Anytime Hybrid Best-First Search with Tree
Decomposition for Weighted CSP

David Allouche, Simon de Givry®™), George Katsirelos,
Thomas Schiex, and Matthias Zytnicki

MIAT, UR-875, INRA, F-31320 Castanet Tolosan, France
{david.allouche,simon.degivry,george.katsirelos,
thomas.schiex,matthias.zytnicki}@toulouse.inra.fr

Abstract. We propose Hybrid Best-First Search (HBFS), a search strat-
egy for optimization problems that combines Best-First Search (BFS)
and Depth-First Search (DFS). Like BFS, HBFS provides an anytime
global lower bound on the optimum, while also providing anytime upper
bounds, like DFS. Hence, it provides feedback on the progress of search
and solution quality in the form of an optimality gap. In addition, it
exhibits highly dynamic behavior that allows it to perform on par with
methods like limited discrepancy search and frequent restarting in terms
of quickly finding good solutions.

We also use the lower bounds reported by HBFS in problems with
small treewidth, by integrating it into Backtracking with Tree Decompo-
sition (BTD). BTD-HBFS exploits the lower bounds reported by HBFS in
individual clusters to improve the anytime behavior and global pruning
lower bound of BTD.

In an extensive empirical evaluation on optimization problems from
a variety of application domains, we show that both HBFS and BTD-
HBFS improve both anytime and overall performance compared to their
counterparts.

Keywords: Combinatorial optimization - Anytime algorithm
Weighted constraint satisfaction problem - Cost function networks -
Best-first search - Tree decomposition

1 Introduction

Branch and Bound search is a fundamental tool in exact combinatorial optimiza-
tion. For minimization, in order to prune the search tree, all variants of Branch
and Bound rely on a local lower bound on the cost of the best solution below a
given node.

Depth-First Search (DFS) always develops a deepest unexplored node. When
the gap between the local lower bound and a global upper bound on the cost of an
optimal solution — usually provided by the best known solution — becomes empty,
backtrack occurs. DFS is often used in Constraint Programming because it offers

© Springer International Publishing Switzerland 2015
G. Pesant (Ed.): CP 2015, LNCS 9255, pp. 12-29, 2015.
DOI: 10.1007/978-3-319-23219-5_2

Anytime Hybrid Best-First Search with Tree Decomposition 13

polyspace complexity, it takes advantage of the incrementality of local consisten-
cies and it has a reasonably good anytime behavior that can be further enhanced
by branching heuristics. This anytime behavior is however largely destroyed in
DFS variants targeted at solving problems with a reasonable treewidth such as
BTD [7] or AND/OR search [6].

Best-First Search (BFS) instead always develops the node with the lowest
lower bound first. It offers a running global lower bound and has been proved to
never develop more nodes than DFS for the same lower bound [22]. But it has a
worst-case exponential space complexity and the optimal solution is always the
only solution produced.

An ideal Branch and Bound algorithm would combine the best of all
approaches. It would have a bearable space complexity, benefit from the incre-
mentality of local consistencies and offer both updated global upper and lower
bounds as the problem is solved. It would also not loose all its anytime qualities
when used in the context of treewidth sensitive algorithms such as BTD.

With updated global lower and upper bounds, it becomes possible to com-
pute a current global optimality gap. This gap can serve as a meaningful indi-
cator of search progress, providing a direct feedback in terms of the criteria
being optimized. This gap also becomes of prime importance in the context of
tree-decomposition based Branch and Bound algorithms such as BTD [7] as
global bounds for each cluster can typically be used to enhance pruning in other
clusters.

In this paper, we introduce HBFS, an hybrid, easy to implement, anyspace
Branch and Bound algorithm combining the qualities of DF'S and BFS. The only
limitation of HBFS is that it may require to compromise the anytime updating
of the global lower bound for space. This can be achieved dynamically dur-
ing search. HBFS can also be combined with a tree-decomposition to define the
more complex BTD-HBFS, a BTD variant offering anytime solutions and updated
global optimality gap.

On a set of more than 3,000 benchmark problems from various sources
(MaxCSP, WCSP, Markov Random Fields, Partial Weighted MaxSAT) includ-
ing resource allocation, bioinformatics, image processing and uncertain reasoning
problems, we observe that HBFS improves DFS in term of efficiency, while being
able to quickly provide good solutions — on par with LDS and Luby restarts —
and a global running optimality gap. Similarly, HBFS is able to improve the
efficiency and anytime capacities of BTD.

2 Background

Our presentation is restricted to binary problems for simplicity. Our implemen-
tation does not have such restriction. A binary Cost Function Network (CFN) is
a triplet (X, D,W). X ={1,...,n} is a set of n variables. Each variable i € X
has a finite domain D; € D of values than can be assigned to it. The maximum
domain size is d. W is a set of cost functions. A binary cost function w;; € W' is
a function w;; : D; x D; — [0, k] where k is a given maximum integer cost cor-
responding to a completely forbidden assignment (expressing hard constraints).

14 D. Allouche et al.

If they do not exist, we add to W one unary cost function for every variable such
that w; : D; — [0, k] and a zero arity constraint wg (a constant cost payed by
any assignment, defining a lower bound on the optimum). All these additional
cost functions will have initial value 0, leaving the semantics of the problem
unchanged.

The Weighted Constraint Satisfaction Problem (WCSP) is to find a
minimum cost complete assignment: ming,q,)e[], b, {We + Yoimq wilai) +
Zwuew w;j(a;, a;)}, an optimization problem with an associated NP-complete
decision problem.

The WCSP can be solved exactly using Branch and Bound maintaining some
lower bound: at each node v of a tree, we use the local non naive lower bound
v.lb = wgy provided by a given soft arc consistency [5]. Each node corresponds to
a sequence of decisions v.d. The root node has an empty decision sequence. When
a node is explored, an unassigned variable is chosen and a branching decision
to either assign the variable to a chosen value (left branch, positive decision)
or remove the value from the domain (right branch, negative decision) is taken.
The number of decisions taken to reach a given node v is the depth of the node,
v.depth. A node of the search tree that corresponds to a complete assignment is
called a leaf. At this point, ».lb is assumed to be equal to the node cost (which
is guaranteed by all soft arc consistencies).

The graph G = (X, E) of a CFN has
one vertex for each variable and one edge
(2,7) for every binary cost function w;; €
W. A tree decomposition of this graph is
defined by a tree (C,T'). The set of nodes
of the tree is C = {C4,...,Cy,} where C,
is a set of variables (C. C X) called a clus-
ter. T is a set of edges connecting clusters
and forming a tree (a connected acyclic
graph). The set of clusters C' must cover
all the variables (o ¢ Ce = X) and all
the cost functions (V{i,j} € FE,3C. €
C s.t.i,j € C¢). Furthermore, if a vari-
able i appears in two clusters C, and Cy,
7 must also appear in all the clusters C'y on
the unique path from C. to C, in (C,T). Fig.1. A tree-decomposition of the
If the cardinality of the largest cluster in a CELARO6 radio frequency assignment
tree decomposition is w+1 then the width Problem, rooted in C1 with subproblem
of the decomposition is w. The treewidth 1> highlighted.
of a graph is the minimum width among
all its decompositions [24].

3 Hybrid Best-First Search

Classical BFS explores the search tree by keeping a list open of open nodes
representing unexplored subproblems. Initially, this list is reduced to the root

Anytime Hybrid Best-First Search with Tree Decomposition 15

node at depth 0. Iteratively, a best node is explored: the node is removed and
replaced by its two left and right children with updated decisions, lower bound
and depth. In this paper we always choose as best node a node with the smallest
v.lb, breaking ties by selecting a node with maximum v.depth. The first leaf of the
tree explored is then guaranteed to be an optimal solution [14,22]. The list open
may reach a size in O(d") and, if incrementality in the lower bound computation
is sought, each node should hold the minimum data-structures required for soft
arc consistency enforcing (in O(ed) per node).

The pseudocode for Hybrid BFS is described as Algorithm 1. HBFS starts
with the empty root node in the list of open nodes. It then iteratively picks a
best node v from the open list as above, replays all the decisions in v.J leading to
an assignment A,, while maintaining consistency. It then performs a depth-first
search probe starting from that node for a limited number Z of backtracks. The
DFS algorithm is a standard DFS algorithm except for the fact that, when the
bound on the number of backtracks is reached, it places all the nodes corre-
sponding to open right branches of its current search state in the open list (see
Figure 2).

At the price of increased memory usage, this
hybrid maintains the advantages of depth-first
search. Since it spends a significant amount of its
time in a DFS subroutine, it can exploit the incre-
mentality of arc consistency filtering during DFS
search without any extra space cost: nodes in the
open list will just contain decisions ¢ and lower
bound b, avoiding the extra O(ed) space required
for incrementality during BFS. However, each time
a node is picked up in open, the set of v.depth
decisions must be “replayed” and local consistency
reinforced from the root node state, leading to
redundant propagation. This cost can be mitigated

1
N
AN
3 6
4 VAR
4 5 7
[\
8

Fig.2. A tree that is par-
tially explored by DFS with

to some degree by merging all decisions into one.
Hence, a single fixpoint has to be computed rather
than v.depth. Additionally, the cost can be fur-
ther reduced using other techniques employed by

backtrack limit = 3. Nodes
with a bold border are
leaves, nodes with no border
are placed in the open list

after the backtrack bound is
exceeded. Nodes are num-
bered in the order they are
visited.

copying solvers [26]. Regardless of these mitigation
techniques, some redundancy is unavoidable, hence
the number of backtracks performed at each DFS
probe should be large enough to avoid excessive
redundancy.

Second, as it is allowed to perform Z backtracks in a depth-first manner
before it picks a new node, it may find new and better incumbent solutions, thus
it is anytime. The number of backtracks of each DFS probe should be sufficiently
small to offer quick diversification: by exploring a new best node, we are offered
the opportunity to reconsider early choices, similarly to what LDS [8] and Luby

16 D. Allouche et al.

randomized restarts [18] may offer. Additionally, with early upper bounds, we
can also prune the open node list and remove all nodes such that v.lb > ub.

To balance the conflicting objectives of reducing repeated propagation and
diversification, we dynamically adjust the amount of backtracks Z that can be
performed during one DFS probe by trying to keep the observed rate of redun-
dantly propagated decisions between reasonable bounds (a and). In all the
algorithms here, we assume that the number of nodes (Nodes) and backtracks
(Backtracks) are implicitly maintained during search.

Function HBFS(clb,cub) : pair(integer,integer)
open :=v(§d = @,1b = clb) ;
while (open # @ and clb < cub) do
v :=pop(open) /* Choose a node with minimum lower bound and mazimum
depth */;
Restore state v.d, leading to assignment A, , maintaining local consistency ;
NodesRecompute := NodesRecompute + v.depth ;
cub :=DFS(A, ,cub,Z)/* puts all right open branches in open */ ;
clb := max(clb, lb(open)) ;
if (NodesRecompute > 0) then
if (NodesRecompute/Nodes > 3 and Z < N) then Z :=2 x Z,
else if (NodesRecompute/Nodes < a and Z > 2) then Z := Z/2;
return (clb, cub);

Algorithm 1. Hybrid Best-First Search. Initial call: HBFS(wg,k) with Z = 1.

This hybrid does not preserve the polyspace complexity of DFS. However, it
can easily be made anyspace. If memory is exhausted (or a memory upper bound
is reached, with the same effect), the algorithm can switch from bounded DFS
to complete DFS. This means that for every node it picks from the open list, it
explores the entire subtree under that node. Hence, it will not generate any new
open nodes. It can continue in this mode of operation until memory pressure is
relieved.

Finally, this method computes stronger global lower bounds than DF'S, as the
cost of a best node in the open list defines a global lower bound, as in BFS. DFS
instead cannot improve on the global lower bound computed at the root until it
finally visits the first right branch. In the context of a single instance this is only
important in the sense that it provides a better estimation of the optimality gap.
However, we will see that this can improve performance in decomposition-based
methods.

3.1 Related Work

Alternate search space exploration schemes have been proposed in the field of
heuristic search, as variations of A* search. These schemes can be applied to dis-

Anytime Hybrid Best-First Search with Tree Decomposition 17

crete optimization, yielding other variants of best-first search. However, depth-
first search is not effective or even feasible in domains where A* search is used:
for example, it is possible in planning to have exponentially long sequences of
actions when short plans exist. Hence, methods like BRFSL(k) [27] can only do
bounded-depth DFS probes. Also, in contrast to HBFS, they do not insert the
open nodes of the DFS probes into the open list of BFS. Other methods like
Weighted best-first search [23], ARA* [16] and ANA* [2] weigh future assign-
ments more heavily in order to bias the search towards solutions. We do not
need to modify the branching heuristic in any way in HBFS.

Stratification [1], which solves a weighted MaxSAT instance by iteratively
considering larger subsets of its clauses, starting with those that have the high-
est weight, provides similar benefits to HBFS, as provides solutions quickly and
produces lower bounds. This techniques, however, can be viewed as a wrapper
over an optimization method and is therefore orthogonal to HBFS.

Alternate heuristics for choosing the next node to explore may yield different
algorithms. When we can identify a preferred value to assign at each choice point,
the discrepancy of a node v is the number of right branches in the path from the
root to v. If we always open the node with the smallest discrepancy, set Z = 1
and disable the adaptive heuristic, HBFS is identical to Limited Discrepancy
Search (LDS)! [8].

In ILP, a closely related approach is so-called BFS with diving heuristics [3].
Such heuristics perform a single depth-first probe trying to find a feasible solu-
tion. Although the idea is quite close to that of HBFS, it is typically restricted
to a single branch, the open nodes it leaves are not added to the open node
file and is treated separately from the rest of the search process. This is in part
motivated by the fact that DFS is considered impractical in ILP [17] and by the
fact that the lower bounding method (LP) used is not as lightweight as those
used in WCSP.

4 Hybrid Best-First Search and Tree Decompositions

When the graph of a CFN has bounded treewidth, the O(d™) worst-case com-
plexity of DFS can be improved using a tree decomposition of the CFN graph.
We can trivially observe that the tree decomposition can be rooted by selecting
a root cluster denoted Cy. The separator of a non root cluster C, is Ce Npa(C.),
where pa(C.) is the parent of C. in T . Local consistency can be enforced on
the problem and provide a cluster-localized lower-bound w§, for each cluster Ce.
The sum of these cluster-wise lower bounds is a lower bound for the complete
problem. Beyond this trivial observation, Terrioux and Jégou [28] and de Givry
et al. [7] have extended BTD [9] (which we call BTD-DFS here for clarity) from
pure satisfaction problems to the case of optimization (WCSP), in a way simi-
lar to AND/OR search [19]. Next, we briefly describe BTD-DFS, as given by de
Givry et al, as we base our own algorithm on this.

! In WCSP optimization, we always have a non naive value heuristic that selects a
value (i, a) with minimum unary marginal cost w;(a) or better, the EAC support [13].

18 D. Allouche et al.

In BTD-DFS, by always assigning the variables of a cluster before the variables
of its descendant clusters, it is possible to exploit the fact that assigning a cluster
C. separates all its child clusters children(C,). Each child cluster C} is the root
of a subproblem Py defined by the subtree rooted in Cy which becomes indepen-
dent of others. So, each subproblem P; conditioned by the current assignment
Ay of its separator, can be independently and recursively solved to optimality.
If we memoize the optimum cost of every solved conditioned subproblem P,.|A,
in a cache, then P.|A. will never be solved again and an overall O(nd* ™) time
complexity can be guaranteed.

Although this simple strategy offers an attractive worst case theoretical
bound, it may behave poorly in practice. Indeed, each conditioned subprob-
lem P.|A. is always solved from scratch to optimality. This ignores additional
information that can be extracted from already solved clusters. Imagine C, has
been assigned and that we have an upper bound ub (a solution) for the problem
P.|A.. Assume that C, has two children Cy and Cy» and that we have solved the
first subproblem Pf|A; to optimality. By subtracting the lower bound wg and
the optimum of Py|Ay from ub, we obtain the maximum cost that a solution of
Py/|Ayr may have in order to be able to improve over ub. Instead of solving it
from scratch, we can solve Py/|Ap with this initial upper bound and either find
an optimal solution — which can be cached — or fail. If we fail, we have proved
a global lower bound on the cost of an optimal solution of Ps/|Af/. This lower
bound can be cached and prevent repeated search if Py/|Ajs is revisited with
the same or a lower initial upper bound. Otherwise, the problem will be solved
again and again either solved to optimality or fail and provide an improved global
lower bound. This has been shown to improve search in practice while offering
a theoretical bound on time complexity in O(kn.d“*!) (each time a subproblem
Py¢| Ay is solved again, the global lower bound increases at least by 1).

In practice, we therefore cache two values, LBp, 4, and UBp, 4., for every
visited assignment A, of the separator of every cluster C.. We always assume
caching is done implicitly: LB p, |4, is updated every time a stronger lower bound
is proved for P.|A. and UBp, |4, when an updated upper bound is found. When
an optimal solution is found and proved to be optimal, we will therefore have
LBp,a. = UBp,|4,- Thanks to these cached bounds and to the cluster-wise local
lower bounds w$, an improved local lower bound Ib(P,|A.) for the subproblem
P,.| A, can be computed by recursively summing the maximum of the cached and
local bound (see [7]).

We show pseudocode for the resulting algorithm combining BTD and DFS in
Algorithm 2. Grayed lines in this code are not needed for the DFS variant and
should be ignored. The algorithm is called on root cluster C, with an assignment
A; = @, a set of unassigned variables V' = C; and initial lower and upper bound
clb and cub set respectively to [b(P;|@) and k (the maximum cost). The last
argument, RecCall is a functional argument that denotes which function will be
used to recurse inside BTD-DFS. Here, RecCall will be initially equal to BTD-
DFS itself. The algorithm always returns two identical values equal to the current

Anytime Hybrid Best-First Search with Tree Decomposition 19

Function BTD-DFS(A,C.,V ,clb,cub,RecCall) : pair(integer,integer)
if (V # @) then
i :=pop(V) /* Choose an unassigned variable in C. */ ;
a :=pop(D;) /* Choose a value */;
Assign a to 4, maintaining local consistency on subproblem lb(P.|AU {(i = a)}) ;
clb’ := max(clb, Ib(P.]JAU{(i = a)})) ;
if (clb’ < cub) then
‘ (cub, cub) :== BTD-DFS(AU {(i = a)}, Ce, V — {i}, clb’, cub,RecCall);
Ce.backtracks := C..backtracks + 1;
if (max(clb,lb(P.]A)) < cub) then
Remove a from ¢, maintaining local consistency on subproblem
b(P|AU{(i # a)}) ;
clb’ = max(clb, Ib(P]AU {(i # a)})) ;
if (clb’ < cub) then
if (Ce.backtracks < Ce.limit and Backtracks < P..limit) then
‘ (cub, cub) := BTD-DFS(AU {(i # a)}, Ce, V, clb’, cub,RecCall);
else /* Stop depth-first search */
‘ Push current search node in open list of P.|A at position clb’ ;

else
S := Children(C.) ;
/* Solve all clusters with non-zero optimality gap and unchanged lb or ub */;
while (S # @ and [b(P.|A) < cub) do
Cy :=pop(S) /* Choose a child cluster */ ;
if (LBpf‘A < UBpf|A) then
cub’ := min(UBp,|a, cub — [Ib(Pe|A) — Ib(P¢|Af)]) ;
(clb”, cub”) := RecCall (A, Cf, Cy, Ib(P¢|Af), cub’,RecCall);
Update LBp, 4 and UBp, 4 using clb” and cub”;
cub := min(eub, o + 3¢ ¢ chitaren(c.) UBPs14)3
if max(clb, Ib(P.|A)) < cub then
Push current search node in open list of P.|A at position max(clb, lb(P.|A)) ;
Ce.limit := Ce.backtracks /* Stop depth-first search */ ;
return (cub, cub)

Algorithm 2. BTD using depth-first search

upper bound.? Caches are initially empty and return naive values LBp, Aa=0
and UBp, 4 = k for all clusters and separator assignments.

4.1 Using HBFS in BTD

BTD-DFS has two main disadvantages: first, it has very poor anytime behavior,
as it cannot produce a solution in a decomposition with k£ leaves until k£ — 1 leaf
clusters have been completely solved. This affects the strength of pruning, as

2 This is clearly redundant for BTD-DFS, but allows a more uniform presentation with
BTD-HBFS.

20 D. Allouche et al.

values are only pruned if the current lower bound added to the marginal cost of
the value exceeds the upper bound. Second, because child clusters are examined
in order, only the lower bounds of siblings earlier than Cy in that order can
contribute to pruning in Cy. For example, consider a cluster C. with 3 child
clusters C'y,, Cy,, Cf,. Assume that ub = 31 and under an assignment A, wg has
known cost 10 while Py, |Ay,, Pr,|As, and Py, |Ay, all have optimal cost 10, and
Ib(Py,|Ay,) = Ib(Pp,|Ay,) = Ib(Py,|As,) = 0. Clearly the subproblem under C.
cannot improve on the upper bound, but when we solve Cy, and Cy,, BTD-DFS
does not reduce the effective upper bound at all. However, it may be relatively
easy to prove a lower bound of 7 for each of the child clusters. If we had this
information, we could backtrack.

HBFS has the ability to quickly provide good lower and upper bounds and inter-
ruptsitself as soon as the limit number of backtracks is reached. Using HBFS instead
of DFS in BTD should allow to quickly probe each subproblem to obtain interme-
diate upper and lower bounds for each of them. The upper bounds can be used to
quickly build a global solution, giving anytime behavior to BTD. The lower bounds
of all subproblems can be used to improve pruning in all other clusters.

The pseudocode of BTD-HBFS is described as Algorithm 3. It takes the same
arguments as BTD-DFS but ignores the last one (used only to pass informa-
tion from BTD-HBFS to BTD-DFS). BTD-HBFS relies on BTD-DFS pseudocode,
assuming that all grayed lines of BTD-DFS are active. These reactivated lines
in Algorithm 2 impose per-cluster and per-subproblem backtrack limits. Every
cluster C, has a counter C..backtracks for number of backtracks performed inside
the cluster and an associated limit C..limit. Every subproblem P. has a limit
P..limit on the number of backtracks N performed inside the subproblem. Ini-
tially, Ce¢.limit = P..limit = oo for all C, € C.

Every subproblem P,.|A, has its own list of open nodes P,.|A,.open for each
upper bound which it is given. The value of the upper bound participates in
the definition of the actual search space that needs to be explored. If the same
subproblem is revisited later with a lower upper bound, then the search space
shrinks and we can just copy the open list associated with the higher bound and
prune all nodes v such that v.lb > ub. But if the upper bound is more relaxed
than any previous upper bound then we need to create a new open list starting
with the root node.

Finally, the loop in line 1 is interrupted as soon as the optimality gap reduces
or the number of backtracks reaches the subproblem limit, making the search
more dynamic. If subproblems quickly update their bound, the remaining back-
tracks can be used in a higher cluster. However, the subproblem under each
child cluster is guaranteed to get at least Z backtracks. The result is that we
spend most of the time in leaf clusters. When one cluster exhausts its budget,
the search quickly returns to the root cluster.

Ezample 1. Consider the example in figure 3. We have a CFN with the tree
decomposition given in the box labeled (C,T) and the search in each cluster is
shown in a box labeled by that cluster’s name. Let N = 2 and Z = 1 in this
example. The search visits nodes as they are numbered in the figure. When it

Anytime Hybrid Best-First Search with Tree Decomposition 21

reaches node 4, cluster C7 is completely instantiated and hence it descends into
Cs and after node 7 it descends into C4. After node 10, we have performed a
backtrack in this cluster, and since Z = 1 we end this DFS probe and return
control to BTD-HBFS. The limit on the number of backtracks in P, is still not
exceeded, so we choose a new node from the open list, node 11, a conflict. Again
we return control to BTD-HBFS and, having exceeded the backtrack limit on
Py, exit this cluster, but with an improved lower bound. Since C; exceeded its
backtrack limit before improving its lower bound, no more search is allowed in
parent clusters. The search is allowed, however, to visit sibling clusters, hence it
explores C5 (nodes 12-14), which it exits with an improved upper bound before
exceeding its backtrack limit, and C3 (nodes 15-18). Once it returns to node 7
after cluster Cjs, that node is not closed, because one of the child clusters is not
closed. It is instead put back on the open list. Similarly node 4 is put back on
the open list of Cy. At that point, best-first search picks another node from the
open list of C1, node 19, and continues from there. O

Function BTD-HBFS(A,C.,V ,clb,cub,_) : pair(integer,integer)
open := open list of P.|A(cub) ;
if (open = @) then

if exists minimum cub’ s.t. cub’ > cub and open(P.|A(cub’)) # @ then

| open = {v € open(P.|A(cub’)) | v.lb < cub}

else

| open = {@} /* Contains only the root node at position clb */
P..limit := Backtracks + N /* Set a global backtrack limit for the subproblem */;
clb’ := max(clb, Ib(open)) ;
cub’ := cub ;
while (open # @ and clb’ < cub’ and (C. = C; or (clb’ = clb and cub’ =
cub and Backtracks < P..limit))) do
v :=pop(open) /* Choose a node with minimum lower bound and mazimum
depth */;
Restore state v.J, leading to assignment A, , maintaining local consistency ;
NodesRecompute := NodesRecompute + v.depth ;
Ce.limit := Ce.backtracks + Z /* Set a depth-first search backtrack limit */ ;
(cud’, cub’) :=BTD-DFS(A,,Ce,V,,,max(clb’, Ib(v), 1b(Pe|Av)),cub’ ,BTD-HBFS) ;
clb’ := max(clb’, lb(open)) ;
if (NodesRecompute > 0) then

if (NodesRecompute/Nodes > 3 and Z < N) then Z :=2 x Z,

else if (NodesRecompute/Nodes < a and Z > 2) then Z := Z/2;
return (clb’, cud”) /* invariant clb’ > clb and cub’ < cub */;

Algorithm 3. Hybrid Best-First Search with Tree Decomposition.

BTD-HBFS addresses both the issues of BTD that we identified above. First, it is
anytime, because as soon as UB p,| 4, < k for all subproblems, we can combine the
assignments that gave these upper bounds to produce a global solution. Second, it
constantly updates lower bounds for all active subproblems, so the search effort in
each subproblem immediately exploits all other lower bounds.

22 D. Allouche et al.

(C,T) 4
@ | 2
/\
©C) (C3) 219
/\
G © 3

/N
/ \ \17\

i\

Fig. 3. An example of a run of BTD-HBFS. White nodes are open, nodes with a black
border are conflicts (square) or solutions (circle). Grey nodes with a white border are
explored but put back in the open list. Grey nodes with no border are closed.

Like HBFS, BTD-HBFS can be made anyspace, i.e., its memory usage can be
limited to any amount beyond what is needed for BTD-DFS, including zero. The
cache of bounds can also be limited, at the expense of additional subproblem
recomputations, leading to worst-case complexity exponential in the tree decom-
position height.

Theorem 1. Given a CFN P with treewidth w, BTD-HBFS computes the opti-
mum in time O(knd“*™1) and space O(knd*>).

Proof (Sketch). For correctness, observe that BTD-DF'S solves independent sub-
problems separately using DFS, hence using HBFS or any other solution method
does not affect correctness. Each leaf node in an internal cluster is closed only

Anytime Hybrid Best-First Search with Tree Decomposition 23

when all child clusters are solved, hence all bounds for each subproblem and
open node list are correct. Finally, exploration at the root cluster continues until
the optimality gap is closed. Complexity stems from the complexity of BTD and
the additional overhead of storing open lists for each separator assignment and
upper bound. a

We implemented a simpler version of this algorithm with better space com-
plexity: each time BTD-HBFS is called on P.|A with a higher upper bound than
previously stored, we wipe the open list and replace it with the root node of C,.
This removes theoretical guarantees on the performance of the algorithm, but
does not hurt practical performance, as we will see.

4.2 Related Work

AND/OR Branch and Bound search has already been combined with BFS [20].
The resulting AOBF algorithm, has good worst-case time complexity similar to
BTD-DFS, but otherwise has the space-intensive non anytime behavior of BFS.

The poor anytime ability of BTD has been addressed by breadth-rotating
AND/OR search (BRAO) [21]. BRAO interleaves DFS on all components, so
it can combine the incumbents of all components to produce a global solution.
However, as it performs DFS on each component, it does not produce better
lower bounds.

OR-decomposition [12] is an anytime method that exploits lower bounds
produced by other clusters by performing DFS in which it interleaves variable
choices from all components, and uses caching to achieve the same effect as BTD.
However, the global lower bound it computes depends on the partial assignments
of all components. Thus it may revisit the same partial assignment of one com-
ponent many times. This may also inhibit its anytime behavior, as a high cost
partial assignment in one component will prevent other components from reach-
ing good solutions. Moreover, the local lower bound for each component is only
updated by visiting the right branch at its root.

Russian Doll Search [25], uses DFS to solve each cluster of a rooted tree
decomposition in topological order. This method is not anytime, as it cannot
produce a solution until it starts solving the root cluster. Moreover, it computes
lower bounds that are independent of the separator assignment, hence can be
lower than their true value.

5 Experimental Results

We used benchmark instances including stochastic graphical models from the
UAI evaluation in 2008 and 2010, the Probabilistic Inference Challenge 2011,
the Weighted Partial Max-SAT Evaluation 2013, the MiniZinc Challenge 2012
and 2013, Computer Vision and Pattern Recognition problems from OpenGM2?

3 http://hci.iwr.uni-heidelberg.de/opengm?2/

http://hci.iwr.uni-heidelberg.de/opengm2/

24 D. Allouche et al.

and additional instances from the CostFunctionLib*. This is a total of more than
3,000 instances that can be encoded as Cost Function Networks, available at
http://genoweb.toulouse.inra.fr/~degivry /evalgm, with domain sizes that range
from d = 2 to 503, n = 2 to 903,884 variables, and e = 3 to 2,912,880 cost
functions of arity from 7 = 2 to 580. We used toulbar2 version 0.9.8.0-dev® on
a cluster of 48-core Opteron 6176 nodes at 2.3 GHz with 378 GB RAM, with a
limit of 24 simultaneous jobs per node.

In all cases, the local lower bound is provided by maintaining EDAC [13].
The variable ordering includes both weighted-degree [4] and last-conflict [15]
heuristics. The value ordering is to select the EAC support value first [13]. All
executions used a min-fill variable ordering for DAC preprocessing. For HBFS, we
set the node recomputation parameters to [, 5] = [5%,10%)] and the backtrack
limit N to 10, 000.

The methods based on BTD use a different value ordering heuristic: if a
solution is known for a cluster, it keeps the same value if possible and if not
uses EAC support values as the previous methods. A min-fill ordering is used
for building a tree decomposition. Children of a cluster are statically sorted by
minimum separator size first and smallest number of subproblem variables next.

Our aim is to determine whether HBFS is able to improve over DFS both in
terms of number of problems solved (including the optimality proof) and in its
anytime behavior. Similarly, we compare BTD-HBFS to BTD-DFS. We include in
our comparison two methods that are known to significantly improve the upper
bound anytime behavior of DF'S: Limited Discrepancy Search [8] and DFS with
Luby restarts [18].

We also include results from BRAO [21] using the daoopt solver® with static
mini-bucket lower bounds of different strength (i-bound set to 15 and 35) and
without local search nor iterative min-fill preprocessing. daocopt is restricted to
cost functions expressed by complete tables, hence we exclude most MaxSAT
families (except MIPLib and MaxClique) in tests where we use it.

5.1 Proving Optimality

We show in figure 4 a cactus plot comparing all the algorithms that do not use
tree decompositions, but also include BTD-HBFS™ for reference (see below). We
see that HBFS is the best performing decomposition-unaware algorithm. It out-
performs DFS and DF'S with Luby restarts significantly, and slightly outperforms
LDS.

Although our benchmark set includes very large instances, and our HBFS
implementation does not include automatic control of space usage, no instance
required more than 32 GB. The median memory usage was 36.8 MB for DFS
and 38.2 MB for hybrid BFS. The worst-case largest ratio between HBFS and

4 https://mulcyber.toulouse.inra.fr /projects,/costfunctionlib

5 Available in the git repository at https://mulcyber.toulouse.inra.fr/projects/
toulbar2/ in the bfs branch.

5 https://github.com/lotten/dacopt

http://genoweb.toulouse.inra.fr/~degivry/evalgm
https://mulcyber.toulouse.inra.fr/projects/costfunctionlib
https://mulcyber.toulouse.inra.fr/projects/toulbar2/
https://mulcyber.toulouse.inra.fr/projects/toulbar2/
https://github.com/lotten/daoopt

Anytime Hybrid Best-First Search with Tree Decomposition 25

8500 " HBFS i
LDS -eeees !
__ 3000 |- BTD-HBFS-r4 ; i
2 DFS - ;
S 2500 | Luby i ,
@ i
[.
© 2000 f ; 1
2 1500 | i -
2 1000 f ; .
a ;
500 -

0 L ——\ L
1700 1800 1900 2000 2100 2200 2300 2400 2500

Fig.4. Number of solved instances within a given time. Methods in the legend are
sorted at time=20min.

DFS was 302845 — 31 4 on MRF Grid instance grid20x20.£15 (unsolved in

one hour by both methods).

In figure 5, we compare algorithms exploiting a tree decomposition (BTD-
like) or a pseudo-tree (BRAQO).We see that BTD-HBFS slightly outperforms BTD-
DFS, both outperforming BRAO. However, many of these instances have large
treewidth and BTD-like methods are not ideal for these. Even for instances with
small treewidth, the decomposition is often a deep tree in which each cluster
shares all but one variables with its parent. In these cases, following the tree
decomposition imposes a static variable ordering on BTD, while HBFS degrades
to DFS. Finding good tree decompositions is not straightforward [10,11]. A sim-
ple way to improve one is to merge clusters until no separator has size greater
than k, even if this increases width. We call the algorithms that apply this
BTD-DFS™ and BTD-HBFS"*. Figure 5 includes results for BTD-DFS™ and BTD-
HBFS™. BTD-DFS™ is significantly better than BTD-DFS and BTD-HBFS™ out-
performs BTD-DFS™ by an even greater margin. BTD-HBFS™ is also the overall
best performer as shown in figure 4.

5.2 Anytime Behavior

To analyze the algorithms’ anytime behavior, we first show in figure 6 the evo-
lution of the lower and upper bounds for two instances: the SPOT5 404 (left)
and the RLFAP CELAROG6 instances (right). We solve both instances using DF'S,
LDS, DFS with Luby restarts, HBFS, BTD-DFS and BTD-HBFS. In both instances,
we see that HBFS and BTD-HBFS improve significantly on the upper bound any-
time ability of DF'S and BTD-DFS, respectively. Moreover, the lower bound that
they report increases quickly in the beginning and keeps increasing with time.
For all other algorithms, the lower bound increases by small amounts and infre-
quently, when the left branch of the root node is closed. The HBFS variants are
as fast as the base algorithms in proving optimality.

26 D. Allouche et al.

3500 ‘ 7]
BTD-HBFS-r4 I I
BTD-r4 P
3000 [BTD-HBFS------r i |
S BRAO IB—EES) ----- , "
oy L = 4
S 2500 1 gRaQ a5 —— I
) I !
® 2000 | [|
£ |
() ’ 1 i
£ 1500 i
= i
o ; 1
= 1000 I i
(@] 7)
500 _/;/,«' i
__________ -

0 _ ‘
1400 1500 1600 1700 1800 1900 2000 2100 2200

Fig.5. Number of solved instances as time passes on a restricted benchmark set
(without MaxSAT). Methods in the legend are sorted at time=20min.

130 : : : :
SHBFS 5 9000 : : : Ty
DFS-Luby Lo 4
% DFS —+— | 7000 LDS -
] BTD

110 - :]

6000 DFS —+— 1
100 75000 | i
% | 1 4000 | Hﬂ“]

| 3000 F

80 -
2000
70 q
1000 -
60 0 _— A . .
0.1 1 10 100 1000 1 10 100 1000

Fig. 6. Evolution of the lower and upper bounds (Y axis, in cost units) as time (X axis,
in seconds) passes for HBFS, Luby restart, LDS, and DFS on SPOT5 404 instance (left)
and also BTD, and BTD-HBFS for the RLFAP CELARO6 instance (right). Methods are
sorted in increasing time to find the optimum. For each curve, the first point represents
the time where the optimum is found and the second point the time (if any) of proof

of optimality.

In figure 7, we summarize the evolution of lower and upper bounds for each
algorithm over all instances that required more than 5 sec to be solved by DFS.
Specifically, for each instance I we normalize all costs as follows: the initial
lower bound produced by EDAC (which is common to all algorithms) is 0; the
best — but potentially suboptimal — solution found by any algorithm is 1; the
worst solution is 2. This normalization is invariant to translation and scaling.
Additionally, we normalize time from 0 to 1 for each pair of algorithm A and
instance I, so that preprocessing ends at time 0 and each run finishes at time
1. This time normalization is different for different instances and for different
algorithms on the same instance. A point (z,y) on the lower bound line for
algorithm A in figure 7 means that after normalized runtime z, algorithm A has
proved on average over all instances a normalized lower bound of y and similarly
for the upper bound. We show both the upper and lower bound curves for all

Anytime Hybrid Best-First Search with Tree Decomposition 27

HBFS —-—-—- SS——

tr DFS —— 7
DFS-LDS ---------
08 DFS-Luby 7
BTD-HBFS-r4 -----
0.6 - BTD-r4 -
BRAO i=15 —--—---
0.4 - BRAO =35
02 [T
0 L
0 0.2

Fig. 7. Average evolution of normalized upper and lower bounds for each algorithm.

algorithms evaluated here. In order for the last point of each curve to be visible,
we extend all curves horizontally after 1.0.

This figure mostly ignores absolute performance in order to illustrate the
evolution of upper and lower bounds with each algorithm, hence cannot be inter-
preted without the additional information provided by the cactus plots in figures
4 and 5. It confirms that HBFS improves on DFS in terms of both upper and
lower bound anytime behavior and similarly for BTD-HBFS™ over BTD-DFS™
and BRAO, with the latter being especially dramatic. The two HBFS variants
are, as expected, significantly better than all other algorithms in terms of the
lower bounds they produce. HBFS and BTD-HBFS™ produce solutions of the
same quality as LDS, while DFS-Luby is slightly better than this group on this
restricted benchmark set (without MaxSAT).

Despite the fact that time to solve an instance is normalized away in figure
7, it does give some information that is absent from the cactus plots and that
is the average normalized lower and upper bounds at time 1. Figure 7 tells us
that DFS-Luby finds the best solution most often, as its upper bound curve is
the lowest at time 1. It is followed closely by the HBFS variants and LDS, while
DFS and BTD-DFS™ are significantly worse. On the other hand, DFS-Luby is
significantly worse than the HBFS variants in the cactus plot. HBFS and BTD-
HBFS™ give better lower bounds in those instances that they failed to solve, so
their lower bound curves are higher at point 1.

6 Conclusions

Hybrid BFS is an easily implemented variant of the Branch and Bound algo-
rithm combining advantages of BFS and DFS. While being a generic strategy,
applicable to essentially any combinatorial optimization framework, we used it
to improve Depth-First Branch and Bound maintaining soft arc consistency and

28 D. Allouche et al.

tested it on a large benchmark set of problems from various formalisms, includ-
ing Cost Function Networks, Markov Random Field, Partial Weighted MaxSAT
and CP instances representing a variety of application domains in bioinformat-
ics, planning, resource allocation, image processing and more. We showed that
HBFS improves on DFS or DF'S equipped with LDS or restarts in terms of num-
ber of problems solved within a deadline but also in terms of anytime quality
and optimality gap information.

HBFS is also able to improve Tree Decomposition aware variants of DF'S such
as BTD, being able to solve more problems than the previous DFS based BTD
on the same set of benchmarks. BTD is targeted at problems with relatively
low treewidth and has been instrumental in solving difficult radio-link frequency
assignment problems. On such problems, BTD-HBFS provides to BTD the same
improvements as to DFS.

Its ability to provide feedback on the remaining search effort, to describe the
current remaining search space in a list of open nodes and to decompose search
in self-interrupted DFS probes makes it a very dynamic search method, very
attractive for implementing multi-core search.

Acknowledgments. We are grateful to the Genotoul (Toulouse) Bioinformatic plat-
form for providing us computational support for this work.

References

1. Ansétegui, C., Bonet, M.L., Gabas, J., Levy, J.: Improving sat-based weighted
maxsat solvers. In: Proc. of CP 2012, Québec City, Canada, pp. 86-101 (2012)

2. van den Berg, J., Shah, R., Huang, A., Goldberg, K.: ANA*: Anytime nonparamet-
ric A*. In: Proceedings of Twenty-Fifth AAAI Conference on Artificial Intelligence
(AAAI 2011) (2011)

3. Berthold, T.: Primal heuristics for mixed integer programs. Master’s thesis, Tech-
nischen Universitat Berlin (2006). urn:nbn:de:0297-zib-10293

4. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: ECAIL, vol. 16, p. 146 (2004)

5. Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T.: Soft
arc consistency revisited. Artificial Intelligence 174(7), 449-478 (2010)

6. Dechter, R., Mateescu, R.: And/or search spaces for graphical models. Artificial
Intelligence 171(2), 73-106 (2007)

7. de Givry, S., Schiex, T., Verfaillie, G.: Exploiting tree decomposition and soft local
consistency in weighted CSP. In: Proc. of the National Conference on Artificial
Intelligence, AAAT 2006, pp. 22-27 (2006)

8. Harvey, W.D., Ginsberg, M.L.: Limited discrepency search. In: Proc. of the 14th
1JCAI, Montréal, Canada (1995)

9. Jégou, P., Terrioux, C.: Hybrid backtracking bounded by tree-decomposition of
constraint networks. Artif. Intell. 146(1), 43-75 (2003)

10. Jégou, P., Terrioux, C.: Combining restarts, nogoods and decompositions for solv-
ing csps. In: Proc. of ECAI 2014, Prague, Czech Republic, pp. 465-470 (2014)

11. Jégou, P., Terrioux, C.: Tree-decompositions with connected clusters for solving
constraint networks. In: Proc. of CP 2014, Lyon, France, pp. 407-423 (2014)

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Anytime Hybrid Best-First Search with Tree Decomposition 29

Kitching, M., Bacchus, F.: Exploiting decomposition in constraint optimization
problems. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 478-492. Springer,
Heidelberg (2008)

Larrosa, J., de Givry, S., Heras, F., Zytnicki, M.: Existential arc consistency: get-
ting closer to full arc consistency in weighted CSPs. In: Proc. of the 19th IJCAI,
pp. 84-89, Edinburgh, Scotland (August 2005)

Lawler, E., Wood, D.: Branch-and-bound methods: A survey. Operations Research
14(4), 699-719 (1966)

Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Reasoning from last conflict(s) in
constraint programming. Artificial Intelligence 173, 1592-1614 (2009)

Likhachev, M., Gordon, G.J., Thrun, S.: ARA*: Anytime A* with provable bounds
on sub-optimality. In: Advances in Neural Information Processing Systems, p. None
(2003)

Linderoth, J.T., Savelsbergh, M.W.: A computational study of search strategies
for mixed integer programming. INFORMS Journal on Computing 11(2), 173-187
(1999)

Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of las vegas algorithms. In:
Proceedings of the 2nd Israel Symposium on the Theory and Computing Systems,
pp. 128-133. IEEE (1993)

Marinescu, R., Dechter, R.: AND/OR branch-and-bound for graphical models. In:
Proc. of IJCAI 2005, Edinburgh, Scotland, UK, pp. 224-229 (2005)

Marinescu, R., Dechter, R.: Best-first AND/OR, search for graphical models. In:
Proceedings of the National Conference on Artificial Intelligence, pp. 1171-1176.
AAAT Press, MIT Press, Menlo Park, Cambridge (1999, 2007)

Otten, L., Dechter, R.: Anytime and/or depth-first search for combinatorial opti-
mization. AT Communications 25(3), 211-227 (2012)

Pearl, J.: Heuristics — Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley Publishing Comp. (1985)

Pohl, I.: Heuristic search viewed as path finding in a graph. Artificial Intelligence
1(3), 193-204 (1970)

Robertson, N.; Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.
Journal of Algorithms 7(3), 309-322 (1986)

Sanchez, M., Allouche, D., de Givry, S., Schiex, T.: Russian doll search with tree
decomposition. In: IJCAI, pp. 603-608 (2009)

Schulte, C.: Comparing trailing and copying for constraint programming. In: Logic
Programming, Las Cruces, New Mexico, USA, pp. 275-289 (1999)

Stern, R., Kulberis, T., Felner, A., Holte, R.: Using lookaheads with optimal best-
first search. In: AAAT (2010)

Terrioux, C., Jégou, P.: Bounded backtracking for the valued constraint satisfaction
problems. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 709-723. Springer,
Heidelberg (2003)

2 Springer
http://www.springer.com/978-3-319-23218-8

Principles and Practice of Constraint Programming
21st International Conference, CP 2015, Cork, Ireland,
August 31 - September 4, 2015, Proceedings
Pesant, G. (Ed.)

2015, XXV, 747 p. 191 illus., Softcover

ISBN: 978-3-319-23218-8

	Anytime Hybrid Best-First Search with Tree Decomposition for Weighted CSP
	1 Introduction
	2 Background
	3 Hybrid Best-First Search
	3.1 Related Work

	4 Hybrid Best-First Search and Tree Decompositions
	4.1 Using HBFS in BTD
	4.2 Related Work

	5 Experimental Results
	5.1 Proving Optimality
	5.2 Anytime Behavior

	6 Conclusions
	References

