Cloud Migration Patterns: A Multi-cloud
Service Architecture Perspective

Pooyan Jamshidi', Claus Pahll(g), Samuel Chinenyezez,
and Xiaodong Liu?

' IC4 - the Irish Centre for Cloud Computing and Commerce,
Dublin City University, Dublin, Ireland
{pooyan. jamshidi, claus. pahl}@computing. dcu. ie
2 Centre for Information and Software Systems, School of Computing,
Edinburgh Napier University, Edinburgh, UK
{S.Chinenyeze, X. Liu}@napier. ac. uk

Abstract. Many organizations migrate their on-premise software systems to the
cloud. However, current coarse-grained cloud migration solutions have made a
transparent migration of on-premise applications to the cloud a difficult,
sometimes trial-and-error based endeavor. This paper suggests a catalogue of
fine-grained service-based cloud architecture migration patterns that target
multi-cloud settings and are specified with architectural notations. The proposed
migration patterns are based on empirical evidence from a number of migration
projects, best practices for cloud architectures and a systematic literature review
of existing research. The pattern catalogue allows an organization to (1) select
appropriate architecture migration patterns based on their objectives, (2) com-
pose them to define a migration plan, and (3) extend them based on the iden-
tification of new patterns in new contexts.

Keywords: Cloud architecture - Cloud migration + Migration pattern -
Multi-cloud

1 Introduction

Cloud migration [1] benefits from the cloud promise of converting capital expenditure
to operational cost [2]. Mixing cloud architecture with private data centers adds
operational efficiency for workload bursts while legacy systems [3] on-premise still
support core business services. Instead of re-architecting applications, they can be
re-hosted from on-premise to possibly multiple cloud architectures, either private or
public ones. We are concerned with the migration of legacy on-premise software to
multi-cloud architectures. Multi-cloud deployment [4] is particularly effective in

dealing with the following challenges:

Users are widely distributed where they are located around multiple data centers.
Country regulations limit options for storing data in specific data centers, e.g., EU.
Circumstances where public clouds are used jointly with on-premises resources.

Cloud-based application must be resilient to the loss of a single data center.

© Springer International Publishing Switzerland 2015
F. Toumani et al. (Eds.): ICSOC 2014, LNCS 8954, pp. 6-19, 2015.
DOI: 10.1007/978-3-319-22885-3_2

Cloud Migration Patterns: A Multi-cloud Service Architecture 7

Current migration solutions are coarse-grained, making detailed planning difficult.
For these cloud migration processes [1], a migration plan as a verifiable artefact is not
considered. The plan is prepared at either a very broad strategic level with no technical
value or very thorough and technical not suitable for non-technical stakeholders. Thus,
the repeatability of migration processes decreases. Architecture migration patterns can
make this repeatable and transparent.

We address (i) how to reorganize multi-tier applications into disjoint groups of
service components, such that (ii) each such group can be deployed separately in
different platforms (i.e., cloud platforms, on-premise platform) while preserving and in
most cases enhancing the desired properties of the application. We report on 9
fined-grained core and 6 variant cloud-specific architecture migration patterns,
extracted based on empirical evidence from a number of migration projects [S5], best
practice for cloud architectures [4, 6] and a systematic literature review [1]. Our main
contribution is a set of fine-grained service-oriented migration fragments that allows
application developers and architects to plan the migration and communicate the plan
and the decision with non-technical stakeholders.

The patterns define architectural change in the application re-engineering and
deployment setting, through which an application is gradually modernized and
deployed in a multi-cloud. A migration plan is defined as a composition of selected
patterns for specific situations.

Cloud migration methods define activities to plan, execute and evaluate migration
[7]. To account for the situational context of applications, e.g., security, performance,
availability needs, existing approaches [1] suggest a trade-off between flexibility and
ease of migration using a fixed set of migration strategies. We propose an
assembly-based approach based on our experience in situational method engineering
[8] where a method is constructed from reusable method fragments and chunks [9].
This allows creating a migration plan from scratch by combining existing migration
building blocks in the form of migration patterns. The usability of the approach is
evaluated through a cloud migration case study at the end.

2 Background

We first introduce architecture migration patterns and the multi-cloud deployment
setting.

Migration Patterns. For each migration pattern, an architectural migration schema
has to be defined. A migration pattern is represented by an architecture diagram of the
service architecture deployment before and after migration, i.e. a migration pattern is a
transformation triple consisting of source and target architecture together with the
applied pattern as the transformation specification. Each architecture is represented by
well-defined architectural elements including services and connectors, deployment
platforms (on-premise and cloud-based) and cloud services. The notation here is
loosely aligned with UML component diagrams, with specific component types

8 P. Jamshidi et al.

Migration Pattern MP1: Re-deployment

Before Migration After Migration

Cloud
Cloud
o

Cloud Platform X

Cloud
O s |

| Cloud Platform X |

O—0—101
- Cloud
On-premise Platform On-premise Platform O scrvice

Cloud
Service
| Cloud Platform Y | Cloud Platform Y

Definition: An application (component) is re-deployed (moved, re-hosted) as-is on cloud platform(s)

Problem: Resource constraints limit scalability, Need to improve performance, Single point of failure, Reduce cost, Modernization
Solution: Re-deploy on cloud environments, make use of elastic resources, multiple cloud deployment for failover and scalability.
Benefits: Improved Backup and Failover, Coarse-grained scalability at application level, Simple coarse-grained re-deployment.
Challenges: Existing architecture constrains portability, deployment time/cost, scalability, integration may introduce complexity.

color-coded. A service component can either be atomic or contain internal components
allowing for hierarchical decomposition. For example, the migration pattern MP1
consists of a coarse-grained component that consumes services of an on-premise
deployment platform. These can be coordination services that orchestrate different
components in larger compartments or simply configurable IaaS resources providing
required operating system or storage features. After migration, this component, instead
of using on-premise platforms, uses public cloud platform services offered. Thus, the
application component is re-deployed as-is on a cloud platform. The current archi-
tecture is mirrored in the cloud, but can take advantage of virtualization to not only
reduce operational expenditure, but also to create multiple instances of the application
to improve scalability and failover without increasing capital expenditure. The key risk
is that underlying architecture issues are not addressed. A monolithic legacy application
in the cloud is still monolithic with limitations such as lack of scalability. Scalability is
coarse-grained and cannot easily be achieved if, e.g., the architecture does not allow the
database to be updated by multiple instances.

Multi-cloud. In order to build highly scalable and reliable applications, a multi-cloud
deployment is appropriate. Our objective is to provide architectural guidance for
migrating cloud-based systems that run on multiple independent clouds. Multi-cloud
denotes the usage of multiple, independent clouds by a client or a service.
A multi-cloud environment is capable of distributing work to resources deployed across
multiple clouds [10]. A multi-cloud is different from federation where, a set of cloud
providers voluntarily interconnect their infrastructures to allow sharing of resources
[10]. Hybrid deployment can be considered as a special case of multi-cloud where an
application is deployed in both on-premise as well as cloud platforms. This deployment
model is essential in cases where critical data needs to be kept in house in corporate
data centers. We reviewed different application types and their requirements that
necessitate multi-cloud deployment — see the supplementary materials here [11].

Cloud Migration Patterns: A Multi-cloud Service Architecture 9

Note that we primarily target Platform-as-a-Service (PaaS) clouds that provide
middleware services to host and manage application services. PaaS clouds like
Microsoft Azure or Cloud Foundry generally provide mechanisms to support the
re-architecting activities here.

3 Research Methodology

The first step to identify migration patterns was to identify the concerns of organiza-
tions moving on-premise applications to the cloud. We have identified four categories
based on feedback from industry partners in our IC4 research centre [5]:

e Availability. Cloud environments typically guarantee a minimum availability.
Management. Use runtime information to monitor and support on-the-fly changes.
Scalability. Scale out to meet bursts in demand and scale in when demand
decreases.

¢ Resiliency. Provide ability for systems to gracefully handle and recover from
failure.

Focus Groups/Expert Interviews. We used focus groups to identify migration pro-
cess concerns. The organizations involved were consultants for SME migration and
larger multi-nationals — technology providers and systems integrators [5]. Through
migration expert interviews, we looked at common processes for migration towards
cloud as a framework for more fine-grained patterns. These covered IaaS, PaaS and
SaaS migration projects.

Systematic Literature Review (SLR). We recorded existing cloud design and
architecture patterns [4, 6]. A major role in this process played a SLR on cloud
migration [1]. We detected shortcomings associated with these design patterns when
we applied them in migration planning. The patterns were either limited to specific
platforms [4] or fine-grained at a very technical level [6]. To redesign an on-premise
application with these patterns, it requires deep knowledge of vendor-specific services
as well as fair understanding of detailed design documents. Thus, a migration plan
based on these patterns cannot be communicated with non-technical stakeholders.
Thus, we generalize the architectural elements of these cloud architectures with general
concepts of software architecture, i.e., components, connector, on-premise/cloud plat-
form, cloud service, cloud broker.

Empirical Analysis and Pattern Synthesis. We analyzed migration projects for a
range of CRM and retail systems as well as PaaS platform services. We generalized
emerging patterns, considering patterns retrieved from the SLR based on different
architecture scenarios that satisfy the migration concerns. Coarse-grained on-premise
applications are not agile enough to respond to variations in workload. In the cloud, the
deployment of high-usage components can be optimized independently of low-usage
ones. Re-architecting into independent components reduces dependencies and enables
optimization for scalability and performance. However, challenges remain: (1) on-
premise application modernized in isolation, not part of a consistent architecture,

10 P. Jamshidi et al.

(2) modernization performed primarily for technical reasons resulting in sub-optimal
response to business change, (3) architectures determined bottom-up from existing
APIs and transactions may need re-evaluation for multi-clouds.

4 Cloud Architecture Migration Patterns

Some applications are integrated and support core business processes and services, but
many of them support utility needs, are certainly non-core applications and are inde-
pendent. The latter category may be obvious candidates for direct re-deployment. For
the former integrated core ones, refactoring (re-architecting or redesigning) is more
appropriate. Our migration patterns are sequences of architectural changes in the
application deployment setting, through which the current application is gradually
modernized.

To obtain unambiguous pattern descriptions and to ground pattern-based migration
planning, we provide a template-based definition of migration patterns. This definition
is based on the semantics of architectural schemas before and after migration. In some
migration patterns, it may only be possible to deploy application components in a
public cloud. However, for those patterns that consider re-architecting, the application
can be deployed in hybrid public/private platforms. Due to space limitations, we do not
describe all patterns fully, for more details refer to [11]. We use a template-based
description of patterns. The usability of the patterns in migration planning will be
shown through a method engineering process in Sect. 5 and through a case study in
Sect. 6.

For space reasons, only the core patterns are presented. The patterns missing from
this list are variants of some core patterns (which will be summarized afterwards). The
core patterns highlight the different construction principles for the cloud architecture:
re-deployment, cloudification, relocation, refactoring, rebinding, replacement and
modernization.

Migration Pattern MP2: Cloudification

Before Migration After Migration
Cloud
Cloud e Cloud
o-pame] ot i |

| Cloud Platform X . Cloud Platform X |
T Cloud
Ot e |

Cloud -
O—m On-premise Platform
Sloud Plattorm ¥ Cloud Platform Y

Definition: Application hosted on-premise as-is but use public cloud services for added capabilities instead of on-premise ones.
Problem: Need to improve reusability, extensibility, Avoid redundancy by consuming existing publicly accessible cloud services
Solution: Extend the on-premise application by integrating with existing public cloud services.

Benefits: Improved time to market.

Challenges: Integration may introduce greater complexity.

On-premise Platform

Cloud Migration Patterns: A Multi-cloud Service Architecture 11

Migration Pattern MP3: Relocation [see variant MP4]

Before Migration After Migration

Cloud
Ot s |

Cloud Platform X

8 3 8 | Cloud
On-premise Platform c':,‘,':e On-premise Platform O l-
Cloud Platform Y Cloud Platform Y |

Definition: Component re-deployed (relocated) on cloud platform is cloudified but without evolution in the application architecture.
Problem: Enhance performance without significant architecture change, without capital expenditure for on-premise hardware.
Solution: Use cloud services to improve throughput by leveraging Queues, Database partitioning/sharding, NoSQL, Cache
Benefits: As component re-hosting in cloud and optimized performance.

Challenges: The type of application requests changes over time for example proportion of read only calls reduces, Cloud provider
does not provide the necessary services to wrap the optimizations around the application without re-architecting.

Cloud Platform X

il

Migration Pattern MP5: Multi-Cloud Refactoring [see variants MP6, MP7, MPS, MP9]

Before Migration After Migration
Cloud
0 ofade— ot seni |
Cloud

) —

Cloud Platform X

@l On-premise Platform |

(]
On-premise Platform 6 o Sartics
L}
Cloud Platform Y

Definition: An on-premise application is re-architected for deployment on cloud platform to provide better QoS.

Problem: Coarse-grained applications are not agile enough to respond to requirement changes or variations in workload, and cannot
take full advantage of the performance improvements that can be offered by cloud platforms.

Solution: Application re-architected into fine-grained components; deployment of high-usage comp. optimized independently of
low-usage ones; parallel design for better throughput to multi-cloud platforms; components as independent integrity units.

Benefits: Optimal scalability/performance, range of multi-cloud deployment options, agility to respond to business/IT change.
Challenges: On-premise application is modernized in isolation; Modernization is performed primarily for technical reasons, Com-
ponent architecture is only determined bottom-up may need to be re-evaluated because of multi-cloud environment.

Cloud
o0 s |

Cloud Platform Y

Migration Pattern MP10: Multi-Cloud Rebinding [see variant MP11]

Before Migration After Migration
T Cloud
Cloud . . O .
O] service o—g c2 I?-(

Cloud
O service e
O O
[0 5
- Cloud Platform X
(0] o)
L L] Cloud

On-premise Platform

On-premise Platform

o O Service
(]

S

Definition: A re-architected application is deployed partially on multiple cloud environments and enables the application to contin-

ue to function using secondary deployment when there is a failure with the primary platform.

Problem: Failure such as a bug or configuration error that impacts cloud services may cause a failure to a cloud platform.

Solution: Architecture for resilient systems (routes users to closest data center) used for failover: monitor services, if unavailable,

traffic is routed to healthy instances. On-premise adapter (bus or load balancer) provides integration of components

Benefits: As unhealthy services become healthy again, traffic can be delivered, returning system responsiveness to maximum.

12 P. Jamshidi et al.

Migration Pattern MP12: Replacement [see variants MP13, MP14]

Before Migration After Migration

Cloud

O O
(] (]
Cloud Platform X

,,,,,,, Cloud
- o-1<,

- rvice
Cloud Platform X

Cl
o]

Cloud Platform Y

Definition: Individual capabilities in a re-architected solution are re-provisioned rather than re-engineered.

Problem: Some existing components provided by current application are not the best alternative to meet business requirements.
Solution: Analyze and identify capabilities to be replaced by cloud services (capabilities that can be supported by re-architected
system), identify alternative cloud services with benefit over re-engineering of current capability to replace components

Benefits: The solution is improved though best-in-class cloud services, Re-engineering costs and effort are saved.

Challenges: Cloud services presume specific communication protocol that make the replacement a challenging tasks.

On-premise Platform

Migration Pattern MP15: Multi-Application Modernization

Before Migration After Migration

Cloud

o3 s |
Cloud

o s |

| Cloud Platform X

Cloud
6 6 o—d]s‘:'r‘:,‘l‘:e On-premise Platform O I

[]
(] Cloud Platform Y Cloud Platform Y
On-premise Platform Y

Definition: Different on-premise applications A1/A2, C1 are re-architected as a portfolio and deployed on cloud environment.
Problem: The re-architecting of on-premise applications in isolation does not remove inconsistencies in data or duplicated func-
tionalities, nor reduce the cost of their combined operation or maintenance.

Solution: Current applications are analyzed jointly to identify opportunities for consolidation/sharing. Separation of service and
solution architecture enables the identification of components (capabilities) that are shared by more than one solution.

Benefits: Consistent information / rules in shared components, Reduced operation / maintenance costs for shared components,
Challenges: Lack of business commitment to shared capabilities.

Variants for the following core patterns can be identified [11]:

e MP3 Relocation: MP4 (relocation for multi-clouds)

e MP5 Multi-Cloud Refactoring: MP6 (hybrid refactoring), MP7 (hybrid refactor-
ing with on-premise adaptation), MP8 (hybrid refactoring with cloud adaptation),
MP9 (hybrid refactoring with hybrid adaptation)

e MP10 Multi-Cloud Rebinding: MP11 (rebinding with cloud brokerage)

e MPI2 Replacement: MP13 (replacement with on-premise adaptation), MP14
(replacement with cloud adaptation)

Further variants can be added, but we will show the sufficient completeness of the
given set to model common PaaS migration scenarios in the use case evaluation.

Cloud Migration Patterns: A Multi-cloud Service Architecture 13

5 Assembly-Based Situational Architecture Migration

To enable migration planning as a tractable process, appropriate building blocks have
to be selected and combined. Migration patterns embed desirable principles for the
target architectural deployment. Migration patterns represent fine-grained migration
activities to be combined into a migration plan, ensuring that combined patterns do not
violate pattern properties. For example, a pattern for the replacement of an on-premise
component can be combined with a pattern for refactoring. This ensures that an
architecture migration plan can be created incrementally. Figure 1 shows this pattern
composition process. The patterns form a sequence of activities by which an appli-
cation is gradually migrated and refined.

Fig. 1. Migration transition graph.

A migration transition graph provides a generic migration plan based on situations
and possible migration patterns. The graph nodes are current architectural configura-
tions and edges are migration patterns. The directed nature of the graph shows
sequencing of patterns. Since multiple edges can enter a node, the model is able to
represent many candidate plans. There are initial and target architectures, but also
intermediate application architectures. Migration plans are triples <source config,
pattern, target config> that correspond to a migration step to achieve the target con-
figuration from a specific configuration following a particular pattern. Note that one
path from the source configuration (current on-premise application architecture) to the
target (multi-cloud application architecture) will be chosen.

Table 1 shows the patterns base as a mapping of migration patterns and concerns
for which they are suitable. These patterns can be used to form a plan (see Fig. 1). This
mapping is used to narrow down the related patterns and we can select the final pattern
by comparing the situation through the “benefit” part in the pattern template. The
selected patterns can be integrated based on the presence/absence of overlaps between
patterns. The flexibility of this approach is restricted only by the set of available
migration patterns. The patterns can be extended over time, e.g., by integrating a new

14 P. Jamshidi et al.

Table 1. Cloud migration pattern selection.

[Objective | MPL [MPZ [MP3 | MP4 | MPS | MPG | MP7 | MP8 | MP9 | MPL0 | MPLL | MP12 | MP13 | MPL4 | MPL5 |
x X S SR

Time to market o= ® O
New capabiftes x - - -
Reduce operational cost - - ® - - - - x x @
Leverage investments o O = = = | © o © b ¢ b ¢ b ¢
Free up on premise resources
Scalability ® - - - @) © - - -

Operational efficiency - - - -

solution to new problems. For a more detailed description of the assembly-based
approach, see the supplementary material [11].

6 Case Study and Validation

The usability of the migration patterns shall be evaluated through a case study. We use
a sample migration project based on our work with Microsoft Azure as a PaaS cloud for
illustration and validation. This project acts as a representative for a range of migrations
we examined (and for the latter two categories also implemented). These include
several CRM systems (e.g., larger configurations based on commercial products),
online retail solutions and services utilizing cloud storage solutions. Usability refers to
the suitability of the pattern set to provide options and facilitate staged migration plans.
Thus, we need to demonstrate the utility of all patterns, but also that the set is suffi-
ciently complete to model a range of cases.

Context. A financial services company decides to migrate in-house applications to the
cloud. It uses Microsoft technologies, but it also has legacy systems deployed on
UNIX. Some applications have external ports, while others are exclusively for internal
use. The importance of the applications ranges from marginal to critical. A significant
portion of the IT budget is spent on maintaining applications with marginal importance.

Challenges. New applications take long for deployment, causing problems with
adapting to changes. For any application, requirements must be analyzed, procurement
processes must be initiated and networks must be configured. The infrastructure is used
inefficiently. The majority of servers are underutilized. It is difficult to deploy new
applications with the required SLA to the existing hardware. Applications in a public
cloud platform can take advantage of economies of scale and have automated processes
for managing.

Concerns. An objective is to improve the user experience. Some applications vary in
usage (e.g., used once every two weeks, like salary-wages, but rarely at other times).
They would benefit from the cloud-based increased responsiveness during peak times.
A second objective is to expand ways to access applications. Applications located in
the public cloud are available over the Internet, but authentication concerns exist.
A third goal is portability, i.e., it can be moved between a cloud and a private data

Cloud Migration Patterns: A Multi-cloud Service Architecture 15

center without modification to application code or operations. Furthermore, a tractable
migration plan is essential.

Application. The migration starts with the Expense application. This allows
employees to submit and process expenses and request reimbursements. Employees
can tolerate occasional hours of downtime, but prolonged unavailability is not
acceptable. Most employees submit expenses within the last days before the end of
each month, causing high demand peaks. The infrastructure for the application is scaled
for average use only. The application is deployed on-premise. It requires high volume
storage because most stored receipts are scanned.

Active
_~-7] Directory [\
g S

- 1 ~

Expense
System

3

H
H
i H
E - H H
- H H
User Brofile ' Y H Cloud
¢ $ | < @ Ofldn |
1t
On-premise Platform Cloud Platform

Fig. 2. Application architecture before migration to the cloud.

Browser

Integration Payment
Service System

Users

Expense is an ASP.NET application. It uses Windows authentication for security.
To store user preferences, it relies on ASP.NET profile providers. Exceptions and logs
are implemented with Enterprise Library’s Exception Handling Application Block and
Logging Application Block. It uses Directory Service APIs to query data. It stores
information on SQL Server. Receipts are stored in a file system. The architecture is
illustrated in Fig. 2.

The Migration Plan. The existing servers, networks, and associated systems such as
power supply and cooling are managed by the company. We present a set of migration
steps and decisions made to reach a tractable migration plan by adopting the presented
patterns.

Step 1. Move the application to a cloud platform unchanged providing infrastructure
reliability and availability. Management costs for running the hosted operating
system and OS licenses must be considered, but development costs can be
reduced as applications do not need to be refactored. Migration patterns MP1,
MP3, MP4 suit, of which MP1 was selected, because only copy-as-is to the
cloud without need for environmental services required.

Step 2. An alternative is to adapt Expense to run as hosted on a platform by an
external partner. This would avoid costs of porting the application to a dif-
ferent system and reduces management cost. There is work involved in
refactoring the application to run in cloud-hosted roles. MP5-MP11 can be

16 P. Jamshidi et al.

selected. Since the user profiles were to be kept on-premise. Pattern MP6 was
selected because there was no need for any interface adaptation (as in
MP7-MP9) or multi-cloud deployment (as in MP10 and MP11).

Step 3. Abandon the own payment application and rent a typically more generic cloud
service, which needs to be evaluated regarding security, performance, and
usability. MP12, MP13, MP14 suit, but a need to integrate Expense with a
Payment service, favors MP13.

Step 4. For an external hosting decision, data storage facilities offered by cloud
platforms are required. Expense requires a relational database system and
NoSQL storage to store receipt images. MP12 was selected as Azure SQL and
Storage offerings meet requirements.

Step 5. Remote applications need to be integrated with other cloud services and
on-premise for data access and monitoring. A systems operation or authenti-
cation tool could be used for monitoring, requiring remote services to be
integrated. MP7, MP8, MP9, MP12, MP13, MP14 can be selected. Due to a
need for some adaptations, MP14 was selected.

Step 6. Although only employees use Expense, the payment sub-system also used by
other applications must always be available. MP10, MP11 can be selected, but
if the development of failover rebinding is to be avoided, a broker as in MP11
is utilized (e.g., to deploy the payment system on Amazon and keep a mirror
on Azure to route requests in case of failure).

Step 7. Value-added services from the cloud such as caching can maximize perfor-
mance when retrieving data or can cache output, session state and profile
information MP3 was selected to accommodate these environmental services
of the cloud provider.

____________________ T
= :
”, Directory ~\\\
- ~

2 i H
Integration
Service

ul Expense
H System
H

_ 7
N z
Users . /
I T N T el Blob g
H
H N A 4 RN A
1 Scan . P
H <,
H | Event Log | Service . s i
H

7
p
H
H
H
User Brofile |
L H - S % v
i 1 N, g
H e H
1 / ', H
L > \Vc)_f] _Azure
<2 Queue % S Storage

vy T N L N

Azure SQL
éCompute '(_éNetwork é O -
1t |

{ oy)
[1

icate

thenti

T L
On-premise Platform Windows Azure Platform

Ay
<

Fig. 3. Application architecture after migration to the cloud.

Migration Path. A possible migration path is presented below. The result is the
architecture in Fig. 3. The migration steps are illustratively represented in [11].
Depending on the concerns of an organization, different combinations of hosting, data

Cloud Migration Patterns: A Multi-cloud Service Architecture 17

store and cloud services are possible. For example, MP1 step 1 follows a gradual
migration by adopting the hosting approach, but uses SQL Server hosted in a VM
before moving to an Azure SQL Database. Using MP3 instead would take advantage of
storage capabilities (table/blob storage) and caching instead of relational databases to
improve performance early rather than late.

Migration Requirement Chosen

step patterns

1 Minimal code changes to application and familiarity with MP1
platform

2 Granular control of resource usage and opportunity for MP6

auto-scaling

3 Lower cost although some limitations on feature availability | MP13

4 Replacing on-premise storage with cloud offerings MP12

5 Integration with cloud utility services MP14

6 Highly available service replacement MP11

7 Better user experience, improved efficiency, and load MP3
leveling

Discussion. For the migration plan we had different requirements, but were able to find
a satisfactory patterns solution. Thus, the requirement satisfaction in this case is
achieved and met by the proposed patterns [8]. Technically, we can only conclude that
the migration patterns are complete and useful for all situations arising from the use
case. However, we have analyzed and considered other migration, e.g., different
TaaS/PaaS/SaaS migration processes [5]. The storage refactoring options relating to
relational, table and blob storage, particularly addressed by patterns MP1 and MP3, are
specifically addressed in [12]. This paper highlights the re-architecting options that
advanced PaaS clouds offer, but also shows that while in this paper quality concerns
such as scalability or availability are covered, their quantification and a trade-off
analysis with cost aspects is not covered. Often, which specific paths are chosen is
driven by more in-depth quality concerns. Our solution focuses on functional archi-
tecture aspects and only includes quality and cost concerns qualitatively.

7 Related Work

We conducted a review [1] aiming to identify, taxonomically classify, and systemat-
ically compare the existing research focused on planning, executing, and validating
migration of legacy systems towards cloud-based software based on earlier architecture
evolution work [13]. We found a lack of repeatable and verifiable practices as one of
the key reasons that cloud migration is not a fully mature domain. In the context of the
Cloud-RMM migration framework [1], our work here can be categorized as a contri-
bution to migration planning.

Cloud migration approaches range from decision making to enabling legacy soft-
ware migration with approaches reporting best practice, experience and lessons

18 P. Jamshidi et al.

learned in between. Decision making for cloud adoption (e.g., [14]) is inherently
complex and influenced by multiple factors such as cost and benefits through migration
[15]. In contrast, some approaches enable the actual migration of legacy software in
terms of procedures and model transformation (e.g., [16]). Some other work reports on
lessons learned and best practices [17] — providing empirical evidence for migration
research.

A number of migration strategies and best practices have been suggested in terms of
patterns in [18-20]. These are rather informal and do not consider a multi-cloud setting.
The objective there was mainly classification of existing best practice into migration
strategies. The key advantage and novelty of our work, more than a set of patterns, is
the notion of assembly-based situational migration at the architecture level, specifically
towards pattern-based migration planning for multi-cloud deployment. It enhances the
state-of-the-art by a tractable planning approach based on composable patterns.

8 Conclusion and Outlook

We identified cloud migration patterns, which in combination allow planning the
migration of applications for multiple cloud platform deployment. The introduction of
migration patterns complements existing migration practices and allows for an engi-
neering approach towards constructing and evaluating the migration plan. The
migration patterns are reusable and composable architectural change patterns that we
see as building blocks of an overall migration process, reflected through a migration
plan as a sequence of pattern applications.

Future work will include the development of a migration pattern repository as a tool
that facilitates migration planning as well as application of the patterns to new domains
and migration cases. To demonstrate the usability and completeness of the patterns
beyond business-oriented SaaS and standard PaaS-level services such as storage,
currently we are in the process of evaluating others for migration planning in three
cases with our industry partners. We also plan to formally represent the relations
between migration patterns in order to form a pattern map and work toward a pattern
language for migration practices.

Acknowledgments. The research work described in this paper was supported by the Irish
Centre for Cloud Computing and Commerce (an Irish national Technology Centre funded by
Enterprise Ireland and the Irish Industrial Development Authority) and the Royal Irish
Academy/Royal Society International Cost Share Grant IE131105.

References

1. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review. IEEE
Trans. Cloud Comput. 1(2), 142-157 (2013)

2. Armbrust, M.: Above the clouds: a Berkeley view of cloud computing (2009)

3. Khadka, R., Saeidi, A., Idu, A.: Legacy to SOA evolution: a systematic literature review. In:
Migrating Legacy Applications (2012)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

Cloud Migration Patterns: A Multi-cloud Service Architecture 19

Wilder, B.: Cloud Architecture Patterns. Oreilly, San Antonio (2012)

Pahl, C., Xiong, H., Walshe, R.: A comparison of on-premise to cloud migration approaches.
In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135,
pp. 212-226. Springer, Heidelberg (2013)

Fehling, C., et al.: Cloud Computing Patterns. Springer, Berlin (2014)

Tran, V., Keung, J., Liu, A. Fekete, A.: Application migration to cloud. In: SECLOUD 2011
(2011)

Gholami, F., Sharifi, M., Jamshidi, P.: Enhancing the OPEN process framework with
service-oriented method fragments. Soft. Syst. Model. 13, 361-390 (2011)

Mirbel, 1., Ralyté, J.: Situational method engineering: combining assembly-based and
roadmap-driven approaches. Requir. Eng. 11, 58-78 (2006)

Grozev, N., Buyya, R.: Inter-cloud architectures and application brokering: taxonomy and
survey. Softw. Pract. Exp. 44(3), 369-390 (2014)

Jamshidi, P., Pahl, C.: Cloud migration patterns - supplementary materials (2014). http://
www.computing.dcu.ie/ ~ pjamshidi/Materials/CMP.html

Gamma, E., et al.: Design Patterns: Elements of Reusable Object-Oriented Software.
Pearson, New York (1994)

Jamshidi, P., Ghafari, M., Ahmad, A., Pahl, C.: A framework for classifying and comparing
architecture-centric software evolution research. In: 17th European Conference on Software
Maintenance and Reengineering CSMR 2013, pp. 305-314. IEEE (2013)

Frey, S., Hasselbring, W., Schnoor, B.: Automatic conformance checking for migrating
software systems to cloud infrastructures and platforms. J. Softw. Evol. Process 25, 1089—
1115 (2013)

Misra, S.C.: Identification of a company’s suitability for the adoption of cloud computing
and modelling its corresponding return on investment. Math. Comput. Model 53, 504-521
(2011)

Frey, S., Hasselbring, W.: The cloudmig approach: model-based migration of software
systems to cloud-optimized applications. Int. J. Adv. Softw. 4, 342-353 (2011)
Andrikopoulos, V., Binz, T., Leymann, F., Strauch, S.: How to adapt applications for the
cloud environment. Computing 95(6), 493-535 (2012)

Wilkes, L.: Application migration patterns for the service oriented cloud (2011). http:/
everware-cbdi.com/ampsoc

Mendonca, N.C.: Architectural options for cloud migration. Computer 8, 62—-66 (2014)
Fehling, C., et al.: Service migration patterns - decision support and best practices for the
migration of existing service-based applications to cloud environments. In: ICSOC (2013)

http://www.computing.dcu.ie/%7epjamshidi/Materials/CMP.html
http://www.computing.dcu.ie/%7epjamshidi/Materials/CMP.html
http://everware-cbdi.com/ampsoc
http://everware-cbdi.com/ampsoc

2 Springer
http://www.springer.com/978-3-319-22884-6

Service-Oriented Computing - ICSOC 2014 Workshops
WESDA; SeMaP5s, RMS0C, EASA, ISC, FOR-MOVES, CCSA
and Satellite Events, Paris, France, November 3-8,
2014, Revised Selected Papers

Toumani, F.: Pernici, B.; Grigori, D.; Benslimane, D.;
Mendling, J.; Ben Hadj-Alouane, N.; Blake, B.; Perrin, O.;
Saleh, I.; Bhiri, 5. (Eds.)

2015, X0, 430 p. 137 illus., Softcover

ISBM: 978-3-319-22884-6

	Cloud Migration Patterns: A Multi-cloud Service Architecture Perspective
	Abstract
	1 Introduction
	2 Background
	3 Research Methodology
	4 Cloud Architecture Migration Patterns
	5 Assembly-Based Situational Architecture Migration
	6 Case Study and Validation
	7 Related Work
	8 Conclusion and Outlook
	Acknowledgments
	References

