DDC: Distributed Data Collection Framework
for Failure Prediction in Tianhe
Supercomputers

Wei Hu'?, Yanhuang Jiangl(%), Guangming Liu"?, Wenrui Dong'*?,
and Guilin Cai'

! College of Computer, National University of Defense Technology,
Changsha, China
w-hu@qq. com, yhjiang@nudt. edu. cn,
{liugm, dongwr}@nscc-tj.gov.cn, cc_cai@l63. com
2 National Supercomputer Centre of Tianjin, Tianjin, China

Abstract. Reliability has become an issue to the Tianhe supercomputer series
with the scaling of the system. Proactive fault-tolerance based on failure pre-
diction turns into an effective way to improve the system’s fault tolerance
ability. Data collection is the basis of the failure prediction which has a great
impact on the prediction accuracy, while current data collection methods for
failure prediction only got limited data with large overhead. This paper presents
DDC data collection framework for failure prediction in Tianhe supercomputers.
DDC adopts a distributed data collection architecture which can fully collect the
data related to the compute nodes’ health with high efficiency. Through
the testing for DDC which ran on TH-1A, the results indicated that DDC had the
advantage of low cost and good scalability.

Keywords: Supercomputer - Failure prediction - Data collection method

1 Introduction

Reliability wall has been one of the main obstacles to the roadmap of supercomputers
toward Exascale [1]. Supercomputers typically have hundreds of thousands of com-
ponents, for example, Tianhe-2 supercomputer has 16,000 compute nodes, meaning a
total of 3.12 million compute cores. With the amount of components increasing
quickly, the MTBF (Mean Time Between Failure) of the system decreases from days to
hours [2]. Therefore, for long-running parallel applications it becomes difficult or
impossible to complete without confronting failures on supercomputers. MPI (Message
Passing Interface) which is the main parallel pattern of scientific applications uses
message passing mechanism which could cause the entire application failure as long as
one process failing, and this is becoming a major performance impediment for su-
percomputers due to the work loss.

Checkpoint/Restart(CPR), a typical passive fault-tolerance technology, is currently
the most common fault-tolerance method which periodically stores all the compute
nodes status and recovers from the failure through the rollback approach after the

© Springer International Publishing Switzerland 2015
Y. Chen et al. (Eds.): APPT 2015, LNCS 9231, pp. 18-32, 2015.
DOI: 10.1007/978-3-319-23216-4_2

DDC: Distributed Data Collection Framework 19

failure’s occurrence [3, 4]. However, owing to the shorter MTBF and mismatched I/O
performance compared to the larger scale of supercomputer computing systems, the
significant performance loss of CPR is non-trivial, and this may cause new perfor-
mance problem with larger systems toward exscale computing.

Proactive fault-tolerance technology which can predict the system failure using
prediction model and take protection measures with low overheads in advance is now
becoming a new research hotspot. Prediction model is the key of the proactive
fault-tolerance technology, meanwhile the prediction accuracy determines the avail-
ability of the whole proactive fault-tolerance system. The prediction model based on
data driven is suitable for large-scale systems and has good accuracy. So the funda-
mental problem is to obtain the system status data related to failure which are used for
the prediction model.

To deal with the problem which MTBF decreasing rapidly in Tianhe supercom-
puters, we are trying to establish a proactive fault-tolerance system in which data
collection for failure prediction is an important part. This paper presents a Distributed
Data Collection Framework (DDC) to solve the data collection problems in large-scale
systems. The paper is structured as follows. Related work is provided in Sect. 2.
Section 3 presents the multiple data sources combined prediction model and the DDC
design in Tianhe-1A. Section 4 gives the evaluation of DDC and Sect. 5 draws the
conclusions and outlines our future work.

2 Related Work

Currently the data which the failure prediction model uses fall into two types: one is the
RAS-based (Reliability, Availability, and Serviceability) log data which the super-
computer monitor system provides; the other is the compute node hardware status data
and running status data.

RAS log data collected by the monitor system are the records of the RAS related
events that occur across the machine. These data include hard errors, soft errors,
software problems and machine checks. The researchers of Rutgers University and
IBM company [5-7], Lan research team [8—10], Oliner research team [11-13] and
some other researchers [14—17] built failure prediction model based on RAS log data.
RAS data which record the system hardware and software events have two flaws:
firstly, RAS data are incomplete due to the event logging mechanism which cannot
record the full-time status variation of the hardware and software, and this may lead to
false negatives. Secondly, owning to the complexity of the system, the definitions of
log events cannot be completely accurate which are easy to produce false positives.
Based on the above reasons, the accuracy of the failure prediction model based on RAS
data is limited due to the characteristics of the RAS data themselves.

The compute node hardware status data include hardware temperature, voltage, fan
and power related status data. Scott [18], Nagarajan [19] and Rajachandrasekar [20] did
the research on the failure prediction model using the hardware status data through
IPMI (Intelligent Platform Management Interface). The compute node running status
data typically refer to the CPU, memory, network and I/O-related status data, such as
CPU load, memory usage, network statistics, /O bandwidth and so on. Since most

20 W. Hu et al.

compute nodes of supercomputer are isomorphic on which running are the similar
scientific applications, so the data obtained from the compute node operating system
may reflect the health status of the nodes. Sahoo [11] proposed failure prediction model
using data sets consisted of log records and the compute node running status data. The
research of failure prediction model using the compute node running status data is not
so much due to the difficulties on data collection. Existing cluster monitor tools like
PARMON [21], Ganglia [22] and Ovis-2 [23] have the function of data collection
which cannot meet the actual needs owing to the small number of data attributes,
nontrivial collection overheads.

From the present research it is easy to find that the data used for failure prediction
for supercomputers have the following characteristics which are the motivations for the
DDC development.

e One-sidedness: The existing data collection methods are mostly committed to
collect the data of a particular aspect of the system which cannot accurately reflect
the overall status of the target system.

e Discreteness: Data used now for failure prediction are discrete and bursty, which
cannot fully record the status of the computing system and significantly affect the
prediction accuracy.

e High Overhead: The overheads of data collection mainly consist of three parts, CPU
overhead, network overhead and storage overhead. CPU overhead can be ignored
due to the little CPU overhead itself versus to more powerful CPU performance. But
with the increasing scale of the supercomputer, network overhead and storage
overhead are the true blocks to the data collection.

3 The DDC Design

3.1 Tianhe Supercomputer Series

DDC was designed for Tianhe supercomputer series which were developed by National
University of Defense Technology. This series of supercomputers including Tianhe-1,
Tianhe-1A and Tianhe-2, are typical MPP (Massive Parallel Processing) systems which
have the same features as follows.

e Using accelerator/co-processor technology. Tianhe-2 is using Intel Xeon Phi pro-
cessors to speed up computation while Tianhe-1A, upgraded from Tianhe-1, is
using NVIDIA GPUs to accelerate computation.

e Proprietary high-speed interconnection network. Tianhe supercomputer series adopt
high-radix Network Routing Chips (NRC) and high-speed Network Interface Chips
(NIC) to implement proprietary network protocol based on fat-tree topology.

e Parallel file system based on Lustre. Tianhe-1A uses the Lustre file system as the
parallel file system while Tianhe-2 adopts H2IO(Hybrid and Hierarchy I/O stack)
based on Lustre and I/O nodes.

e Monitor system based on dedicated Ethernet.

DDC: Distributed Data Collection Framework 21

DDC applies to all Tianhe supercomputers which have the similar architecture. This
paper describes DDC in Tianhe-1A supercomputer which can also run in Tianhe-2 by
parameter configurations. Figure 1 shows the Tianhe-1A architecture in detail. There
are 140 cabinets in Tianhe-1A, including 112 compute cabinets, 8 service cabinets, 6
communication cabinets, and 14 I/O cabinets. Each compute cabinet contains 4 com-
pute frames and each frame contains 16 compute nodes.

Framie
)
Monitoring]| N
i

ﬁ

~

Diagnostic
System

Interconnection
Communication System

Fig. 1. Tianhe-1A architecture

3.2 Multiple Data Sources Combined Prediction Model

The failure prediction model which is the key of the whole proactive fault-tolerance
system has obstacles in acquiring the valid data related to the health status of the
compute nodes, and this can be solved by the DDC framework.

Based on the architecture of the Tianhe supercomputer series, this paper presents
the multiple data sources combined prediction model as the Fig. 2 shows. This pre-
diction model has two tiers. The first tier includes two different real-time prediction
models which provide real-time failure prediction respectively. The second tier pro-
vides the intelligent prediction model based on the results from the first tier in order to
give the optimal prediction results. All these models are based on the data collected
from the system as the figure denotes. This paper focuses on the data collection method
for failure prediction, the prediction models will be detailed in another paper.

3.3 An Overview of the DDC Design

Data collection which is the foundation of the entire procedure of failure prediction has
two functions: The first is to provide data set for the training of prediction model, where
the training data set includes not only the initial training set in the establishment phase
of prediction model but also the incremental data set in the upgrade phase of prediction
model. The second is to provide real-time data to prediction model for real-time failure
prediction.

22 W. Hu et al.

Real-time

prediction A
I

Tier 2

DDC /
Data [

ES collector . |

preprocessing A ||

Evaluation
and
optimization

/Predictive™,
- failure_~

Combined
Prediction

7 Actual

e .
N failure_~

/" Actual ™
),

FS collector I
T

Opimization

Collector
Manager

Configuration

Evaluation
and
optimization

% RS collector %»{ D B}—»{ Data Set B H—»{ Online learning B H ﬂ
: : "'libréryB—/

‘ Real-time
prediction B

Fig. 2. Multiple data sources combined prediction model. DDC provides the data for the failure
prediction model

Figure 3 presents an overview of the design of DDC framework. The DDC
framework consists of collector manager, ES collector (collecting hardware status data
for compute node), RS collector (collecting running status data for compute node) and
FS collector (collecting failure state record for compute node).

DDC ES collector: collecting hardware
status data for compute node

Collector RS collector: collecting running
Manager status data for compute node

FS collector: collecting failure

Configuration
state record for compute node

Fig. 3. An overview of DDC framework. Besides configuration files DDC incorporates four
units, collector manager, ES collector, RS collector and FS collector

Collector Manager. Collector manager is used to control the operation of the entire
data collection system whose main functions are as follows:

e Basic control and configuration. Collector manager is used to start or end the data
collection, and configure operating parameters, such as data collection character-
istics, collection time interval, data store path and so on.

e Monitoring the operating state of each data collection module. Collector manager
periodically checks the logs of each data collection module to handle exception and
keep the modules running normally.

ES Collector. ES collector is used to collect and record the hardware status data for
compute node. These data mainly denote hardware status related to compute node

DDC: Distributed Data Collection Framework 23

which reflect the real-time physical status of the hardware components such as tem-
perature, voltage, current, fan speed and so on.

There is a dedicated Ethernet in the monitor system of Tianhe-1A which used for
system control and maintenance, whose central hardware is SMC (System Management
Controller). Each compute cabinet of Tianhe-1A is comprised of 4 frames, and each
frame which includes 16 compute nodes is equipped with one SMC as shown in Fig. 1.
SMC is not only responsible for internal monitoring of a frame but also provide
external access interface by using a fixed IP address.

ES collector is designed to collect the compute node hardware status data through
SMC in parallel using multiple threads based on dedicated Ethernet. As the Fig. 4
shows, ES collector has the following characteristics: firstly, it is efficient to collect all
the 16 compute nodes data through once access to the corresponding SMC using
client-server method. Secondly, the programming methods of TCP/IP socket and
multi-thread optimize the access efficiency, reduce the access overhead and avoid
making the manager node become a bottleneck. Thirdly, this method is fast and almost
no overhead to the applications running on the compute nodes due to using dedicated
Ethernet.

m Server
Client
Collect:
—>| Collector Thread |—»|
anager
¢ Client
ES Collector =) Collector Thread |—»

m Server

% Client
—» Collector Thread |—»

Fig. 4. ES collector collects the hardware status data for compute node using multiple threads
based on dedicated Ethernet

RS Collector. RS collector is designed to collect and record the compute node running
status data which is related to the system activity commonly referred to as SAR
(System Activity Report) data. SAR data are the status data and statistical data of all
parts of the system typically including CPU, memory, network, I/O and so on. Com-
monly compute nodes of supercomputer have the same configuration, therefore the
SAR data can effectively reflect the system running status of compute nodes in real
time.

With the increasing scale of the supercomputer, it means more overhead to collect
much data from more compute nodes through critical path like interconnection and
shared storage. Large scales of frequent data transmission and storage operations not
only consume the system performance, but also affect the system stability.

To solve this problem, RS collector adopts a distributed data collection architecture
which can greatly reduce the amount of data needed to be transmitted and stored. The
main considerations are as follows:

24 W. Hu et al.

e Every compute node has a data collection process which is responsible for data
collection, transmission and store.

e All of the compute nodes are divided into groups wherein the nodes probe each
other and collect data in the way like a one-way circular linked list. In any group
each node not only collects and stores its own data but also sends the data to the
next node in the linked list. In other words each node backups the t, time length
data of the previous node and the node itself in the linked list.

e The data set consists of two parts: When a node fails, the next node in the linked list
will transmit the backup data to the shared storage as the failure node status data.
The normal node status data are stored from the selected normal node according to
the configuration which is only a small part of all the normal status data.

e The prediction model based on the compute node running status data is sent to each
compute node to perform real-time failure prediction respectively.

Figure 5 shows the distributed architecture of the RS collector with the details
related to data collection method, data transmission and storing method. The dashed
lines represent the logical relationship of data transmission among the nodes, while the
solid line arrows are the actual physical data transmission path.

e e EeeTEe e
Collector . Lustre
Managerl:sll:gll:sll:sll:sll;ll:slg D%
O O O O O e B | O
Compute
Node

[Interconnection]

Fig. 5. RS collector collects the compute node running status data using distributed architecture

Data Collection. RS collector gets the running status data effectively through ana-
lyzing the/proc file system which is a virtual file system and part of the linux kernel./
proc provides a dynamic interface which can view the running information of the
operating system, such as process information, CPU information and so on. In order to
improve the efficiency of data collection and analysis, RS collector reads the/proc
related files in parallel and then integrates the data to a complete record. The data
collection interval of this way can be reduced to milliseconds with little overhead.

By analyzing the files or folders in the /proc of Tianhe-1A compute node such as
cpuinfo, slabinfo, uptime, net/, sys/, scsi/ and so on, the selected 136 data attributes
which are closely related to the node running status are collected.

Data Storing and Transmission. That is still a small probability event for the compute
node failure, so most of the data collected from the compute node are normal status
data which don’t need to transmit and store. For failure prediction model, a balanced
training set consists of approximately equal numbers of normal and failure status
records.

DDC: Distributed Data Collection Framework 25

RS collector uses a loop-based data storing and transmission method like one-way
circular linked list. This method can greatly reduce the network and I/O overhead since
it only transmits and stores the running status data of the failed compute node and little
data of normal compute node.

RS collector manager is used to configure and monitor the status of the running
status data collection including node grouping, joining, leaving and so on.

The compute nodes are divided into several groups wherein nodes are from dif-
ferent cabinets to avoid the same failure event like power outage and so on. Nodes in
the same group form a logical loop structure like one-way circular linked list through
sorting the nodes by id numbers. Let us use ;4 to denote the id number of each node,
and i, 1s the first node of the system. Suppose a is the grouping coefficient, so the
Ngroup (node grouping number) can be divided using the following formula:

NGrowp = (Tia — Tinitiar) o0t (1)

There are a total of 7168 compute nodes in Tianhe-1A supercomputer with initial
node id 0. Suppose that the grouping coefficient is 64, so the whole system is divided
into 64 groups and each group has 112 nodes when all the nodes are on line. In
Tianhe-1A each cabinet contains 4 frames with total 64 compute nodes, so the nodes in
each group are not in the same cabinet when the grouping coefficient is 64.

As shown in Fig. 6, the node collects the running status data and stores it in
duplicate for one copy locally in memory and another copy to the next node in the
loop. When a node fails or shuts down, the FS collector records the event and notifies
RS collector. RS collector performs deleting operation to notify the related previous
and next node to complete the node deleting operation and failure status data saving
operation. Figure 7 shows the procedure of a node receiving the data of the previous
node. If receiving data from previous node within the timeout limit, the node stores the
data in memory and waits for the next data transmission. If the data reception exceeds
the timeout limit, the node will probe the previous node by sending a message. The
abnormal signal will be sent to the FS collector or not according to the ACK reply. The
state of the abnormal node will be judged by the FS collector. If the node failure is
confirmed, the delete operation will be trigged. When a new node is added, RS col-
lector will perform inserting operation to update the relevant group list and insert the
node to the data collection loop.

FS Collector. FS collector is used to collect and record the failure state data of
compute node through integrating three kinds of data including RS collector alarm
data, SLURM (Simple Linux Utility for Resource Management) data and maintenance
staffs records.

RS collector alarm data denote to the abnormal signals which have been mentioned
in the last section. When one node probe the previous node without the ACK reply, the
node will issue the abnormal signal related to the previous node to the RS collector
manager. And this record will also be sent to FS collector.

SLURM is an open-source resource manager designed for Linux clusters which
provides a framework for starting, executing and monitoring work on a set of allocated
nodes. SLURM also records the node state variations including ALLOCATED,

26 W. Hu et al.

v

to collect and
save data

v

ok failurelof
-~ signal related to the

send dafa to the

<) next node and tell

_ next node, and new - “1 am fine” t
™ . /' s
Nﬁxt nodi ld/ - .

No
< tinter>tb+td\
S e
Yes //
w/ Yes

send all the data of
myself to the new next
node in the linked list
and tell “Tam fine”

collect

delete the data in |
td older than tb

Fig. 6. The flow chart of collecting and transmitting data between the node and the next node in
the loop

v

A
P

N
_receive the dzita\ N
/\oflhe previous >

_
~node tw<tour
b /

-

Yes

save the previous
node data

.
_receive the.

N
< ACK H

4 e tw<tou —

- - report suspicious

NN failure node to FS
tinter>tb tfi/ P collector
//
Yes X
: N | tramsmitthe
delete the data in No /// L Yes YA
td older than tb <_ Confirm? /FC) backup of failure
AN e status data

\[/
: No
receive "

A

A

Fig. 7. The flow chart of receiving data and failure node judgment between the node and the
previous node in the loop

DOWN, IDLE and so on. There is a problem that the node state which SLURM
recorded is not timely or completely accurate.

The staffs who maintain the machine record the compute node state accurately but
not timely. Based on the above, FS collector integrates the three methods to determine
the node state as the Table 1 shows.

DDC: Distributed Data Collection Framework 27

Table 1. Node state determination method of FS collector

RS SLURM Maintenance FS collector
collector staffs
Alarm Normal No Normal, if SLURM state of the node turned to
abnormal then change the node state to failure
Alarm Abnormal No Failure
Normal Abnormal No Normal, if the RS collector state of the node
turned to abnormal then change the node state to
failure
Any Any Abnormal Failure
Remark Abnormal states in SLURM includes DOWN(*) and ERROR(*), while others are
normal states.

4 Evaluation

This section focuses on the evaluations of DDC data collection framework. The
Tianhe-1A supercomputer which the DDC runs on is detailed in Table 2.

Table 2. Specifications of Tianhe-1A

Item Configuration

CPU Xeon X5670 6C 2.93 GHz

Compute nodes 7168

amount

Memory 229,376 GB

Interconnect Proprietary(optic-electronic hybrid fat-tree structure, point to point
bandwidth 160 Gbps)

Storage Lustre(Lustre*4, total capacity 4 PB)

Operating system
SMC amount
Data collection
interval

Kylin Linux
448
10°s

4.1 Hardware Status Data

Tables 3 and 4 show the data of ES collector collected from the sensors on the
components of Tianhe-1A supercomputer including fans, communication board of
frame (NRM), communication board of compute node (PDP), power supply, compute
node mainboard and so on.

28 W. Hu et al.

Table 3. Data collection from a single compute node

Attributes name Type Value | Unit
12V Voltage 1198 | V
Vbat Voltage 328 | V
ICH-1.5 V Voltage 1.52 | V
IOH-1.1 V Voltage 1.13 | V
5V Voltage 510 | V
5Vsb Voltage 508 | V
33V Voltage 333 | V
3.3Vsb Voltage 330 | V
CPUO core Voltage 090 | V
CPUO DR3-1.5 V Voltage 1.54 | V
CPUO Temp Temperature | 29.00 | C
CPU1 core Voltage 095 | V
CPU1 DDR3-1.5 V| Voltage 155 | V
CPU1 Temp Temperature | 27.00 | C
Thrm Temperature | 28.00 | C
PDP-3.3 V Voltage 33 |V
PDP-2.5 V Voltage 25 |V
PDP-1.8 V Voltage 1.8 \Y%
PDP-1.5V Voltage 1.5 v
PDP-1.2 V Voltage 12 | V
PDP-Temperature | Temperature | 40 C

4.2 Compute Node Running Status Data

The selected 136 data attributes collected by RS collector are divided into the following
four parts: CPU related, Memory related, Network related and I/O related showed in
Table 5.

4.3 ES Collector Overhead

ES collector collects and stores the hardware status data using dedicated Ethernet rather
than Tianhe-1A high-speed interconnection network, so there is no overhead to the
applications running on the compute nodes. Therefore, we tested the ES collector’s
performance overhead to the manager node by running the ps and vmstat command
repeatedly and averaging the results. Table 6 shows the overhead of the manager node
when ES collector collected data from 448 SMC servers (all of the Tianhe-1A SMCs).
Figure 8 shows the overhead variation of ES collector with the different system scale
for data collection. It is easy to find that the ES collector has little impact to the
manager node and good scalability.

Table 4. Data collection from other components of the same frame

DDC: Distributed Data Collection Framework

Component | Attributes name | Type Value | Unit

Fan Fan0O ~ Fan25 | Fan 5763 |RPM

Remark In one frame 3 fan groups and 6 fans in each
group

NRM 12V Voltage 1194 |V
33V Voltage 333 |V
STB3.3 V Voltage 333 |V
Temp Temperature | 20.00 |C

Remark One NRM in each frame used for
interconnection

Power Supply | Temp Temperature | 48.00 |C
Fanl Fan 1950 |RPM
Fan2 Fan 2100 |RPM
Input voltage Voltage 222.00 |V
Input current Current 259 |A
Output voltage | Voltage 1197 |V
Output current | Current 40.00 |A

29

Remark Four power supplys in each frame

SMC 1.8V Voltage 1.85 |C
STB3.3 V Voltage 332 |V
5V Voltage 501 |V
12V Voltage 12.06 |V
Board Temp Temperature | 20.00 |C
Inlet Temp Temperature | 20.38 |C
Outlet]l Temp | Temperature |33.13 |C
Outlet2 Temp | Temperature |21.94 |C

Remark One SMC in each frame

4.4 RS Collector Overhead

Table 7 presents the data collection overhead of RS collector on each node which is the
average results by running ps command several times. When the data collection process
collected or transmitted data, the average CPU utility rate was less than 0.6 %. The
process did not take up CPU resources in the collection interval, so the average CPU
utility rate was 0.06 % for each collection circulation. Data collection process of RS
collector used 9.0 MB virtual memory, 1.1 MB physical memory and less than 1 ms to
transmit the data to the next node. So the average bandwidth taken up by data trans-
mission in 10 s is approximately 0.14 KB/s.

The data volume of each data collection for compute node running status data is
about 700B. According to 10 s collection interval and the operation of deleting more
than 3 h data every hour (t, = 3 h, t; = 1 h), the maximum amount of stored data is
approximately 2 MB (1 MB for node itself, while 1 MB for backing up the previous
node). All these overheads were at a low level.

30 W. Hu et al.

Table 5. The compute node running status

Item Attribute category Amount
CPU CPU utilization 12
related Task creation and system switching activity 2
Interrupt statistics 1
Queue length and load averages 6
Memory Paging statistics 9
related Memory statistics 13
Network network statistics (devices, EDEV, SOCK, IP, EIP, ICMP, 78
related EICMP, TCP, ETCP, UDP)
I/O related I/O and transfer rate statistics 5
Status of inode 4
Lustre statistics 6
Table 6. ES collector overhead of the manager node
CPU(%) | PhyMem(MB) | VirMem(MB) | I/O(MB/s)
0.4 5.8 67.5 3.8
Table 7. RS collector overhead of the compute node
CPU(%) PhMem | VirMem |Data Bandwidth | Memory usage
(MB) (MB) transmission (KB/s) for data storage
time(s) (MB)
Collecting < 0.6 |1.1 9.0 <0.001 0.14 2
Collection
interval = 0
10 —————— T 16 ————————————T——— 16
124 =412
06 4 104 410
O 044 ./l 1 £6 162
-/ 4 A/// 44
0.2 -/ E ././
24 42
00 —— T 0 77— 0
50 100 150 200 250 300 350 400 450 50 100 150 200 250 300 350 400 450
SMC SMC

Fig. 8. Scalability test of ES collector

DDC: Distributed Data Collection Framework 31

5 Conclusions and Future Work

This paper presents DDC data collection framework for failure prediction in Tianhe
supercomputers. DDC adopts a distributed data collection architecture which can fully
collect the data related to the compute nodes’ health with little overhead. Through the
testing for DDC which ran on TH-1A, the results indicated that DDC had the advantage
of low cost and good scalability.

In the future, we will focus on the work related to data preprocessing and failure
prediction model optimization. We will run the entire proactive fault-tolerance system
firstly in Tianhe-1A.

Acknowledgments. This paper is supported by the National Natural Science Foundation of
China (NSFC) No. 61272141, No. 61120106005 and the National High Technology Research
and Development Program of China (863 Program) No. 2012AA01A301.

References

1. Yang, X., Wang, Z., Xue, J., Zhou, Y.: The reliability wall for exascale supercomputing.
IEEE Trans. Comput. 61(6), 767-779 (2012)

2. Philp, LR.: Software failures and the road to a petaflop machine. In: Proceedings of the 1st
Workshop on High Performance Computing Reliability Issues, San Francisco, CA, USA
(2005)

3. Chen, Y., Plank, J.S., Li, K.: CLIP: a checkpointing tool for message-passing parallel
programs. In: SC 1997, NY, USA (1997)

4. Hargrove, P.H., Duell, J.C.: Berkeley lab checkpoint/restart (BLCR) for Linux clusters.
J. Phys: Conf. Ser. 46(1), 494-499 (2006)

5. Liang, Y., Zhang, Y., Sivasubramaniam, A., Jette, M., Sahoo, R.: BlueGene/L failure
analysis and prediction models. In: DSN 2006, Washington, DC, USA, pp. 425-434 (2006)

6. Liang, Y., Zhang, Y., Xiong, H., Sahoo, R.: Failure prediction in IBM BlueGene/L event
logs. In: The Seventh IEEE International Conference on Data Mining, pp. 583-588 (2007)

7. Liang, Y., Zhang, Y., Xiong, H., Sahoo, R.: An adaptive semantic filter for Blue Gene/L
failure log analysis. In: IEEE International Parallel and Distributed Processing Symposium,
pp- 1-8 (2007)

8. Li, Y., Lan, Z.: Exploit failure prediction for adaptive fault-tolerance in cluster computing.
In: CCGRID 2006, Washington, DC, USA, pp. 531-538 (2006)

9. Lan, Z., Gu, J., Zheng, Z., Thakur, R., Coghlan, S.: A study of dynamic meta-learning for
failure prediction in large-scale systems. J. Parallel Distrib. Comput. 70(6), 630-643 (2010)

10. Zheng, Z., Yu, L., Tang, W., Lan, Z., Gupta, R., Desai, N., Coghlan, S., Buettner, D.:
Co-analysis of RAS log and job log on Blue Gene/P. In: IPDPS 2011, pp. 840-851 (2011)

11. Sahoo, R.K., Oliner, A.J., Rish, I, Gupta, M., Moreira, J.E., Ma, S., Vilalta, R.,
Sivasubramaniam, A.: Critical event prediction for proactive management in large-scale
computer clusters. In: KDD 2003, NY, USA, pp. 426435 (2003)

12. Oliner, A., Rudolph, L., Sahoo, R.: Cooperative checkpointing theory. In: IPDPS 2006,
Washington, DC, USA, pp. 132-141 (2006)

13. Oliner, A., Ganapathi, A., Xu, W.: Advances and challenges in log analysis. Commun. ACM
55(2), 55-61 (2012)

32

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

W. Hu et al.

Yamanishi, K., Maruyama, Y.: Dynamic syslog mining for network failure monitoring. In:
KDD 2005, New York, NY, USA, pp. 499-508 (2005)

Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.L.: Detecting large-scale system
problems by mining console logs. In: SOSP 2009, NY, USA, pp. 117-132 (2009)
Vaarandi, R.: A breadth-first algorithm for mining frequent patterns from event logs. In:
Aagesen, F.A., Anutariya, C., Wuwongse, V. (eds.) INTELLCOMM 2004. LNCS,
vol. 3283, pp. 293-308. Springer, Heidelberg (2004)

Gainaru, A., Cappello, F., Snir, M., Kramer, W.: Fault prediction under the microscope: a
closer look into HPC systems. In: SC 2012, Los Alamitos, CA, USA (2012)

Scott, S.L., Engelmann, C., Vallee, G.R., Naughton, T., Tikotekar, A., Ostrouchov, G.,
et al.: A tunable holistic resiliency approach for high-performance computing systems. In:
PPoPP 2009, NY, USA, pp. 305-306 (2009)

Nagarajan, A.B., Mueller, F., Engelmann, C., Scott, S.L.: Proactive fault tolerance for HPC
with Xen virtualization. In: ICS 2007, NY, USA, pp. 23-32 (2007)

Rajachandrasekar, R., Besseron, X., Panda, D.K.: Monitoring and predicting hardware
failures in HPC clusters with FTB-IPMI. In: IEEE 26th International Parallel and Distributed
Processing Symposium Workshops PhD Forum (IPDPSW), pp. 1136-1143 (2012)
Buyya, R.: PARMON: a portable and scalable monitoring system for clusters. Softw. Pract.
Exper. 30(7), 723-739 (2000)

Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed monitoring system: design,
implementation, and experience. Parallel Comput. 30(7), 817-840 (2004)

Brandt, J.M., Debusschere, B.J., Gentile, A.C., Mayo, J.R., Pebay, P.P., Thompson, D.,
et al.: Ovis-2: a robust distributed architecture for scalable RAS. In: IEEE International
Symposium on Parallel and Distributed Processing, pp. 1-8 (2008)

2 Springer
http://www.springer.com/978-3-319-23215-7

Advanced Parallel Processing Technologies

11th International Symposium, APPT 2015, Jinan, China,
August 20-21, 2015, Proceedings

Chen, ¥.;: lenne, P.; Ji, Q. (Eds.)

2015, ¥, 117 p. 55 illus., Softcover

ISBN: 978-3-319-23215-7

	DDC: Distributed Data Collection Framework for Failure Prediction in Tianhe Supercomputers
	Abstract
	1 Introduction
	2 Related Work
	3 The DDC Design
	3.1 Tianhe Supercomputer Series
	3.2 Multiple Data Sources Combined Prediction Model
	3.3 An Overview of the DDC Design

	4 Evaluation
	4.1 Hardware Status Data
	4.2 Compute Node Running Status Data
	4.3 ES Collector Overhead
	4.4 RS Collector Overhead

	5 Conclusions and Future Work
	Acknowledgments
	References

