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Abstract. As spatial locality leads to advantages of computation speed-
up and sequence reuse in molecular computing, molecular walkers that
exhibit localized reactions are of interest for implementing logic compu-
tations. We use molecular spiders, which are a type of molecular walk-
ers, to implement logic circuits. We develop an extended multi-spider
model with a dynamic environment where signal transmission is trig-
gered locally, and use this model to implement three basic gates (AND,
OR, NOT) and a mechanism to cascade the gates. We use a kinetic
Monte Carlo algorithm to simulate gate computations, and we analyze
circuit complexity: our design scales linearly with formula size and has
a logarithmic time complexity.

Keywords: Molecular spiders · Logic circuits · Parallel evaluation ·
Localized signal transmission

1 Introduction

Molecular walkers are synthetic molecular machines inspired by natural biolog-
ical motors. Previous studies [4,7,9,11,13] have shown that walkers can move
directionally and autonomously on a pre-programmed track via localized reac-
tions. Spatial locality can overcome the challenges of computation speed-up and
sequence reuse in molecular computing where all the reactants diffuse freely in
a mixed solution [2,5]. Hence, a walker system with inherent spatial locality has
potential to perform more complex computational tasks. We investigate the com-
putational power of a walker system by using it to implement scalable logic cir-
cuits.

We consider a molecular spider system, where a spider is a type of molecular
walker. Molecular spiders [1,11,12] with varying number of legs move stochasti-
cally on a surface formed by sites containing DNA segments, and present biased
behaviors due to different reactions with fresh sites (catalytic cleavage) and
visited sites (dissociation). We extend previous models [1,11,12] to implement
three basic logic gates (AND, OR, NOT), and cascade the gates to construct
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logic circuits. We use multiple spiders in the model, and we assume spiders
behave unbiasedly with equal transition rates to all sites. Sites are divided into
normal sites that are non-alterable and functional sites that can be altered via
catalytic cleavage and/or strand displacement. We can encode signals into func-
tional sites. Signal transmission [5,6] is triggered locally when a spider interacts
with a signal-carrying site, which dynamically changes the state of the spider
or of the environment. We call this extended system an active molecular spider
system.

In our design, each variable is represented by a moving spider that has two
legs and one arm. The arm has two possible states, 0 or 1, representing the
boolean value of the spider. Each gate is represented by a layout of different
sites on a 2D lattice. In a single gate, spiders with different values will take
different paths from their input locations. We arrange different functional sites on
different paths, such that only the spider with the correct computation result will
be directed to the output location via interactions between spiders and functional
sites. On reaching the output location, a spider reports the computation result,
and we call this spider the reporting spider. We cascade logic gates by connecting
them such that only the reporting spider leaves the upstream gate and enters
the downstream gate. We design a mechanism for exit from gates to implement
gate cascades that allow parallel evaluation. As an example, Fig. 7 shows a logic
circuit where input spiders X and Y are initially placed at the input locations
of two NOT gates, and the NOT gates are connected to the same AND gate via
exit mechanisms. Spiders move within the circuit, and the spider reaching the
output location reports the computation result.

Molecular circuits using DNA Strand Displacement [8] in a well-mixed solu-
tion use relatively high and low concentration of a species to represent Boolean
values 1 and 0, or use two separate species in a dual-rail encoding. Here, we
use spiders with arm state 1 or 0 to represent Boolean values, thus we remove
potential ambiguity from result reporting. Since Boolean values are carried by
spiders moving from an upstream gate to a connected downstream gate, all gates
are designed individually, thus, modularity is ensured. Previous work on teth-
ered circuits [2,5] also ensures modularity and unambiguity, but takes a different
approach where Boolean values are represented by the existence of a sequence.
Modularity is ensured by spatially isolating different gates on a surface, e.g.,
a DNA origami tile such that only gates in close proximity can interact with
each other.

Previous work [3] has used a walker system to construct logic circuits with
spatial locality, but it lacks modularity and is limited to sequential evaluation
due to its design where the circuit constructed is in the form of a Binary Decision
Diagram (BDD). A walker initially placed at the root node walks along a path
unblocked by externally-added strands to reach a leaf node representing True
or False, causing a fluorophore change to report the computation result. For
practical reasons, this reporting strategy needs two parallel circuits that detect
fluorophore change at the True nodes and False nodes respectively to avoid
ambiguity. Our design uses the reporting spider to avoid reporting problems [3],
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and we support parallel evaluation. As a result, to evaluate an m-clause 3-CNF
circuit, we need time O(log m) while the circuit [3] needs time O(m). We use
the same linear space complexity O(m) as in the circuit [3], and it is easier to
construct large circuits using our design because of its modularity.

Using an extended active multi-spider system, while keeping the advantages
related to spatial locality, our design ensures modularity, unambiguity, and scal-
ability. We will describe the model in Sect. 2, and introduce how to construct
the logic circuits in Sect. 3 with simulation results and complexity analysis.
A formal definition of the model is given in Sect. 4. We give conclusions and
discuss current challenges and future work in Sect. 5.

2 Model Description

Our long-term goal is to realize the circuits we describe here with a physical
implementation based on molecular spiders [4,7]. Therefore, our model draws
from the existing models of molecular spiders [9,11] and extends them to describe
the richer functionalities of the walkers we hope to build. In spite of these exten-
sions, we will use the evocative term “spider” throughout the paper.

A molecular spider has a body and three limbs, two legs and an “arm”, which
it can use to attach to chemical sites on a surface. There is exclusion: at most
one limb can be attached to a given site at a time. Different types of sites are
laid out on a square lattice, Z2. A set of contiguous sites can form a track on
which the spiders can move.

We model a spider’s body as a single point, and the limbs as having equal
length. This leads to the following postulated “hand-over-hand” gait [9]: at any
given time, exactly two limbs are attached to the surface, and they are attached
to nearest-neighbor sites. We call the sites a limb has bound to the attachment
points. There are always two attachment points for each spider, and they are
adjacent to each other. A moving step occurs when a spider detaches one of
its limbs from an attachment point p ∈ Z

2, and attaches to a site p′ ∈ Z
2.

Figure 1 shows a transition step of a spider where there are four reachable sites
that the spider can potentially transit to. However, a spider might not attach
to a reachable site because whether a reachable site is available depends on the
state of the site and of the limb, which will be discussed in Sects. 3 and 4. When
multiple spiders are moving on the track, one spider cannot attach to a site
occupied by another spider.

Spiders move stochastically on the track, interacting with the normal sites.
If they attach to functional sites, signal transmission is triggered locally between
two adjacent sites, or between a site and the spider attached to it. Changes to the
sites and spiders may happen during a step, which is crucial in the construction
of a logic circuit. In the next section, we will explain how to use different sites
to construct three basic gates (AND, OR, NOT) and cascade them to construct
a logic circuit.
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Fig. 1. A spider has limb l1 and limb l2 attached to the surface. When limb l1 detaches
from the left attachment point, four sites represented by the black dots are reachable
for limbs l1 and l3. The arrows show the transitions of a spider to other sites via
hand-over-hand movement.

3 Logic Circuit Construction

Each spider represents a Boolean variable. The value of the spider is indicated
by its arm state, which is either 0 or 1. A logic circuit is formed by cascades
comprising the basic logic gates (AND, OR, NOT). This combination of logic
gates is complete for Boolean logic. A logic gate is an arrangement of different
sites on a square lattice, including an output location and input locations. When
spiders begin moving from the input locations, their interactions with the sites
lead to changes to the sites and the spider values, which ends with one spider
reaching the output location, and the value of this spider represents the com-
putation result of the logic circuit. In this paper we do not concern ourselves
with the issues of placement and routing of circuits in the plane, which are well
studied in electronic circuit design.

3.1 Normal Sites and Functional Sites

We define the set of site types as S = Snorm ∪ Sfun, where the normal sites
Snorm = {sl, s1, s0} are non-alterable and the functional sites in Sfun are alter-
able. A normal site of type sl binds to a spider’s leg, and is used for the “wires”
of a logic circuit. Sites of type s0 and s1 bind to the spider’s arm if it has type
0 or 1, respectively. Sites of type s0 and s1 are placed at the beginning of two
separate paths that branch out from a junction, directing a spider with different
values to different paths (Fig. 2).

The junction design is used in the constructions for all gate types. Each
logic gate has a set of functional sites placed on the paths branching out from
the junction. After the spiders take their own paths at the junction according
to their values, they will encounter different functional sites. The interactions
between the spiders and the functional sites cause changes to the spider and the
sites, directing one spider to the output location, reporting the result of the gate
computation.

Before going to the details of each gate, we first introduce some important fea-
tures of functional sites. (1) A functional site has a state among {on, off, trapped}.
The spider can bind to an “on”-state site, cannot bind to an “off”-state site, and
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Fig. 2. If a spider has an arm type of 1, it binds to site s1 at a junction. If a spider
has an arm type of 0, it binds to site s0 at a junction. Here a spider X = 1 follows the
upper path by attaching to site s1. It cannot follow the lower path.

cannot leave a “trapped”-state site by itself. (2) A functional site may or may not
trap a spider. When it traps a spider, the site’s state becomes “trapped”. (3) A
functional site may contain a signal of “turning on/off” or “switching to 1 or 0”.
The signal held in a functional site is sent out once it is attached by a spider. When
a spider attaches to a site holding a signal, the signal “turning on/off” is sent to
another site, setting its state “on” or “off”; the signal “switching to 1 or 0” is sent
to the spider, changing its value to 1 or 0. When a functional site sends out its
signal, it has no signal remaining. Signal transmission is allowed between a site
and a spider that is attached to the site, or between two sites that are adjacent to
each other. These features could be implemented via DNA strand displacement.
We will discuss the AND and OR gate designs in Sect. 3.2 and the NOT gate design
in Sect. 3.3.

3.2 Designs of the AND and OR Gates

We use three types of functional sites st, sp, and su in the designs of the AND
gate and OR gate. Site st can trap the spider attaching to it, so we place a
site st at the output location of the gate. The AND gate and OR gate each
has two input spiders initially located at the two input locations, which are
two junctions as shown in Fig. 2. Each input spider selects one of two possible
paths when computation begins, where one path leads to the output location
without any functional sites and the other path is merged into a crossroad in
the middle of the lattice. We place an initially “off”-state site sp at the heart of
the crossroad, which blocks the central path from the crossroad to the output
location. We place a site su adjacent to site sp, which will send a “turning-on”
signal to unblock site sp when a spider attaches to it, and trap that spider at
the same time. The cooperation between sites su and sp guarantees that only
when both spiders meet at the crossroad can a spider take the central path to
the output location.

Figure 3 shows the layout of the AND gate and OR gate. We explain how the
AND gate works under four possible input assignments, and the OR gate follows
a similar design. In the AND gate, the two input spiders X and Y are initially
placed at two junctions as their input locations. When spiders X and Y are
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both 0, they both take the path starting with site s0, which leads to the output
location without any functional sites. In this case, whichever spider reaching the
output location has value 0, reporting the result of 0∧0 is 0. When spider X = 0
and spider Y = 1, spider Y takes the path starting with site s1, and gets stuck
at the crossroad because site sp is “off”. Spider X takes the path starting with
site s0, and will eventually reach the output location, reporting the result of 0∧1
is 0. When spider X = 1 and spider Y = 0, spider X gets to the crossroad via
the path starting with site s1, and gets trapped at the crossroad due to the sites
st and su placed on that path. Spider Y is the only spider that can reach the
output location in this case, reporting the result of 1∧0 is 0. When both spiders
are 1, they meet at the crossroad. Site sp is turned on by the signal sent from
site su, so spider Y can take the central path leading to the output location.
Since spider X is trapped at the crossroad, only spider Y can reach the output
location, reporting the result of 1 ∧ 1 is 1.

Following a similar design, the layout of the OR gate is shown in Fig. 3. When
both spiders are 0, they meet at the crossroad. Spider X is trapped on sites st
and su, and spider Y takes the unblocked central path to the output location,
reporting the result of 0 ∨ 0 is 0. Under other input assignments, the 0-valued
spider takes the path to the crossroad and gets stuck there, only the 1-valued
spider can reach the output location, reporting the result of 1 ∨ 0, 0 ∨ 1, and
1 ∨ 1 is 1.

The movement of the spiders can be modeled as a continuous-time Markov
process. We used a kinetic Monte Carlo algorithm to simulate gate computations.
For each gate, under different assignments, we investigate the computation time
using 10, 000 iterations in each simulation. We assume the transition rate (the
rate that a spider limb transits from one site to another) of each spiders is 1.
Simulation results for the AND gate and OR gate are shown in Fig. 4. In the AND
gate or OR gate, under a certain input assignment, the computation time follows
a long-tailed distribution because spiders move stochastically. The computation
time is the time spent on traversing the path taken by the reporting spider that
reaches the output location; it is influenced by factors such as the transition rate
or the length of the path. These factors have been discussed in previous work
[10,11], so we do not focus on them in this paper.

3.3 Design of the NOT Gate

We use five types of functional sites in the NOT gate design. As is shown in the
layout of the NOT gate in Fig. 5, site st which can trap a spider that attaches
to it is placed on the output location. Sites s1→0, s

I
r , s

II
r and sites s0→1, s

I
r , s

II
r

form two different switch mechanisms SW1→0 and SW0→1 that are laid on two
separate paths. The NOT gate has one input spider which is initially placed
at a junction as the input location. Two separate paths branch out from the
junction: one is taken by the 1-valued spider and contains mechanism SW1→0

that can change the spider value to 0, the other is taken by the 0-valued spider
and contains mechanism SW0→1 that can change the spider value to 1. When a
spider moves through a switch mechanism, its value is switched and its backward
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Fig. 3. The layout of the AND gate and OR gate. Three functional sites st, sp, and
su used in the designs of these two gates are listed in the middle column. Normal site
s1 can only bind to an 1-valued spider and normal site s0 can only bind to a 0-valued
spider. In the AND gate, when both spiders are 1, they meet at the crossroad in the
middle. Spider X gets trapped at sites st and su, site su sends a “turning-on” signal to
unblock site sp, allowing spider Y = 1 to take the unblocked central path from site sp
to the output location. Under other input assignments, the 1-valued spider gets stuck
at the crossroad, so only the 0-valued spider can reach the output location. Therefore,
the AND gate yields 1 when both spiders are assigned 1, and yields 0 in all other
cases. Similarly, in the OR gate, when both spiders are 0, they meet at the crossroad
in the middle and only spider Y = 0 can reach the output location. Under other input
assignments, the 0-valued spider gets stuck at the crossroad, so only the 1-valued spider
can reach the output location. Therefore, the OR gate yields 0 when both spiders are
assigned 0, and yields 1 in all other cases.

route is cut off. We explain how mechanism SW1→0 works with a 1-valued spider
as an example; mechanism SW0→1 works analogously.

Mechanism SW1→0 is formed by three neighboring functional sites along the
horizontal direction: s1→0, s

I
r , s

II
r . We use a staging transition diagram in Fig. 5

to describe how mechanism SW1→0 changes a 1-valued spider to be 0, and cuts
off the backward route of the spider. A stage transition shows the change of the
spider’s location, value or the site states. At stage (1), all sites are “on” initially.
Site s1→0 can trap a spider, and contains a “switching to 0” signal that will
be sent to its left site when a spider attaches to it. Therefore, when a 1-valued
spider attaches to s1→0, it is trapped and receives the signal changing its value
to 0, causing a transition to stage (2). At stage (2), since the limb trapped at
site s1→0 cannot move back, the spider could only move forward by attaching to
site sIr that traps the spider and sends out a “turning off” signal to its left site.
When site s1→0 receives that signal and turns itself “off”, we get to stage (3).
At stage (3), the limb trapped on sIr cannot move back, the spider could only
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Fig. 4. The computation time distributions for the AND gate and the OR gate under
four possible input assignments. Each curve in one gate represents a time distribution
under one assignment. The vertical line indicates the mean value of computation time
under one assignment in the simulation. The standard deviation for each curve is shown
in the legend.
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Fig. 5. The layout of gate NOT is shown in the figure. The function of mechanism
SW1→0 is to switch a spider’s value from 1 to 0 and cuts off its backward route. We
show how mechanism SW1→0 works in a staging transition diagram, where the spider
value is expressed as X and the state of each functional site is shown above it.

move forward by attaching to site sIIr that sends a “turning off” signal to its left
site. When sIr receives that signal and turns itself “off”, we get to stage (4). At
stage (4), the limb on sIr can transit to a normal site on the right of sIIr , while
the limb on sIIr cannot move back to s1→0 which is “off”. The spider could only
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Fig. 6. The computation time distributions for the NOT gate under two possible input
assignments.

move forward to get to stage (5). At stage (5), sites sIr and sIIr are “off”, the
spider cannot walk back. When a spider goes through these 5 stages, its value is
switched and its backward route is cut off. The mechanism SW0→1 comprising
s0→1, s

I
r , s

II
r follows similar staging transitions, the only difference being that a

0-valued spider becomes 1 in the stage transition (1) to (2).
Figure 6 shows the computation time distributions for the NOT gate. The

distribution curves for the two input assignments are long-tailed and alike, which
is due to the symmetric path design for the 1-valued spider and the 0-valued
spider.

3.4 Gate Cascades

To construct a large logic circuit, we need to cascade logic gates of the three
kinds defined in Sects. 3.2 and 3.3. A wire w connecting an upstream gate and
a downstream gate is composed of continuous normal sites sl. To ensure that
the spider that reaches the output location exits the upstream gate and never
goes back to it, we place two additional sites sIr and sIIr after site st on the
output location, forming an exit mechanism which cuts off the backward route
of a spider that moves through it.

The mechanism exit follows similar staging transitions to mechanism SW1→0

shown in Fig. 5. It consists of three neighboring functional sites along the hor-
izontal direction: st, s

I
r , s

II
r . We explained the functionality of site sIr and sIIr

at the end of Sect. 3.3. Site st is designed to trap the spider. Therefore, a stag-
ing transition diagram for mechanism exit is similar to the one shown in Fig. 5,
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Fig. 7. A logic circuit: (¬X ∧ ¬Y ). The input locations of each gate are highlighted
in grey. Spiders X and Y exit the NOT gate, becoming spider ¬X and ¬Y after
passing through the exit mechanisms. The AND gate computation begins whenever a
spider enters the AND gate. The spider reaching the output location of the AND gate
represents the computation result ¬X ∧ ¬Y .

with the only difference that the spider value is unchanged throughout the five
stages. For a downstream gate with two inputs, its two input spiders may arrive
at different moments. Computation of the downstream gate begins when either
input spider enters the gate, and the asynchronous arrival of input spiders will
not influence the computation accuracy of the gate.

Figure 7 illustrates a simple logic circuit implemented by cascading two NOT
gates as the inputs to an AND gate. The output location of each NOT gate is
connected to an input location of the AND gate via the exit mechanism. Spider
X and spider Y start to move in the two NOT gates concurrently. When the
two spiders move out of the NOT gate, their backward routes are cut off due
to the exit mechanisms, and they have their values changed to ¬X and ¬Y .
When either spider enters the AND gate, gate computation begins, yielding the
result ¬X ∧ ¬Y eventually. The computation time of this logic circuit is shown
in Fig. 8. In all simulation runs, the output spider produced the correct output
value.

3.5 Complexity Analysis

In a single gate, the computation time tgate is the traversal time of the spider
that reaches the output location. Since the spider moves on the track stochas-
tically, the computation time tgate is a random variable following a long-tailed
distribution, as shown in Figs. 4 and 6.

When a spider leaves a gate or enters a gate, its backward route is cut off
due to the functionality of the exit mechanism, so we can use the computation
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Fig. 8. The computation time distribution for the logic circuit (¬X ∧ ¬Y ) under four
possible input assignments.

time of a single gate tgate to estimate the computation time t of a circuit. For
any n-variable boolean function, we can transform it into 3-CNF, which is a
conjunction of m clauses, each a disjunction of at most three literals. Since our
design allows parallel evaluation, for a clause mi = (li1∨ li2∨ li3), the computation
time of mi is

tmi
≤ 2 × (tOR + tNOT) = O(1).

Since each clause needs time tmi
, to evaluate m clauses in parallel, we conduct

log m AND gate computations that cost tAND × log m, and in total use time

t = tAND × log m + tmi
= O(log m).

For any boolean function in 3-CNF with m clauses, we use at most 3m spiders
to represent the literals. For each clause, we need at most three NOT gates and
two OR gates if all the literals are the negation of a variable, which is a constant
number. For m clauses, we need m − 1 AND gates. Therefore, the total space
complexity is O(m). Hence, our circuit designs are scalable because circuit size
in our design scales linearly with formula size, and evaluation time is logarithmic
in the formula size.
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4 Formal Definition of the Model

The active molecular spider system is modeled as a continuous-time Markov
process where the state transitions depend on the interactions between the mole-
cular spiders and the sites on the track. We first define the site types and tran-
sition rules of alterable sites, and then give a formal definition of the model.

4.1 Site Types and Transition Rules

Sites are categorized into normal sites and functional sites. A normal site s ∈
Snorm = {sl, s0, s1} has no state. Site sl binds to the spider’s leg. Sites s0 and
s1 bind to the spider’s arm if it has type 0 or 1, respectively.

A functional site s ∈ Sfun has a state of “on”, “off” and “trapped”. The site
state transition diagram is:

A spider limb can only attach to an “on”-state site. An “off”-state site is
non-alterable. The limb trapped on a “trapped”-state site cannot leave the site
by itself. Whether a site can trap a spider is indicated by TR ∈ {0, 1}: a site
with TR = 1 will trap a spider when a limb attaches to it. A functional site may
change the spider’s value, or the state of another site, by sending out a signal
to the spider or another site. We define

signal = (val, d) or null, where d ∈ Z
2 and val ∈ {on, off, trapped, 1, 0}. (1)

Suppose a functional site is located at (x, y). If it holds a signal = (val, d =
(dx, dy)) then it sends the signal to the location (x+dx, y+dy), setting the state
of the site located there, or the spider’s value, to val. When d = (0, 0), the val
field of the signal is either 1 or 0, which is sent to the spider, setting the spider’s
value to 1 or 0.

Therefore, we can define a functional site s ∈ Sfun as

s = (state, TR, signal). (2)

The signal held in a site is sent out once a spider limb attaches to the site.
When a signal is sent out, the site has no signal remaining, which we express as
s = (state, TR, null). A functional site s = (on, null) is equivalent to a normal
site, which is non-alterable. Once a signal is received by a site or a spider, the
site state or the spider’s value is changed according to the signal.

In the logic circuit construction, we use two functional sites su and sp in the
AND gate and OR gate, and we design a set of functional sites that form different
mechanisms in the NOT gate and the gate cascades. Table 1 gives the definitions
of these functional sites and the transition rules applied to them. A functional
site s transits to site s′ in the second column, either by receiving a signal or
being attached by a spider limb. If s holds a signal, it causes other changes in
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Table 1. Definition of different functional sites used in the circuit construction and
the transition rules applied to them. Suppose the location of the site is (x, y), define
(x′, y′) = (x + dx, y + dy).

Transition rules

Functional site Updated site Other changes

st = (on, 1, null) s′
t = (trapped, 1, null)

s1→0 = (on, 1, (0, (0, 0))) s′
1→0 = (trapped, 1, null) A = 0

s0→1 = (on, 1, (1, (0, 0))) s′
0→1 = (trapped, 1, null) A = 1

sIr = (on, 1, (off, d)) sI
′

r = (trapped, 1, null) site at (x′, y′) becomes off

sIIr = (on, 0, (off, d)) sII
′

r = (on, 0, null) = sl site at (x′, y′) becomes off

su = (on, 0, (on, d)) s′
u = (on, 0, null) = sl site at (x′, y′) becomes on

sp = (off, 0, null) s′
p = (on, 0, null) = sl

when a “turning-on” signal is received

the last column. In Table 1, the updated site s′ in the second column is either a
normal site or a trapped site. According to the site state transition diagram, a
trapped site can only transit to a “off”-state site that is non-alterable by itself.
Since no signals are designed to turn on these “off”-state sites transited from
the trapped sites, these “off”-state sites are non-alterable finally. Therefore, all
the functional sites in Table 1 are alterable initially and become non-alterable
finally. The functional sites used in our design are

{st, s1→0, s0→1, s
I
r , s

II
r , su, sp},

where each site s among them includes its site transitions under the transition
rules described in Table 1. The set of site types is S = Snorm ∪ Sfun.

A mechanism is a set of neighboring mechanism sites along the same direc-
tion. We design three different mechanisms used in the logic circuit construction.
The switch mechanism SW1→0 (SW0 → 1) contains sites s1→0(s0→1), sIr , s

II
r ,

where site sIr , sIIr contains the signal of (off, (−1, 0)) which can block its left site.
When a spider moves over the switch mechanism, its value is flipped, and its
backward route is cut off. The exit mechanism contains sites st, s

I
r , s

II
r . When a

spider moves over this mechanism, its backward route is cut off.
When a spider limb leaves a site, this limb can reach 4 sites geometrically

(shown in Fig. 1). Since sites have different types, wether a site is available for a
limb of a spider depends on the spider value and the site types. Given a spider with
value A and a site, algorithm check summarizes how to tell if the site is available.

Using Algorithm 1, we examine every site among the 4 sites shown in Fig. 1,
putting those available into a set A V .

4.2 Model Definition

The active multi-spider system with normal sites and alterable sites can be mod-
eled as a continuous-time Markov process. We define the state of the model as

X = (S1, S2, . . . , Sn, E), (3)
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Algorithm 1. Algorithm check tells if a given site is available.
• if the site is occupied by another spider, it is not available.
• else:

1. if the site is a normal site:
(a) if the site is sl, it is available;
(b) if the site is s1 and A = 1, it is available;
(c) if the site is s0 and A = 0, it is available;

2. else if the site is a functional site:
(a) if the site is s1→0 and A = 1, it is available;
(b) if the site is s0→1 and A = 0, it is available;
(c) if the site is “on”-state, it is available;

3. else, the site is not available.

where Si = (Pi, Ai) (1 ≤ i ≤ n) describes the state of the i-th spider. Set
Pi = (pia, p

i
b) contains attachment points for the i-th spider, and Ai ∈ {0, 1}

represents the Boolean value of the spider. The lattice configuration E : Z2 → S
shows the layout of different sites, where S is the set of site types. Normal sites
can be regarded as having state “on”, TR = 0 and no signal, so we can redefine
the lattice configuration as

E : Z2 → {on, off, trapped} × {1, 0} × S,

where S represents the set of signals.
Given a model state X = (S1, S2, . . . , Sn, E) at time t, if a limb leaves an

attachment point p ∈ Pi ∈ Si, we use the algorithm check to obtain a set of
available sites A V . At time t + δ, this limb transits to p′ ∈ A V , changing the
set of attachment points to P ′

i = Pi − {p} ∪ {p′}. We use the transition rules to
update Ai, so we have S′

i = (P ′
i , A

′
i). The transition rules also updates E, thus

the new state is

X ′ = (S1, S2, . . . , Si−1, S
′
i, Si+1, . . . , Sn, E′).

5 Conclusions and Discussions

Using an active multi-spider model with spider cooperation and localized signal
transmission, we have implemented the basic logic gates (AND, OR, NOT). We
have shown how to implement gate cascades, in which each upstream gate Gu

is connected to a downstream gate Gd using the exit mechanism. We use O(1)
types of spiders and sites. To evaluate an n-variable Boolean function that is
in 3-CNF with m clauses, the evaluation time is O(log m) and the size of the
circuit is O(m). Therefore, our design supports scalable computation and ensures
spatial locality. Molecular circuits with spatial locality overcome the challenges
of computation speed-up and sequence reuse in molecular computing in a well-
mixed environment, but there are still other issues. Compared with previous
work [2,3,5], our design better addresses the following issues:
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Geometrical Layout. Molecular circuits with spatial locality arrange different
computing components on a 2D plane where the distance between different com-
ponents should be set carefully to avoid interference across components. Reduc-
ing the number of gates used in a circuit can ease the geometrical layout problem.
Our design implements a NOT gate to avoid dual-rail logic conversion used in
previous work [2,5], which simplifies the circuit and its layout. Compared with
the circuit [3] in a form of BDD where the layout of different branching paths
requires appropriate angles and lengths, our design only considers connections
between gates because each gate has a fixed layout.

Data Encoding. In previous work, variable representation is encoded into the
circuit [2,3,5], so each variable corresponds to a distinct sequence. This compli-
cates sequence design if the circuit has a large number of variables. Our design
separates variable representation from circuit design, only using two types of
spiders placed at different input locations to represent all variables.

Circuit Reusability. Tethered circuits [2,5] use irreversible local signal trans-
mission to implement logic computation and value propagation, so the circuit is
not reusable. The circuit [3] adds external strands to unblock a path for an eval-
uating walker. This procedure irreversibly changes the circuit configuration, thus
the circuit is not reusable. In our design, irreversible local signal transmission
is used to control the spiders’ behavior at a few locations in the circuit, which
only occupy a small portion of computation. Since non-alterable sites form the
majority of the circuit, most parts of the circuit are reusable.

We lack an experimental implementation of our designs, thus here we use a
simulator that simulates the circuit at the site level, assuming spiders have equal
transition rates to all sites. We are working on an implementation where normal
sites are short DNA strands so that molecular spiders can attach to or detach
from the normal sites freely, and functional sites transmit signals to neighboring
sites via strand displacement. For example, we can encode a signal in the loop
(inactive part) of a hairpin structure. Once a spider attaches to the hairpin
structure, the loop is opened so that the exposed domain can react with other
neighboring sites, transmitting the signal encoded in the opened loop to other
neighboring sites. In the future, we will complete a plausible implementation and
focus on a simulator that can better reflect how different sites react with spiders
according to that implementation.

Since spiders move bidirectionally on the track, we can use this feature to
solve some interesting problems. For example, it may be possible to construct
a feedback loop that can be used to solve a SAT problem automatically where
the spider that does not satisfy the formula can go back to switch its value.
In the current model, molecular spiders can probe, walk, and change their own
states and the state of the environment. These behaviors of the molecular spiders
can be extended for complex intracellular tasks, e.g., we can use the molecular
spiders to replace natural motors. In the future, we will explore applications of
our design, as well as the possibility of implementing it in the laboratory.
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