ASTRA: A Tool for Abstract Interpretation
of Graph Transformation Systems

Peter Backes and Jan Reineke®)

Universitat des Saarlandes, Saarbriicken, Germany
{rtc,reineke}@cs.uni-saarland.de

Abstract. Wedescribe ASTRA (see http://rw4.cs.uni-saarland.de/~rtc/
astra/), a tool for the static analysis of infinite-state graph transforma-
tion systems. It is based on abstract interpretation and implements clus-
ter abstraction, i.e., it computes a finite overapproximation of the set of
reachable graphs by decomposing them into small, overlapping clusters
of nodes. While related tools lack support for negative application con-
ditions, accept only a limited class of graph transformation systems, or
suffer from state-space explosion on models with (even moderate) con-
currency, ASTRA can cope with scenarios that combine these three chal-
lenges. Applications include parameterized verification and shape analysis
of heap structures.

Keywords: Abstract interpretation - Graph transformation systems -
Parameterized verification - Shape analysis + Tools

1 Introduction

Graph transformation is an intuitive formalism: One begins with a start graph
and, by nondeterministic choice, matches and applies transformation rules to
it, based on subgraph replacement. We are mainly interested in analysis of the
graphs reachable by successive application of rules, to verify safety properties,
for example.

One of the applications of graph transformation is modelling parameterized
concurrent systems. Reasoning about such systems is hard because the state
space is infinite. Hence, abstraction methods are required. In this paper, we
present ASTRA, our tool for abstraction of graph transformation systems.

A number of tools are available that use abstract interpretation (each based
on a different abstraction) to compute a finite over-approximation of the reach-
able graphs: AUGUR [7] uses a petri net based abstraction and had success
with interesting examples of concurrent systems; it does not, however, support

negative application conditions. hiralysis [5] is based on partner abstraction.

This work was partially supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and

Analysis of Complex Systems” (SFB/TR 14 AVACS). See http://www.avacs.org/
for more information.
© Springer International Publishing Switzerland 2015

B. Fischer and J. Geldenhuys (Eds.): SPIN 2015, LNCS 9232, pp. 13-19, 2015.
DOI: 10.1007/978-3-319-23404-5_2

http://rw4.cs.uni-saarland.de/~rtc/astra/
http://rw4.cs.uni-saarland.de/~rtc/astra/
http://www.avacs.org/

14 P. Backes and J. Reineke

It does offer negative application conditions and can analyze some concurrent
systems, but requires input grammars to satisfy some rather restrictive “friendli-
ness” properties. GROOVE [9] has an implementation of neighborhood abstrac-
tion, which has no such restriction, supports negative application conditions, but
analysis of systems with concurrency leads to state space explosion.

2 Cluster Abstraction

Our tool, ASTRA, implements cluster abstraction [3]: We consider each node in
the graph (to become the core node of a cluster) plus its respective adjacent nodes
(to become the periphery). We merge two or more adjacent nodes into summary
nodes if both their labels and configuration (spoke) of edges to the core node
are equal. If, by this summarization, two merged nodes disagree on to existence
of some edge to a third node, we replace it by a % edge. After summarization,
we are left with clusters of bounded size, and we eliminate any duplicate cluster
by assuming (as a further overapproximation) that there can be any number of
concrete instances. An example is shown in Fig. 1. The initial graph is abstracted
in this way, and then rule application is lifted to the abstraction.

In this paper we describe ASTRA 2.0. An earlier version, ASTRA 1.0 [2],
implemented a less precise precursor to cluster abstraction that assumed all
edges in the periphery to be %

Fig. 1. An example of how a cluster is obtained by abstracting the concrete graph with
respect to one specific node (here, the i-labelled one). The tool lifts the application of
graph transformation rules to this abstraction. We represent node summarization as
thick circles, the % nodes as dashed lines.

3 Architecture and Usage

ASTRA is a command-line program that expects a start graph and graph trans-
formation rules as input and outputs the clusters from the analysis. When run-
ning the analysis, it abstracts the start graph, then enters its main loop. The
main loop searches for abstract matches; each left hand side node of each rule
is matched against the core node of any cluster from the current working set,
and the remaining nodes are matched to a subset of the respective peripheral
nodes. In addition, one further cluster with unmatched core node, but matched

ASTRA: A Tool for Abstract Interpretation 15

peripheral nodes is materialized. Those matches are then combined into a par-
tial concretization, with several checks done to rule out cases where no full
concretization exists. Not all such cases are detected by the tool; but the result
is still a valid over-approximation.

All clusters produced by rule application are added to a temporary set. After
each iteration, the tool then, optionally, applies a post-pass reduction step to
the temporary set, inspecting it for clusters that can be eliminated or refined.
Finally, the temporary set is joined with the working set.

The tool indicates progress as it goes from rule to rule, and from iteration to
iteration. After each iteration, the current working set is dumped to disk, which
is useful for inspecting the current state of the analysis when running the tool
on complex cases that take some time.

The main loop is executed iteratively until the working set remains unchanged,
i.e., a fixpoint has been reached. (Given the finite size of the abstract domain, ter-
mination is guaranteed, but subject to, like with all abstractions, processor speed
and memory size.) The tool then dumps the output to disk, prints statistics and
exits. Given the finite size of the abstract domain, termination is guaranteed.

3.1 Input File Format

ASTRA uses the same ASCII-based input file format as hiralysis (see [5] Fig.
B.1, p. 160), extended by additional application conditions. For example, the
constraint partner(x1)=neg(out,p) restricts rules to apply only if the node
matched by x1 has no outgoing edge with label p.

Consider the following toy case as a running example. The input:

nodelabels n,Error,i; edgelabels e,p;
empty; // start graph
create [{x1:n,x2:n,x3:1i},
{(x1,x2):e,(x2,x3):e,(x3,x1) :e, (x1,x3) :p, (x2,x3) :p}];// init
rule [{x1:i,x2:n},{(x1,x2):e}], // insert
[{x1:1,%x2:n,x3:n},{(x1,x3):e, (x3,x2) :e, (x3,x1) :p}];
rule [{x1:n},{},partner(xl)=neg{(out,p)}], [{x1l:n,x2:Error},{}];

This example models singly-linked ring buffers into which an unbounded number
of nodes are inserted dynamically. One special node is indicated with the label i.
New nodes are inserted next to it with a back pointer. Here, we want to use astra
to verify the safety property that each node has such a back pointer. We achieve
this with the second rule. It uses a negative application condition to generate an
error label if a node lacks the back pointer.

As can be seen, the input file format is mainly based on graphs, which are
sets of node names, each with a label, and sets of edges (the name being a pair
of node names), each with an edge label. The rules specify the subgraph to be
replaced and the subgraph by which it is replaced. The node names imply a
mapping from the left hand side to the right hand side.

16 P. Backes and J. Reineke

3.2 Command-Line Interface
For our case study, consider the following tool run:

$./astra -0Os -Op test023.gts
o[2/ 2] 100
1[0 2/ 2] =100
2 [2/ 2] =100
done.
6 clusters, 5 matches, 1 active rules,
6 rule applications, 2 iteratioms

The $ indicates the shell prompt; the remaining line is entered by the tool user. In
this case, ASTRA is run on the input file of our running example (test023.gts).

In the example, we specify analysis options -0s and -Op, instructing ASTRA
to apply a simple peripheral constraint satisfiability check and post-pass reduc-
tion, respectively. For our experiments, this proved to be the most practical
option set, providing the best speed/precision trade-off. Removing one of the
two options lead to drastic decrease in precision, while adding any other lead to
merely minuscule gains. Only in specific cases where the analysis would otherwise
run into state-space explosion, further analysis options were useful.

Option -n can be used to specify a cutoff iteration after which to prematurely
terminate the analysis. This is useful to inspect the intermediate result. Run
ASTRA without arguments for further details about the available options.

3.3 Status Report

For each iteration, while running, the current iteration number, current rule,
total number of rules and progress (current rule divided by total number of
rules) is printed. After finishing the iteration, the number of clusters added
and modified (i.e., with peripheral constraints weakened) is printed. Note that
clusters added by the initial graph and by rules with empty left hand side are only
accounted for in the final statistics printed after the fixpoint has been reached.

3.4 OQOutput File Formats

ASTRA supports DOT (as used by the graph layout tool Graphviz), GML (as
used by OGDF and the GoVisual Diagram Editor, respectively), GDL (as used
by VCG and its successor aiSee) and GraphML (as used by yEd and yComp,
respectively). In addition, the tool supports its own native output format that
is similar to the input format.

The output can be loaded or processed with any tool supporting any of those
formats. The most common use will be a graph layout tool to inspect the output,
but it can as well provide invariants for other analyses, like hiralysis [4].

For our running example, the tool outputs six clusters, visualized in Fig. 2.
In addition to the full analysis, we show the intermediate results obtained by
using option -n.

ASTRA: A Tool for Abstract Interpretation 17

-n 0

-n 1

-n 2 = full

Fig. 2. Analysis results on running example.

These drawings were done by METAPOST, based on an experimental out-
put module built into ASTRA that does primitive circular graph drawing. For
common use, aiSee and yEd have proven most useful, especially the organic and
hierarchical layout engines.

4 Experimental Evaluation

We already ran the tool on various test cases from the literature in [3], including
AVL trees, red-black trees, firewalls, public/private servers, dining philosophers,
resources, mutual exclusion, singly-linked lists, circular buffers, Euler walks, and
the merge protocol. The merge protocol, our main example, is a distributed
car platooning coordination protocol that establishes a logical communication
hierarchy on top of the physical communication medium. Analysis of the protocol
is hard because of its massively distributed nature, caused by the vast range of
topological configurations that may evolve concurrently.

However, all inputs from that case study were written by hand. To demon-
strate the robustness of our tool, we apply it to graph transformation systems

Table 1. Benchmark analysis statistics. cl. = clusters, m. = abstract matches, rule
app. = rule applications, it. = iterations.

Benchmark #cl |# m |# rule app |# it. |Time
Synchronous, leader-controlled 22509 75359, 36685213|135 |9m 34.200s
Synchronous, follower-controlled | 24957, 82569 43679468 144 |22m 30.200s
Asynchronous,leader-controlled | 142326850889 1006759383202 13136 m 1.260s
Asynchronous,follower-controlled | 58023|296310| 83499253|157 |3972m 37.560s

18 P. Backes and J. Reineke

generated automatically from higher level models of the merge protocol, specified
in the DCS formalism [6,8]. We used the tool dcs2gts [1] to translate the DCS
models into graph transformation systems suitable for analysis with ASTRA.
We include two new variants, follower-controlled merge.

Synchronous (leader-controlled) merge in our former case study consisted of
402 rules (plus 3 for checking safety properties), the asynchronous version 313
(plus 2). The large number is caused by the fact that many rules are generated
from templates that iterate over all node labels. The automatically generated
versions use 788 and 835 rules, respectively. In contrast, the number of clusters
in the analysis result increased from 873 to 22509 (factor 26) and from 3069
to 142326 (factor 46). This is because the automatically generated version uses
intermediate steps to model topology changes. While those steps are serialized
by special labels, and thus pose no combinatorial challenge, our analysis shows
that the tool does well with all those intermediate configurations absent in the
manually created inputs. See Table1 for the full results.

5 Conclusions and Future Work

We have seen how ASTRA can be used to analyze a simple graph transformation
system, modelling insertion of elements into ring buffers. In contrast to related
tools, it is not restricted to graph transformation systems of a special form, it
supports negative application conditions and it does well when facing models
involving concurrency. Our experimental evaluation showed that it is capable of
handling very complex inputs generated automatically from higher-level specifi-
cations.

Future Work: Our tool already has experimental support for generating an
abstract labelled transition system of clusters, but the theory for actually using
those with a model checker has still to be worked out. We would also like to pro-
vide more powerful application conditions, in particular non-existence of edges
between two specific nodes and restrictions on the periphery of a node.

A promising way to considerably speed up analysis is parallelization. The
structure of the analysis is very well suited for this and we expect a parallelized
version to scale almost linearly.

Acknowledgments. We thank Dmytro Puzhay for assistance with the implementa-
tion work and Jorg Bauer-Kreiker for providing his hiralysis test cases. Conny Clausen
managed copyright clearance with Saarland University to obtain permission for releas-
ing the tool under a Free Software license. Reinhard Wilhelm provided valuable com-
ments for a draft version of this paper.

References

1. Backes, P.: dcs2gts - An interface between XML-coded DCS protocols and the
hiralysis representation of graph transformation grammars. Fopra report, Saarland
University, January 2007

ASTRA: A Tool for Abstract Interpretation 19

. Backes, P., Reineke, J.: Abstract topology analysis of the join phase of the merge
protocol. In: TTC 2010, CTIT Workshop Proceedings, vol. WP10-03, pp. 127-133.
University of Twente, Enschede (2010)

. Backes, P., Reineke, J.: Analysis of infinite-state graph transformation systems by
cluster abstraction. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015.
LNCS, vol. 8931, pp. 135-152. Springer, Heidelberg (2015)

. Bauer, J., Schaefer, 1., Toben, T., Westphal, B.: Specification and verification of
dynamic communication systems. In: ACSD 2006, pp. 189-200 (2006)

. Bauer, J.: Analysis of Communication Topologies by Partner Abstraction. Ph.D.
thesis, Saarland University (2006)

. Bauer, J., Toben, T., Westphal, B.: Mind the shapes: Abstraction refinement via
topology invariants. Technical report 22, SFB/TR 14 AVACS, June 2007

. Konig, B., Kozioura, V.: Augur 2-a new version of a tool for the analysis of graph
transformation systems. In: Bruni, R., Varré, D. (eds.) GT-VMT 2006, ENTCS,
vol. 2011, pp. 201-210 (2008)

. Rakow, J.: Verification of Dynamic Communication Systems. Diploma thesis,
Carl-von-Ossietzky Universitiat Oldenburg, April 2006

. Zambon, E.: Abstract graph transformation : theory and practice. Ph.D. thesis,
University of Twente (2013)

2 Springer
http://www.springer.com/978-3-319-23403-8

Model Checking Software

22nd International Symposium, SPIN 2015,
Stellenbosch, South Africa, August 24-26, 2015,
Proceedings

Fischer, B.; Geldenhuys,). (Eds.)

2015, ¥V, 319 p. 66 illus., Softcover

ISBM: 978-3-319-23403-8

	ASTRA: A Tool for Abstract Interpretation of Graph Transformation Systems
	1 Introduction
	2 Cluster Abstraction
	3 Architecture and Usage
	3.1 Input File Format
	3.2 Command-Line Interface
	3.3 Status Report
	3.4 Output File Formats

	4 Experimental Evaluation
	5 Conclusions and Future Work
	References

