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Abstract. It is now more than 15years since Copeland and Proud-
foot introduced the term hypercomputation. Although no hypercomputer
has yet been built (and perhaps never will be), it is instructive to con-
sider what properties any such device should possess, and whether these
requirements could ever be met. Aside from the potential benefits that
would accrue from a positive outcome, the issues raised are sufficiently
disruptive that they force us to re-evaluate existing computability theory.
From a foundational viewpoint the questions driving hypercomputation
theory remain the same as those addressed since the earliest days of
computer science, viz. what is computation? and what can be computed?
Early theoreticians developed models of computation that are indepen-
dent of both their implementation and their physical location, but it
has become clear in recent decades that these aspects of computation
cannot always be neglected. In particular, the computational power of a
distributed system can be expected to vary according to the spacetime
geometry in which the machines on which it is running are located. The
power of a computing system therefore depends on its physical environ-
ment and cannot be specified in absolute terms. Even Turing machines
are capable of super-Turing behaviour, given the right environment.

1 Introduction

The term hypercomputation refers to the study of physical or abstract systems
which are potentially capable of behaviours which cannot be simulated by recur-
sive means. The term was introduced by Copeland and Proudfoot ([2]) as a more
accurate replacement for the term ‘super-Turing’ used by Stannett ([13-15]) and
Siegelmann ([12]) to describe certain types of putative hypercomputational sys-
tem. Although no hypercomputer has yet been built (and perhaps never will be),
it is instructive to consider what properties any such device should possess, and
whether these requirements could ever be met.

Computers are physical devices whose possible behaviours are constrained
and described by physical laws. The answers to the questions what can be com-
puted? and what can be computed quickly? therefore depend on ones theory
of physics and the properties of physical materials. Moreover, because physical
devices exist in space and time, their computational power can depend both on
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when and where they are located. In particular, spacetime structures can boost
the power of computational systems, but can also constrain and reduce their
power. Similarly, an algorithm’s run-time complexity is not an absolute prop-

erty but depends on the spacetime trajectory being followed by the machine(s)
on which it is running.

1.1 Geometrical Boosting of Computational Power

A well-known strategy for boosting computational power is to exploit the proper-
ties of Malament-Hogarth (M-H) spacetimes [3]. These are spacetimes containing
a point p and a future-pointing semi-infinite worldline w not passing through p,
such that every point  of w can be joined to p by a future-pointing timelike
path which has finite proper length (Fig.1). We refer to the pair (w,p) as an
M-H structure in what follows.

The following lemma shows that all X9 and ITY sets become decidable in
M-H spacetime using just two Turing machines, provided they can communicate
at least once.

Lemma 1. Let S be any set in X9 or II?. Then S can be decided in M-H
spacetime by a system comprising two computers capable of communicating once.
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Fig. 1. Temporal structure of a hypercomputation using an M-H structure (w,p). In
this example, we solve the Halting Problem in constant time using two communicating
Turing machines. Machine A sends the program to machine B, and then travels to the
M-H event p. Machine B, moving along w, runs the program and if it ever halts it
sends a message to p saying so. On reaching p, A looks for the message. It is present
at p if and only if the program halted.
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Sender Receiver
y = 0;
while (travelling along w) { result = true;
while ( R(n,y) ) { y = y+1; } travel to p;
transmit (result = false) to p; wait 1 second;
halt ; return result ;
}

Fig. 2. The programs Sender (running on Ts, which is capable of sending at most one
message to Receiver) and Receiver (running on Tr, which is capable of receiving and
acting upon at most one message from Sender) co-operate to decide the undecidable
set S in the context of an M-H structure (w,p). The two machines are initially co-
located at some point on the worldline w. The 1-second delay is to avoid ambiguity
as to whether Receiver returns result before or after executing Sender’s assignment
instruction at p.

Proof. We show that any S in IT{ can be decided in M-H spacetime (the X9 case
follows by complementarity). Since S is in II{ we can write S = {z | Vy.R(z,y)},
where R is recursive. To decide whether n € S, we run the programs Sender and
Receiver shown in Fig. 2.

Suppose n € S, i.e. =Vy.R(n,y). Then there exists some y for which the test
R(n,y) fails. Let ymin be the smallest such y. Then

— The machine Tg travels along w, a trajectory which allows it infinite execution
time (since it has infinite proper length). Consequently, Sender eventually
encounters and fails the test R(n,Ymin), transmits the instruction “result =
false” to p (along a trajectory of finite proper-length), and terminates.

— Recewver sets result to true, then travels to p where it encounters and executes
the instruction sent there by Sender setting result to false. It waits one second
and then returns the value of result, i.e. false.

Now suppose conversely that n € S. Then

— Sender never exits the loop testing R(n,y) and never issues the instruction
setting result to false. It runs forever without terminating (its trajectory along
w ensures that this is possible).

— Receiver sets result to true and travels to p. After waiting one second it
returns the unchanged initial value of result, i.e. true.

In either case, the system eventually returns a value, and the value returned
correctly reports whether or not n € S. O

Lemma 1 shows that spacetime geometries can boost computational power,
and that this does not require the introduction of ‘unphysical’ constructs like infi-
nite precision observations or new types of machine. The machines used for this
hypercomputation are simply Turing machines — indeed, Receiver is so simple
that Ty could arguably be replaced by an essentially trivial 2-state automaton
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with no loss of power to the system as a whole. Notice, however, that a sin-
gle machine acting alone cannot exploit the boosting effect of M-H structures,
because this relies on splitting the system into two parts, one of which can run
forever in a period of time that appears finite to the other. Notice also that
spacetime geometries can be considerably more complicated than those consid-
ered here, and that structures can be envisaged which allow decidability at all
levels of the arithmetic hierarchy [6] and beyond [18].

1.2 Geometrical Reduction of Computational Power

Spacetime geometry can also constrain and reduce computational power. For
example, consider a computer traversing a closed timelike curve (CTC) or ‘time
loop’. Suppose the computer’s clock shows that each circuit of the CTC is long
enough for it to execute N instructions. Since the computer and all of its compo-
nents return to their initial spacetime locations (and hence their initial machine
states) after every N instructions, the number of steps executable by a CTC-
traversing Turing machine is necessarily bounded, and all CTC-located programs
must be reversible [16]. Indeed, it is only possible to run a fully controlled pro-
gram if the temporal length of the CTC is an exact integer multiple of the
program’s runtime, since it will not otherwise return to its initial state on com-
pletion of each circuit.

1.3 Geometrical Effects on Computational Complexity

The possibility of M-H spacetimes also has implications for computational com-
plexity. A simple adaptation of the distributed computation outlined in Lemma
1 allows the result produced by any program to be obtained within a fixed time
period, viz. precisely one second longer than it takes Receiver to reach p. In M-H
spacetimes, all programs have constant run-time complexity. (Similarly, CTCs
can be use to transmit results ‘into the past’, thereby allowing program results
to be obtained more quickly than would otherwise be the case.)

Notice, however, that this requires us to refine our notions of complexity
slightly. The program itself may have arbitrarily large complexity, but it is run-
ning on the machine Sender which is not responsible for reporting the program
output. Instead, this is reported by Receiver in constant time. In relativistic
settings, it is essential to identify carefully which components in a distributed
system are deemed responsible for generating the final system output.

2 Modelling Relativity Theory in Isabelle/HOL

Since a spacetime might potentially contain a combination of ‘normal’ regions,
M-H structures and CTCs, the question “what can be computed” has no absolute
answer but depends on local and global geometric properties, the number of
machines available, their relative spacetime trajectories during computation, and
the availability of suitable communication channels. This is a question we would
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like to investigate in more detail, but we are hampered by the informal yet
detailed nature of many proofs in relativity theory (and physics in general). The
issue is particularly relevant because the black hole observed at the centre of
our own galaxy Milky Way is potentially of the right type to be a habitat for
M-H structures [4], and while such structures are obviously beyond our current
technological capabilities to exploit, the mere possibility of their existence is
enough to warrant a re-evaluation of the extent to which abstract computability
and complexity theory give an accurate account of what is actually possible in
the physical universe.

In 2012 we joined forces with researchers at the Rényi Institute of Mathe-
matics in Budapest, who have spent many years developing versions of relativity
theory expressed in first order logic — our goal is to express the Hungarian theo-
ries in Isabelle/HOL [9] so as to allow machine-assisted investigation of various
key hypotheses concerning the possibilities for computation and hypercomputa-
tion in relativistic physics [17]. In this section we briefly describe the Hungarian
approach, and show how it can be translated with relative ease into machine-
readable form.

2.1 First-Order Relativity Theory

The approach adopted by Andréka, Németi and the Hungarian team is to for-
mulate a collection of related relativity theories in first-order logic (FOL), using
axioms that are as simple and transparent as possible [1]. Our own starting point
is the translation of the Hungarian axioms and theorems into machine-readable
format suitable for use with the Isabelle/HOL proof assistant [9].

For example, special relativity is represented as a theory SPECREL based on
just four physical axioms:

— AXPH (Photon Axiom)
Each inertial observer considers the speed of light to be positive, and the same
in every spatial direction. Moreover, photons can be emitted in or arrive from
any spatial direction.

— AXEvV (Event Axiom)
All observers inhabit the same universe, i.e. they consider the same events to
take place (though possibly at different locations or times).

— AXSELF (Self Axiom)
Inertial observers consider themselves to be stationary.

— AXSYM (Symmetry Axiom)
Whenever observers consider two events to be simultaneous, they agree as
to the spatial distance between those two events — this allows observers to
calibrate their rulers relative to one another.

The underlying theory has two basic sorts: quantities and bodies. Quantities
are used to express distances and times, and are assumed to satisfy the axioms
of a field. Bodies in SPECREL include inertial observers and photons, which are
identified by predicates, e.g. IObs(b) is true if and only if body b is an inertial
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class Lines = Quantities + Vectors + Points

begin
fun space2 :: "(’a Point) = (’a Point) = ’a" where
"space2 u v
= (xval u - xval v)*(xval u - xval v)
+ (yval u - yval v)*(yval u - yval v)
+ (zval u - zval v)*(zval u - zval v)"
fun time2 :: "(’a Point) = (’a Point) = ’a" where

"time2 u v = (tval u - tval v)*(tval u - tval v)"

Fig. 3. Spatial and temporal distances are defined as properties of lines, and are used
to calculate the speeds needed to move from one spacetime location to another. The
class Lines is one of several classes bundled together to form the background context
class SpaceTime which defines the geometrical structures needed to describe spacetime.
These include quantities, vectors, points, cones, straight lines and planes.

observer, and likewise Ph(b) indicates whether b is a photon. Central to all of
the Hungarian versions of first-order relativity theory is the worldview relation,
W, where W (m, b, x) means that observer m considers body b to be present at
location x.

These constructs are generally sufficient to allow the axioms to be speci-
fied. For example, we can use the field axioms to define functions space? and
time? giving the (squared) spatial and temporal distances between two space-
time events (Fig.3). Recalling that TOb(m) means “m is an inertial observer”,
these in turn let us write AXPH as

I0b(m) — (Fv.((v > 0) A (Vay.(
Bp-(Ph(p) AW (m, p,x) AW (m, p,y)))
< (space® xy = (v *v) * (time? zy))))))

In words: each inertial observer is associated with a positive speed v with the
property that whenever any photon is considered by m to pass through two
spacetime locations x and y, the (squared) speed associated with the straight
line joining these points is v2.

The translation into Isabelle/HOL format is now straightforward, viz.

class AxPh = WorldView +
assumes
AxPh:"I0b(m)
= (Fv. ( (v > (0::’a)) A(Vxy . (
(3p. PhpAWDDP XAWDDP y))
«—— (space2 x y = (v * v)*(time2 x y))

NN
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record Body =
Ph :: "bool"
I0b :: "bool"

class WorldView = SpaceTime +

fixes
(* Worldview relation *)
W :: "Body = Body = ’a Point = bool" ("_ sees _ at _")

Fig.4. A body can be a photon and/or an inertial observer. We do not require that
the body should only be one or the other, because this is a theorem that can be proven
from the axioms. The worldview relation is a predicate defined on two bodies and one
location, and introduces the notation a sees b at x as a more intuitive rendition of
W a b x. It inherits basic definitions from the class SpaceTime.

This is an essentially verbatim translation of AXPH. It assumes that various
WorldView constructs of Fig.4 are in place, including the inherited definitions
of space2 and time2.

Two other first-order variants of relativity theory are also relevant here. The
theory ACCREL represents a kind of halfway-house: bodies can be accelerated
(non-inertial), but we do not as yet include Einstein’s Equivalence Principle
relating acceleration to gravity. Adding an axiom representing the latter leads
to GENREL, the first-order theory of general relativity. The use of the record
construct in Isabelle/HOL is especially useful in this context, as it allows us
to extend some of our definitions very easily. When reasoning in SPECREL, for
example, we assume that bodies are either photons or inertial observers. When
we come to define ACCREL we can simply extend the Body record to include a
third predicate for non-inertial observers, without having to re-work our earlier
proof that bodies cannot be both photons and inertial observers. (Alternatively,
as long as we avoid introducing a fourth type of body we can identify non-inertial
observers semantically — they are bodies b for which I0b b and Ph b are both
false.)

Choosing the axioms as simple as possible allows us to investigate the extent
to which different axioms can be weakened without losing physical realism. For
example, while AXPH says that each observer considers the speed of light to
be constant, there is no assumption that different observers agree as to what
this speed is (this is instead proven as a theorem). Similarly, there is no axiom
declaring the sets of photons and inertial observers to be disjoint; this is another
theorem. On the other hand, the drive for simplicity is not without cost. For
example, the reader may be wondering why AXPH refers to the squared speed
of light. This is because FOL is not powerful enough to characterise the field
R of real numbers; there are fields which satisfy precisely the same first order
theorems as R but which admit infinite values and infinitesimals [5,10]. Simi-
larly, R satisfies various additional field axioms that are not always needed for
the theorems we wish to prove; in particular we do not generally assume the
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Euclidean axiom (that all positive quantities have square roots) because, as
AxPH shows, we can redefine concepts using squared values instead. The ques-
tion naturally arises, which number fields can be used when modelling relativity
theory? Madardsz and Székely argue that the answer depends on the underly-
ing axiom system used to capture each particular version of relativity theory,
and have demonstrated that an axiom system for special relativity can even be
defined over the field Q of rationals [7]. Taking such considerations into account
can add significantly to the work involved in stating theorems and developing
their proofs.

Nonetheless, the approach has several advantages from a computational point
of view. Consider, for example our Isabelle/HOL description of basic spacetime
constructs. This is a 836-line file giving definitions, axioms and proofs relating to
quantities, vectors, points, lines, planes and cones. This file took approximately 4
person-weeks to construct and verify, but now that it is in place the sparse nature
of our assumptions and constructs means that relatively little additional work is
required when moving from the special (SPECREL) to the accelerated (ACCREL)
or general (GENREL) first-order theories of relativity. The main difficulty lies not
in translating the underlying axioms and theorems, but in generating verifiable
proofs.

2.2 Generating Verifiable Proofs

Automated theorem provers are extremely useful tools, but they are also unfor-
giving. For example, in our proof of Lemma 1 we wrote the XY case follows by
complementarity, assuming that the reader would have sufficient mathematical
competence to infer the following argument:

— if S'is a XY set, it can be written S = {z | Jy.R(x,y)} for some recursive
predicate R.

— this can be rewritten S = {z | =Vy.—~R(x,y)}.

— this is the complement of the set S’ = {z | Vy.—R(z,y)}.

— the predicate R’ = —R(x,y) is recursive because R is recursive.

— consequently S’ = {z | Vy.R/(z,y)} is a II} set.

— consequently (as proven) S’ is decidable in M-H spacetime.

— and hence S = N\ 5’ is decidable in M-H spacetime.

Seen in this way, it is clear that the phrase follows by complementarity conceals
a significant amount of detailed reasoning, and all of this reasoning would need
to be expressed in machine-readable form if we were to attempt a machine-
verification of our proof.

As our machine verification of the SPECREL theorem “no observer can travel
faster than light” reveals, this problem of abbreviated reasoning is just as pro-
nounced when discussing proofs relating to physical theories. Indeed, the bulk
of the work involved choosing sensible descriptions of what we mean by geomet-
rical terms like line, plane and cone. For example, while a mathematician would
accept that two lines that are both parallel to a third line must be parallel to
each other, this required detailed proof within Isabelle/HOL (Fig.5).
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lemma lemParallelTrans:
assumes "lineA \<parallel> lineB"
and  "lineB \<parallel> lineC"

and "direction lineB \<noteq> vecZero"
shows  “"lineA \<parallel> lineC"
proof -

have casel: "direction lineA = vecZero \<longrightarrow> ?thesis" by auto
have case2: "direction lineC = vecZero \<longrightarrow> 2thesis" by auto
assume case3: "direction lineA \<noteq> vecZero \<and> direction lineC \<noteq> vecZero"
have exists_kab: "\<exists>kab.(kab \<noteq> (@::'a) \<and> direction lineB = kab**direction lineA)"
by (metis parallel.simps assms(1l) case3 assms(3))
then obtain kab where kab_props: "kab \<noteq> @ \<and> direction lineB = kab**direction lineA" by auto
have exists_kbc: "\<exists>kbc.(kbc \<noteq> (@::'a) \<and> direction lineC = kbc**direction lineB)"
by (metis parallel.simps assms(2) case3 assms(3))
then obtain kbc where kbc_props: "kbc \<noteq> @ \<and> direction lineC = kbc**direction lineB" by auto
def kac \<equiv> "kbc * kab"
have kac_nonzero: "kac \<noteq> @" by (metis kab_props kac_def kbc_props no_zero_divisors)
have "direction lineC = kac**direction lineA"
by (metis kab_props kbc_props kac_def lemScaleScale)
hence ?thesis by (metis kac_nonzero parallel.simps)

from this have "(direction lineA \<noteq> vecZero \<and> direction lineC \<noteq> vecZero) \<longrightarrow>
?thesis” by blast

thus 2thesis by (metis casel case2)
qed

Fig. 5. Isabelle/HOL proof that if two lines are both parallel to a third line, then they
are also parallel to each other.

Having constructed all of the ‘background’ theory, translating the Hungar-
ian proof that observers cannot travel faster than light into Isabelle/HOL form
became a relatively straightforward — though still extremely time consuming —
process of writing down the major steps in the proof, and then carefully filling
in every possible gap in the reasoning until complete verification was achieved.

3 Next Steps

Although we have had promising results modelling SPECREL, including the first
known machine verified proof of the statement “no observer can travel faster
than light”, the time involved in constructing these proofs means we have yet
to make comparable progress developing Isabelle/HOL verification systems for
theorems in ACCREL or GENREL. Our ultimate goal is to provide indisputable
proof of the conjectures:

Conjecture 1. Computation in standard Fuclidean spacetime means Turing
computation.

Conjecture 2. Computation in M-H spacetimes verifiably includes super-Turing
computation.

However, verifying these conjectures formally adds an additional layer of
complexity, because they introduce a new factor not normally considered when
discussing relativity theory, namely the nature of computers and computations.
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In particular, as we saw in Sect.1.1 we need to capture within Isabelle/HOL
a first-order theory representing distributed computation occurring within M-H
spacetimes, and we envisage having to capture a localised variant of a theory at
least as complex as the w-calculus [8,11], since we need to discuss the properties of
systems comprising multiple spatially-separated mobile components. Moreover,
given the reliance of the schemes presented here upon the properties of M-H
structures like those occurring in certain types of spacetime singularity, we will
presumably also need to model what it means for a spacetime to contain a black
hole, what it means for that black hole to be rotating, what it means for that
rotation to be slow, and what it means for an entity to cross the event horizon.
These are all new concepts in the world of Isabelle/HOL proof construction,
and while we recognise that the task will require years rather than months to
complete, we remain ever hopeful of eventual success.
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