Multiresolution Shape Optimisation
with Subdivision Surfaces

Fehmi Cirak and Kosala Bandara

Abstract We review our recent work on multiresolution shape optimisation and
present its application to elastic solids, electrostatic field equations and thin-shells.
In the spirit of isogeometric analysis the geometry of the domain is described
with subdivision surfaces and different resolutions of the same surface are used
for optimisation and analysis. The analysis is performed using a sufficiently fine
control mesh with a fixed resolution. During shape optimisation the geometry is
updated starting with the coarsest control mesh and then moving on to increasingly
finer control meshes. The transfer of data between the geometry and analysis rep-
resentations is accomplished with subdivision refinement and coarsening operators.
Moreover, we discretise elastic solids with the immersed finite element method,
electrostatic field equations with the boundary element method and thin-shells with
the subdivision finite element technique. In all three discretisation techniques there
is no need to generate and maintain an analysis-suitable volume discretisation.

1 Introduction

As widely discussed in isogeometric analysis literature, the geometry representa-
tions used in today’s computer aided design (CAD) and computational analysis
software are inherently incompatible [19]. This is particularly limiting in shape
optimisation in which a geometry model is iteratively updated based on the results
of a computational analysis [6, 8, 17]. It is tedious and often impossible to repeatedly
map the results from an analysis mesh back to the CAD model. To remedy this, the
shape optimisation of shells and solids by directly optimising the CAD geometry
model using isogeometric analysis has been recently explored [12, 16, 21, 37].

In the present paper we review the multiresolution shape optimisation technique
and present its application to linear elastic solids, electrostatic field equations and
thin-shell structures [2—4]. We discretise elastostatic boundary value problems using
immersed, or embedded, finite elements, see, e.g., [28, 29, 31, 32], which have clear
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advantages when applied to structural shape optimisation [1, 18]. In order to cope
with unbounded domains we discretise electrostatic problems with the boundary
element method. Crucially, in immersed finite elements and boundary elements the
geometry of the domain boundary can be updated without needing to generate
or maintain domain meshes. Shell structures are modelled as a surface and are
discretised with subdivision finite elements, which use the subdivision surfaces as
basis functions [11, 12].

The domain boundaries and the shell mid-surface are represented with sub-
division surfaces. Although historically subdivision and related techniques have
originated in computer graphics, they recently became available in several CAD
software packages, including Autodesk Fusion 360, PTC Creo and CATIA. As will
be demonstrated in this paper, subdivision surfaces provide an elegant isogeometric
analysis-suitable, bidirectional mapping between the geometry and analysis models.
In subdivision a geometry is described using a control mesh and a limiting process
of repeated refinement [27, 40]. The refinement rules are usually adapted from
knot refinement rules for splines [9, 14, 22]. We consider the Catmull-Clark [9]
scheme based on quadrilateral meshes and the Loop [25] scheme based on triangular
meshes. The Catmull-Clark scheme is the generalisation of cubic tensor-product
b-splines to unstructured meshes and the Loop scheme is the generalisation of
quartic box-splines. Both subdivision schemes lead to smooth surfaces even in
case of unstructured meshes with extraordinary vertices. The hierarchy of control
meshes underlying subdivision surfaces lends itself naturally to multiresolution
decomposition of geometries [26, 41]. The size of the geometric region influenced
by each vertex depends on the resolution of the control mesh, editing coarser levels
leads to large-scale changes while editing finer levels lead to small-scale changes.

The introduced multiresolution optimisation approach relies on subdivision
curves/surfaces for the description of boundaries. The multiresolution paradigm
allows us to describe the same geometry with control meshes of different resolution
for analysis and optimisation purposes. For finite element and boundary element
analysis a relatively fine control mesh is used in order to minimise the discretisation
errors. In contrast, the degrees of freedom in optimisation (i.e., design variables)
are chosen as the vertex coordinates of a coarser control mesh. Perhaps counterintu-
itively, the use of the same fine control mesh for optimisation and analysis leads to
suboptimal optimisation results with possible non-physical geometry oscillations.
This behaviour is also known from earlier work on structural optimisation in which
the finite element nodes were used as optimisation design variables [8, 17]. This
paper will demonstrate that the best optimisation results are achieved when starting
with a coarse control mesh increasingly finer control meshes are optimised. During
the optimisation iterations the refinement level of the control mesh is increased each
time a minimum is reached.
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2  Multiresolution Subdivision Surfaces

2.1 Subdivision Refinement of Spline Curves

The refinability property of cubic b-splines can be utilised to derive a corresponding
subdivision scheme. To illustrate this, we consider the coarse knot sequence E,-O =
0, 1, 2, 3,... and the fine knot sequence E,-l =0,05,1,15,2,25,3,.... We
denote the b-splines on the coarse knot sequence with B?(é) and the ones on the fine
knot sequence with B (£), see Fig. 1. According to the b-spline refinability equation,
see, e.g., [7, 40], it is possible to represent the coarse b-splines (in the interior) as a
linear combination of the fine b-splines

! 1(4
BYE) = Y Syl a(6) with Sy = g(l.), ()

=0

where §;; is the subdivision matrix with its entries given in terms of the usual
binomial coefficients. In order to keep the derivations simple we exclude from our
discussion the b-splines close to the boundaries. For subsequent derivations (1) is
best expressed in matrix notation

B’ = SB'. )

Next, we consider a spline curve defined in terms of the coarse b-splines and the
corresponding control vertices, i.e.,

xp(§) = B" - x° 3)
with matrix x° containing the coordinates of control vertices. The number of

columns of x° is equal to space dimension and the number of rows is equal to the
number of all control vertices.
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Fig. 1 Refinement relation for cubic b-splines
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Introducing the refinement relation (2) into (3) the spline curve can be expressed
with

xi(£) = (SB') -x* =B' - (S'x°) . 4)

This implies that the control vertex coordinates on the finer level can be computed
with the subdivision relation

x'=8Tx0. (5)

In subdivision schemes the described refinement approach is applied recursively,
ie.,

x(-i-l — STxZ , (6)

where x‘*! and x’ are two matrices containing the coordinates of all the vertices
at levels £ + 1 and £ with £ > 0. Although the dimensions of § increase with £
we denote all subdivision matrices with S since each row has the same non-zero
components only shifted relative to adjacent rows [3]. The successive refinement of
a given control polygon using (6) is illustrated in Fig. 2.

For computer implementation and generalisation to bivariate splines, it is
instructive to think that the refinement of a control polygon according to (6) consists
of a refinement and an averaging step. In the refinement step each segment of
the polygon is subdivided into two segments, see Fig. 3a. Subsequently, the vertex
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Fig. 2 Subdivision refinement of a given control polygon (shown left)
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Fig. 3 Subdivision refinement for cubic spline curves. (a) Refinement by bisectioning and vertex
renumbering. (b) Stencils for even (top) and odd (bottom) vertices
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coordinates of the refined polygon are determined by averaging the coarse vertex
coordinates with the two stencils shown in Fig. 3b. The even vertex stencil applies
to vertices that are already present in the coarse polygon and the odd vertex stencil
applies to vertices that are only present in the refined polygon. The naming odd and
even is motivated by the consecutive numbering of vertices where newly inserted
vertices receive odd numbers. According to Fig.3b, for a given coarse polygon
of level £ with vertex coordinates xf a refined polygon of level £ + 1 with vertex

coordinates xf‘H is computed with
1 3 1 1 1
(41 ¢ ¢ ‘ (41 ¢ ¢
Xy = gxi—l + in + gxi+1 , Xoit1 = Exi + Exi+l . (7)

2.2 Subdivision Refinement of Bivariate Surfaces

Similar to tensor-product b-splines the tensor products of one-dimensional subdi-
vision stencils yield the corresponding subdivision stencils for surfaces. The tensor
product construction works only for quadrilateral meshes and in the refinement step
each quadrilateral is subdivided into four quadrilaterals, see Fig.4a. It is evident
that the tensor-product stencils only apply to meshes in which each vertex within
the domain is connected to four faces. The number of faces connected to a vertex is
referred to as the valence of that vertex. The domain vertices with a valence other
than four are known as extraordinary vertices or star-vertices.

For subdivision surfaces using quadrilateral meshes, the original stencils pro-
posed by Catmull and Clark [9], shown in Fig. 5, are used. Note, the vertex stencil
in Fig. 5c depends on the valence v of the vertex and reduces to a standard tensor
product stencil for structured meshes with valence v = 4. There is mathematical
theory which shows that the resulting surface is C?> continuous almost everywhere
except at the extraordinary vertices where it is only C! continuous [27]. In addition,
there are also extended subdivision stencils for vertices on edges, creases and
corners, see, e.g., [5, 10, 39]. In this context, a crease is a line on the surface
across which the surface is only C° continuous. As an illustrative example, Fig. 6

Fig. 4 Refinement by (a) (b)
quadrisectioning. (a)
Quadrilaterals. (b) Triangles
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Fig. 5 Subdivision stencils for the Catmull-Clark scheme. Each of the stencils are used for
computing the coordinates of vertices of the type indicated by the red dot. The weights for the
vertex stencil are f = % and y = ﬁ, where v is the valence of the vertex. (a) Edge stencil. (b)
Face stencil. (¢) Vertex stencil
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Fig. 6 Refinement of a given quadrilateral control mesh (shown left) with Catmull-Clark subdivi-
sion. In the vicinity of the edges in red modified subdivision stencils are applied in order preserve
the sharp edge. The once subdivided mesh is shown in the middle and the limit surface on the right
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shows the subdivision refinement of a control mesh for a T-junction geometry with
extraordinary vertices and prescribed crease edges.

In case of triangular control meshes the subdivision scheme introduced by
Loop [25] can be used. On three-directional triangular meshes (with each vertex
having valence six) the Loop scheme yields quartic box-splines. In this context a
vertex is regular when it is inside the domain and incident to six edges, or is on the
boundary of the domain and incident to four edges. In the refinement step of the
Loop scheme, each triangle of the control mesh is subdivided into four triangles by
introducing new vertices at the edge midpoints, as shown in Fig. 4b. Subsequently,
the vertex coordinates of the refined mesh are computed with the subdivision stencils
given in Fig.7 [38]. Figure 8 shows a mechanical connector geometry containing
extraordinary vertices and sharp features described with the extended subdivision
surfaces.

(a)

ool
0o |w

8

Fig. 7 Subdivision stencils for the Loop scheme. Each of the stencils are used for computing the
coordinates of vertices of the type indicated by the red dot. (a) Edge stencil. (b) Face stencil

Fig. 8 Subdivision refinement of a given triangular control mesh (shown left) with Loop subdivi-
sion. In the vicinity of the edges in red modified subdivision stencils are applied in order preserve
the sharp edge. The once subdivided mesh is shown in the middle and the limit surface on the right
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2.3 Multiresolution Editing

Subdivision surfaces represent a limit surface with a nested hierarchy of control
meshes of increasing resolution. As known in computer graphics, this property
lends itself to efficient multiresolution editing of surfaces [26, 41]. The basic idea in
multiresolution editing is to modify the coarse mesh vertex coordinates to apply
large-scale changes (to the limit surface) and to modify the fine mesh vertex
coordinates to add localised changes. By way of example, this is illustrated in Fig. 9
for the connector geometry previously introduced in Fig. 8. First the control mesh
vertex coordinates x° at level £ = 0 are modified with x° + do, where d° can be
thought of as a user given perturbation vector. In the considered example, d° applies
displacements only to the vertices placed on one of the hole edges. Subsequent
computation of the limit surface (by repeated subdivision) leads to a geometry with
rather large scale changes. Alternatively, the edge of the hole can be displaced on
level £ = 1,ie.,x' +d' = Sx° + d'. This results in a more localised change on the
limit surface. It can be shown that the area of influence for each vertex extends over
two rings of adjacent triangles.

The multiresolution editing algorithms available in computer graphics allow us
to simultaneously edit coarse and fine resolutions, see, e.g., [3, 41]. This is achieved
by a wavelet-like decomposition of the geometry into a low resolution part and a
collection of wavelet coefficients expressing perturbations from the low resolution
part [26, 41]. To compute such a decomposition it is necessary to define, in addition
to the subdivision refinement, a coarsening operation

xt = Rx't!. (8)
N>
D —
:L‘O T dO NZ/ (wo + dO)oo
-
e Sy, =
(' + d")>™ <

Fig. 9 Multiresolution editing of the connector geometry introduced in Fig. 8. The geometry is
modified by moving the edge of one of the holes in the vertical direction. On the first row the
modification is performed on level £ = 0 and on the second row it is performed on level £ = 1.
Notice the effect of the modification level on the limit surface (last column)
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The coarsening matrix R enables the computation of the coarse control mesh x*
corresponding to a given edited fine control mesh x‘*!. In contrast, recall that the
subdivision matrix S enables the computation of a refined mesh from a given coarse
mesh, cf. (6). Different choices for the matrix R are possible. For instance, it can be
determined with discrete least squares fitting

x' = argmin||x"*" — Sy |, ©)
yl
which leads to
STSx! = §Tx!H1, (10)

By comparison with (8) we observe that the coarsening matrix has to be R =
(STS)~'ST. For more details we refer to [3, 4].

Instead of using least squares fitting the coarsening matrix R can also be defined
based on quasi-interpolation [23] or smoothing [41]. On the other hand coarsening
by simply subsampling of the fine control mesh usually leads to artefacts in form
of oscillations in the coarse control mesh. The proposed least squares fit approach
is not very common in computer graphics because of the need for interactivity and
fast processing times. Although the least squares matrix in (10) is sparse its solution
cannot be found at interactive rates.

Subdivision surfaces do not by themselves provide the possibility of simulta-
neously editing coarse and fine control meshes. For instance, after a fine control
mesh is edited it is not possible to further edit a coarser level in order to apply
larger scale changes to the geometry. Simultaneous editing of different levels can be
achieved with a wavelet-like multiresolution decomposition of the control meshes,
as discussed in [3, 41].

3 Governing Equations of Shape Optimisation

In this section, we revisit the governing equations for shape optimisation of linear
elastic solids, electrostatic field equations and thin-shells. The considered cost func-
tions are the structural compliance for elastic solids and thin-shells and the normal
flux over the domain boundaries for electrostatic problems. For computing the
derivatives of the cost function with respect to the domain boundary perturbations
we consider both the continuous and the discrete adjoint formulations. Specifically,
for elastic and electrostatic field equations we use the continuous formulation
and for thin-shells we use the discrete formulation. In the continuous formulation
the differentiation is first performed analytically and subsequently the resulting
boundary value problems are discretised with a method of choice. In contrast, in the
discrete formulation first the governing equations are discretised and subsequently
the resulting algebraic equations differentiated.
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3.1 Continuous Shape Sensitivity Formulation

In continuous shape sensitivity analysis it is necessary to differentiate functionals
that are defined on varying domains. To this end, borrowing terminology from
continuum mechanics, we consider a reference configuration with domain £2 and
boundary I" and a perturbed configuration with domain 2, and boundary I3, see
Fig. 10. The corresponding deformation ¢,(x) which maps material points x € £2
onto x; € £2; is assumed to be of the form

X =@,x) =x+1V, (11)

where V is a prescribed constant vector field and ¢ is a scalar parameter. It is
convenient to interpret V as a velocity field and ¢ as the time parameter.

In the sequel the derivatives of domain and boundary integrals with respect to
boundary perturbations are needed. First, we consider the generic domain integral

1($2) = i v (x;) d 2, 12)

with a scalar integrand ¥ (x,). At the reference configuration x, the derivative of the
domain integral in the direction of V is defined with

al,

d
ly= —Il(x + tV))t=0 = E/Q Y) A

082 (13)

By applying standard techniques from continuum mechanics and shape calculus,
see [3, 13, 33], we obtain

ol 1

8.(2 /(Vl//(x) V+yx)V-V)ds2 = /1//(x)(V n)drl, (14)

@)

—

r I

Fig. 10 Reference and the perturbed configurations (left and right, respectively)
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where n is the unit normal to the boundary. As to be expected, this integral is
zero when the perturbation direction V is orthogonal to the boundary normal n.
Perturbations tangential to the boundary do not lead to a change in /;.

Next, we consider the generic boundary integral

() = /F V) d T (15)

with a scalar integrand ¥ (x,). The differentiation of this integral at the reference
configuration x in the direction of V is more involved and can be found in standard
texts on shape calculus, see [13, 33],

ol

Loy — /F (V@) -n+ HOY @) (V-n) d T, (16)

where H(x) is the mean curvature on /.

3.1.1 Compliance Optimisation in Elasticity

As the first specific optimisation problem we consider linear elasticity. The equilib-
rium equation for a solid body with the domain £2 is given by

Veow)+f=0 in £2, (17a)
u=20 onl)p, (17b)
o(un =t on Iy, (17¢)

where o is the stress tensor, u is the displacement vector, f is the external load vector
and 7 is the prescribed traction on the Neumann boundary Iy with the outward
normal n. On I'p, for simplicity, only homogenous Dirichlet boundary conditions
are assumed.

We assume a homogenous linear elastic material model

o(u)=C:eu) (18)
with the linear elastic strain tensor
1 T
eu) = E(Vu +V'u). (19)

The aim of shape optimisation is to find a shape 2 that minimises a cost
functional J(£2, u) such that

n}Jin J(2,u) (20)
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where the displacement vector u has to satisfy (17). In practice there are usually
additional constraints, e.g., pertaining to the volume of the domain 2, which are
neglected here for brevity. In case of structural compliance, the cost functional
J($2,u) reads

J(.Q,u):/ga(u):e(u)d!?:/gf-u d9+/r t-udrl. (1)

In adjoint shape sensitivity analysis the minimisation problem (20) with the
equilibrium equation (17) as a constraint is expressed with the functional

L(.Q,u,l)z](.Q,u)+/ VA:o(u)d.Q—/A-fd.Q
2 2
(22)
—/ u-(C:VA)n—i—A-o(u)nd]"—/ A-EdI,
I'p I'n

where A is a vector-valued Lagrange parameter field. The stationarity condition for
the functional L(£2,u, A), i.e.,

SL(2,u,1) =0 (23)

provides the complete set of equations for shape optimisation. The variation of
L(£2,u, L) with respect to the Lagrange parameter A yields the original boundary
value problem (17). The variation of L(£2,u, A) with respect to the displacement
vector u yields the adjoint boundary value problem

Vo) —f=0 in g, (24a)
A=0 onlp, (24b)
o(A)n = —t only. (24¢)

By comparing the adjoint problem with the original boundary value problem (17)
we deduce that A = —u. This holds only when the structural compliance (21) is the
cost functional.

Next, we consider the variation of L(§2,u, A) with respect to the domain £2. In
deriving it we make use of the domain deformationx, = ¢,(x) = x + ¢V introduced
in (11). In shape optimisation of linear elasticity problems usually only the parts of
the Neumann boundary with zero tractions are allowed to move, i.e.,

V=0 on Ip,

V=0 on Iy with on =%, (25)
V#0 on [y with on=0.
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The variation of the Lagrangian (22) with respect to the domain perturbations yields
the shape gradient. For structural compliance (21) as the cost functional (i.e., A =
—u) and with the result (14) at hand we obtain for the shape gradient

aL
B_QV: rN(2u~f—Vu:a(u))(V-n)dF:/FNg(u)(V-n)dF, (26)

where g(u) is the shape kernel function. It is worth emphasising that without
restricting V as stated in (25) the shape derivate would contain several more terms.

In iterative shape optimisation the shape kernel function g(u) is used as gradient
information. In order to achieve a decrease in the cost functional the boundary
perturbation is chosen proportional to

V =—g(u)n 27

such that

L )
B.QV_ /FNg(u) dar. (28)
During the shape optimisation the boundary value problem (17) has to be
repeatedly solved on a continuously changing domain. In a conventional finite
element setting this would require frequent mesh smoothing or updating. Therefore,
immersed, or embedded, finite element approaches that do not require remeshing
have clear advantages in shape optimisation. In the present work, we use an
immersed finite element technique previously developed in the context of incom-
pressible fluid-structure interaction [28-30]. For more details see [3].

3.1.2 Boundary Flux Optimisation in Electrostatics

The motivation for our second optimisation problem comes from the design of high-
voltage electrical devices. Avoidance of electrical breakdown is one of the key
design considerations for such devices. In a first approximation, electrical break-
down can be avoided by reducing the electrical field strength on critical components.
The aim of shape optimisation is to modify the geometry of components so that the
maximum electric field strength on surfaces, i.e., the normal flux, is reduced.

The electrostatic field equation in absence of space charges is given by a Dirichlet
boundary value problem for the Laplace equation

—Au=0 1in 2,
u=0 onlp,, (29)

u=1u on FDf,
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where u is the scalar electric potential or voltage, §2 is a multiply connected domain
with a Dirichlet boundary consisting of a (to be optimised) free part I'p, and a fixed
part I'p,. Itis assumed that the potentials on I'p, and I'p, are constant. The geometry
of the free Dirichlet boundary I'p, with the prescribed potential  is to be determined
with shape optimisation. Notice that the electric potential u is denoted non-bold
because it is a scalar field quantity.

In order to pointwise minimise the maximum of the normal flux on the free part
of the boundary I'p, we chose to minimise the cost functional

1 ou 2
J(.Q,u)zz/ (a—— ) dr, (30)
Iy n

where O > 0 is a user prescribed constant expected value.

The adjoint sensitivity analysis, as discussed in Sect. 3.1.1 for elasticity, is used
for obtaining the adjoint boundary value problem and the shape gradient. The adjoint
boundary value problem corresponding to the cost functional (30) reads

—AL =0 in £2,
A=0 on Ip,, 31)
u
A= a—n—Q on FDf‘

Importantly, the adjoint solution A is different from the solution u of the original
problem so that in applications both problems (29) and (31) have to be solved.
Moreover, the shape gradient corresponding to the cost functional (30) reads

a—LV:/ (—@a—“—ﬁ)(v.n)drz/ OV dl,  (32)
Y Ty Iy

where the shape kernel function g(A, «) now depends on the electric potential u and
adjoint solution A. In deriving the shape gradient we made use of (16) and H is the
mean curvature of the boundary.

As discussed for elasticity, during the iterative shape optimisation the shape
kernel function g(u) is used as gradient information. In order to achieve a decrease
in the cost functional the boundary perturbation is chosen proportional to V =
—g(A,u)n.

For solving the original and the adjoint boundary value problems (29) and (31),
respectively, we use the boundary element method, see e.g. [36], which does not
require a domain discretisation and is ideal for solving problems with unbounded
domains that occur in electrostatic field analysis. For more details see [3].
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3.2 Discrete Shape Sensitivity Formulation
3.2.1 Compliance Optimisation of Thin-Shells

We use the Kirchhoff-Love energy functional for modelling the mechanical
response of thin shells. Since the related equations are classically formulated in
curvilinear coordinates, it is usually easier to compute the shape sensitivities using
a discrete approach. To this end, we first discretise the governing equations with
finite elements and subsequently differentiate the cost function and the discrete
equilibrium equations with respect to control vertex coordinates.

The Kirchhoff-Love energy functional depends on mid-surface displacements
and their first and second derivatives. Therefore, the basis functions have to
be smooth and their second order derivatives square-integrable. As originally
introduced by Cirak et al. [10, 11] Kirchhoff-Love shells can be elegantly discretised
with subdivision basis functions. In the resulting discrete equilibrium equations the
control vertex displacements are the only degrees of freedom.

To begin with, we consider a shell with the undeformed mid-surface £2, the
position vector x(&, &) and the displacement vector u(&y, &). It is assumed that
the mid-surface is parameterised in terms of the curvilinear coordinates (&1, &).
The two corresponding (covariant) surface basis vectors follow from

Ay =X 4. (33)

From here onwards Greek indices take the values 1 and 2 and a comma denotes
partial differentiation with respect to curvilinear coordinates.

According to [11] the linearised membrane and bending strains aeg and Bug,
respectively, are given by

1
Oop = E(aa ‘ug+ug-ag), (34)

1
Bop = —Uop -az + T (.1 (anp x @) +uy-(ar Xaqp)]

(35)
as-aqp

Ja

With the above strain expressions at hand, the potential energy of a linear-elastic
Kirchhoff-Love shell reads

[, -(a; X a3) +u,-(az xay)].

M) = /Q (W™ (@) + W (Bag)) 1 2 + [T (u). (36)

where £2 is the shell mid-surface, W” is the membrane energy density, W” is the
bending energy density, w is the jacobian associated with the integration over the
thickness and I7%"(u) is the potential of the external forces. For a linear elastic
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material the two energy densities are defined with

Et

1

W™ (eap) = 57— UZH“ﬂV5aaﬁay5, (37a)
1 EP

WoBap) = 5 o oy P BB (37b)

where ¢ is the shell thickness, E is the Young’s modulus, v is the Poisson’s ratio and
HPY? is an auxiliary fourth order tensor

1
HEPYS — ) P ars 4 E(l —v) (a”‘ya’% + aaSaﬂy)' (38)

The contravariant metric tensor components a*¥ = a® - a® are computed from
the contravariant basis vectors defined according to a® - ag = Sg, where (Sg is the
Kronecker delta.

Next, the mid-surface position and displacement vector are discretised with
subdivision basis functions

xEnE) =Y Nib&)xi.  wEL&) =) N &)u, (39)

where N;(§),&,) is the basis function, x; is the position vector and u; is the
displacement of a control vertex with the index i. Recall that on structured meshes
the subdivision basis functions are equivalent to quartic box-splines in case of
the Loop scheme and equivalent to tensor-product cubic b-splines in case of the
Catmull-Clark scheme. As shown by Stam [34, 35] in the vicinity of extraordinary
vertices the subdivision surfaces can be evaluated in the same way as regular patches
after only few steps of refinement. For implementation details see [10, 11].

In order to obtain the discrete equilibrium equations, first the interpolation (39)
is introduced into the energy functional (36) and subsequently the integrals are
evaluated with Gauss quadrature. Computing the stationary points of the discretised
energy functional yields the discrete equilibrium equations

Ku = f, (40)

where K is the stiffness matrix, f is the array of vertex forces and, with a slight abuse
of notation, u is the array of vertex displacements.

In discrete shape sensitivity formulation we aim to minimise a discretised cost
function

minJ(x, u) 41)
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which depends on the array of vertex coordinates x and displacements u. It is
clear that the displacements have to satisfy (40). The compliance cost function
corresponding to the discrete equilibrium equation reads

Joeu) =fTu=u"Ku. (42)

In order to compute the derivatives of the cost function with respect to the vertex
coordinates we consider the adjoint formulation

L(x,u,A) = J(x,u) + AT[f — Kul, (43)

where A is a Lagrange parameter vector. The stationarity condition for L(x,u, 1)
with respect to the vertex displacements leads to the adjoint problem

_ aJ (x,u)

KA u

(44)
Here, we made use of the symmetry of the stiffness matrix K. The stationarity
condition for L(x,u, A) with respect to the vertex coordinates leads to the discrete
shape gradients

(45)

OL(x,u,A)  3J(x,u) r[of oK
ox T x +a x  ox |

By introducing the cost function (42) and the adjoint solution with A = u we obtain

OL(x,u,A) T af T oK

ox ox ox “ (46)

The derivatives of the stiffness matrix with respect to the vertex coordinates can be
determined by consecutively differentiating the discretised Kirchhoff-Love energy
functional (36) first with respect to vertex displacements and then with respect to the
vertex positions. In gradient-based optimisation, in order achieve a decrease in the
cost function the perturbation of the control vertex positions is chosen proportional
to

) 0K

v +u'—u (47)
ox ox

Note that, with a slight abuse of notation, the perturbation vectors for the continuous

and discrete shape sensitivity formulations are denoted with the same symbol V. For

more details we refer to [2].
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4 Multiresolution Shape Optimisation

The introduced subdivision multiresolution editing technique enables to use two
different resolutions of the same geometry for optimisation and analysis. A sim-
plified two-level version of the proposed optimisation algorithm is shown Fig. 11.
The optimisation and analysis meshes correspond to different refinement levels in a
multiresolution hierarchy. The optimisation level is £, = 0 and the analysis level
is £, = n. In our actual implementation the optimisation level is successively
increased until £, = £, and the analysis level £. is fixed. Crucially, in the spirit
of isogeometric analysis the control meshes for analysis and optimisation represent
the same geometry.

In shape optimisation it is usually necessary to use a coarse control mesh for
geometry updating and a relatively fine control mesh for analysis. As is known,
unwanted geometry oscillations may appear when the analysis and geometry
representations have similar resolutions [8]. These geometry oscillations are usually
a numerical artefact or a result of the ill-posedness of the considered optimisation
problem. Moreover, in practical applications it might be desirable to optimise only
a very coarse representation out of aesthetic or manufacturability reasons.

A more detailed description of the employed multiresolution technique is given
in Algorithm 1. In the presented computations, different from Algorithm 1 we
use instead of the steepest descent update on line 9 the method of moving
asymptotes (MMA) as implemented in the NLopt library [20]. In addition, in
practical computations there are usually constraints, such as bounds on vertex
positions or area/volume constraints, which are not mentioned in Algorithm 1. For
more details we refer to [3, 4].

coarse geometry ‘Gcomctry update | coarse gradient

x Ve
0
< s tR
ER 1
:q , S T R
] 1 A
i
5 ; !
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qu_) fine geometry Analysis _ fine gradient
wn L VTL
n —]
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Fig. 11 Flowchart of the simplified multiresolution optimisation algorithm
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Algorithm 1 Multiresolution shape optimisation

// choose computational level £,
// read coarse input control mesh x°
// Initialise optimisation level

1: 4,=0
// Initialise cost functional
2: J =00

// iterate over optimisation levels
3: while ¢, < ¢, do
// update vertex coordinates x* while the cost functional decreases

4: repeat
// subdivide optimisation level £, up to analysis level {..
5: for { < {,to{.do

6: xt <« Sxt
// compute cost functional J = J(x‘ u(x‘)) and the descent direction yle
// project the descent direction V* to the optimisation level

7: for { < {.to{, do
8: Vi < RV

// update vertex coordinates of the optimisation level
9: xlo < (xt + V%) witha >0

10: until J < Jpevious
// increment optimisation level
11 Ly« (,+1)

S Examples

5.1 Immersed Finite Element Discretised Elasticity Problems
5.1.1 Simply Supported Plate with a Hole

This example highlights the advantages of multiresolution optimisation over classi-
cal approaches that use only one or two representation levels. The problem consists
of a square plate with an edge length L = 2 and a circular hole with diameter
D = 1, see Fig. 12. The plate is loaded with a line load of length 1. The Young’s
modulus and Poisson’s ratio of the plate are E = 100 and v = 0.4, respectively.
During optimisation the shape of the hole is to be modified so that the structural
compliance of the plate is minimised.

Initially, at level £ = 0 the hole is represented with a cubic spline with 8 control
points. The immersed finite element grid has 100 x 100 cells of uniform size. Three
cases referred to as C1, C2 and C3 with different geometry and analysis resolutions
are studied:

— In Cl1 only one level with £, = £, = 0 is used for analysis and optimisation.
— In C2 a four times subdivided control mesh at refinement level £, = £, = 4 is
used for analysis and optimisation.
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o
paralis
1

Fig. 12 Simply supported plate with a hole. Problem description

C1 C2 C3

Fig. 13 Simply supported plate with a hole. Optimised hole shapes for cases C1, C2 and C3

— In C3 the optimisation level starts with £, = 0 and increases until {, = {, = 4
is reached. Throughout the computations the analysis level is fixed to £, = 4.

In case C1 the control mesh that is visible by the immersed finite element grid
contains 8 elements and in cases C2 and C3 it contains 128 elements. It is clear that
in case C1 the hole geometry is poorly resolved on the immersed finite element grid.

In Fig. 13 the optimised final hole shapes for the three cases are shown. In
particular, the difference in optimal shapes for cases C2 and C3 which use the same
analysis level £, = 4 is striking. The case C1 is different from the other two cases
because of the mentioned inadequately coarse analysis control mesh with £, = 0.
During optimisation the optimisation level ¢, is successively increased only for case
C3. The optimisation level is always incremented when a minimum is reached, cf.
Algorithm 1. For the three cases the reduction of the relative cost function over
the number of iterations is shown in Fig. 14. The case C2 with fixed fine resolution
achieves the smallest cost reduction while the case C3 with multiresolution achieves
the largest cost reduction. The strong dependence of the optimisation results on
geometry parameterisation is well known in structural optimisation and is often
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Fig. 14 Simply supported plate with a hole. Reduction of the normalised cost over the number of
optimisation iterations. The initial cost for case C1 is 0.073 and for cases C2 and C3 is 0.065

Fig. 15 Three-dimensional stool. Problem description. Roller supports are applied to all finite
element nodes inside the regions of size 0.2 X 0.2 marked by dashed squares

associated with the non-convexity of the considered optimisation problem. We
conjecture that by initially using a coarse control mesh for optimisation the possible
number of local minima is significantly reduced which reduces the possibility of
landing in a non-optimal local minimum. It appears that in case C2 the optimisation
problem is caught in a local minimum which is significantly higher than the global
minimum.

5.1.2 Three-Dimensional Stool

In this example we present the combined topology and shape optimisation of a three-
dimensional solid, see Fig. 15. Our algorithm for combined topology and shape
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Fig. 16 Three-dimensional stool. First topology and subsequent shape optimisation step. (a)
Topology optimised. (b) Shape optimised

NS

Fig. 17 Three-dimensional stool. Second topology and subsequent shape optimisation step. (a)
Topology optimised. (b) Shape optimised

optimisation is described in [3]. The initial domain is a truncated pyramid and
is at its top loaded with a uniform distributed load 7, = 10. At its bottom it is
supported by four distributed roller supports each of size 0.2 x 0.2. The Young’s
modulus and Poisson’s ratio are chosen with £ = 100 and v = 0.4, respectively.
In the optimisation study only one quarter of the domain is considered and
appropriate bounds and geometry tags are applied at the two planes of symmetry.
The corresponding immersed finite element grid is of size 0.7 x 0.7 x 1 and consists
of 30 x 30 x 30 cells.

The sequence of the performed topology and shape optimisation steps are
shown in Figs. 16 and 17. In total two topology and two shape optimisation
steps are performed. During each topology optimisation step we remove in one
go a relatively large amount of material by deleting computational cells with the
topology derivative below a given threshold. Figure 16a shows the result of the first
topology optimisation step and the semi-manually generated coarse control mesh
for representing the new topology. In the following shape optimisation step, see
Fig. 16b, the generated control mesh serves as the optimisation level £, = 0 and
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the computation level is chosen with £, = 2. During the shape optimisation the
volume of the domain is constraint to remain constant. The result of the second
topology optimisation step and the generated control mesh are shown in Fig. 17a.
This is followed by the final shape optimisation step shown Fig. 17b.

5.2 Boundary Element Discretised Electrostatic Problems
5.2.1 Boxin a Sphere

We optimise the shape of a box placed inside a sphere, see Fig. 18, with the expected
normal flux density Q in (30) set to 20. It can be shown that the optimal shape for
the inner box is a sphere with half the diameter of the outer sphere [15]. The box,
representing the to be optimised boundary I'p,, is of size 0.16 x 0.2 x 0.24 and
the outer sphere, representing the fixed boundary I'p,, has radius 0.2. The coarse
mesh for the box contains 48 elements which increases to 768 elements in the twice
subdivided fine mesh at level £, = 2. During the subdivision refinement, the creases
in the coarse mesh are maintained as creases using the extended subdivision stencils
mentioned in Sect. 2.2, see also [5, 10]. With the extended subdivision stencils the
limit surface corresponding to the coarse box mesh is a box of the same geometry.
Note that on the limit surface the creases are only C°-continuous and not at least C'-
continuous. The resolution of the outer sphere remains fixed with 3840 elements.
Hence, the meshes for the boundary element analysis of the cube and sphere consist
of 768 and 3840 elements, respectively.

Figure 18a shows the initial coarse geometry yielding a cost functional value
of J(£2%, u') = 15.38. First we select this coarse geometry as optimisation level,
ie., £, = 0. After consecutively selecting £, = 1 and £, = 2 and optimising
we obtain the final optimised geometry shown in Fig. 18b. The final shape of the
initial box is nearly a sphere of diameter 0.215 and the cost functional value is
J(2% u') = 8.46 - 1073, which represents a reduction of 99.95%. As to be
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Fig. 18 Box in a sphere. Initial and optimised geometries with isocontours of the normal flux. The
meshes indicate the optimisation level £,. The isocontours belong to the fine computational mesh
at level £, = 2. (a) Initial geometry at £, = 0. (b) Final optimised geometry at £, = 2
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expected, the optimisation leads to a geometry with nearly uniform distribution of
normal flux as seen in Fig. 18b. Since the extended subdivision scheme was used in
this case, the marked creases were not smoothed out by the subdivision itself, but
rather by the shape optimisation procedure.

5.2.2 Gas Insulated Switchgear

In this example we apply the proposed shape optimisation approach to the design
of an electrode in a gas insulated switchgear, see Fig.19a. Such devices are
widely used as circuit-breakers in high-voltage power transmission. The objective
of shape optimisation is to reduce the propensity for electrical breakdown with the
ultimate aim of enabling more compact device geometries. This can be achieved by
modifying the electrode geometries such that the cost functional J(£2%, u‘) in (30)
is minimised.

In Fig. 19a the gas insulated switchgear is shown with the electrode in the form of
a primitive cylinder. The cylinder represents the electrode geometry to be optimised.
The initial coarse mesh of the cylinder contains 264 elements. The creases on the
cylinder are not tagged. Therefore, the geometry becomes smoother while it is
refined by subdivision, see Fig. 19b. As a design constraint, the inner surface of the
cylinder is required to have a constant radius for a bolt passing through it. Geometric
constraints on the positions of vertices lying on the inner surface are applied to
prevent any movement that would violate this design requirement.

In this example, a once subdivided electrode mesh with 1056 elements is
chosen as the computational level (£, = 1) and the geometry at level £, = 0 is
used for optimisation. In the initial design, Fig. 19b, the maximum normal flux is
81.63 before optimisation and reduces to 66.99 in the optimised shape shown in
Fig. 20, corresponding to a reduction of 17.94 %. However, the reduction in the
cost function J(£2%, u’c) is much higher with 38.24 %. In Fig. 20b two electrode

(a)

Device with coarse electrode mesh. Device with refined electrode mesh.

Fig. 19 Gas insulated switchgear with coarse and refined electrode meshes. The considered
electrode is shown in dark blue in (a). The isocontours in (b) represent the normal flux
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Fig. 20 Gas insulated switchgear with the optimised electrode geometry. The isocontours repre-
sent the normal flux. (a) Isometric view. (b) Top view

geometries are visible. The one in blue is an electrode geometry that has been
obtained over the years by combining engineering intuition with simple calculations
and testing. The similarities between the systematically shape optimised and the
electrode geometry in production are striking. Notice in particular the saddle shapes
at the two ends of the both electrodes, which help to reduce the large normal fluxes
that are present at the sharp edges of the inner hole.

5.3 Subdivision Finite Element Discretised Thin-Shell
Problems

5.3.1 Inverted Catenary Arch

In this verification example we optimise a thin strip pinned at both ends and
subjected to a vertical distributed load. The optimal shape for such a strip is (in
the limit of zero thickness) a catenary because for shells it is energetically more
favourable to carry loads through membrane action instead of bending action.
The catenary is the shape assumed by a loose string hung freely from two fixed
points [24], its equation reads

y = a cosh (x-;_ﬂ) +y, (48)

where the y-axis is parallel to the applied load vector and the three constants «,  and
y are determined based on the location of the supports and the string length /. Two
cases are studied, one where the supports are at equal height and the other where
one support is higher than the other. In both cases the horizontal distance between
the supports is 1. The vertical offset between the supports in the second case is 0.2.
Initially, the strip is a narrow flat plate connecting the supports with length equal to
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the distance between the supports. Width and thickness are constant with 0.05 and
0.02, respectively. The magnitude of the vertical uniformly distributed load is 1000,
the Young’s modulus and Poisson’s ratio are E = 2 x 10% and v = 0.3, respectively.
The length [ of the optimised strip is chosen with 1.1 and 1.3.

The Catmull-Clark subdivision scheme is used for geometry representation
and for discretising the thin-shell equations. The initial coarse mesh used for
optimisation contains only 3 elements along the length and 1 element across the
width of the strip. This increases to 48 in the twice subdivided fine mesh used for
analysis. During optimisation the mesh resolution is increased starting £, = 0
up to £, = 2. Only the y coordinates of the control points are optimised. The
comparison of the optimisation results with the corresponding catenary curve for
different curve lengths and support positions is shown in Fig.21. The reduction of
the objective function is more than 99.9 % for all cases and the results show good
visual agreement with catenary curves. The slight deviations from the catenary are
possibly due to the finite width of the strip, which leads during optimisation to some
curvature generation across the width of the shell (not visible in Fig. 21).

(a) (b)
a = 0.6549 £ =0.0000 a = 0.3980 £ =10.0617
v = —0.8553 v = —0.6647

o = 0.3884 £ =0.0000

Fig. 21 Inverted catenary arch. The dashed and solid blue lines show the centre lines of the
strip before and after optimisation, respectively. The dotted black line is the catenary curve
corresponding to length /. The «, B and y values are the parameters in (48). In the chosen coordinate
system the left support has the coordinates (—0.5, 0.0). (a) Supports at same height. (b) Supports
at different heights
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5.3.2 Architectural Roof

We consider the optimisation of an initial roof design shown in Fig.22 with
approximate dimensions of 2.31 x 6.27 x 0.75. This design was created by an
architect using the Autodesk Maya software. A vertical uniformly distributed load
of 1000 is chosen as the design load and the shell thickness is # = 0.02. The Young’s
modulus and the Poisson’s ratio are E = 1 x 10'* and v = 0.2, respectively.

During the shape optimisation only the vertical coordinates of control points are
chosen as design variables. Moreover, an area constraint is applied in order to restrict
the size of the optimised shape. An important architectural feature of the roof is the
ridge profile, which is preserved by applying special extended subdivision stencils
at the corner vertices and crease edges, see Figs. 22 and 23.

The coarse mesh at optimisation level £, = 0 contains 26 nodes which is twice
subdivided to obtain the computation mesh at level £. = 2 with 272 nodes. The
second optimisation stage is done at level £, = 1 but no optimisation is done at
level £, = 2 as this results in oscillatory surface features. The optimised roof design
is shown in Fig. 24. The initial value of the compliance cost function is 31.36 and is
reduced by 79.13 % through optimisation.

Fig. 22 Limit surface of the
initial architectural roof
design. The model has three
supports, a central opening
and a roof ridge. The
corresponding coarse control
mesh and selected vertex and
edge tags are shown in Fig. 23

Fig. 23 Top view of the
initial control mesh of the
architectural roof. The nodes
indicated by black squares
are tagged as corner and the
edges highlighted by the
black solid line as crease
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Fig. 24 Limit surface of the
optimised architectural roof
design

6 Summary and Conclusions

We reviewed the multiresolution optimisation technique based on subdivision
surfaces and presented its application to elasticity, electrostatics and thin-shell
problems. For discretising the governing partial differential equations we employed
three different discretisation techniques, namely immersed finite elements for
elasticity, boundary elements for electrostatics and subdivision finite elements for
thin-shells. The inherent hierarchy of the subdivision surfaces allows us to consider
the same surface at different resolutions and to take advantage of multiresolution
editing techniques. Starting from the coarsest control mesh increasingly finer
meshes are used for geometry updating and always a fine mesh is used for
analysis. As demonstrated with the computed examples, this effectively inhibits
the appearance of non-physical geometry oscillations that may occur in shape
optimisation. Moreover, any pathological element distortions on the computational
mesh are practically avoided. As a result, there is no need to regenerate or smooth the
boundary mesh during the optimisation. Finally, it is evident that the multiresolution
editing semantics is particularly appealing for isogeometric analysis because it
enables the decoupling of geometry and analysis representations.
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