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Abstract. Aiming to find an ultimate solution to the problem of secure
storage and hardware authentication, Physically Unclonable Functions
(PUFs) appear to be promising primitives. While arbiter PUF's utilized
in cryptographic protocols are becoming one of the most popular PUF
instances, their vulnerabilities to Machine Learning (ML) attacks have
been observed earlier. These attacks, as cost-effective approaches, can
clone the challenge-response behavior of an arbiter PUF by collecting a
subset of challenge-response pairs (CRPs). As a countermeasure against
this type of attacks, PUF manufacturers shifted their focus to non-
linear architectures, such as XOR arbiter PUFs with a large number
of arbiter PUF chains. However, the natural question arises whether an
XOR arbiter PUF with an arbitrarily large number of parallel arbiter
chains can be considered secure. On the other hand, even if a mature
ML approach with a significantly high accuracy is adopted, the even-
tual delivery of a model for an XOR arbiter PUF should be ensured.
To address these issues, this paper presents a respective PAC learning
framework. Regarding our framework, we are able to establish a theoret-
ical limit on the number of arbiter chains, where an XOR arbiter PUF
can be learned in polynomial time, with given levels of accuracy and
confidence. In addition, we state how an XOR arbiter PUF with noisy
responses can be provably PAC learned. Finally, on the basis of learning
theory concepts, we conclude that no secure XOR arbiter PUF relying
on current IC technologies can be manufactured.

1 Introduction

An increasing demand for secure storage of encryption mechanisms as well as
hardware fingerprinting stimulates research on possible solutions. Techniques
depending on storing a secret key in non-volatile memory (NVM) have been
shown to be subject to physical attacks [12]. Other methods relying on the
implementation of cryptographic primitives are less practical due to the con-
straints of the IC technology [5]. To deal with the above-mentioned issues, Phys-
ically Unclonable Functions (PUFs) have been introduced [8,20]. From a general
point of view, the security-related functionality of PUF's, more specifically their
challenge-response behavior, is offered by the manufacturing variations of an IC.
One of the most celebrated types of PUF instances are arbiter PUFs, which
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are widely utilized in several different cryptographic protocols [5,13,17]. The
challenge-response behavior of an arbiter PUF is characterized by slightly differ-
ent propagation delays of identical paths, caused by chip imperfections. These
slight differences are further exploited to generate unique responses.

While authentication and fingerprinting methods enjoying this privilege have
been emerging, it has been demonstrated that arbiter PUFs are vulnerable to
different types of attacks. Different ML techniques contribute to the success of
non-invasive ML attacks against arbiter PUFs [13]. Aiming at mathematically
cloning an arbiter PUF, the attacker collects a set of challenge-response pairs
(CRPs), and attempts to provide a model that can approzimately predict the
response of the PUF to an arbitrarily chosen challenge. Most of the ML attacks
benefit from the linear additive model of an arbiter PUF. This forces a migration
to modified structures of arbiter PUFs, in which non-linear effects are added to
the PUF in order to impair the effectiveness of ML attacks. To this end, XORing
the responses of multiple arbiter PUFs has been demonstrated as a promising
solution [28].

However, it has been shown that more advanced ML techniques can still break
the security of an XOR, arbiter PUF (briefly called XOR PUF in this paper)
with a limited number of arbiter chains (here called chains) [23]. Going beyond
this limited number is suggested as a countermeasure by PUF manufacturers,
although they have encountered serious problems, namely the increasing number
of noisy responses as well as optimization of the silicon area required on the
respective chip [21]. Even in this case, physical side-channel attacks, such as
photonic emission analysis, can physically characterize XOR PUFs regardless of
the number of XORs [29]. In another attempt a combination of ML attacks with
non-invasive side channel attacks (e.g., power and timing) is suggested to model
XOR PUFs, with the number of chains exceeding the previously established
limit [24].

The latter attack is cost-effective due to its non-invasive nature, and there-
fore, it might be preferred to the semi-invasive one in practice. However, in con-
trast to pure ML techniques (i.e., without any side channel information), using
side channel information in combination with ML techniques requires physical
access to the device and reconfiguration of the circuits on the chip, which are not
always feasible in a real scenario [24]. Therefore, it is still tempting to develop
new pure ML techniques to break the security of XOR PUFs, with an arbitrary
number of chains. Nevertheless, it is still unclear how many chains should be
XORed to ensure the security of arbiter PUFs against ML attacks. Moreover,
when applying current ML attacks, the maximum number of CRPs required for
modeling an XOR PUF, with given levels of accuracy and final model delivery
confidence, is not known today.

Only recently, it has been shown how a single chain arbiter PUF under the
Deterministic Finite Automata (DFA) representation can be learned for given
levels of accuracy and confidence [7]. It is further proved that the run time of
their proposed algorithm is polynomial in the size of the DFA. We claim that
for the XOR PUFs, a more compact representation can be adopted to improve
the time complexity of this attack. Furthermore, to deal with noisy responses
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of an XOR PUF more efficiently, in contrast to their method, an approach not
relying on majority voting can be applied.

We present a new framework to prove that XOR PUFs can be learned in
polynomial time, for given levels of accuracy and confidence. The main contri-
butions of our framework are summarized as follows:

Finding a theoretical limit for ML techniques to learn XOR PUFs
in polynomial time. Under a well-known representation of an XOR PUF, we
provide a theoretical limit as a function of the number of arbiter PUF stages and
the number of chains, where an XOR PUF can be provably learned in polynomial
time.

Learning of an XOR PUF for given levels of accuracy and confidence.
With regard to the proposed limit, we present an algorithm, which learns the
challenge-response behavior of an XOR PUF, for given levels of accuracy and
confidence. The run time of this algorithm is polynomial in the number of the
arbiter PUF stages, the number of chains, as well as the levels of accuracy and
confidence. Moreover, our approach requires no side channel information.

Modeling the XOR PUF even if the responses are noisy. A celebrated
model of noise fitting the purpose of our ML framework is applied to prove that
even in the presence of noise, the run time of our algorithm is still polynomial in
the number of the arbiter PUF stages, the number of chains, levels of accuracy
and confidence, and the noise rate. Finally, through a comprehensive discussion,
we will explain why secure XOR PUFs cannot be manufactured on chips based
on current technologies.

2 Notation and Preliminaries

This section focuses on the background information and notations required to
understand the general concept of arbiter PUFs, XOR PUFs, fundamentals of
LTFs, the perceptron algorithm, the PAC model, and finally PAC learning with
the Perceptron algorithm.

2.1 Arbiter and XOR PUFs

PUFs are most often related to the intrinsic silicon properties of a chip. They
are physical input to output mappings, which generate a response for a given
challenge. Let C = {0,1}™ and ) = {0,1} be the set of challenges and the set of
responses, respectively. A PUF can be described by the function fpyp :C — Y
where fpur(c) =y.

PUFs are evaluable, which means that for a given PUF, fpyr can be evalu-
ated in polynomial time. Given a set of PUF instantiations, each PUF is unique
and different from other PUFs with regards to its response set ). A response
y = fpur(c) is reproducible in a sense that different evaluations of the same
challenge yield “close” responses with respect to the considered distance metric.
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Fig. 1. Schematic of an arbiter PUF with n multiplexer stages and an arbiter at the
end of the chain. Each multiplexer stage consists of four different delays. Based on the
applied challenge, when the enable signal (denoted by “en”) is fed, either the direct
paths or the crossed paths are utilized for the signal propagation. Upon arrival of the
first signal, the arbiter generates a binary response.

As the name implies, PUFs are unclonable, i.e., it is nearly impossible to con-
struct another physical mapping (device) gpur, where gpur # fpur, but gpur
and fpyr have a similar challenge response behavior. Moreover, PUFs are unpre-
dictable, which means that despite knowing a set U = {(¢;,y;) | vi: = frur(ci)},
it is practically impossible to predict y, = fpur(c,), where ¢, is a random chal-
lenge with (c,,-) ¢ U. Finally, PUFs are one-way, i.e., for a given y = fpyr(c),
the probability that a probabilistic polynomial time algorithm or a physical pro-
cedure A can output c is negligible, where ¢ is drawn from a uniform distribution
on {0,1}" [25].

Utilizing the timing differences of symmetrically designed electrical paths on
a chip is the core idea of arbiter PUFs. The chain of an arbiter PUF consists of
n connected switches, or so called stages, and an arbiter at the end, see Fig. 1.
A challenge is an n-bit string ¢ = ¢[1]-- - ¢[n], where the i*® bit is fed into the
ih stage. There are four different paths in each stage. If c[i] = 1, the signal
propagates through the crossed paths, otherwise the direct paths are utilized,
see Fig. 1. Enabling the inputs of the first stage leads to the propagation of two
electrical signals on two symmetrically designed paths terminated by the arbiter.
Due to the imperfections on the chip the two signals arrive at the end of the
chain at different times. With regard to the arrival time of the signals, the arbiter
generates a binary response.

We define a random variable ¥; related to the delay within the i*" stage, which
follows a Gaussian distribution with the mean y,; and the deviation o; [7,22].
The realizations of the random variable ¥; are certain Ei’l, @i,% @ZS, and Ei,zl'

;1 and @i,g are the delays of the upper and lower direct paths, whereas Ei’g and

1, 4 are the delays of the upper and lower crossed paths, respectively, see Fig. 1.
The delay differences between the upper and lower outputs of the i*" stage are
denoted by Bi,o = @Z—’l - EM and Bi,l = EM - Ji,Sa for direct paths and crossed
paths, respectively.

Let Z be a random variable which corresponds to the total delay between the
enable point and the outputs of the n*" stage of the arbiter PUF. With regard
to the linear additive model of an arbiter PUF, we have Z = "' | ¥ [7,13]. (;
and (o are the realizations of Z at the upper and lower output, respectively, see
Fig. 1. Let x > 0 denote the precision of the arbiter. By comparing ¢; and (,,



26 F. Ganji et al.

. o
# g : Arbiter
[ | [ |
c[1]1=0 c[2]=1 c[i]=0 c[n]=1
. . .. \ _ . 0/1 0/1
Cﬂ# ‘ Arbiter
l I [ ]
[1]1=0 21=1 . li]=0 c[n]=1
Arbiter o

[ [ [ [
[1]1=0 2]=1 cli]=0 c[n]=1

Fig. 2. Schematic of an XOR PUF. It consists of k chains of n-bit arbiter PUFs. The
responses of all arbiters are XORed together to generate the final binary response.

the arbiter makes a decision whether the output is either “1” or “0”. More
formally, we assume that the output of the PUF is “1” if A = ¢; — {, > &,
whereas it is “0” if A < —x. If |[A] < &, the arbiter is assumed to be in a
metastable condition.

Following the procedure introduced in [7], in each stage, e.g., it stage, E”
can be mapped into an integer value ; ; (1 < j < 4). It is known that @” €
[i — 304,1; + 30;] with probability 99.7%. Now we define the mapping fins :
R +— Z so that for all Eu € [ui — 304, + 30;], we have 1); ; = fint<$i7j) =
[(@” — g + 301»)/5]. Without loss of generality, we assume that p; = --- = u,
and 07 = -+ = 0,. Hence, by performing the mapping f;,: the maximum
and the minimum of the real valued delays ¢, ; (1 < i < nand 1 < j <
4) are mapped into m = [%2] and 0, respectively (for more details see [7]).
Furthermore, similarly, A can be mapped with a high probability to an integer
value A lying within a finite interval. In this case, the response of the arbiter
is “17 if A > 0, whereas it is “0” if A < 0. The arbiter is in the metastable
condition, if A = 0.

To improve the security of arbiter PUFs against machine learning attacks,
a modified construction called XOR PUF was suggested by [28]. An XOR
PUF consists of k different chains, all with the same number of stages n.
The responses of all arbiter PUFs are XORed together to generate the final
response, see Fig. 2. The response of the XOR PUF can be defined as fxor(c) =

k
@j:l fj“‘arbiter PUF(C)'
2.2 Linear Threshold Functions

We begin with the definition of a Perceptron (i.e., single-layer Perceptron), where
P,, denotes an n-input and single output Perceptron. P, is represented by the



Why Attackers Win: On the Learnability of XOR Arbiter PUFs 27

function 2 — H, where the vector w = (A[1], A]2],---,A[n],8) denotes a
state, and the set £2 C R*T! is the set of states. The function h, € H with
he : R™ — {0,1} is defined as follows:

o {1, if S Ali]®[i] —6>0 )

0, otherwise.

The sets of positive and negative examples of h,, are half-spaces S and S°,
where S1 = {® e R"| 31" | A[i]®[i] > 0} and S° = {® e R"| Y1 | A[i]®[i] <
0}. Alternatively, by applying the mapping fumap : {0,1} — {1, — 1}, so that
fmap(0) =1 and finap(l) = —1, we have:

hey = sgn(® - A —0), (2)

where the inner product of the vector A and ® is denoted by ®-.4. Equation (2)
denotes a linear threshold function (LTF), whose decision regions are S and S°
bounded by the hyperplane P : ® - A = 6 (for further details see [2]).

2.3 Perceptron Algorithm

The Perceptron algorithm is an online algorithm invented to learn LTFs effi-
ciently. By online we mean that providing the learner (i.e., learning algorithm)
with each example, e.g., ®;, it attempts to predict the response to that example.
Afterwards, the actual response (i.e., the label, for instance p(®;)) is presented
to the learner, and then it can improve its hypothesis by means of this informa-
tion. The learning process continues until all the examples are provided to the
learner [14].

Let the input of the Perceptron algorithm be a sequence of r labeled exam-
ples ((®1,p(®1), -, (P, p(P®,)). The output of the algorithm is the vector A
classifying the examples. Executing the Perceptron algorithm, it initially begins
with wo = (Ag[1],Ao[2],- -, Ag[n],0) = (0,--- ,0). When receiving each exam-
ple (e.g., ®;), the algorithm examines whether A;[i]-®,[i] > 0; and compares its
prediction with the received label. If the label and the prediction of the algorithm
differ, w; is updated as follows:

) [k]f Aj[k]_p(q)j)'q)j[k‘] 1<k<n
0 - (@) k=n+1.

Note that if the prediction and the label of an example agree, no update is
performed [26].

Quantifying the performance of an on-line algorithm, the prediction error
(i.e., number of mistakes) of the algorithm is taken into account. In this way,
the upper bound of the mistakes is defined as a measure of the performance.
The Perceptron convergence theorem gives an upper bound of the error that can
occur while executing the Perceptron algorithm [6]:
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Convergence Theorem of the Perceptron Algorithm: Considerr labeled
examples which are fed into the Perceptron algorithm, and ||®;]] < R (|| - ||
denotes the Fuclidean length). Let u be the solution vector with|lu|| = 1 whose
error is denoted bye (¢ > 0). The deviation of each example is defined asd; =
max{0,e —p(®;)(u-®;)}, and D = \/>_._, dz. The upper bound of the mistakes
of the Perceptron algorithm is

R+ D\?

3

For the proof, the reader is referred to [6]. Let the parameter o be the mini-
mum distance of any example from P, i.e.,

e A
TTEEG A )

where @ is the set of all ®’s. The order of 1/0 determines whether the data is
linearly separable. It has been demonstrated that when 1/0 is exponential in n,
the data is not linearly separable, and consequently, the Perceptron algorithm
cannot classify the data [4,26]. On the other hand, if 1/0 is polynomial in n, the
Perceptron algorithm can be applied.

2.4 PAC Model

As the name implies, the concept of PAC (Probably Approximately Correct)
model aims at learning an unknown target (i.e., a concept class €,) under the
following circumstances: (a) after the learning phase, the output of the algorithm
is a hypothesis approximating €,,, and (b) with a high probability the learner
can deliver a good hypothesis.

To formalize the above mentioned definition, let &€, be defined over the
instance space X,, = {0,1}". Furthermore, X = U,>1X,, and € = U,>1¢,.
We have also $),, as the hypothesis space, and $) defined in a similar fashion.
The learner is provided with a finite number of examples drawn randomly with
respect to the probability distribution D. For the target concept ¢ € €, the
error of the hypothesis is error(h) := YyepacD(x), where A is the symmetric
difference. Now we can define PAC learnability as followings.

Let p(+,-,-) be a polynomial, ¢ and ¢ be arbitrary values such that 0 < &, <
1, and a distribution D on the instance space X, (arbitrary distribution). When
a PAC learning algorithm £ is fed by p(n,1/¢,1/6) independent examples drawn
randomly with respect to D, then with probability at least 1 — ¢ the output of
L is a hypothesis h € 9,, such that error(h) < e. The sample complexity of £
is the smallest polynomial p. With regard to the relation between € and $), we
define that € is properly PAC learnable, when € = §). Otherwise, if $) can be
evaluated on given instances in polynomial time, and € is PAC learnable by 9,
¢ is called PAC learnable.
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2.5 PAC Learning of LTFs with Perceptron Algorithm

Several studies have focused on the PAC learning of an unknown LTF from
labeled examples by applying the Perceptron algorithm (for an exhaustive sur-
vey see [26]). Here we briefly describe how the Perceptron algorithm, as an
online algorithm, can be converted to a PAC learning algorithm, following the
conversion procedure defined in [26].

The learner has access to an Oracle EX, providing labelled examples. By
calling E X successively, a sequence of labeled examples is obtained and fed into
the online algorithm. Hypotheses generated by the algorithm are further stored.
At the second stage, the algorithm again calls £ X to receive a new sequence of
labeled examples. This new sequence is used to calculate the error rate of the
hypotheses stored beforehand. The output of the procedure is a hypothesis with
the lowest error rate. Let € and § be the accuracy and the confidence levels of
the obtained PAC learning algorithm. Suppose that N,,;s is the upper bound of
the mistakes made by the original online algorithm for the concept class €. The
following theorem is proved by Littlestone [15].

Theorem 1. Suppose that the online algorithm L., improves its hypothesis,
only when its prediction and the received label of the erxample do mot agree.
The total number of calls that the obtained PAC algorithm L makes to EX
is O (1/e(log1/6 + Npis)).-

From the convergence theorem of the Perceptron algorithm and Theorem 1,
it is straightforward to prove the following corollary [26]:

Corollary 1. Let the concept class €, over the instance space X, = {0,1}"
be the class of linear threshold functions such that the weights A; € 7Z, and
S AL < A, where A € Z is the mazimum sum over the weights. Then the
Perceptron algorithm can be converted to a PAC learning algorithm running in
time p(n, A, 1/e,1/9).

3 PAC Learning of XOR PUFs

In this section we first present how and why an XOR PUF can be PAC learned
by the Perceptron algorithm. Furthermore, we provide the theoretical limit for
the learnability of XOR PUFs in polynomial time. Finally, the theoretical results
will be verified against experimental results from existing literature.

3.1 LTF-Based Representation of XOR PUFs

Here we briefly describe the LTF-based representation of an XOR PUF, which
is widely adopted [9,19,23]. Consider the delay vector A7 defined as follows:

_ PBio—Pia
a1 = — 5
T : i—1,0t0i—1, i,0—Pi .
A" = (a1,aa,...,0,41) with < a; = A ;’0 fﬁ 12'”_5 = 6’1, 2<i<n (4)
Qpt1 = n,02 el
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Fig. 3. Block diagram of the PAC learning framework. By calling the Oracle EX at
most rmaz times, a sequence of examples is collected. ®; is fed into the third block
corresponding to our problem transformation. The output of the third block is fed into
the Perceptron algorithm.

where the integer valued 3, ; (1 <4 < nand 0 < j < 1, as shown in Fig. 1)
are the delay differences at the output of the i*" stage. Wrt. the discretization
process described in Sect. 2.1, it is straightforward to show that 3; ; lies within
the interval [—m, m], hence, o; (1 < ¢ < n+1) lies within the interval [—2m, 2m].

Consider a challenge string represented by a vector ¢ = (c[1],--- ,c[n]).
® = (P®[1],--- ,®[n],1) is the encoded challenge vector, where ®[i] = H] ;1=
2¢[j]). We defined A as the delay difference at the outputs of the last stage.
According to the linear additive model of the arbiter PUF, we have A = AT . &
cf. [13,23]. Now let fiap : YV — {1, — 1}, so that fiap(0) =1 and frap(l) = —1.
The output of the arbiter can be defined as

frur = sgn(4) = sgn(A” - @). (5)

From Eq. (5), it is obvious that an arbiter PUF can be represented by an (n-+1)-
dimensional LTF. In a similar fashion, an XOR PUF can also be represented by
an LTF, when the final response (Vxog) is mapped to {1, — 1}, cf. [23]:

k
fXOR:Hsgn(.AT- sgn<®AT ®<I> > = sgn AXOR ®xoR)
j=1
(6)

where Axor = ®§:1Af is the tensor product of the vectors A?, and similarly
®xor = ®§:1'I>j.

3.2 PAC Learning of XOR PUFs with Perceptron

We claim that by adopting a simple transformation the Perceptron algorithm
can be applied, particularly in our case. Comparing Egs. (5) and (6), it can be
seen that the (n + 1)*-dimensional vectors Axor and ®xogr are substituted
for (n + 1)-dimensional vectors A7 and ®. In other words, XOR-ing k (n + 1)-
dimensional LTFs results in an O((n + 1)*)-dimensional LTF. Therefore, if we
transform the problem of learning the XOR of &k (n + 1)-dimensional LTF's into
an O((n + 1)*) dimensional space, this problem can be solved by applying the
Perceptron algorithm. In order to support our claim, we begin with the following
theorem stating that examples are linearly separable in R™+1.
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Theorem 2. For an XOR PUF, with fized k, represented by an LTF in an
O ((n+ 1)) dimensional space, 1/c is polynomial in n.

Proof. As described in Sect.2, Axogr contains integer elements lying within
the limited interval [—2m,2m]. Furthermore, elements of ® xpp are in {—1,1}.

Now we have
(n+1
[®xor - Axorl . \V 2ie

o= min = min — 7
Pxo0rREPXOR HAXORH ®xor€PxOR (n + 1) ’ ( )

where @xog is the set of all ®xor’s. Due to a non-trivial challenge-response
behavior of the given PUF, at least one of the elements of Axor must be equal

to £1. Therefore, min (Zg:{l)k a2 =1, and 1/o = (n + 1)k/2. [ ]

Figure 3 illustrates how the perceptron algorithm is applied in our PAC learn-
ing framework. The learner has access to an Oracle FX, which is related to the
XOR PUF as follows: FX := fxogr. At the first stage, the Oracle EX is called
successively to collect CRPs. The maximum number of calls is denoted by 7,4 -
For each CRP (e.g., (c;,p(c;))) a vector ®@; is generated. Afterwards, ®; is trans-
formed to <I>§(O R, Which isin an O ((n + 1)’“) dimensional space. The Perceptron
algorithm predicts the response to ®%,z, and if its prediction and p(c;) dis-
agrees, its hypothesis will be updated.

Now we will elaborate on the upper mistake bound in our framework. Follow-
ing the convergence theorem of the Perceptron algorithm and Theorem 2, when
|®xor| < (n+1)%2 we have N,,;s = (n 4 1)¥/e%. As an immediate corollary,
we have:

Corollary 2. Let k be constant and consider the class of XOR PUFs over the
instance space X, = {0, 1} (D" which is that class of linear threshold functions

such that a; € Z, and E(”+1) lo;| < 2m(n + 1)F. Then the Perceptron-based
algorithm running in time p((n + 1)¥,4m? 1/e,1/8) can PAC learn an XOR
PUF by calling EX at most O (log(1/6)/e + 4m?(n + 1)k /&%) times.

There are some key implications from this corollary. First, with regard to
the PAC model, the hypothesis delivered by the algorithm must be evaluable in
polynomial time. The point here is that the term (n41)¥, related to the Vapnik-
Chervonenkis dimension of the representation [3], may grow significantly if k is
not a constant. In this case, our algorithm cannot find a hypothesis in polynomial
time, since the number of examples is super-polynomial in n. However, in Sect. 5
we will see that in practice, k cannot exceed the bound [lnn]|, and therefore,
XOR PUFs realized in practice are PAC learnable, as k must be reasonable small
and can be seen as constant when compared with n.

Second, it is tempting that an increase in m can help to ensure the security
of an XOR arbiter PUF. The upper bound for the number of CRPs calculated
according to the Corollary 2, for § = 0.0001, £k = 5 for n = 64 and n = 128, is
depicted in Fig. 4. This figure can provide a better understanding of the impact of
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Fig. 4. Upper bound of the number of CRPs. The x-axis indicates m, whereas the
y-axis shows e. The z-axis corresponds to the upper bound of the number of CRPs.

m on the learnability of an XOR arbiter PUF. A marginal increase in m cannot
dramatically increase the number of CRPs required for modeling an XOR arbiter
PUF. Although an arbitrarily large m can be suggested to ensure the security of
an XOR arbiter PUF, as stated in [7], m is restricted by technological limits (i.e.,
the yield and many other factors), and thus cannot be arbitrarily large. In Sect. 5
the impact of an increase in m on the learnability will be further discussed.

3.3 Validation of the Theoretical Results

We compare our theoretical findings with several experimental results reported
in [16,23]. As reported in [16], until now no effective pure ML attack has been
launched on XOR PUFs with £ > 5 (n = 64). Pure ML attacks proposed in
the literature are conducted on XOR PUFs with the maximum n being equal
to 128 [23,24]. Taking into account the long run time of pure ML algorithms,
even on the powerful machines employed by [23], XOR PUFs with n = 256 and
n = 512 have been targeted only by combined modeling attacks [24]. Therefore,
unfortunately, in the literature no practical limit for pure ML techniques has
been reported for XOR PUFs with n > 128.

As an attempt to compare our theoretical results to what has been observed
in practice, we focus on the results reported in [23]. Note that although the
algorithm applied in [23] (Logistic Regression) differs from our algorithm, we
can compare the number of CRPs required by them to learn an XOR PUF with
a given accuracy. The argument supporting this claim is that the hypothesis
class of LR can be “discretized” so that it becomes finite [27]. Furthermore, due
to the fact that the delay values can be mapped to a finite interval of integer
values, the loss function of LR is also bounded. Therefore, LR can be converted
to a PAC learning algorithm, and the maximum number of EX calls made by
the obtained algorithm is polynomial in n, &k, 1/¢ and 1/§. Moreover, note that
the theoretical limit of learning an XOR PUF in polynomial time is established
by the Vapnik-Chervonenkis dimension of the LTF representation of an XOR
PUF, as used in [23] as well. These enable us to compare their experimental
results with our findings.
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The authors of [23] have attempted to model 64-bit and 128-bit XOR PUFs
with up to 6 and 5 chains, respectively. Their results demonstrate that the pro-
posed model can predict responses to a set of arbitrary chosen challenges with
99 % accuracy. However, the number of CRPs required for modeling a 64-bit
XOR PUF with k£ = 5 and k = 6 is increased drastically, comparing to those
with £ < 4. In this regard, the number of CRPs collected to predict the response
is increased from 12000 to 80000 and 200000 for £ = 5 and k = 6, respectively
(e =0.01). As a result, the time spent to build a model is increased from a few
minutes to several hours, which shows an exponential growth. For a 128-bit XOR
PUF with k£ =5, 500000 CRPs are required to model the XOR PUF, with 99 %
accuracy, while for a PUF with k£ = 4, this number is only 24000. Consequently,
the learning time is again increased exponentially.

In the above-mentioned cases, an exponential growth in the number of CRPs
and the learning time can be clearly observed, when k exceeds 4. This matches
the theoretical limit proposed in Sect. 3.2.

4 PAC Learning of Noisy XOR PUFs

In the previous section, we have explained how the Perceptron algorithm can
be applied to PAC learn an XOR PUF. The natural and important question
would be whether the proposed framework is applicable in the case of noisy
responses. The term noisy response here refers to the response of the XOR
PUF to a challenge under either the metastable condition or the impact of
environment noise. Although it has been accepted that metastablity of an XOR
PUF must be solved by the PUF manufacturer, we consider this particular case
for completeness. From the point of view of PAC learning, this condition results
in incorrect labels generated by the Oracle EX. We aim to state that an XOR
PUF can be PAC learned by applying the Perceptron algorithm, even if noisy
responses are included in the collected set of CRPs.

Several versions of the Perceptron algorithm, which can tolerate noise, i.e.,
incorrect labels of examples, have been developed (for a comprehensive survey
see [11]). Here we follow the work by [1] to demonstrate that the original Per-
ceptron algorithm can be further applied in the case of noisy responses. In this
case, the number of CRPs required to be collected is polynomial in the number
of noisy responses.

At the first stage, we define a simple but effective model of noisy Oracle
EX, [1]. In our model, the examples are drawn with respect to the relevant
distribution D, and the label of each example is chosen in an independent random
fashion. More specifically, after drawing an example, an unfair coin (head with
probability 1—n) is flipped. If the outcome is head, the correct label is provided,
otherwise the label is incorrect. It is clear that n < 1/2, since n = 1/2 means
that no relevant information is provided by EX,, and the case of n > 1/2 is
irrelevant. We assume that an upper bound on 7, denoted by 1, is known.
Even if this assumption may not be the case in practice, following the procedure
defined in [1], n, can be estimated. It is shown that the sample size is increased
very slightly in the case of unknown 7 (for further information and the proof
see [1]).
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The Convergence Theorem of the Perceptron algorithm states that in the
case of noisy responses the condition p(®;)(u.®;) > 0 cannot always be met.
This condition relates the accuracy of the prediction performed by the Per-
ceptron algorithm to the labels provided that afterwards update the respective
hypothesis. In the case of noisy examples, we suggest that this condition should
be modified so that it reflects the accuracy of the Perceptron algorithm in the
presence of noise. Suppose that an example, such as (®;,p(®;)), is provided by
EX,,. The probability that this example disagrees with any hypothesis u can be
calculated as following:

Prip(®;)(u- @) < 0] < (1 —n)e+n(l—e) <m+e(l—2mp) (8)

From Eq. (8) it can be inferred that the expected rate of disagreement is at
least n for the ideal hypothesis u. Therefore, the separation factor of at least
e(1 — 2n) should be between an ideal hypothesis and an approximation of that
cf. [1]. As stated in the following theorem, the maximum number of mistakes
that can be made by the Perceptron algorithm is polynomial in this separation.

Theorem 3. Considerr labeled examples which are fed into the Perceptron algo-
rithm, and let | ®;]| < R. In the case of noisy labels, let u,, be the solution vector
with ||u,|| =1, and p(®;)(u,.®;) > (1 — 2n) > 0. Then

oo~ ()

The key idea is that a separation factor of at least (1 — 27,) must exist between
u and u,. It is straightforward to prove this theorem, and for more details the
reader is referred to [1].

Theorem 4. When PAC learning the noisy XOR PUF, the mazximum num-
ber of mistakes that the Perceptron algorithm can make is Nps = (n+ 1)/
(e2(1 — 2m,)?).  Furthermore, the mazimum number of CRPs required
for PAC learning a noisy XOR PUF is O(log(1/8)/(e(1 — 2m)) 4+ 4m?(n + 1)k/

(€*(1 = 2m)*)).
Proof. Following Corollary 2 and Theorem 3, this can be easily shown. ]

The most important message is that this maximum number of CRPs is poly-
nomial in n, €, § as well as the upper bound of 1. According to experimental
results when the noise rate is 2%, the number of CRPs required to learn a 128-
bit XOR PUF (k = 4) is approximately increased by the factor 2, in comparison
to the noiseless scenario with approximately the same e [23]. For the same XOR
PUF, increasing the noise rate to 5 % and 10 %, the number of CRPs is increased
2 times and 8 times, comparing with the case of 1, = 0.02. It has been concluded
that the number of CRPs collected to model the XOR PUF is polynomial in the
noise rate [23], which agrees with our theoretical result.
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5 Discussion

5.1 Theoretical Considerations

By providing the proof of vulnerability of XOR PUFs to PAC learning we have
demonstrated how fragile the security of this kind PUF is. The concept of PAC
learning of XOR PUF's was almost catched by Hammouri et al. [10]. Although the
authors benefit from one of the most adequate representations of the XOR PUFs,
which is LTF-based [9], they could not prove the PAC learnability of the XOR
PUFs. As the Vapnik-Chervonenkis dimension of an LTF representing an arbiter
PUF is equal to n + 1, this family of PUF primitives is subject to PAC learning
attacks [7]. It is straightforward to further prove that the Vapnik-Chervonenkis
dimension of the LTF representing an XOR PUF is (n+ 1)¥. Therefore, for con-
stant k an XOR PUF with k chains (each with n stages) is also PAC learnable. In
this paper, instead of sticking to this obvious fact, we introduced an algorithm
that can PAC learn an XOR PUF, even in the case of noisy responses. How-
ever, the key argument supporting our claim is that the Vapnik-Chervonenkis
dimension of the proposed LTF-based representation should be finite. Wrt. this
argument, we have shown that by applying the Perceptron algorithm its run
time is polynomial in n, 1/e, 1/, and k.

Another important aspect of our framework is the representation of an XOR,
PUF. As mentioned earlier, it is clear that according to what has
been observed in [7], an XOR PUF can also be represented by a
DFA with O(n*m?¥) states. Therefore, their proposed algorithm makes
O ((1+2/eIn(1/8))n*M?* + 2/en?* M**) calls to EX. Comparing this num-
ber of calls with the number of calls that our algorithm makes to EX (see
Corollary 2), it is clear that the numbers of calls made by both algorithms are
polynomial in n, m, 1/¢, and 1/§. However, our algorithm outperforms in terms
of the number of calls, and consequently its time complexity.

Of crucial importance for our framework is how the algorithm deals with
noisy responses. In this paper we have proposed a model of noise, which is well-
studied in the PAC learning related literature, and agrees with what can be
seen in practice. Towards launching a machine learning attack, the adversary
applies a set of challenges and collects the responses, where the latter might be
noisy. From the lessons learnt from practice, the number of noisy response of an
XOR PUF is virtually equal to the sum of the number of noisy response of each
individual arbiter PUF [21]. In the literature majority voting is suggested as a
solution to deal with noisy responses [18,23]. This can impair the performance
of the proposed learning algorithm, when the attacker can observe each CRP
only once and cannot do majority voting. It is even suggested that in order to
reduce the effectiveness of ML attacks, the noise rate that can be observed by an
attacker can be artificially increased, while the verifier still observes only a small
noise rate [31]. In this latter scenario the majority voting cannot be helpful. On
contrary, we have proved that XOR PUFs can be PAC learned without the need
for majority voting.
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We have stated that the maximum number of mistakes that the Perceptron
algorithm can make, and consequently, the maximum number of CRPs required
for PAC learning is polynomial in n, k, 1/¢, 1/§ as well as 1/(1 — 2n) in the
case of noisy responses. Since we have mainly aimed to prove this, the maximum
number of CRPs calculated in Sect.3 ensures that the algorithm delivers an
approximation of the desired hyperplane, with the probability at least 1 — §.
The proposed upper bound of the number of CRPs can be improved to even
reduce the number of required CRPs (see for instance [3]).

5.2 Practical Considerations

When proving that the Perceptron algorithm can be applied to PAC learn an
XOR PUF, we take the advantage of the lessons learnt from practice, namely (a)
the delay values can be mapped to a finite interval of integer values, and (b) the
number of chains contained in an XOR PUF (k) cannot exceed a certain value.
The importance of the first fact can be recognized in the recent proof of the PAC
learnability of an XOR PUF (see Corollary 2). The second fact confirms that the
Vapnik-Chervonenkis dimension of the LTF representing an XOR PUF is finite.
Whereas the first fact has been already reflected in [7], the second one has been
only partially discussed in the literature.

The results of experiments clearly demonstrate that XORing more than a
certain number of chains is not feasible [21]. In their experiments, different XOR
PUFs designed on 10 Xilinx Virtex 5 (LX110) FPGAs at the nominal condition
(temperature = 35° C and VDD = 1V) are employed. For k = 4, it is reported
that the noise rate is n = 23.2%, and a change in the condition (e.g., reducing
VDD) may result in an increase in the noise rate up to 43.2%. Their most
impressive achievement demonstrates that the noise rate of an XOR PUF is
approximately equal to the sum of the noise rate of each individual arbiter PUF.
For an arbiter PUF designed on 65 nm technology, a typical value of the noise
rate is about 4 % [21]. Therefore, it can be approximated that the maximum of
k can be ideally equal to 12, where the noise ratio would be approximately 50 %.
Under this condition, even majority voting cannot be helpful so that the PUF
cannot be verified. Another important factor limiting k& is the silicon area used
for constructing an XOR PUF. Based on a rough estimation reported in [16],
the silicon area required for constructing an XOR PUF with &k chains is & times
larger than a single arbiter PUF.

Despite the implementation and technological limits on k, we have proved
theoretical limits on when an XOR PUF can be learned in polynomial time.
In practical studies it is not stated how the learnability is theoretically limited,
even though the empirical upper bound reported in [16] and the experimental
results in [23] are in line with our theoretical limit. Moreover, the experimental
results presented in [30] are also evidences that support our findings. It has been
shown that when n = 64 and k > 4, the number of CRPs required for the ML
attack, and consequently the time complexity, is increased drastically. The same
observation is repeated for n = 128 and k > 5. These emphasize the importance
of our approach, in which not only the limit of the learnability in polynomial
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time is identified but also no side channel information is required to PAC learn
the XOR PUFs under this limit. To evaluate the security of an XOR PUF with
respect to this theoretical limit, the following scenarios can be distinguished:

— n is small (e.g., n < 32): in this case, the security can be easily broken by
adopting a brute-force strategy.

— n is large (i.e., no brute-force strategy is applicable) and k& > (Inn): under
this condition, the XOR PUF cannot be learned in polynomial time. How-
ever, no practical implementation of such an XOR PUF is feasible due to the
technological limits, more specifically the noisy responses.

— n is large and k < (Inn): the XOR PUF can be PAC learned.

In the latter scenario, it can be thought that an increase in m may lead to
a more secure XOR PUF. Neither is this a valid theoretical approach nor it is
possible in practice. From a theoretical point of view, although more CRPs are
required for PAC learning an XOR PUF with large m, the number of CRPs
is still polynomial in m, n and levels of accuracy and confidence. On the other
hand, from a practical perspective, a chip designed with the large ¢ neither might
work properly nor it can be utilized as a general purpose device [7]. Moreover,
it can be suggested to produce arbiters with high precision in order to enlarge
m. In this case, the cost of the chip is increased dramatically.

In previous studies, e.g., [23,24], powerful and costly machines have been
employed to prove the concept of learnability of XOR PUFs. It might not be
convenient to run a ML algorithm on such machines, particularly for XOR PUF's
with large k and n. Since our concrete proofs state how the security of XOR PUF's
can be broken in polynomial time, it seems redundant to conduct a simulation
or an experiment concerning this issue. Last but not least, we emphasize that
protocols relying on the security of XOR PUFs cannot be considered as an
ultimate solution to the issue of insecure arbiter PUFs. As it has been also
stated in [5], none of the XOR PUF-based protocols in its current form can be
thought of as being perfectly secure.

6 Conclusion

We have developed a PAC learning framework, which clearly states how an XOR
PUF can be learned, for given levels of accuracy and confidence. Furthermore, a
theoretical limit for ML attacks as a function of the number of the chains and the
number of arbiter PUF stages has been established. Moreover, we have proved
that the maximum number of CRPs required for our framework is polynomial
in the number of arbiter PUF stages, the pre-defined level of accuracy and con-
fidence. It is further shown that our approach deals with the noisy responses in
an efficient fashion so that in this case, the maximum number of CRPs collected
by the attacker is polynomial in the noise rate. Our rigorous mathematical app-
roach matches the results of experiments, which can be found in the literature.
The observation made to reveal the technological limits on the number of chains
contributes to the proof of vulnerability of XOR PUFs to PAC learning attacks.
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Last but not least, on the basis of learning theory concepts, this study explicitly
states that the current form of XOR PUF's cannot be considered as an ultimate
solution to the problem of insecure arbiter PUFs. Furthermore, we believe that
this work can provide an insight not only into the academic research but also
for the design and manufacturing of delay-based PUFs.
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