consider tensors of the form
[u]"'®.... All super-letters V; in super-words of D-degree m are less than or equal
to [u]; therefore, tensors of this form may appear under the basis decomposition of a
tensor of A(W;) —W; ® 1, V; = V" Vi2 ... Vi only if either the left part of that
tensor is of D-degree greater than (h — 1)D(u) or Wj is of D-degree less than m. In
either case, the right part is of less D-degree than is [u]. As above, if we remove the
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parentheses in

A = (W@ 1+ g, @ [u] + Y g: UL @ UL)", (2.38)

we see that the left parts of the resulting tensors arise from the super-word [u]" by
replacing some super-letters [u] either with g, or with G-super-words g, U’ of a
lesser D-degree in less super-letters than is [u]. It follows that a super-word of D-
degree (h—1)D(u) which is greater than or equal to [u]"~' appears only if exactly one
super-letter is replaced with a group element. Using the commutation rule [u]*g, =
P’ .&u[ul’, we see that the sum of all tensors of the form g,[u]*~! ® ... equals

gu] ' @ (E[u] + F + W), (2.39)

where F is a linear combination of super-words in less than [u] super-letters, and
W is a linear combination of basis G-super-words of D-degree less than D(u).
Consequently, (2.32) is nonzero provided that £ # 0.

Now let £ = 0. In this case p’;.u = 1. Therefore, p,, is a tth primitive root of 1,
and h = t - g or, if k has a characteristic [ > 0, then & = tI’ - ¢ with ¢, 1 # 0 (mod /).
Our aim is to demonstrate that g = 1. Let ¥’ = h/q.

The commutation rule ([u] ® 1) - (g4 ® [1]) = puu(gu @ [u]) - ([u] ® 1) implies

(Mel+gu)" =u" &1+g" @ u". (2.40)

If we remove the parentheses in

A"y = (W ® 1+ g ® [u]) + Y 2(UU; @ U}, (2.41)

l

then Lemma 2.9 implies

AW =W @1+ @ " +)_ e(U))U; ® Uy, (2.42)
6

where all super-words Uj, are less than [u]”" (in particular, Uj, # [u]’, d < ') and
D(Uy) < h'-D(u).

This allows us to treat [u]h/ in (2.37) as a single block, or as a new formal super-
letter {[u]"} such that {[u]"} < [u], and {[u]"} > [vj] if u" > vy (the latter
inequality is equivalent to # > v; by Lemma 1.5):

is

T={u"}+ ) gV Vi Vi (2.43)
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Considering that p([u]" , [u]") = pZ:th/ = 1, we have

go= 14+ p(u]” ") + ...+ p(ul”, [u]")?™" = g # 0 (mod1).

As in the case above, assuming that {[u]”} is a single block, we can compute the
sum of all tensors of the form gfj/{[u]h/}‘f_l ® ... in the basis decomposition of
A(T) — T ® 1 (provided that ¢ > 1):

"y @ (g {lul"} + F+ W), (2.44)

where F is a linear combination of super-words in less than [u]h/ super-letters, and
W is a linear combination of basis G-super-words of less D-degree than is [u]h/. By
the induction hypothesis, tensor (2.44) is nonzero in H ® H, and so is (2.32). O

Now we are ready to complete the proof of Theorem 2.2 by induction on m, U,
and r. The least super-word of the minimal D-degree is a least variable x; with
minimal d;. In (2.30), the minimal value of r is zero. For these values of the induction
parameters, we have T = x;. If x; = 0 in H then U = [x;] is not a hard super-letter.

If under the induction assumptions 1, 2, 3, we have T = 0 in H, then value of T
is a skew-primitive element. By Lemmas 2.13, 2.14, the equality T = 0 takes the
form

W) = — Z aigiWi, Wi = V'V Vs,
i =(i1.22,...i5)

where V;; < [v] if D(W;) = D([u]"), whereas for & there are just the following
options: h = 1; or p,, is a primitive rth root of 1, and either 4 = ¢ or, in case when
the characteristic / is positive, & = tI*

If h = 1, then Definition 2.6 implies that [u] is not hard. In other cases,
Definition 2.7 implies that the height of [u] is less than 4. Theorem 2.2 is proved.

The skew-primitive elements in character Hopf algebras have a special form in
the basis decomposition related to hard super-letters. We are remanded that if a €
K[G] is a skew-primitive element, then a is proportional to & — f, see Lemma 1.19.

Theorem 2.3 Ifa ¢ k[G] is a skew-primitive element, then a = ag ¢(T), where
0 # o € Kk, g € G, and T has the following expansion:

T=[ul"+) Wi+ > BigW. (2.45)

Here, [u] is a hard super-letter; W; are basis super-words in super-letters less than
[u], D(W;) = hD([u]), and D(Wl/) < hD([u]). Moreover, if p,,, is not a root of 1,
then h = 1; if p,, is a primitive tth root of 1, then h = 1, or h = t, or (in case of
characteristic | > 0) h = tI*.
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Proof By Theorem 2.2, the element a is a linear combination of values of increasing
restricted G-super-words, a = ¢('T'),

k
T =agU+ Y yigiWi+W. a#0, (2.46)
i=1

where gU, g;W; are admissible G-super-words of maximal degree, and either U >
W;or U = W; but g; # g. Considering that, due to Theorem 2.2, assumptions 1, 2,
3 are universally true, we may apply Lemmas 2.12-2.14to T =a 'g7' T'. O

2.4 Monomial PBW Basis

In this section, we prove that values of standard words corresponding to hard super-
letters form a set of PBW generators for H also. Additionally we find some criterion
for a super-letter [¢] to be hard in terms of the values of monomials. This criterion
allows one to forget about skew brackets while computing the hard super-letters.

We keep the notations of the above section. In particular, H is a Hopf algebra
generated by an Abelian group G of all group-like elements and by skew-primitive
semi-invariants ay, .. ., @, with which degrees d, ..., d, are associated. We fix the
homomorphism of Hopf algebras ¢ : G(X) —> H, x;—~> a;, 1 <i <n.

Let w be an arbitrary word. By Theorem 1.1, there exists a unique decomposition
of the word w in the product: w = w1 wgz <. -wm wherew;, 1 <i < m are

m

standard words such that w; < wp < ... <wy. Let W = [wi]" - [wp]"2 - ...« [wp]™.

Lemma 2.15 [fthe super-word W is admissible, then the leading super-word of the
basis decomposition of ¢(w) is precisely W and it occurs with the coefficient 1 only.
If W is not admissible, then each super-word of the basis decomposition of ¢(w)
either is less than W or is of a lesser D-degree.

Proof Lemma 2.4 implies that the leading word of the polynomial W is precisely
w. Hence, W — w is a linear combination of words that are less than w.

If W is admissible, then the decomposition w = W + (w — W) allows one to
perform the evident induction.

If W is not admissible, then by Lemma 2.9, there is a decomposition (W) =
Z aj gj (W;), where W; are admissible super-words and for each j either W; < W
or D(W;) < D(w). Let W; = [wy]" - [wa)]" - - [wy]™ and w; = wi! ... -w,.
Lemma 2.4 implies that w; < w provided that D(w,) = D(w). Thus we have a
representation of ¢(w) as a linear combination of lesser words of the same D-degree
and G-words of lesser D-degree:

o) = ow = W)+ a;g0m;) — Y o g (W —w). (2.47)

J J

The induction applies. O
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Theorem 2.4 The set of values in H of all G-words
gui' Uyt -k, (2.48)

where g € G, u; < up < ... < uy are standard words such that [u;] are hard
super-letters, n; < h([u;]) forms a basis of H.

Proof Suppose that values of all words of degree < m belong to the space Hy
spanned by (2.48). Among the words of D-degree m, let w be the minimal one with
respect to the lexicographic order, such that ¢(w) ¢ Hy. If W is admissible, then w
itself has the form (2.48). If W is not admissible, than by induction (2.47) implies
that ¢ (w) € Hy. Hence, Hy = H.

Let wj, j € J be different words of the type (2.48); that is, w; = wy;
w:;”j?’ , whereas W; = [wy;]" - [wy]™ - ... - [wn]™ are admissible super-words. By
Lemma 2.15, the super-word W; is a leading super-word of the PBW decomposition
w; = W, +Y_,; a;W;;. Let W, is the maximal super-word among the W;’s of maximal
D-degree. Considering that different W;, W;;, j € J are linearly independent in H,
we obtain that a linear dependence

1

> ahip(w;) = 0. 0 # o €k, hy €G. (2.49)
jeJ, €T
would imply Y 7 ¢u&k@(Wi) = 0. This contradicts to Theorem 2.2. O

Corollary 2.1 A super-letter [u] is hard if and only if the value of u is not a linear
combination of values of lesser words of D-degree D(u) and of G-words of a lesser
D-degree.

Proof Let p(u) = ), aip(w;) + uo, &; € k, where w; < u, D(w;) = D(u) and
D(up) < D(u). By Lemma 2.15, we obtain u = [u] + Zi B; U; where the super-
words U; are less than [u].

Let w; = w/} -wh ... -w" where wy, 1 < k < mi are standard words such
that wy; < wy; < ... < Wy, and let W; = [wy;]™ - [wy]™2 - ... - [Wyi]™ . Lemma 2.15
demonstrates that all super-words V of the basis decomposition of w; are less than
or equal to W; unless D(V) < D(w;). Because u > w;, by Lemma 2.4, we have
[4] > W;, for all i.

Therefore [u] is greater than all super-words of degree D(u) in the basis decom-
position of ), a;j¢(w;). Thus, Theorem 2.2 implies that (1) # >, aip(w;) + uo.

Conversely, if ¢([u]) = Y a;p(W;) + Uy, where W; depends on super-letters less
than [u] only, and D(Uy) < D(u), then

o) = o([u]) + o —[u]) = Y aip(W;) + Uo + p(u— [u]).

Due to Lemma 2.4, the latter polynomial has no one monomial whose D-degree
equals D(u) and which is greater than or equal to u. O
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2.5 Serre Skew-Primitive Polynomials

In this section, using Theorem 2.3, we shall describe all skew-primitive polynomials
in two variables linear in one of them. We keep notation of Sect. 1.5.3:

A) =y ®hi+f;®yi. vig=x'(9)gyi. hif,g€G, i=1.2.

We know that G(y;,y,) as a Hopf algebra with group G of group-like elements is
completely defined by the following four parameters

pic =qy qp = x'(h'fi), 1<ik=<2 (2.50)

related to the normalized skew-primitive generators x; = hl_lyl, Xy = hy y,
because G(y1, y2) = G(x1, x2).

Theorem 2.5 There exists a nonzero linear in y, skew-primitive element W of
degree n in y; if and only if either

P1apa = P%z_" (2.51)
or py is a primitive mth root of 1, m|n, and
Py = 1. (2.52)
If one (or both) of these conditions is satisfied, then

W=oagl...[[yi.y2.32]..... 2], @€k, g€, (2.53)

where the brackets are defined in (1.67).

Proof Let W be a skew-primitive element of constitution (1, 7). By Theorem 2.3
the element W has a representation (2.45) up to a factor og. Considering that
the free character Hopf algebra is homogeneous in each variable, there are no
terms W/ in that representation. There exist only one standard word of constitution
(1,n): this is xyxj. The standard alignment of brackets is precisely [xjxj] =
[... [[xix2]x2], . . .]Jx2]. Hence, (2.45) reduces to W = ag [x1x5]. Due to Lemma 1.21,
the G-super-word A5 [x1x;] becomes [y;y5] up to a scalar factor if we distribute the
group-like factors among the variables using the commutation rules (1.62):

/’llhg[[ .. [[.x1,.x2],.x2], o .],xz] ~ [[ .. [bfl,yz],yz], o .],yz]. (2.54)

This proportion proves (2.53).
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It remains to analyze when [x|x}] is skew-primitive. By induction on n we shall
prove the following explicit coproduct formula

A =[] @ 1+ o"gigy ™ ® g ™), (2.55)
k=0

n n—1
o = [ } - [T 0 =prapapsy). (2.56)
P22 s=n—k
If n = 0, then the equality reduces to A(x;) = x; ® 1 + g; ® x|, whereas oc(()o) =1.

Moreover, it is clear that oz(()") = 1 for all n. We have,

A @ 1) = kb @1+ Y o ags A @ g™, @2.57)
k=0

A(1x3]) - (82 ® x2) = [xix5] g2 ® x2 + Zai”’glg’é‘k)c’é 2 ® [x1 " xa.
k=0

(2.58)

0 ®1) - Al = wld @ 1+ o’ gigh ™ A ® v ™. (2.59)
k=0

(82 ®x2) - Al)) = aled] ® ;o + Yo 15 o @ oy ],
k=0

(2.60)

In the second and third relations we may move the group-like factors to the left:

[x1X5]g2 = piophs galviXs], X g0 = phygadh, xagigh ¥

— p21p1212—k glgg—k+l XI£+1.
Using all that relations, we develop the coproduct of
[y ™1 = Bl — piaph, xafxix]

taking into account that A(x;) = x; ® 1 + g» ® xp. The sums of (2.57) and (2.59)
provide the tensors

n
Z o (1 = propapi Mgigh * A @ [,
k=0
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whereas the sums of (2.57) and (2.59) produce the following ones:

Z“k Phyg1gs ! ® [y .

The first term of (2.58) cancels with the first term of (2.60). Finally, we arrive to a
formula (2.55) with n <— n + 1 and coefficients

le((nH) = le((n)l (1 = prpupss ) + Ol;((n)Plzcz, k>1, Ol(()n+l) 1. (2.61)

To prove the coproduct formula (2.55), it remains to check that values (2.56) satisfy
the above recurrence relations. To this end, we shall check the equality of the
following two polynomials in commutative variables A, g :

I:n+l:| (1= Ag") = |: n :| . _qun—k+1) " |:”:| a —Aqn_k) . qk' (2.62)
k kdg

k—1 q

If 1 = 0, then the equality reduces to the first g-Pascal identity (1.2). Let us compare
the coefficients at A,

["+1i| " k41, |" Kk
.qn — [ i| -q n— + |: i| .qn_ -q .
K, k1], k],

This equality differs from the second g-Pascal identity (1.3) just by a common factor
q". Hence, the equality (2.62) is valid.

If we multiply both sides of (2.62) by [T/} , +1(1 = Aq°) and next replace the
variables ¢ <— p», A < piapai, then we obtain precisely (2.61) for values (2.56).
The proof of (2.55) is complete.

Each oc,((") , 1 < k < n defined by (2.56) has a factor 1 — p12p21p22_ In particular,
if propa1 = p22 , then all of these coefficients are zero, whence [x;x}] is a skew-
primitive polynomial.

If py is a primitive mth root of 1, m|n, and pi,p4, = 1, then p1op,; is a power
ofpzz, that is, p1ap21p3, = 1 for some s, 0 < s < m. This implies that the product
T2} (1 = p1apaips,) equals zero provided that k > m. If k < m, then Lemma 1.1
applies.

Conversely, suppose that all coefficients o

i") = (1 —popapsy 1)p312] = 0. Therefore, 1fp12p21 # p5y", then p22 = 0. This

implies p3, = 1; that is, py; is a primitive mth root of 1 and m|n. In this case, the
equality o) = ]_[Z;(l)(l — P12p21Py,) = 0 implies that 1 — popo1p3, = 0 for some
s, 0 <s < n. Hence, (p12p21)™ = p3" = 1 which is required. O

(") 1 < k < n are zero. In particular,



92 2 Poincaré-Birkhoff-Witt Basis

Corollary 2.2 If one of the existence conditions of the above theorem holds then

[..[Dyalyals ooyl ~ 2 as oo 2l - D (2.63)

Proof By Lemma 1.21, we have

a2, 2, oo s il -l ~ i, [xo, .o o, ] (2.64)

This lemma and (2.54) imply that it suffices to demonstrate (2.63) under the
substitution y; <— x;.

Let us introduce the opposite order, x, > x;. There exist only one standard word
of constitution (1, 7) with respect to this ordering of variables, xjx;, whereas the
standard alignment of brackets is [x;[xz ... [x2,x1]...]]- As [...[[x1, %], x2] . . ., x2]
is skew-primitive, it has a representation (2.45) where all summands have the same
constitution, (1, n). By definition of the lexicographical order x, > xJx;. Hence, x,
does not occur in (2.45) as a super-letter. Since every addend has degree 1 in x, it
follows that (2.45) reduces to T = «[x}x1]. O

2.5.1 Examples

In this subsection, we consider in more detail the above-described binary skew-
primitive polynomials with n < 3 and study the Hopf algebras set up by those
polynomials (as defining relations).

We fix two normalized skew-primitive variables x1, x» such that

A)=x®@1+g®x;, i=12.
Respectively, we put p;s = x'(gs), i,s = 1,2 so that

X181 = P1181X1, X182 = P1282X1, X281 = P2181X2, X282 = P2282X2.

We always suppose that the variables are ordered so that x; > x;.

Example 2.1 1f n = 1, then the existence condition of Theorem 2.53 reduces to
p12p21 = 1. Under that condition the skew commutator [x1, x;] = x1x2 — p12xpx; 1S
a skew primitive element. We have [x1,x;] = —pi2[x2, x1], which is the particular
case of the general formula (2.63). The Hopf algebra H defined by the relation
[x1,x2] = O is the skew group ring R * G, where G is the group generated by g1, g
and R is the so-called algebra of quantum polynomials

R = {Z U nXy X | X102 = praXaxi}.

m,n
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Obviously, x; and x, are the PBW-generators of H. To see this formally, we may
apply Composition Lemma (Theorem 1.2). Indeed, [x;,x;] = 0 is a Grobner-
Shirshov system of relations because there are no compositions at all. Hence, by
Composition Lemma, the set X' of all words without subword xx; is a basis of R.
Of course, X' = {x7'x| |m,n > 0}.

Example 2.2 1f n = 2, then the existence condition of Theorem 2.53 reduces to
(P12p21 = p3y) V (P1apar = 1 & py = —1). (2.65)
Under that condition, the polynomial
(1, x2), %2] = x135 — pra(l + pa)xaxixa + plpariix

is a skew primitive element. In this case, the general formula (2.63) takes the form
[x2, [x2, x1]] = popaa[[x1, x2], x2]. Similarly, condition

(P12p21 = pi) V (Pr2p2 = 1 & pi = —1) (2.66)

implies that
[r1, [, 0]l = xxs — pia(l + pr)xixxy + phopiixext

is a skew-primitive element and [xy, [x1, x2]] = pl,p11[[x2, x1], x1].

If both polynomials are skew-primitive, then we may consider the Hopf algebra
H defined by relations [[x;, x2], x2] = 0 and [x1, [x1, x2]] = 0. Of course, H = R* G,
where R is the algebra defined by the same relations, and G, as above, is the group
generated by g1, g2.

If pi1 = px», then the algebra R is precisely the algebra A; considered in
Example 1.1, where o = —pa(1 4+ pp), B = p%zpzz. In Example 1.1, we have
seen that the system of relations

[[x1, x2], x2] = 0, [x1, [x1,x2]] =0
is closed with respect to the compositions, and
2 = {8 ()"t | mon, k> 0}

is a basis of R. In other words, the elements x;,x;x;,x; form a set of PBW
generators for H over G. Corollary 2.1 implies that all hard super-letters are
precisely xz, [x1x2], x1, and they form a set of PBW generators for H over G as
well.

We stress that the existence conditions (2.65), (2.66) imply p1; = pz» unless

P2 =pipan = 1, pni = —lorpy =—1,pipn =pn =1
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Example 2.3 Note that [[[x;, x2], x2], x2] is precisely the Lyndon—Shirshov standard
word [xlxg] with the standard alignment of brackets. Due to Theorem 2.53 the
polynomial [x;x3] is skew-primitive if either piopa1 = p57 or px» = { is a primitive
third root of 1 and py2py; € {1, ¢?}. Under that condition the polynomial

gl = x0 —p(1 + g + )i + pX(q + ¢ + ¢ ) — P g,
where p = p12, g = p22 is skew-primitive, and (2.63) takes the form

3] = —p*@[x2, [xa, [x2, x1]]]-

If p;} = pipa = p57. then both [x;x3] and [x}x,] are skew-primitive
polynomials. Consider the Hopf algebra H defined by two relations: [x;x3] = 0,
and [x%xz] = 0. These relations have the form (1.22) considered in Example 1.2
with

a=—p(l+¢>). B=p*¢. y=-p(+q+4). § =p°(q+@*+4°), e = —p°¢’.

whereas before, we put for short p = pj2, ¢ = pao. If we define © = —pgq, then
these parameters satisfy the following relations (1.23):

B=p> y=a+p §=yu e=pu’

In Example 1.2, we observed that the system of relations [x;x3] = 0 and [x}x,] = 0
becomes closed with respect to the compositions if we add one new relation, (1.27),
which is a consequence of the two initial ones. Hence the set

2 = {8 (xxox) (xix2) x) | m,n, ks > 0}

is a basis of R. In other words, the elements x5, xlx%, x1x2, x1 form a set of PBW-
genrators for H over G. Respectively, Corollary 2.1 implies that all hard super-letters
are precisely x;, [xlxg], [x1x2], x1, and they form a set of PBW-generators of H over
G also.

Interestingly, by Proposition 1.3 we may replace the very new relation with any
other relation with the same leading word. The leading word, xlxlexg, is standard,
and one may show (here we omit the detailed calculations) that [xlxlex%] =0
is a relation for R. Therefore the three relations [xlxg] = 0, [x%xz] = 0, and
[xlxgxlx%] = 0 is a Grobner—Shirshov system of defining relations for R. Here
[xlxgxlx%] = [[x1x2][[x1x2]x2]] has the standard alignment of brackets.

There exist five exceptional cases, when [xlxg], [x%xz] are still skew-primitive but
P 7517%2- They are: py1 = piopa1 = 1, p2 = put = pn = §, piopa1 = ¢%; and
p11 = —1, pipa =1, pn € {1,—1,}; here, ¢ is the third primitive root of 1. The
analysis of each one of these cases is much easier than that of Example 1.2, and we
let the reader find the PBW-generators and Grobner-Shirshov systems of relations
as an exercise.
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Examples 2.2 and 2.3 above are particular cases of quantizations of Lie algebras.
Grobner-Shirshov systems of defining relations for quantizations of Lie algebras of
infinite series A,, B,, C,, D, were found by the author [128] using as a basic tool
the PBW theorem proved in this chapter. Interestingly, all relations in those systems
have the form [u] = 0, where [u] is a standard word with standard alignment of
brackets. Independently, Chen et al. [48] found the Grobner-Shirshov systems for
quantizations U, (s/,) of type A, by means of the specific PBW basis constructed by
Rosso [195] and Yamane [234].

There are many publications on the construction of a PBW basis for Hopf
algebras. The first PBW-type theorem for Drinfeld-Jimbo quantizations (see the
next chapter) appeared in the pioneering paper by Jimbo [106], which discusses
U,(sl>) in detail. Rosso [195] and Yamane [234] independently constructed the
PBW basis for Drinfeld—Jimbo algebras U,(sl,) of type A,, n > 2. Thereafter,
G. Lusztig, in his fundamental works [151-153], determined the PBW bases for
arbitrary Drinfeld-Jimbo and Lusztig quantum enveloping algebras. These bases
and their modifications have been considered in a number of subsequent papers,
e.g., Kashiwara [119], Concini et al. [58], Berger [28], Towber [224], Bautista
[21], Gavarini [84], Chari and Xi [47], Reineke [192], Leclerc [146], Bai and Hu
[19]. An original approach based on the Ringel-Hall algebras was also advanced in
[59, 60, 194].

The general statement given in Theorem 2.2 can be attributed to the author
[124]. This PBW-type theorem was found to be essential in the construction of
the Weyl groupoid by Heckenberger [91] corresponding to a Nichols algebra (see
Sect. 6.7 below) of diagonal type. This groupoid was crucial in classifying such
Nichols algebras [90]. In turn, knowledge of these Nichols algebras is important to
perform the lifting method developed by N. Andruskiewitsch and H.-J. Schneider
for classifying pointed Hopf algebras [4] .

Theorem 2.2 was generalized in two different directions by Ufer [225], and
by Grafia and Heckenberger [87] using similar methods. Instead of character
Hopf algebras, S. Ufer considered braided Hopf algebras (see Chap.6 below)
with “triangular” braidings, whereas M. Grafia and 1. Heckenberger replaced the
skew-primitive generators with irreducible Yetter—Drinfeld modules and obtained a
factorization of the Hilbert series for a wide class of graded Hopf algebras, where
the factors are parametrized by Lyndon—Shirshov words in a manner similar to how
the PBW generators are parametrized in Theorem 2.2. In [97], I. Heckenberger and
H. Yamane modified Theorem 2.2 based on the work of G. Lusztig by using the
concept of the Weyl groupoid.

Returning to the main idea of the proof of Theorem 2.2, the right and left
sides of the tensors in (2.2) were used differently, although we required detailed
information (given in Lemma 2.9) about the left sides only. This information
provides a noteworthy idea for applying the method to subalgebras R of H such
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that A(R) € R ® H. A subspace that obeys the latter property is known as a right
coideal. The author developed this idea in [133] by proving the following statement:

Theorem 2.6 Every right coideal subalgebra of a character Hopf algebra H that
contains all group-like elements of H has a PBW basis that can be extended up to a
PBW basis of H.

One reason that one-sided coideal subalgebras are important is that Hopf algebras
do not have a sufficient number of Hopf subalgebras. The straightforward idea to
consider Hopf subalgebras as “quantum subgroups” appeared to be inappropri-
ate, whereas the one-sided coideal subalgebras are more precise. The one-sided
comodule subalgebras, not the Hopf subalgebras, are found to be the Galois objects
in the Galois theory for Hopf algebra actions (Milinski [173, 174], see also a
detailed survey by Yanai [235]). In particular, the Galois correspondence theorem
for the actions on free algebra establishes a one-to-one correspondence between
right coideal subalgebras and intermediate free subalgebras (see Ferreira et al.
[73]). In a detailed survey [147], G. Letzter provides a panorama of the use of
one-sided coideal subalgebras in constructing quantum symmetric pairs to form
Harish-Chandra modules and produce quantum symmetric spaces.

The importance of this concept led to a project to classify one-sided coideal
subalgebras of Drinfeld—Jimbo quantizations. In fact, the proof of Theorem 2.6
yields sufficient additional information to try to attempt this classification for the
subalgebras containing all group-like elements.

In a series of papers by Lara Sagah6n, Garza Rivera and the author [134, 135,
139, 140], using the parallelization technique for supercomputers, this program
was developed for a multiparameter version of the Drinfeld—Jimbo and Lusztig
quantizations of types A, and B,. It was found in [135, 139] that in these cases
the number of right coideal subalgebras of the positive Borel part U ;’ (g) coincides
with the order of the Weyl group.

The latter statement was extended to arbitrary quantizations of finite type by
Heckenberger and Schneider [96]. The right coideal subalgebras in that case are
the well-known spaces U™ [w] defined by the elements w of the Weyl group,
which was used by Lusztig [153] to establish a PBW basis for U;’(g). This
establishment represents an outstanding achievement of a general theory developed
by N. Andruskiewitsch, I. Heckenberger, and H.-J. Schneider in a number of papers
[5, 92, 95, 96]. Generally, this theory is a categorical version of the fundamental
theory of Lusztig’s automorphisms. More precisely, instead of the skew-primitive
generators xi,...,x, the authors consider irreducible finite-dimensional Yetter—
Drinfeld modules Vi,...,V, over a Hopf algebra H with bijective antipode, and
in place of the Weyl group is the Weyl groupoid theorized by I. Heckenberger. The
theory includes a PBW theorem for the related Nichols algebras and their right
coideal subalgebras.

Using these results as a starting point, Heckenberger and Kolb [94] classified all
homogeneous right coideal subalgebras for a quantized enveloping algebra U, ;’ (9)
of a complex semisimple Lie algebra g with deformation parameter g not a root of
unity.
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Using the computer algebra program to compute the commutative and non-
commutative rings and modules FELIX [6, 72], they determined the number of
different right coideal subalgebras when the order |W| of the Weyl group was less
than one million, thus confirming results of [139] for the case A, and reducing the
error in the explicit computer calculations for the case B, presented in [140]. These
numbers |Co| are given in the tables below.

Type Az A3 A4 A5 A6 A7 Ag E6 F4 Gz
W] 6 | 24 120 720 5040 40,320 362,880 51,840 1152 |12
|Co| |26 |252 | 3368 |58,810 |1,290,930 |34,604,844 |1,107,490,596 |38,305,190 91,244 |68

B, | B By, Cy Bs,Cs Bg, Co B, Cy Dy Ds Dg Dy
8 | 48 384 | 38,400 46,080 645,120 | 192 1920 23,040 322,560
38| 664 | 17,848 | 672,004 |33,369,560 | 2,094,849,020 | 6512 | 238,720 | 11,633,624 | 720,453,984

It is likely that the same numbers remain true for multiparameter and “small”
versions of the quantizations. Heckenberger and Kolb [93] recently extended their
work on classification problem by considering right coideal subalgebras that do not
contain all group-like elements.
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