EBNAZ2 and Its Coactivator EBNA-LP

Bettina Kempkes and Paul D. Ling

Abstract While all herpesviruses can switch between lytic and latent life cycle,
which are both driven by specific transcription programs, a unique feature of
latent EBV infection is the expression of several distinct and well-defined viral
latent transcription programs called latency I, II, and II. Growth transforma-
tion of B-cells by EBV in vitro is based on the concerted action of Epstein-Barr
virus nuclear antigens (EBNAs) and latent membrane proteins(LMPs). EBV
growth-transformed B-cells express a viral transcriptional program, termed latency
III, which is characterized by the coexpression of EBNA2 and EBNA-LP with
EBNAI, EBNA3A, -3B, and -3C as well as LMP1, LMP2A, and LMP2B. The
focus of this review will be to discuss the current understanding of how two of
these proteins, EBNA2 and EBNA-LP, contribute to EBV-mediated B-cell growth
transformation.
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Abbreviation

CBF1 C-promoter binding factor

EBNA Epstein-Barr virus nuclear antigen
EBNA-LP Epstein-Barr virus leader protein
LMP Latent membrane protein

LCL Lymphoblastoid cell line

LCV Lymphocryptovirus

TAD Transactivation domain

PML-NB  Promyelocytic leukemia nuclear body

1 EBNA2 and EBNA-LP Expression

In vivo, the latency III transcription program is expressed during a short-time
window immediately after the infection of tonsillar B-cells of healthy individuals
as well as in tonsillar EBV-infected B-cells in patients suffering from infectious
mononucleosis (Kurth et al. 2003; Thorley-Lawson 2001). Expression of EBNA2
and EBNA-LP in EBV-related malignant diseases is confined to immunodeficient
patients, who lack efficient T-cell immunosurveillance, a state that may be caused
by immunosuppressive drug treatment after transplantation. Since the viral expres-
sion program in immunodeficient patients closely resembles the pattern seen in
immortalized B-cells in vitro, EBNA2 and EBNA-LP are likely to drive the prolif-
eration of these highly malignant cells. EBNA2 and EBNA-LP are not expressed
in latently infected memory B-cells of healthy individuals or in EBV-associated
malignancies of immunocompetent people as exemplified by patients suffer-
ing from Burkitt’s lymphoma or Hodgkin’s disease (for review see: Bornkamm
and Hammerschmidt 2001; Macsween and Crawford 2003). Both EBNA2 and
EBNA-LP are expressed from transcripts initiating from either of two promot-
ers, Wp or Cp (Alfieri et al. 1991; Bodescot et al. 1987; Woisetschlaeger et al.
1990, 1991). While the EBNA2 protein is encoded by a single exon, transcription
of EBNA-LP is more complex. For transcripts initiating from Wp, the first exon,
WO, is joined to either the W1 exon, which does not contain an initiation codon for
EBNA-LP, or via an alternate splice acceptor site to W1’ that does (Fig. 1) (Sample
et al. 1986; Speck et al. 1986). W1 is then joined with the W2 exon and additional
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Fig. 1 Exon organization of EBNA-LP and EBNA2 gene transcripts. a Transcription of the EBNA-
LP gene initiates from either the W promoter (Wp) or C promoter (Cp). The different noncoding
(C1, C2, W0) and coding exons for EBNA-LP (W1, W2, Y1, and Y2 in blue) and EBNA2 (Y3 in
red) are indicated. During early stages of infection, transcription initiates from available Wp residing
in each IR1 repeat, which results in the production of multiple EBNA-LP protein isoforms. During
later stages of infection or in established LCLs, transcription from Cp is stimulated and there is a
bias toward the OriP-proximal Wp. The level of Cp versus Wp-initiated transcription varies depend-
ing on several circumstances. The viral latent origin of replication (OriP), polyadenylation site (pA)
for EBNA-LP/EBNA2 transcripts, and location of other EBNA genes and latent membrane proteins
(LMP) are shown. b Alternative splicing generates an initiation codon for EBNA-LP. Splicing from
WO or C2 to a slightly shorter W1’ exon generates an AUG initiation codon for EBNA-LP, while
splicing to the longer W1 exon does not. Splice donor and acceptor sites are underlined, and the
resulting transcripts are shown below. The first three amino acid residues for EBNA-LP are shown
below the transcripts that can translate EBNA-LP (adapted from Dr. S. Speck, with permission)
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W1/W2 exons from each downstream repeat within major internal repeats (IR1).
A complete transcript encoding EBNA-LP also joins unique exons Y1 and Y2
and the exon coding for EBNA2 (Bodescot et al. 1984; Sample et al. 1986; Speck
et al. 1986). The final transcripts are bicistronic, encoding both EBNA-LP and
EBNAZ2, or monocistronic for EBNA2 and containing a long 5’ untranslated leader
sequence. Following initial infection of primary B-cells, transcription initiates first
from Wp, but generally switches to Cp during later stages of infection or in estab-
lished lymphoblastoid cell lines (LCLs), correlating with the detectable expression
of EBNA2, which is also known to positively regulate Cp (see section on EBNA2
genetic and biochemical analysis). For transcripts initiating from Cp, the first two
exons Cl and C2 can join either with W1 or W1’ to produce mRNAs encoding
EBNA-LP or EBNA2 only, like those expressed from Wp (Rogers et al. 1990).
EBNA-LP and EBNAZ2 are the first two latent proteins detectable following infec-
tion of primary B-cells (Alfieri et al. 1991; Allday et al. 1989).

The number of IR1 repeats determines the size of EBNA-LP, although during
early stages of infection, multiple isoforms of EBNA-LP are detectable (Allan and
Rowe 1989; Dillner et al. 1986; Finke et al. 1987). This phenomenon has not yet
been explained, but one hypothesis is that because each IR1 repeat contains a Wp,
there may be multiple sites for transcription initiation from different Wps. On the
other hand, alternative splicing may occur across the IR1 repeats, generating tran-
scripts encoding EBNA-LP proteins with varying repeat sequences. A methodi-
cal study of the number of IR1 repeats needed for optimal EBV-mediated B-cell
immortalization has shown that at least two repeats are needed, but that 5 or more
are associated with viruses that have optimal transforming activities (Tierney et al.
2011). This effect is apparently due to greater transcriptional activity from Wp
rather than the size of EBNA-LP isoforms that are made. Sequencing of nonhu-
man primate lymphocryptoviruses (LCVs) confirms that these viruses encode the
predicted EBNA2 and EBNA-LP proteins, and at least one study has shown that
the complex transcriptional unit encoding EBNA-LP is well conserved (Peng et al.
2000a).

2 The EBNAZ2 Protein

EBNA?2 forms granules (also called speckles) and localizes to the nucleoplasm,
the chromatin fraction, and the nuclear matrix but excludes the nucleoli (Petti et al.
1990). Most studies on EBNA?2 used the laboratory EBV strain B95-8 which
encodes a 487 amino acid EBNA?2 protein! (Baer et al. 1984; Skare et al. 1982)
(Fig. 2). EBNAZ2, isolated from total cellular extracts, has an apparent molecular
weight of approximately 84 kDa as judged by SDS-PAGE. Phosphorylation of

Un this review, we will refer to the primary structure of EBNA2 using the Swiss-Prot data entry
of EBV laboratory strain 95-8:P12978.
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Fig. 2 Schematic illustration showing the primary structure of EBNA2. Characteristic features
of EBNA2 are a poly-proline (polyP) and a poly-arginine-glycine (RG) stretch and conserved
regions (CR1-9), which have been defined by comparison of EBV strain types 1 and 2, baboon,
and rhesus macaque lymphocryptoviruses. Regions of EBNA2, which mediate self-association,
are labeled Diml and Dim2. CR5 and CR6 lie within the region, which mediates promoter
targeting (adapter) by association with CBF1. Two transactivation domains (TAD) map to the
amino (N-TAD) and carboxyl termini C-TAD, while the two nuclear localization signals (NLS)
reside at the carboxyl terminus. Amino acid numbering refers to the B95-8 primary structure of
EBNA2

EBNAZ2 may partially account for the discrepancy between the expected molecular
weight and the electrophoretic mobility of the protein (Grasser et al. 1991).
Notably, EBNA2 proteins from distinct nuclear compartments exhibit differential
phosphorylation patterns, and these phosphorylation patterns vary during the cell
cycle (Petti et al. 1990; Yue et al. 2004). A further modification of EBNA2 is the
arginine methylation of the RG repeat (Barth et al. 2003), which is considered to
be a modulator of EBNA?2 activity. The RG repeat binds to poly G and histone H1
in vitro (Tong et al. 1994) and also serves as a substrate for arginine methyltrans-
ferase 5 (Liu et al. 2013). A poly-proline stretch (poly-P) separates two N-terminal
dimerization domains, Dim1 (1-58) and Dim2 (96-210), which both mediate
homotypic adhesion. In addition, Diml serves as an N-terminal transactivation
domain (N-TAD) that may interact with EBNA-LP (Gordadze et al. 2004; Harada
et al. 2001; Peng et al. 2004b). A second transactivation domain (C-TAD) resides
in the C-terminus of EBNA2 (448-479) (Cohen and Kieff 1991). The core frag-
ment of the transactivation domain (AA: 453-466) can be replaced by an acidic
fragment of the herpesviral VP16 transactivation domain indicating that EBNA2
and VP16 share functional similarities (Cohen 1992; Cohen and Kieff 1991). In
fact, both transactivation domains bind to TFIIB and TAF40, components of the
transcription initiation complex, and TFIIH, a factor involved in promoter clear-
ance. In addition, both bind to RPA70, the replication protein A (Tong et al. 1995a,
b). In contrast to VP16, EBNA2 does not bind to TBP (Tong et al. 1995c). Both
transactivation domains also recruit histone acetyltransferase activity by interact-
ing with CBP, p300, and PCAF (Wang et al. 2000). The structure of C-TAD in
complex with CBP/p300 or the TFB1/p62 subunit of the TFIIH complex has
recently been solved by nuclear magnetic resonance (NMR) spectroscopy. C-TAD
is an intrinsically unstructured region which folds into a 9-residue alpha helix
upon complexation (Chabot et al. 2014). The structure of the entire EBNA2 pro-
tein has not been solved. The high proline content, the poly-P regions, and the RG
repeats most likely prevent globular folding of the entire protein in the absence of
cognate binding partners.
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Mainly based on the sequence diversity of the EBNA2 alleles, EBV can be cat-
egorized into two individual strains called type 1 and 2 (or type A and B respec-
tively). Type 1 and 2 EBV strains differ in their capacity to immortalize primary
B-cells (Adldinger et al. 1985; Dambaugh et al. 1984) a feature that is predom-
inantly determined by sequence variation in the C-terminus of EBNA2 (Tzellos
et al. 2014; Tzellos and Farrell 2012). Lymphocryptoviruses have also been iso-
lated from baboon and macaque. While the EBNA2 orthologs of baboon and
macaque LCV show significant sequence similarity with EBNA2 protein encoded
by the B95-8 strain (Cho et al. 1999; Peng et al. 2000a), sequence similarity with
the positional EBNA2 homologue of marmoset LCV is below 20 % (reviewed in
Wang 2013).

3 The EBNA-LP Protein

The EBNA-LP protein is composed of several 22 and 44 amino acid segments
encoded by the W1 and W2 exons, which are joined with unique 11 and 34 amino
acid segments at the carboxyl-terminal end that are encoded by the Y1 and Y2 exons.
Once expressed, EBNA-LP localizes predominantly in the nucleus, which is facili-
tated by a bipartite nuclear localization signal (Peng et al. 2000b). Nuclear staining
is diffuse early on after infection but then localizes in punctate structures known as
promyelocytic leukemia nuclear bodies (PML NBs) (Bandobashi et al. 2001; Dillner
et al. 1986; Ling et al. 2005; Nitsche et al. 1997; Szekely et al. 1996; Wang et al.
1987b). Transient expression of EBNA-LP from eukaryotic expression vectors tends
to mimic the diffuse nuclear localization observed at early points following virus
infection. Consistent with its association with PML NBs, biochemical fractionation
studies on LCLs indicate that EBNA-LP is associated with the nuclear matrix (Petti
et al. 1990; Yokoyama et al. 2001a). PML NBs are organized by the PML protein,
which contains SUMO interaction motifs (SIMS) and is also posttranslationally
modified by sumoylation. Many proteins associated with PML NBs also are SUMO-
modified and have SIM domains, which presumably help mediate PML NB assem-
bly or localization. Curiously, EBNA-LP is devoid of any obvious SIM motifs or
lysine residues that are needed for SUMO conjugation, but as discussed later, locali-
zation of EBNA-LP to PML NBs may be mediated by a cellular factor. Other studies
have also reported that a proportion of EBNA-LP can localize in the cytoplasm and
this can be influenced by the number of W repeats (Garibal et al. 2007). Consistent
with these studies, Ling et al. (2009) used heterokaryon assays to evaluate whether
EBNA-LP shuttles between cytoplasmic and nuclear compartments. Only smaller
isoforms with 2W repeats were found to shuttle in these assays, while larger iso-
forms did not, leading to speculations that the observed shuttling of the smaller
isoforms was due to diffusion rather than through an active process. In contrast,
EBNA-LP proteins with only a single W repeat (W1 and W2 exons) localized exclu-
sively in the cytoplasm. Whether shuttling or cytoplasmic localization contributes
significantly to EBNA-LP-mediated coactivation remains unknown.
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EBNA-LP is a phosphoprotein (Petti et al. 1990). Phosphorylation appears to
occur predominantly on serine residues, and while this can be detected through-
out the cell cycle, it is hyperphosphorylated during G2/M and hypophosphoryl-
ated during G1/S (Kitay and Rowe 1996). There are three serine residues that are
well conserved among human and nonhuman primate lymphocryptovirus (LCV)
EBNA-LP homologs, and one of them is within a cyclin-dependent p34cdc?2 site
(Peng et al. 2000a, b). This serine is located within the 44 amino acid segment
encoded by W2 and is critical for EBNA-LP-mediated coactivation (McCann et al.
2001; Peng et al. 2000b; Yokoyama et al. 2001b).

4 EBNA2-Associated Cellular Proteins,
Which Mediate Chromatin Targeting

Like all transcription factors, EBNA?2 carries a transactivation domain and a region
that mediates DNA contact. Since EBNA2 cannot bind to DNA directly, it uses
adaptor proteins to bind to cis-regulatory regions of its target genes and indirectly
confers sequence-specific DNA contact.

So far, the best studied cellular DNA adaptor protein of EBNA2 is the DNA
binding protein CBF1, which was first identified as a downstream effector mole-
cule of EBNA2 in the context of viral promoter activation. CBF1 is a ubiquitously
expressed protein and belongs to the group of CSL proteins (CBF1 for C-promoter
binding protein, Su(H) in Drosophila melanogaster, Lagl in Caenorhabditis ele-
gans) also known as recombination binding protein-J (RBPJ, RBP, or RBPJk). The
minimal domain of EBNA2 that mediates CBF1 binding has been mapped to the
EBNA2 fragment aa 318-327 (Ling and Hayward 1995). CBF1 is a sequence-spe-
cific DNA binding protein, which in the absence of EBNA2 recruits a corepressor
complex to the promoter or enhancer of target genes. Constituents of this corepres-
sor complex are SMRT/N-CoR, CIR, SKIP, Sin3A, SAP30, and HDACI, which
either directly or indirectly interfere with histone acetylation of target gene chro-
matin, thereby repressing transcription (reviewed in Lai 2002). Binding of EBNA2
relieves this repression by competition with corepressor binding as well as the
recruitment of coactivators by virtue of its intrinsic transactivation domains (Hsieh
and Hayward 1995).

Since CBF1 is also an important downstream element of the cellular Notch
signal transduction pathway, the discovery of CBF1 in the context of the
viral protein EBNA2 has provoked an intense search for potential parallels of
Notch and EBNA?2 signaling (Hayward et al. 2006). The crystal structure of the
Notch/MAM/CBF1/DNA complex has been solved (Kovall 2007; Nam et al.
2006; Wilson and Kovall 2006). Although the structure of the EB viral proteins
associated with CBF1 has not been published yet, there is a compelling biochemi-
cal and genetic evidence that EBNA2 and Notch contact the same hydrophobic
pocket within the CSL protein, but in addition appear to bind to distinct amino
acids in the vicinity of this hydrophobic pocket (Fuchs et al. 2001; Kovall and
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Hendrickson 2004). Thus, EBNA2 or Notch binding to CBF-1 is mutually exclu-
sive (Hsieh and Hayward 1995).

The second but less well characterized EBNA2 DNA adaptor is the PU.1 pro-
tein. Several laboratories have shown that PU.1 promoter binding is critical for
activation of the viral LMP1 promoter (Johannsen et al. 1995; Laux et al. 1994a,
b). However, complex formation of EBNA2 with endogenous PU.1 has only been
reported once (Yue et al. 2004). The potential contact points of the interaction
partners have not been mapped, and the interaction has been demonstrated in vitro
using purified proteins.

5 The Genetic and Biochemical Analysis of Viral
EBNA2-Responsive Promoter Elements Has Provided
Major Insights into the Molecular Mechanisms
of EBNA2 Action

Most of our knowledge on EBNA2 functions is based on the detailed genetic
analysis of EBNA2-responsive cis-active elements within viral promoters, and
the subsequent use of these insights was used to characterize the proteins that are
involved biochemically.

In EBV-infected B-cells, the viral C promoter (Cp) as well as the promoters
of the viral LMP1 (LMPIlp), LMP2A (LMP2Ap), and LMP2B (LMP2Bp) genes
is strongly activated by EBNA2 (Abbot et al. 1990; Fahraeus et al. 1990; Ghosh
and Kieff 1990; Jin and Speck 1992; Sung et al. 1991; Wang et al. 1990). By dele-
tion analysis of promoter reporter constructs or gel retardation assays, EBNA2-
responsive elements (EBNA2-RE) have been identified. All these promoters carry
at least one CBF1 binding site (Allday et al. 1993; Henkel et al. 1994; Laux et al.
1994b; Ling et al. 1994; Meitinger et al. 1994; Waltzer et al. 1994; Zimber-Strobl
etal. 1991, 1993, 1994). The high-affinity CBF1 binding sites within the EBNA2-
REs of Cp and LMP2Ap were used to identify CBF1 by four independent groups
in 1994 (Grossman et al. 1994; Henkel et al. 1994; Waltzer et al. 1994; Zimber-
Strobl et al. 1994).

All these CBF1 binding motifs are flanked by additional distinct transcription
factor binding sites, which contribute to promoter activation but might not bind to
EBNAZ2 directly.

Within the EBNA2-RE of Cp, a single CBF1 binding site is flanked by a
binding site for the cyclic AMP-responsive AUF1/hnRNP D protein, also called
CBF2. The binding sites for both factors are evolutionary conserved as shown by
sequence comparison of EBV such as lymphocryptoviruses found in baboon and
rhesus macaques (Fuentes-Panana and Ling 1998; Fuentes-Panana et al. 1999,
2000). Regions distal to the EBNA2-RE, both upstream and downstream, which
bind additional cellular factors such as SP1, Egr-1, NF-Y, or the viral EBNA1/oriP
complex modulate the basal activity of the C promoter in an EBNA2-independent
fashion (Borestrom et al. 2003; Puglielli et al. 1996).
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Analysis of LMP1p has revealed a complex pattern of transcription factor bind-
ing sites. PU.1/Spi-1 and CBF1 binding sites are both critical for EBNA2 trans-
activation (Johannsen et al. 1995; Laux et al. 1994a). In addition, ATF-2/c-Jun
heterodimers enhance EBNA?2 effects (Sjoblom et al. 1998). Further transcrip-
tion factor binding sites such as an interferon-stimulated response element, a Spl
binding site, and a yet undefined POU-Box protein contribute to LMP1p activity
(Sjoblom et al. 1995a, b).

6 EBNAZ2 Binds to Cellular Promoter and Enhancer
Regions and Can Promote the Formation of Chromatin
Loops Within the Cellular Genome

In order to study the impact of EBNA2 on cellular target gene expression,
genome-wide array-based screens or candidate approaches using either EBV-
infected B-cells or EBNA2-expressing B-cell lines (Burgstahler et al. 1995;
Calender et al. 1990; Johansen et al. 2003; Knutson 1990; Lucchesi et al. 2008;
Maier et al. 2005; 2006; Mohan et al. 2006; Pegman et al. 2006; Sakai et al. 1998;
Wang et al. 1987a; Zhao et al. 2006). These studies identified CD23, CD21, CCR7
(BLR2/EBI1), Hes-1, BATF, bfl-1, FcRHS5, ABHD6, CCL3, CCL4, CDK5RI,
DNASEIL3, MEN1, RAPGEF2, RHOH, SAMSNI1, SLAMFI, and CXCR7 as
EBNAZ2 target genes in EBV-negative B-cells. In EBV-infected B-cells, the proto-
oncogene MYC, the p55a subunit of PIK3R1, CD21, CD23, AML-2, and FcRHS5
were defined as a direct target gene, since their RNA can be induced by EBNA2
in the absence of de novo protein synthesis. In contrast, induction of cyclin D,
cdk4 or tumor necrosis factor alpha (TNF-a), granulocyte colony-stimulating
factor (G-CSF), and lymphotoxin (LT) requires additional cellular or viral func-
tions (Kaiser et al. 1999; Mohan et al. 2006; Spender et al. 2001, 2002). Based
on shRNA experiments, a small panel of selected EBNA2 target genes (CXCR7,
Runx3 and p55a) has been identified that promote viability and proliferation of
EBV-transformed B-cells (Lucchesi et al. 2008; Spender et al. 2005, 2006). For
the majority of EBNA2 target genes, functional assays have not been performed.
High-level expression of the EBNA2 target gene MYC in EBV-infected B-cells
depleted for functional EBNA2 can promote cellular proliferation but leads to a
switch of the viral and cellular transcription program from latency III to latency I
(Pajic et al. 2000; Polack et al. 1996). Thus, it remains to be determined which of
the EBNA?2 target genes reflect the activated blast-like phenotype (latency III) but
may not contribute to the success of immortalization process in vitro or the estab-
lishment of latency in vivo.

Since transcription factor binding sites in genomic regions can be mapped by
chromatin immunoprecipitation combined with next-generation sequencing tech-
niques, CBF1, EBNA2, and EBNA-LP binding to the cellular chromatin have
been studied in B-cells (McClellan et al. 2012, 2013; Portal et al. 2013; Zhao et al.
2011). These studies mapped approximately 10 000 CBF1 binding site (Zhao et al.
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2011) and 5000-20,000 EBNA2 binding sites (McClellan et al. 2013; Portal et al.
2013; Zhao et al. 2011). Obviously, the cellular background and alternative bioin-
formatics peak calling strategies can influence the results to a certain extent. 72 %
of EBNA2 and CBF1 binding sites overlapped with each other confirming that
CBF1 is the major DNA adaptor for EBNA2 (Zhao et al. 2011). All these stud-
ies benefitted from the comprehensive data sets provided by the ENCyclopedia
Of DNA Elements (ENCODE) project on functional DNA elements obtained
by the analysis of EBV-immortalized B-cells or primary B-cells. The compara-
tive analysis of CBF1 and EBNA2 binding sites with regions annotated by the
ENCODE project revealed that the majority of EBNA2/CBF1 binding sites were
also enriched for B-cell transcription factors including ETS, RUNX, EBF, PU.1,
and NkFB. Frequently, these cooccupied regions carried a characteristic enhancer
chromatin signature that was also established in primary B-cells prior to infec-
tion indicating that EBNA?2 is recruited to B-cell-specific open chromatin regions
(Zhao et al. 2011).

A physical and functional link between an enhancer bound by EBNA2 to the
promoter of the MYC target gene was recently established by chromatin confor-
mation capture technologies. A chromatin loop links an EBNA2-bound enhancer
more than 400 kb upstream of the MYC transcription start site in the presence of
EBNA2 (Zhao et al. 2011). Novel technologies that integrate the analysis of the
nuclear architecture with biochemical binding studies will be required for the cor-
rect assignment of cellular transcription initiation sites of target genes to remote
EBNAZ2 binding enhancers.

Most recently binding sites of the coactivator of EBNA2, the EBNA-LP pro-
tein, in the chromatin of EBV-infected B-cells have been identified and mapped
in a genome-wide ChIP-seq approach (Portal et al. 2013). These studies identi-
fied genomic binding sites shared by both viral factors, EBNA2 and EBNA-LP,
but also identified sites bound by either factor, EBNA2 or EBNA-LP. According
to ENCODE data sets, these binding sites colocalize to clusters of B-cell-specific
transcription factor binding sites and exhibit chromatin signatures which char-
acterize promoter and enhancer regions in the cellular genome of EBV-infected
B-cells. In contrast to EBNA2, EBNA-LP binding sites preferentially occupied
promoter rather than enhancer regions. Since EBNA-LP is not known to bind
to DNA, the molecular mechanism by which EBNA-LP is targeted to DNA still
needs to be explored.

7 Target Genes Which Are Down-Regulated
in the Presence of EBNA2

EBNAZ2 not only induces but also actively down-regulates expression of target
genes. Notably, EBNA?2 interferes with the B-cell and germinal center phenotype
by down-regulating IgM- or BCR-associated signal transduction moieties such
as CD79A and CD79B, BCL6, TCL1A, and AID (Boccellato et al. 2007; Maier
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et al. 2005, 2006; Tobollik et al. 2006). Down regulation of IgM by EBNA2
appears to be at least partially independent of CBF1 signaling (Maier et al. 2005).
In the context of Burkitt’s lymphoma cell lines, which carry a chromosomal
translocation that juxtaposes the IgM and the MYC gene locus on chromosome
8, repression of IgM coincides with MYC repression and a potent growth-inhib-
itory activity of EBNA2 (Jochner et al. 1996; Kempkes et al. 1996). This func-
tion of EBNA2 is mimicked by activated Notch (Strobl et al. 2000), which is
somewhat surprising given that this EBNA2 function appeared to be partially
CBF1-dependent.

Apparently, EBNA2- and MYC-driven proliferation programs are incompat-
ible with each other (Pajic et al. 2001). In fact, EBNA2 downregulation is posi-
tively selected in Burkitt’s lymphoma cells in vivo for at least two reasons: Firstly,
it down-regulates a translocated MYC gene (Jochner et al. 1996), and secondly,
it drives expression of LMP1 which promotes antigen presentation and T-helper-
specific chemokines thus rendering the cells strongly immunogenic (Kelly et al.
2002).

8 EBNA-LP, the Coactivator of EBNA2

The most widely confirmed EBNA-LP function has been its ability to cooperate
with EBNA2 and will be the focus in this review. However, EBNA-LP has been
reported to mediate apoptosis and other cellular pathways through associations
with a variety of cellular proteins. We refer the reader to another previous com-
prehensive review for details about these potential functions (Ling, P.D. EBNA-LP
function. Epstein-Barr virus Latency 2010).

One of the first clues that EBNA-LP might have a role in gene regulation came
from a study showing that expression of EBNA2 together with EBNA-LP in pri-
mary B-cells induced the expression of the cellular cyclin D2 gene (Sinclair et al.
1994). Subsequent studies by other investigators confirmed that EBNA-LP was a
strong coactivator of EBNA2 (Harada and Kieff 1997; Nitsche et al. 1997; Peng
et al. 2000a, b; Yokoyama et al. 2001a). These studies utilized two types of assays:
(1) transient reporter gene assays with EBNA2-responsive reporter plasmids and
(2) induction of endogenous EBNA2-responsive genes in Burkitt’s lymphoma cell
lines. Further validation of EBNA-LP coactivator function came from experiments
showing that EBNA-LP from the rhesus LCV also coactivated EBNA2, demon-
strating that this function was evolutionarily conserved (Peng et al. 2000a).

A major question is whether or not EBNA-LP is a global transcriptional coac-
tivator. While independent studies from several groups have confirmed that
EBNA-LP coactivates EBNA2-responsive genes LMP-1, LMP2B, and the Cp,
other known EBNA2 target genes such as LMP2A, CD21, CD23, and Hes-1
appear not to be affected by EBNA-LP (Peng et al. 2005). There have been
some reports that EBNA-LP can coactivate GAL4-EBNA?2 fusion proteins or
GAL4 acidic activation domain fusions in transient mammalian 2-hybrid systems
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Fig. 3 Sequence comparison of LCV EBNA-LP proteins. Conserved or similar amino acid res-
idues are indicated by asterisks or dotted lines, respectively. The corresponding exons encod-
ing EBNA-LP sequences and regions of conservation between the EBV and nonhuman primate
LCVs are shown. Below, the black and gray bars indicate residues conferring nuclear localiza-
tion (NLS), EBNA2 coactivation, and coactivation dispensable domains. For simplicity, amino
acid numbering is for an EBNA-LP protein with only a single W1/W2 repeat. However, as indi-
cated, the residues encoded by the W1/W2 repeats are present in multiple copies in wild-type
EBNA-LP proteins

(Han et al. 2002; Harada and Kieff 1997), but subsequent studies have found
that EBNA-LP acts as a repressor in some of these assays (Peng et al. 2004a).
EBNA-LP was also unable to coactivate GAL4 fusions with other transcrip-
tional activating proteins (Inman and Farrell 1995). A single report suggested that
EBNA2 stimulation of endogenous Hes-1 in EBV-negative Burkitt lymphoma
was enhanced twofold by EBNA-LP (Portal et al. 2011). Unlike a previous study,
however, where the effects of EBNA2 and EBNA-LP were determined from mul-
tiple experiments in the same cells (Peng et al. 2005), the latter study was done by
comparing cell lines constitutively expressing EBNA2 and EBNA-LP to cell lines
expressing only one of these proteins and did not take into account clonal variation
in these lines (Portal et al. 2011). Collectively, the available evidence suggests that
EBNA-LP only coactivates EBNA2 on a subset of EBNA2-responsive genes.

The mechanism(s) by which EBNA-LP coactivates EBNA?2 have not been fully
elucidated. However, a methodical approach to understanding this process was to
identify important functional domains within EBNA-LP that mediated this func-
tion. One helpful tool was the availability of known EBNA-LP protein sequences
from human and nonhuman primate LCVs (McCann et al. 2001; Peng et al. 2000a,
b). Comparison of these proteins revealed the presence of 5 conserved regions
(CR1-5) (Fig. 3; McCann et al. 2001; Peng et al. 2000b). Deletion or alanine-
scanning mutations introduced into these conserved regions showed that CR3 and
a single serine residue within the W2 repeat were important for EBNA2 coactiva-
tion (McCann et al. 2001; Peng et al. 2000b). The mutational analyses also identi-
fied a nuclear localization signal (CR1 and CR2) (Peng et al. 2000b). The Y1- and
Y2-encoded segments of EBNA-LP are not required for coactivation function,
although it has been hypothesized that they might impose both negative and posi-
tive regulatory effects under certain conditions (Peng et al. 2007).
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Further insight into the pathways utilized by EBNA-LP to mediate EBNA2
coactivation has come from the identification of associated cellular cofactors. At
the current time, only a single cofactor has been identified that interacts with an
EBNA-LP domain required for transcriptional coactivation. Ling et al. (2005) first
identified a strong association between EBNA-LP CR3 and the cellular protein
Spl100A, which is predominantly localized in PML NBs. EBNA-LP can displace
Spl100A from PML NBs, and this correlates with its ability to coactivate EBNA2,
while the noncoactivating EBNA-LP with a mutation in CR3 neither interacts with
Spl100A nor displaces it from PML NBs. Furthermore, expression of an amino-
terminal deletion mutant of Sp100A, which prevents it from entering PML NBs
(i.e., it localizes as if EBNA-LPs were coexpressed), was sufficient to coactivate
EBNAZ? in the absence of EBNA-LP. Additionally, Spl100A is known to associate
with the transcriptional repressor heterochromatin protein 1 (HP1). Deletion of the
HP1 interaction domain ablates Sp100A coactivation function. The data are con-
sistent with a model in which EBNA-LP-Sp100A interactions facilitate coactiva-
tion by a mechanism involving chromatin modification.

A second potential mechanism by which EBNA-LP might work to cooper-
ate with EBNA2 is through direct interactions with EBNA2, which have been
detected in vitro using small fragments of EBNA2 and EBNA-LP (Peng et al.
2004b). However, several investigators have been unable to detect EBNA2-
EBNA-LP interactions in mammalian or yeast two-hybrid systems or using tra-
ditional coimmunoprecipitation assays (Kashuba et al. 2003; Peng et al. 2004a,
2005). In addition, it is unclear what EBNA-LP-associated cofactors or intrinsic
property of EBNA-LP might be providing coactivation function in this context.

A third mechanism for EBNA-LP coactivation might involve displacement
of NCoR-repressive complexes from enhancers (Portal et al. 2011). In addition,
Chip-seq identified several thousand sites in which EBNA-LP was associated
although interestingly, less than a third of these were also associated with EBNA2,
consistent with the idea that EBNA-LP might not be a global EBNA2 coactivator
(Portal et al. 2013). A limitation to these studies, as discussed previously, is that
the DNA and transcription factor associations measured were done in an cellular
environment where it is unclear whether EBNA-LP is functioning as an active
coactivator or if this function is being masked because of pleotropic effects on
transcription from other viral (e.g., LMP1) or cellular factors.

9 EBNA3A, B and C Proteins Can Counteract
or Enhance EBNA2 Activity

The EBNA3 proteins, EBNA3A, 3B, and 3C, are all coexpressed with EBNA2
and EBNA-LP in latency III. The EBNA3 proteins score as transcriptional repres-
sors when tethered to DNA by heterologous DNA adaptors like the GAL4 DNA
binding domain (Bain et al. 1996; Cludts and Farrell 1998). All EBNA3 proteins
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bind to CBF1 and can interfere with EBNA2-mediated transactivation of the
CBFl1-dependent Cp, LMP2A, and LMP1 promoters in transient reporter assays
(Le Roux et al. 1994). Further, it was reported that EBNA3C can cooperate with
EBNA2 to activate PU.l-dependent transcription from LMPlp (Marshall and
Sample 1995; Zhao and Sample 2000). However, expression of EBNA3C in EBV-
positive Raji cells does not impair Cp-driven EBNA2 expression but significantly
induces endogenous LMP1 levels indicating that the viral genome embedded in
the context of the cellular chromatin reacts differently (Allday and Farrell 1994;
Jimenez-Ramirez et al. 2006). The retrospect analysis of EBNA2 and EBNA3 tar-
get genes published by different laboratories showed a significant overlap indicat-
ing that EBNA2 and EBNA3 might indeed regulate similar target gene populations
(Hertle et al. 2009; McClellan et al. 2013). In addition, EBNA2, EBNA3, and
CBF1 binding sites in the cellular genome show a significant overlap (McClellan
et al. 2013), and EBNA2 and EBNA3A can directly compete for CBF1 binding as
shown for the CXCL9 and CXCL10 gene locus (Harth-Hertle et al. 2013).

An EBV-EBV interactome based on binary interactions identified by yeast
two-hybrid high-throughput screening has been published (Calderwood et al.
2007). The study confirmed binding of EBNA2 to EBNA-LP and described
EBNAZ2 binding of EBNA3A, BZLFI, the inducer of the lytic viral life cycle, and
BDLEF2, a tegument protein. To which extent the biological activity of EBNA2 is
modulated by the viral context remains to be analyzed further using specific viral
mutants during all stages of the growth transformation process and the lytic viral
life cycle.

10 EBNA2-Associated Cellular Proteins, Which Highlight
Additional Functions of EBNA2

Chromatin immunoprecipitation assays using EBNA2 and histones H3- and
H4-specific antibodies proved that the LMP1p- and Cp-associated chromatin is
differentially acetylated in the presence of EBNA2 (Alazard et al. 2003). A fur-
ther histone acetylation-independent mechanism of Cp activation by EBNA?2 is
dependent on cdk9 activity, which phosphorylates Ser-5 of the C-terminal tail of
polymerase II (Bark-Jones et al. 2006). In addition, EBNA2 forms a complex with
a novel cellular coactivator, p100, which can bind to the general transcription fac-
tor TFIIE and thereby bridges STAT6/RNA polymerase II interactions (Tong et al.
1995b; Yang et al. 2002) (Table 1).

Apart from recruiting HAT activity and general transcription factors, phos-
phorylated EBNA2 also interacts with hSNF5/Ini, a component of the hSWI/SNF
chromatin remodeling complex and potential tumor suppressor gene. EBNA2
recruits this protein to target promoters. This interaction is conferred by less con-
served regions of EBNA2 and depends on the integrity of IPP285 and DQQ111
as well as phosphorylation of SS469 adjacent to the transactivation domain of
EBNA2 (Kwiatkowski et al. 2004; Wu et al. 1996, 2000). The EBNA?2 interaction
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Table 1 EBNAZ2-associated cellular proteins associated cellular proteins

Protein References

CBF1/RBP-J/ Grossman et al. (1994), Henkel et al. (1994), Waltzer et al. (1994),
RBP-Jk Zimber-Strobl et al. (1994)
PU.1/Spi-1 Yue et al. (2004)

TFIIB Tong et al. (1995c¢)

TAF40 Tong et al. (1995c¢)
CBP/p300 Wang et al. (2000)
PCAF/GCNS5 Wang et al. (2000)

P100 Tong et al. (1995b)

Nur77 Lee et al. (2002)

SKIP Zhou et al. (2000)

DP103 Grundhoff et al. (1999)
SMN Barth et al. (2003)
hSNF5/Inil Wau et al. (1996)

BS69 Ansieau and Leutz (2002)
p34cdc2 Yue et al. (2004)
ATF-2/c-Jun Sjoblom et al. (1998)

FOE Kwiatkowski et al. (2004)
Nucleophosmin Liu et al. (2012)

with hSNF5/Inil could potentially serve a second function. It might interfere with
the growth-suppressing activities of hSNF5/Inil in heterotrimeric complexes with
GADD34 and PP-1 (Wu et al. 2002). A potential chromatin association of EBNA2
has been further suggested by the interaction of FOE (friend of EBNA), the human
homologue of the Drosophila homologue of wapl, with EBNA2 (Kwiatkowski
et al. 2004).

The carboxyl terminus, CR7 and CR8, can be further targeted by the Mynd
domain protein and corepressor BS69, a cellular protein which was first described
as one that binds to the adenovirus E1A protein (Hateboer et al. 1995). A potential
function of EBNA2 in RNA processing has been suggested by the identification of
the DEAD box protein DP103 (Gemin3/DDX20) which binds to (AA:121-213)
(Grundhoff et al. 1999). The RG repeat region of EBNA?2 is methylated at arginine
residues and recruits the survival motor neuron (SMN) (Barth et al. 2003). SMN, a
protein involved in RNA splicing, directly interacts with DP103 and can enhance
LMPI promoter activation by EBNA2 (Voss et al. 2001). The Ski-interacting pro-
tein (SKIP) is a multifunctional protein, which is a component of the spliceosome,
a coactivator or corepressor of transcription and a pRB and E7 binding protein
(reviewed in (Folk et al. 2004). SKIP binds to CBF1 and either facilitates bind-
ing of the SMRT, CIR, Sin3A, and HDAC2 corepressor complex or potentiates
binding of EBNA2 to CBF1 by interacting with CR5 (Zhou et al. 2000). The chap-
erone nucleophosmin directly binds to EBNA2 and supports complex formation
with CBF1 and promoter recruitment (Liu et al. 2012). Recently, a novel anti-
apoptotic function of EBNA2, based on the finding that EBNA?2 binds to Nur77,
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has been described (TR3, NGFI-B) (Lee et al. 2002). Nur77 is an orphan mem-
ber of the nuclear hormone receptor superfamily and a bifunctional molecule.
Nur77, a nuclear protein, either acts as a transcription factor or can be translocated
from the nucleus into the cytoplasm and trigger cytochrome c release in response
to apoptotic stimuli (Li et al. 2000; Philips et al. 1997). EBNA2 can protect cells
from apoptotic cell death by retaining Nur77 in the nucleus upon apoptotic stimuli
(Lee et al. 2002). Whether EBNA2 also modulates functions of Nur77 related to
its role as a transcription factor has not been analyzed to date.

11 Final Conclusions and Open Questions

In summary, EBNA2 acts as a key determinant of the activated phenotype of
EBV-infected B-cells. The systematic and in-depth analysis of EBNA2 viral tar-
get genes has provided important clues to the molecular mechanism by which
EBNAZ2 exerts its function as a transcriptional activator and has shown that CBF1
is the central effector of EBNA2 function. Within the cellular genome, EBNA2
preferentially binds to enhancers of cellular target genes which also preferentially
recruit multiple B-cell-specific transcription factors. Since promoter and enhancers
can reside in distant parts of a chromosome, the assignment of functional pairs of
promoters and enhancers that are activated by EBNA2 and EBNA-LP will require
intensive further investigations that combine studies on transcription factor bind-
ing, chromatin state, and nuclear architecture. Activation of MYC by EBNA?2 is the
major rate-limiting step for initiation and maintenance of the proliferation of EB V-
infected B-cell cultures. The potential contribution of further cellular EBNA2
target genes to the growth transformation process in vitro will need to be rigor-
ously tested in large-scale RNAi-based screens. It is also to be expected that sev-
eral EBNA?2 target genes are critical for the establishment of viral latency in vivo.
With regard to EBNA-LP, it appears that one of its principal functions is to coacti-
vate a subset of EBNA2-regulated viral latency genes. Thus, EBNA-LP might be
required to activate EBNA?2 target genes, which exhibit a specific chromatin con-
figuration in naive B-cells. The exact mechanism remains to be elucidated, but the
observed interactions with Sp100 and cellular repressors or repressor complexes
suggest that it facilitates EBNA2 coactivation through the modulation of repres-
sors or facultative heterochromatin. Through its interaction with Sp100, EBNA-LP
shares features with other herpesvirus immediate early proteins that modulate
PML NBs or PML NB-associated proteins. One hypothesis is that PML NBs exert
a repressive effect on viral gene expression, referred to as an intrinsic antiviral
defense mechanism, which is counteracted by viral immediate early or tegument
proteins (Everett 2013; Everett and Chelbi-Alix 2007). An intriguing notion is
that EBNA-LP provides similar function(s) to help jump start viral latency gene
expression immediately following infection. Due to the complex nature of the IR1
repeats for both Wp and EBNA-LP functions, it has been technically challeng-
ing to generate EBNA-LP null EBV recombinants or recombinants that express
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EBNA-LP coactivation mutants to interrogate its role in EBV-induced B-cell
immortalization. Such reagents will be needed to confirm and extend the previ-
ous observations concerning cellular cofactor interactions under the physiologi-
cal conditions of EBV infection in primary B-cells. Moreover, the emergence of
CRISPR/Cas9 technology should enable investigators to generate targeted knock-
out of cellular genes to assess their importance for EBNA2 and EBNA-LP func-
tion in the near future. However, a serious limitation of all the results discussed in
this review is the fact that there is no small animal model available, which allows
assessing the specific contribution of a target gene to the pathogenesis of EBV-
associated diseases.
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