
Chapter 2
Various Problems in Visual Cryptography

2.1 Alignment Problems

Pixel expansion is an important parameter for Visual Cryptography Schemes (VCS)
[11, 25, 32, 33]. However, most research in the literature is dedicated to reduce pixel
expansion at pixel level [34], i.e., to reduce number of subpixels that represent a pixel
in original secret image. It is quite insufficient since final size of the transparencies
of the VCS is affected not only by number of the subpixels, but also by size of
the subpixels in the transparencies. However, reducing the size of the subpixels in
transparencies is due to difficulties of the transparencies alignment [29, 34].

We notice that, final goal of reducing the pixel expansion is to reduce size of
the transparencies that are distributed to the participants [34], because smaller trans-
parencies are easier to be transported. However, the subpixels that are printed on the
transparencies affect the final size of the transparencies, in fact, size of the trans-
parencies is the product of size of the subpixels and number of the subpixels in each
transparency. Unfortunately, there is a dilemma when one tries to determine the size
of the subpixels: when the subpixel size is large, it is easy to align the shares (most
publications in the literature require alignment of the shares precisely in the decrypt-
ing phase), but large subpixel size will lead to large transparencies. On the other
hand, when the subpixel size is small, it is relatively hard to align the shares. From
the viewpoint of VCS participants, the goal is to align the shares easily and have small
transparencies as well. Table2.1 shows the relationship between size of the subpixels
of the transparencies and the ease to align them from experiential viewpoint.

In this chapter, we take the alignment problem of VCS into consideration [29],
and prove that in order to visually recover the original secret image, it is not necessary
to align the transparencies precisely. This study is restricted to the case when only
one transparency is shifted.
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Table 2.1 The advantages and disadvantages of different sizes of the subpixels printed on the
transparencies

Size of subpixels Advantages Disadvantages

Larger Easier to align Larger transparencies size

Smaller Smaller transparencies size Hard to align

2.1.1 Precise Alignment of VCS

The shares of visual cryptography are printed on transparencies which need to be
superimposed [12, 21, 23, 25, 31, 39, 40]. However, it is not very easy to do precise
superposition due to the fine resolution as well as printing noise [39]. Furthermore,
many visual cryptography applications need to print shares on paper in which case
scanning of the share is necessary [40]. The print and scan process can introduce
noise as well which can make the alignment difficult [22, 34]. In this section, we
consider the problem of precise alignment printed and scanned visual cryptography
shares. Due to the vulnerabilities in the spatial domain [13], we have developed a
frequency domain alignment scheme. We employ the Walsh transform [1] to embed
marks in both of the shares so as to find the alignment position of these shares.

Visual cryptography possesses these characteristics:

• Perfect security.
• Decryption (secret restoration) without the aid of a computing device.
• Robustness against lossy compression and distortion due to its binary attribute.

However, the shortcomings of visual cryptography are as salient as its merits.
There are three main drawbacks in visual cryptography:

• It results in a loss of resolution [39]. The restored secret image has a resolution
lower than that of the original secret image.

• Its original formulation is restricted to binary images [3–8, 24, 27, 36–38]. For
color images, some additional processing such as halftoning and color separation
are required [6, 14–16, 18, 19, 36].

• The superposition of two shares is not easy to perform unless some special align-
ment marks are provided. The manual alignment procedure can be tedious espe-
cially for high resolution images [39].

We will focus on the third problem in this section. The shares of VC printed
on transparencies are very difficult to be overlapped with proper alignment even if
we ignore the printing errors. A wide variety of applications of visual cryptography
would require the printing of the shares on paper like that of documents, checks,
tickets or cards. In such cases, scanning of the printed shares is inevitable for restoring
the secret. The scanned shares (with printing, handling, and scanning errors) have
to be superimposed in order to reconstruct the secret image which could be a photo,
code or other such important information.



2.1 Alignment Problems 25

Fig. 2.1 Cross alignment for
basic visual cryptography

In this section, we concentrate on the print and scan applications of visual cryp-
tography, i.e., to obtain the precise position of scanned shares which requires rotation
and alignment correction. Putting alignment marks in the spatial domain is extremely
vulnerable to cropping and editing. Therefore,we use theWalsh transform [1] domain
to embed perceptually invisible alignment marks. We show that the Walsh transform
helps in recovering the marks in spite of noise and we can precisely align the scanned
shares to recover the secret.

In order to carry out the superposition, initially a spatial tag is marked beside
the shares. In Fig. 2.1, we put a cross beside each share. For restoring the secret,
the two crosses need to be precisely overlapped. If this is done, the secret image
will be revealed. Another solution to this problem is by utilizing the extended visual
cryptography scheme [2, 21]. This scheme shares a secret by using two protection
images B andC . Theprocedure of visual cryptography is performedas: A = B ′ ⊕ C ′
where the secret A is divided into two shares B ′ and C ′ using VCS scheme. On these
shares B ′ and C ′, images B, and C are also visible. During restoration, images B
and C are aligned to make them disappear (by cancelling) revealing the secret in
the process. An example of this technique is shown in Fig. 2.2, the cross beside the
shares is the marks in Fig. 2.1.

Actually, Figs. 2.1 and 2.2 belong to the same class of techniques since they both
work in the spatial domain. The problemwith this class is that the alignmentmarks are
visible to an attacker and thus can be easily removed by cropping or localized image
alteration. We therefore explore the alternative idea of using marks in the frequency
domain. In particular, we consider the use of the discrete Walsh transform [1], which
is useful for pulse signals and is distinct from the discrete fourier transform (DFT),
discrete cosine transform (DCT) and discrete wavelet transform (DWT) [1]. Walsh
functions are a complete set of orthogonal functions with the value being only −1
and 1. We use the 2D discrete Walsh transform:

ωxy(u, v) = 1

Nx

1

Ny

Nx −1∑

x=0

Ny−1∑

y=0

f (x, y) · (−1)α (2.1)
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Fig. 2.2 Cross alignment by
using extended visual
cryptography

f (x, y) =
Nx −1∑

u=0

Ny−1∑

v=0

ωxy(u, v) · (−1)α (2.2)

α =
Ps−1∑

r=0

xr · ur +
Pt −1∑

s=0

ys · vs (2.3)

where f (x, y) is a pixel value of the image, (x, y) is its position,ωxy(u, v) represents
the transform coefficients, Nx = 2Px , Ny = 2Py , (Px and Py are positive integers),
xr , ur , ys and vs are either 0 or 1 (i.e., one bit of x , u, y, and v, respectively).

Unlike the Walsh transform [1], transforms [1] like DFT, DCT, and DWT are
mainly used for continuous tone color images [15, 16, 18]. The results of applying
these three transformations to a VC share is shown Fig. 2.3. In Fig. 2.3, the left image
is a VC share. The subsequent images show the result of applying the Walsh, DCT
and the DFT transforms. The differences are quite apparent. Note that the bottom-left
rectangle of the image for the Walsh transform is totally dark. This information can
be exploited in removing noises by filtering the coefficients in this quadrant.

Fig. 2.3 The original shares and their transformations
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Fig. 2.4 Adjustment of
visual cryptography shares

Fig. 2.5 The shift operation
to the overlapping shares

In this section, we will describe our contributions. During encryption, we apply
the Walsh transform on the shares. Then we embed marks in the high frequency
coefficients of the transform. Then the inverse transform is applied to obtain the
new shares with hidden marks that are printed on paper to be transmitted via public
channels.

During the process of decryption, we scan the paper image and extract the marks
by performing the Walsh transform to obtain the approximate alignment for shares
superimposition. We then fine-tune the alignment by performing rotation and trans-
lation. The rotation is done by using Figs. 2.4 and 2.5.

The rotation adjustment in increments of angle α is done as shown in Fig. 2.4.
The translation adjustment by x and y is done as shown in Fig. 2.5. The criteria for
finding the best alignment position are that the superimposed image should have the
least number of black pixels if we perform the XOR operation between them. This
is because the XOR operation allows for perfect restoration of the secret image.

Figure2.6 shows a share and themark in theWalsh transform domain. Themark is
in the form of a cross. Figure2.7 is an example of a scanned marked share. Figure2.8
shows the minimization of black pixels when the correct alignment is obtained.

2.1.2 Visual Alignment of VCS

We found that, the precise alignment of small subpixels is not critical [29]. The
secret image can still be recovered visually even if the participants do not align
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Fig. 2.6 Marked VC share in Walsh transform domain

Fig. 2.7 The scanned
watermarked VC shares

the transparencies precisely. This phenomenon helps to determine the size of the
subpixels printed on the transparencies.

The usual way of tackling the alignment problem of the VCS is by adding frames
to the shares [29]. To align the shares one just needs to align the frames. Another
study employs theWalsh transform to embed marks in both of the shares so as to find
the alignment position of these shares. However, both the two methods need to align
the transparencies precisely. Besides, Kobara and Imai calculated the visible space
when viewing the transparencies. The results are somehow related to the alignment
problem, but not exactly.

According to the traditional view, the subpixels of the transparencies should be
aligned precisely, however, in this study, we point out that, to recover the secret image
visually, it is not necessary to align the subpixels precisely. We will show that, by
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Fig. 2.8 Number of black
pixels at various alignments

shifting one of the shares by a number (at most m −1) of subpixels to the right (resp.
left), one can still recover the secret image visually, for the reason that the average
contrast α̃ �= 0 [3, 22]. This result can naturally be extended to the case when more
than one share is shifted. However we leave the numerical analysis of this case as an
open problem. So, in this chapter, we will only consider the case with only one share
(transparency) being shifted by some number of subpixels. And we call the scheme
with a share being shifted the shifted scheme, the basis matrices and share matrices
of the shifted scheme are called the shifted basis matrices and shifted share matrices.

Generally, we aim at proving the conclusion that, the shifted scheme can visually
recover the original secret image based on the (k, n)-VCS. However, it is noticed
that this proof can be reduced to the proof based on the (2, 2)-VCS in the case that
only one share is shifted. The reason is as follows:

First, a (k, n)-DVCS consists of (
n
k

)(k, k)-VCS. For a set of k shares, if no share

is shifted, then the k shares can recover the secret image obviously. And because
we only consider the case when only one of the n shares is shifted, we only need to
consider the k shares that contain the shifted share, i.e., we only need to prove our
conclusion based on a (k, k)-VCS.

Second, denote the k shares of a (k, k)-VCS as s1, s2, . . . , sk , without loss of
generality, let sk be the share that is shifted, and let sk be the resulting image of
stacking the remaining k − 1 shares s1, s2, . . . , sk−1 together. Then, the scheme
becomes a (2, 2)-VCS, where the two shares are s′

k and sk . Note that the stacking
result of this (2, 2)-VCS is the same as that of the previous (k, k)-DVCS. The previous
(k, k)-VCS can visually recover the secret image if and only if s′

k and sk can do so.
Hence, it is sufficient to prove the conclusion based on a (2, 2)-VCS.
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We analyze the structure of the basis matrix of the (2, 2)-VCS. Denote M0 and
M1 as the basis matrices of the (2, 2)-VCS, then the M0 and M1, without loss of
generality, are in the following form:

M0 =
⎛

⎝
1 · · · 1 0 · · · 0 1 · · · 1 0 · · · 0
1 · · · 1︸ ︷︷ ︸

a

0 · · · 0︸ ︷︷ ︸
b

0 · · · 0︸ ︷︷ ︸
c

1 · · · 1︸ ︷︷ ︸
d

⎞

⎠ (2.4)

and

M1 =
⎛

⎝
1 · · · 1 0 · · · 0 1 · · · 1 0 · · · 0
1 · · · 1︸ ︷︷ ︸

a′
0 · · · 0︸ ︷︷ ︸

b′
0 · · · 0︸ ︷︷ ︸

c′
1 · · · 1︸ ︷︷ ︸

d ′

⎞

⎠ (2.5)

where a, b, c, d, a′, b′, c′ and d ′ are nonnegative integers satisfying a + c + d = l
and a′ + c′ + d ′ = h. According to the contrast and security property of Definition
1 [3], we have,

⎧
⎪⎪⎨

⎪⎪⎩

a + b + c + d = a′ + b′ + c′ + d ′
a + c = a′ + c′
a + d = a′ + d ′
b > b′

(2.6)

solving the above system, we get a − a′ = b − b′ = c − c′ = d − d ′. Let e = b − b′,
hence by deleting identical columns of M0 and M1, we get,

M ′
0 =

⎛

⎝
1 · · · 1 0 · · · 0
1 · · · 1︸ ︷︷ ︸

e

0 · · · 0︸ ︷︷ ︸
e

⎞

⎠ (2.7)

M ′
1 =

⎛

⎝
1 · · · 1 0 · · · 0
0 · · · 0︸ ︷︷ ︸

e

1 · · · 1︸ ︷︷ ︸
e

⎞

⎠ (2.8)

where the number of columns in M0 and M1 is 2e.
Now we know that the basis matrices of an arbitrary (2, 2)-VCS M0 and M1

contain the same number of identical columns (
1
1
), (

1
0
), (

0
1
), (

0
0
) apart from the

submatrices M ′
0 and M ′

1, Hence, without loss of generality, they can be represented
as the following form:

M0 =
⎛

⎝
1 · · · 1 0 · · · 0 1 · · · 1 0 · · · 0 1 · · · 1 0 · · · 0
1 · · · 1︸ ︷︷ ︸

a′
0 · · · 0︸ ︷︷ ︸

b′
0 · · · 0︸ ︷︷ ︸

c

1 · · · 1︸ ︷︷ ︸
d

1 · · · 1︸ ︷︷ ︸
e

0 · · · 0︸ ︷︷ ︸
e

⎞

⎠ (2.9)
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and

M1 =
⎛

⎝
1 · · · 1 0 · · · 0 1 · · · 1 0 · · · 0 1 · · · 1 0 · · · 0
1 · · · 1︸ ︷︷ ︸

a′
0 · · · 0︸ ︷︷ ︸

b′
0 · · · 0︸ ︷︷ ︸

c

1 · · · 1︸ ︷︷ ︸
d

0 · · · 0︸ ︷︷ ︸
e

1 · · · 1︸ ︷︷ ︸
e

⎞

⎠ (2.10)

Let m be the pixel expansion, then it is obvious that m = a′ + b′ + c + d + 2e.
The collections C0 and C1 contain all the permutations of the basis matrices M0 and
M1, and hence each has m! share matrices.

The shifted scheme is generated as follows.
Shift the second row of the m! share matrices in C0 (resp. C1) to the left (resp.

right) by r subpixels, and let c1, c2, . . . , cr be the r -bit string that is shifted in, where
each ci ∈ {0, 1} represents a subpixel. By the above discussion, we get m! shifted
share matrices for C0 (resp. C1). Take the share matrix M0 ∈ C0 as an example, then
the shifted share matrix, denoted by M (r)

0 , is as follows:

M (r)
0 =

⎛

⎝
∗ · · · ∗ 1 · · · 1 0 · · · 0 1 · · · 1 0 · · · 0 1 · · · 1 0 · · · 0
1 · · · 1︸ ︷︷ ︸

a′
0 · · · 0︸ ︷︷ ︸

b′
0 · · · 0︸ ︷︷ ︸

c

1 · · · 1︸ ︷︷ ︸
d

1 · · · 1︸ ︷︷ ︸
e

0 · · · 0︸ ︷︷ ︸
e

c1 · · · cr︸ ︷︷ ︸
r

⎞

⎠ (2.11)

where c1, c2, . . . , cr of share 2 are the adjacent subpixels of the right pixel that are
shifted in. By going through all m! share matrices of C0 and C1 and all the possible
string of subpixels c1, c2, . . . , cr ∈ {0, 1}r , where {0, 1}r is the set of all the binary
strings of length r , the shifted scheme is generated. Hence, we have:

Theorem 2.1 The shifted scheme of a VCS is a PVCS, where the average contrast
of the shifted scheme is ᾱ = −(m−r)e

m2(m−1)
, 1 ≤ r ≤ m − 1 is the number of subpixels by

which the share 2 (the second share) is shifted.

Note that after a shift, the value of the average contrast is negative ᾱ < 0, which
means that the recovered secret image is the complementary image of the original
one, and the absolute value of ᾱ reflects how clear the image can be viewed visually.

The above theorem shows that in order to align the transparencieswhen decrypting
the VCS, one does not need to align the transparencies precisely. So, when the
participants of aVCSwant to align the transparencies, for example, the transparencies
in the Example3.1, they can first align the transparencies precisely in the vertical
direction, and then move the second transparencies to the right then to the left in the
horizontal direction. Then, they will get the recovered secret image for three times.
Furthermore, this phenomenon also helps to determine the size of the subpixels
printed on the transparencies.

In order to reduce the size of transparencies, one needs to reduce not only the
pixel expansion, but also the size of each subpixel in the transparencies [7]. However,
smaller size of subpixels results in more difficulties when aligning the transparencies
together. We study the alignment problem of the VCS [29], and proved that, the
original secret image can be recovered visually when one of the transparencies is

http://dx.doi.org/10.1007/978-3-319-23473-1_3
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shifted by at most m −1 subpixels, and the average contrast becomes a ᾱ = −(m−r)e
m2(m−1)

.
Our study is based on a DVCS, and the shifted scheme is a PVCS with less contrast
but still visible. This result helps to determine the size of the subpixel printed on the
transparencies.

Our result is able to be extended to the case when l transparencies are shifted all
together. In this case, we only need to consider the resulting transparency of stacking
all these shifted transparencies together, which is also equivalent to a (2, 2)-VCS.
Further generalization when the l transparencies are shifted differently is possible,
but numerical analysis becomesmore complicated.We leave this as an open problem.

2.2 Flipping Issues in VCS

Plane transformation visual cryptography takes a unique approach to some of the
shortcomings of current visual cryptography techniques. Typically, the direction and
placement of the encrypted shares are critical when attempting to recover the secret.
Many schemes are highly dependant on this stacking order. Within this section, the
scheme presented illustrates a technique, whereby, this restriction is loosened such
that the number of acceptable alignment points is increased by performing a simple
plane transform on one of the shares [29]. This results in the same secret being
recovered when the shares correctly aligned. The technique has also been extended
to encompassmultiple secrets [17, 27, 38], each ofwhich can be recovered depending
on the type of transformation performed on the shares.

Many schemes within visual cryptography suffer from alignment issues and are
dependant on how the shares are stacked together [29]. Loosening or removing this
restriction would be a very desirable advance, as it enables an end user to recover the
secret without having to work out how he must stack the shares. Figure2.9 provides
an example of this stacking and alignment problem. It can be observed that successful
recovery is achieved when the shares are superimposed correctly. However, if the
second share is transformed about its center point in the x-axis direction, then the
secret cannot be recovered. Removing this limitation would improve the end users
experience when it comes to recovering the hidden secret.

Fig. 2.9 Traditional visual cryptography decryption process. a Share one. b Share two. c Secret
recovered by superimposing share two on share one. d Attempted secret recovery after flipping
share two vertically and superimposing it on share one
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Fig. 2.10 Configurations under specific transformations. a Transformation one. No specific trans-
formation. b Transformation two. Vertical transform. c Transformation three. Horizontal transform.
d Transformation four. Vertical + horizontal transform

Creating shares in such a way that allows for secret recovery when the shares
are superimposed after having been transformed was a valid line of research as it
removes these specific types of restrictions which are demonstrated in Fig. 2.9.

The main idea is that one share is printed onto a normal white page, but the second
is printed onto a transparency. This transparency is then transformed as previously
mentioned. Figure2.10 illustrates each of the transformations that each share under-
goes in order to recover each of the secrets. Share one is marked with an ‘A’, share
two is marked with a ‘G’. The arrow denotes superimposing the shares in their spe-
cific configurations. After each of the transformation, the same or unique secrets can
be recovered.

The term ‘plane’ used within this chapter refers to a flat two-dimensional sur-
face. We used this term when describing the shares in order to illustrate the type of
movement that they undergo using geometric expressions. Therefore, thewhole space
is used when working in a two-dimensional Euclidean space.

When compared to the plethora of visual cryptography schemes [11] in use today,
this scheme attempts to improve upon them by allowing the shares to be stacked
in a variety of ways, after having been transformed about the horizontal, vertical,
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Fig. 2.11 Plane transform visual cryptography flowchart

and a combination of both axes. This is a much more intuitive way to manipulate a
quadrilateral in order to recover each of the secrets. Especially, when dealing with
two shares.

Removing the specific stacking order required by the majority of the previous
schemes is a great advantage, as it allows for easier secret recovery. Illustrated within
this section is one main idea which accomplishes two goals, the same secret recovery
based on different transforms and unique secret recovery based on the same set of
transformations. Ideally, the same secret is used, this means that no matter how the
shares are stacked, the same results are obtained. The unique secrets are illustrated
to prove that it is possible for unique secrets to be shares as well.

The steps involved in order to create the resulting two shares can be examined
in Fig. 2.11. Figure2.11 provides a flowchart of the proposed system which details
each of the corresponding actions required. Each of these steps is detailed below.

It can be observed from Fig. 2.11 that a secret is input and four sets of shares are
generated accordingly, Sec1S1 → Sec4S1 for the set of secrets belonging to share
one and Sec1S2 → Sec4S2 for the set of secrets belong to share two. Where Sec1S1
refers to share one from secret and Sec1S2 refers to share two from the corresponding
set of secrets.

Whether one secret is input (recovering the same secret for each transform: Sec1 =
Sec2 = Sec3 = Sec4) or four secrets (unique secret recovery for each transform),
four sets of shares are generated. Based on these sets of shares, the final set of two
shares is generated which allows for the recovery. When, the final S1 and the final S2
are superimposed, Sec1 is recovered. When final S2 is transformed vertically about
its center point on the x-axis, Sec2 can be recovered. Sec3 can be observed when final
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S2 is transformed about its center point along the y-axis in a horizontal direction.
Finally, Sec4 is revealed after final S2 is transformed both center points of each axis.

The algorithm required is presented within Algorithm2.1, which provides a
pseudocode implementation of the plane transformation visual cryptography process.
Further details are presented in the following sections. They provide more insight
into what happens during each of the steps.

This transformation requires a lot of thought when creating a suitable scheme that
can recover black-and-white pixels accordingly. Some pixel configurations may be
representing white pixels, while, after a vertical transformation the pixel representa-
tion required is black.

Algorithm 2.1: Pseudo code for generating two shares of plan transform VCS

Input : One secret four times or four secrets Seci , i = 1, 4.
Output: Final two shares S1 and S2.

for i = 1, 4 do
(Seci S1, Seci S2) = GenV C Shares(Seci ) ;

end
for i = 1, 4 do

ExpV C Shares(Seci S1, Seci S2) ;
end
for i = 1, 4 do

ProcV C Shares(Seci S1, Seci S2);
end
S1 = ⊕4

i Seci S1;
S2 = ⊕4

i Seci S2;
Return S1, S2;

2.2.1 Share Generating

The shares are generated using a combination of processes. A size invariant scheme
is used initially and then using these size invariant shares [20], it is then expanded into
a more traditional scheme where one pixel from the invariant shares is represented
by a 2 × 2 block. This is the general process used to create the final share. Each
of the invariant shares patterns is used to create a new suitable pattern capable of
recovering each of the secrets.

The structure of this scheme is described by a Boolean n-vector V = [v0, v1]T ,
where vi represents the color of the pixel in the i th shared image. If vi = 1 then the
pixel is black, otherwise, if vi = 0 then the pixel is white. To reconstruct the secret,
traditional ORing is applied to the pixels in V . The recovered secret can be viewed
as the difference of probabilities with which a black pixel in the reconstructed image
is generated from a white and black pixel in the secret image. As with traditional
visual cryptography [2, 11], n ×m sets of matrices need to be defined for the scheme
(in this case 2 × 2):
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C0 =
{

All the matrices obtained by permuting the columns of

(
1 0
1 0

)}

C1 =
{

All the matrices obtained by permuting the columns of

(
1 0
0 1

)}

Because this scheme uses no pixel expansion [34], m is always equal to one and
n is based on the type of scheme being used, for example a (2, 2) scheme, n = 2.
Using the defined sets of matrices C0 and C1, n × m Boolean matrices S0 and S1 are

chosen at random from C0 and C1, respectively: S0 =
(
1 0
1 0

)

and S1 =
(
1 0
0 1

)

To share awhite pixel, one of the columns in S0 is chosen and to share a black pixel,
one of the columns in S1 is chosen. This chosen column vector V = [v0, v1]T defines
the color of each pixel in the corresponding shared image. Each vi is interpreted as
black if vi = 1 and as white if vi = 0. Sharing a black pixel for example [9], one
column is chosen at random in S1, resulting in the vector: V = [0, 1]T . Therefore,
the i th element determines the color of the pixels in the i th shared image, thus in this
(2, 2) example, v1 is white in the first shared image, v2 is black in the second shared
image.

2.2.2 Share Expansion

After the shares for each identical or unique secret have been generated, each set of
shares for each secret is expanded into a 2× 2 block and inserted into the final set of
shares by the processShare(·) function from Algorithm2.1. The following steps are
involved when processShare(·) is executing. This function generates the final set of
shares required in order to successfully recover the secrets.

Generating the final S1 is a relatively simple procedure where each of the corre-
sponding expanded shares is placed into the following coordinates on the share:

• Sec1S1 has not change, leaves its current pixel locations intact.
• Sec2S1 shifts its pixel locations one pixel to the right, in order to fill in the space
to the right of Sec1S1’s pixels.

• Sec3S1 shifts its pixel locations down one pixel, this fills in the space beneath
Sec1S1’s pixels.

• Sec4S1 shifts its pixel locations down one and right one, this fills in the final space
remaining on the final share.

Generating the final S2 is more challenging. The reason is that the transforma-
tions that this share undergoes need to be taken into consideration so that the correct
black and white pixels can be represented. Accurate reconstruction is very difficult
because four different situations arise due to the transforms.
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Final S2 is generated according to the following scheme:

• Sec1S2 has not change, leaves its current pixel locations intact.
• Sec2S2 places its pixels in the same locations as those which belong to Sec2S1, but
its vertical inverse must be placed at those locations.

• Sec3S2 places its pixels in the same locations as those which belong to Sec3S1, but
its horizontal inverse must be placed at those locations.

• Sec4S2 places its corresponding vertical and horizontal inverse pixels at the same
coordinates as those of Sec4S1.

No change ismade to the placement of thefirst set of secret shares, this corresponds
to simply superimposing each of the shares in the traditional way. The inverse of the
pixel locations is required in order to reconstruct each of the secrets after a specific
transformation occurs. Determining the inverse pixel patterns required for each of the
specific transformed patterns proved to be rather difficult in terms of alignment [29].

After a transform on a pixel block was performed, simply supplying the inverse
at a pixels transformed location was not possible. This is down to the fact that other
pixels may be required at that location in order to provide a white pixel representation
at one instance, but a black pixel at another.

This resulted in a compromise between full secret recovery and a probabilistic
secret recovery which would be closer to a “best effort” style of recovery. This best
effort is mostly a trade-off between visual representation and resulting contrast [3].
The results from this process are good when the same secret is to be recovered after
each transformation. The recovered quality would be similar in terms of contrast
of the extended visual cryptography scheme which employ halftoning [2, 36]. The
contrast ratio is typically around 1/4. The contrast suffers, when different secrets are
added. The recovered secrets remain readable, but a much lower contrast is available.
This is due to the nature of the scheme, completely new patterns have to be generated
whichmust represent a unique letter each time. Using the same letter as the secret, the
same patterns can be selected, therefore giving a higher contrast. This is not possible
when using unique secrets.

Another important aspect of the scheme that must be mentioned and analyzed is
the security. Traditional VC schemes exhibit good security due to the nature of the
patterns that are chosen to represent pixels from the original. If a white pixel is to
be represented then each pattern used to represent the white pixel is placed in each
share. Similarly, corresponding patterns are placed in each share when a black pixel
is to be represented. This results in a potential attacker (who has obtained one of the
shares) having to make a 50/50 choice for each pixel pattern in order to guess the
correct corresponding share. It can be observed that this is not feasible at all.

Based on each of the individual shares that are created for each of the secrets, a new
pattern is created which is capable of revealing the secret while being transformed
invariant. These new patterns work in the same way as the traditional patterns. An
attacker would have to generate identical or corresponding patterns for each of the
pixel representations. Correctly guessing those patterns to reveal one of the secrets is
extremely unlikely, guessing the correct patterns that four secrets are revealed is even
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Fig. 2.12 The corresponding shares where all the secrets are identical. a Original secret. b Final
S1. c Final S2

Fig. 2.13 The same secret recovered after different plane transformations. a Share two no trans-
formation. b Share two transformed about the horizontal axis. c Share two transformed about the
vertical axis. d Share two transformed about the horizontal and vertical axis

more unlikely again. The probabilities drop even further when four unique secrets
are examined.

Randomness of the generated shares can also be examined in a security context.
Visually, the shares do not leak any information about the secrets that are hidden
within. On further inspection of the shares, the distribution of the pixels is uniform.
This makes it much harder for an attacker to concentrate on a specific area on the
share in order to force information to leak out regarding the secret.

A number of results are presented within this chapter which show the capability
of the scheme discussed. The two shares that are generated using this scheme are
depicted in Fig. 2.12. These shares look like normal visual cryptography shares and
do not give away any information about the secret or secrets concealed within.

When superimposed, these shares can recover the secret ‘S’. Figure2.13 provides
the results of each of the transformations which the share can be made to go through
in order to recover the same secret. Figure2.13a is simply share one superimposed
upon share two. Figure2.13b shows the secret recovery after the share two has been
transformed about the horizontal axis. Figure2.13c highlights the secret recovery
after the share two has been transformed about the vertical axis and Fig. 2.13d pro-
vides the final secret recovery after the share two has been transformed in both the
horizontal and vertical axis.

In the following results, multiple and unique secrets have been embedded within
a set of shares [17, 38]. Using the same technique as previously described, each of
the secrets can be recovered. Figure2.14 provides each of the secrets along with their
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Fig. 2.14 The corresponding shareswhen all the secrets are unique.aOriginal secret one.bOriginal
secret two. c Original secret three. d Original secret four. e Final S1. f Final S2

Fig. 2.15 The same secret recovered at different plane transformations. a Share two no transforma-
tion. b Share two transformed about the horizontal axis. c Share two transformed about the vertical
axis. d Share two transformed about the horizontal and vertical axis

corresponding shares. Each secret has its own set of decryption blocks embedded
within the shares so that each of the secrets is recovered, no information leaks outwith
regard to the other secrets. This is vital in anymulti-secret sharingvisual cryptography
scheme [7, 26, 30, 35].

The recovered results are presented within Fig. 2.15. Figure2.15a shows the first
‘T’ from the secret ‘TEST’. Figure2.15b–d provide the remaining results after spe-
cific transformations have been performed on the second share as it is superimposed.

Using a simple transform, accurate and effective secret recovery can be achieved.
No rotation is required, what is needed is a simple geometric transformation. This
helps users to recover secrets almost immediately without having to determine the
correct angle and stacking order of the shares.

Testing these shares can be done very easily and quickly using the very simple
microsoft paint program. The final S1 can be loaded into the application, the final S2
can be pasted on top and set to have a transparent background. Using the flip/rotate
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option [21], final S2 can be manipulated vertically, horizontally, and both in order to
test the validity of the results.

From these results it is clear that contrast improvements can be made in partic-
ular, when transforming share two twice, in both axial directions. The secret is still
readable but the contrast does suffer. From the results and discussion presented, it is
easy to see the advantages of a scheme like this have existing schemes. Reducing the
alignment problem to a simple transform while being able to recover four identical
or unique secrets is a great advantage to the end user [29]. This scheme removes the
onus on the user when aligning and recovering the secrets.

This type of invariant placement of shares should be considered in the future when
new cutting-edge VC schemes are being proposed. Making secret recovery easy for
the end user is highly valuable and may help to push VC into the mainstream.

2.3 Distortion Problems

For visual cryptography scheme (VCS) [2], normally, the size of the recovered secret
image will be expanded by m(≥1) times of the original secret image. In most of the
cases, m is not a square number, hence the recovered secret image will be distorted.
Sometimes, m is too large that will bring much inconvenience to the participants to
carry the share images. In this section, we introduce a visual cryptography scheme
which simulated the principle of fountains. The proposed scheme has two advan-
tages: non-distortion and flexible (with respect to the pixel expansion). Furthermore,
the presented scheme can be applied to any VCS that is under the pixel by pixel
encryption model [10], such as VCS for general access structure [1], color VCS and
extended VCS [2, 21], the VCS does not restrict to any specific underlying operation.
Compared with other non-distortion schemes, the scheme discussed in this chapter
is more general and simpler, real flexible, it has competitive visual quality for the
recovered secret image.

In general, the recovered secret image of VCS will be expanded by (≥1) times
over the size of the original secret image, i.e., the pixel expansion is m. However, in
most of cases, m is not a square number, hence, the recovered secret image will be
distorted. An example of distorted VCS can be found in Fig. 2.16.

Fig. 2.16 An example of traditional VCSwith pixel expansion 2, a is the original secret image with
image size 100 × 100, b and c are the share images with image size 200 × 100, d is the recovered
secret image with image size 200 × 100
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In Fig. 2.16, the circle and square are compromised to an oval and a rectangle,
respectively and hence lead to the loss of information. This will not be allowed,
especially, when the aspect ratio is viewed as important information of the secret
image [32]. To avoid distortion, manymethods have been proposed. Naor and Shamir
recommended adding extra subpixels to retain the value of m as a square number.
In such a case, the pixel expansion of the scheme will increase significantly for
some m and meanwhile may degrade the visual quality of the scheme [37]. Yang
et al. proposed some aspect ratio invariant VCS’s which relied on adding dummy
subpixels to the shares, such methods also increase the overall pixel expansion [32].
Beside, theirmethod is complicated, how to design amapping pattern that reduces the
number of dummy subpixels to the minimum is [34], as they said, a huge challenge,
especially for some pixel expansions and secret image sizes [7, 27, 28].

Sometimes, m is so large that will bring much inconvenience to the participants
to carry them. Some other studies, hence, consider size invariant VCS [20], i.e., VCS
with no pixel expansion [12, 34]. For such schemes, the recovered secret image will
have no distortion. The size invariant VCS’s are usually called probabilistic visual
cryptography scheme (PVCS) [8, 31] for the reason that a secret pixel can only be
recovered with a certain probability. In contrast to PVCS, the traditional VCS’s are
called deterministic visual cryptography schemes (DVCS), whichmeans that a secret
pixel can be recovered deterministically. Because of PVCS’s probabilistic nature, the
recovered secret images of PVCS often have bad visual quality. Usually, better visual
quality of the recovered secret image requires larger pixel expansion.

Definition 2.1 (Probabilistic VCS) Let k, n and m′ be nonnegative integers, l̄ and h̄
be positive numbers, satisfying 2 ≤ k ≤ n and 0 ≤ l̄ < h̄ ≤ m. The two collections
of n × m′ binary matrices (C0, C1) constitute a probabilistic visual cryptography
Scheme, (k, n)-PVCS, if the following properties are satisfied:

Contrast. For the collection C0 and a share matrix s ∈ C0, by v a vector resulting
from the O R of any k out of the n rows of s. If w(v) denotes the average of the
Hamming weights of v, over all the share matrices in C0, then w(v) ≤ l̄.
Contrast. For the collection C1, the value of w(v) satisfies w(v) ≥ h̄.
Security. For any i1 < i2 < · · · < it in 1, 2, . . . , n with t < k, the two collections
of t × m′ matrices D j , j = 0, 1, obtained by restricting each n × m′ matrix in
C j , j = 0, 1, to rows i1, i2, . . . , it , are indistinguishable in the sense that they contain
the same matrices with the same frequencies.

The definition of PVCS only considers the case with n × 1 share matrices, we
extend this definition to the n × m′ case. And the definition of PVCS used the
factor β to reflect the contrast, we use the values l̄ and h̄ to reflect the contrast. The
common point of the three definitions of PVCS is that, for a particular pixel in the
original secret image, the qualified participants can only correctly represent it in
the recovered secret image with a certain probability. Because human eyes always
average the high frequency black-and-white dots into gray areas, so the average value
of the Hamming weight of the black dots in the area reflects the grayness of the area.
The PVCS does not require the satisfaction of the difference in grayness for each



42 2 Various Problems in Visual Cryptography

pixel in the recovered secret image as the DVCS does. It only reflects the difference
in grayness in the overall view.

The contrast [3] of the DVCS is fulfilled for each pixel (consisting ofm subpixels)
in the recovered secret image, however, this is quite different in the PVCS. The
application of the average contrast, denoted by ᾱ. This term is often used in the
PVCS, where the traditional contrast of the PVCS does not exist. Here, we define
the average contrast to be the average value of the overall contrast of the recovered
secret image, i.e., the mean value of the contrast of all the pixels in the recovered
secret image. According to our definition of the contrast α = (h − l)/m, the average
contrast can be calculated by the formula ᾱ = (h̄ − l̄)/m′ where l̄ and h̄ are the mean
values of w(v) for the black and white pixels in the overall recovered secret image
respectively [23], and m is the pixel expansion of the PVCS. Because the number
of pixels is large in the recovered secret image, the values l̄ and h̄ are equivalent to
the mean values of the w(v) in the collections C1 and C0, respectively. Note that,
the DVCS also has the average contrast, and many proposed DVCS in the literature
have ᾱ = α.

When comparing DVCS that has ᾱ = α, in the overall view, the visual quality of
the recovered secret image of the PVCS is the same as the visual quality of the recov-
ered secret image of a DVCS. However, because of the probabilistic nature, a PVCS
is disadvantaged in displaying the details of the original secret image, especially for
the white background areas in the recovered secret image. A simple construction of
PVCS based on a given DVCS (we will call it the original DVCS hereafter) can be
as follows:

Construction 2.2 (PVCS) Denote (C0, C1) as the share matrix collections of a
(k, n)-DVCSwith pixel expansion m. The n ×m share matrix collections of a (k, n)-
PVCS, denoted by (C0, C1), can be generated by restricting each share matrix in C0
and C1 to its first m columns, respectively.

According to the Construction2.2 of PVCS, we have the following lemma:

Lemma 2.1 The Construction (PVCS) generates a (k, n)-PVCS based on an origi-
nal (k, n)-DVCS, where the average contrast of (k, n)-PVCS equals to the contrast
of (k, n)-DVCS, i.e., ᾱ = α.

2.3.1 The Fountain Algorithm

The main idea of our scheme is reflected by Fig. 2.17. Imagine a pool with several
water nozzles as depicted in Fig. 2.17. The nozzles spray water with the same speed.
In such a case, the water will fill up the pool. Think of a blank image as a pool which
has no distortion to the shape of original secret image (only differs in the size), think
of the secret pixels of the original secret image as water injection nozzles that are
evenly distributed in the pool, think of the subpixels of each secret pixel as water
drops. As a result, the pool will be filled up by subpixels of secret pixels, and hence
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Fig. 2.17 A pool with 36
water injection nozzles

becomes a share image. Note that, each water nozzle sprays water with the same
speed, and hence, each nozzle will spray almost the same number of subpixels into
the pool. We do the same process to all the share images, we get a VCS with no
distortion. Certainly, the stacking of the share images will recover the secret image
visually.

For the case of Fig. 2.17, the size of the secret image is 6 × 6, where each secret
pixel is a water nozzle. The size of the share image can be flexible and its size equals
to the size of the pool. The water nozzles (secret pixels) spray water (subpixels)
and fill up the pool (secret image). Clearly, the generated share images will have no
distortion with the secret image.

Formally, we give the following Algorithm2.2.
In the above Algorithm2.2, the new position (p′, q ′) of a pixel at position (p, q)

in the original secret image can be calculated as follows: p′ = p
√

m N + X and
q ′ = q

√
m N + Y , X and Y are shown in Fig. 2.17.

Denote the length (resp. width) of the secret image as e (resp. f ), then the length
(resp. width) of the pool will be e

√
m N (resp. f

√
m N ), if e

√
m N (resp. f

√
m N ) is

not an integer, then, we will use e
√

m N (resp. f
√

m N ) instead.
By saying “applying the original DVCS in order”, we mean applying the DVCS

by several times and concatenating the output shares (subpixels) in order, for each
participants, respectively.

Note that the overall pixel expansion m N of our scheme is not necessarily equal
to the pixel expansion of the original DVCS m0, and it can be any value larger than 0.
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Algorithm 2.2: The fountain algorithm.
Input : The original secret image SI , overall pixel expansion (pool expansion) m N , an original

DVCS with pixel expansion mo.
Output: The non-distortion share images S1, S2, . . . , Sn .

Step 1. Generate a blank image (pool), M that is m N times of the size of the original secret
image and has no distortion, i.e., the length (resp. width) of M is

√
m N times of

that of SI . Generate n blank share images S1, S2, . . . , Sn , which have the same size of M .
Step 2. For a secret pixel at position (p, q) in the original secret image, initialize an empty list

L p,q which is used to store the positions of subpixels in M (or S1, S2, . . . , Sn ).
Step 3. Distribute the secret pixels (water injection nozzles) of the original secret image evenly

into the blank image M . Note that the corresponding coordinates of a pixel (p, q) of the
original secret image is (p′, q ′) in M now.

Step 4. For each subpixel in the blank image M , and the nearest secret pixel (water injection
nozzle), suppose the position of the secret pixel is (p′, q ′). Add the position of the
subpixel to list L p,q .

Step 5. Sort each list L p,q with ascending order with respect to the distance to the secret pixel
(water injection nozzle) (p′, q ′).

Step 6. Denote |L p,q | as the number of positions in L p,q . Encrypt the secret pixel (p, q) by

applying the original DVCS in order, by� |L p,q |
m0

� times and distribute the subpixels of the
shares in order, to the positions of L p,q in S1, S2, . . . , Sn , respectively, while discarding
the redundant subpixels.

In order to make things clear, we give the Example2.1 for the (2, 2)-VCS, where
the share matrix collections are as follows.

C0 =
{[

1 0
1 0

]

,

[
0 1
0 1

]}

and C1 =
{[

1 0
0 1

]

,

[
0 1
1 0

]}

Example 2.1 The recovered secret images of the presented scheme can be found in
Fig. 2.18.

As depicted in Fig. 2.18, by comparing the three recovered secret images (b),
(c), and (d), we can observe that, larger pixel expansion will result in better visual
quality, and smaller pixel expansion will compromise poorer visual quality. Our
scheme is flexible with respect to the compromise between the visual quality and
overall pixel expansion of the recovered secret image. Formally,wegive the following
Theorem2.2.

Theorem 2.2 The fountain Algorithm2.2 generates a PVCS with no distortion and
the size of its share images and recovered secret image can be flexible.



2.3 Distortion Problems 45

Fig. 2.18 a is the original secret image with size 300 × 300, b is the recovered secret image with
overall pixel expansion m N = 0.5 and image size 213 × 213, c is the recovered secret image with
overall pixel expansion m N = 1 and image size 300 × 300, d is the recovered secret image with
overall pixel expansion m N = 2 and image size 425 × 425

2.3.2 Improving VC Quality

Suppose that the pixel expansion of the original DVCS is m0 and the pool expansion
is m N . When the pool expansion m N is not a multiple of the pixel expansion mo,
the pool expansion subpixels is divided into two parts: the multiple part and the
remaining part. Denote d = �m N

m0
�, m N = d · m0 + t , 0 < t < m0, the multiple

part contains d × m0 subpixels and the remaining part contains t (resp. 0 < t < m0)

subpixels. The multiple part is filled by repeating the original DVCS for d times. The
remaining part is filled by choosing t columns from the basis matrices (respectively
the remaining part is filled by a PVCS with pixel expansion t). So when m N is not
a multiple of m0, pool expansion subpixels will be filled by d × m0 subpixels from
the original DVCS and t subpixels from a PVCS. The probabilistic subpixels will
add some visual-noise to the recovered image, which will blur the details in the
recovered image. Thus, the visual quality of the recovered image will be degraded.
So we would like to remove the PVCS part. Our strategy is: the remaining part is
assigned by m0 subpixels with probability t/m0 or assigned by no subpixels with
probability (m0 − t)/m0. On average, the remaining part is assigned by t subpixels.
From an overall view, a pixel of the original secret image (a water nozzle) is assigned
by �m N

m0
� · m0 subpixels with probability (m0 − t)/m0, and is assigned �m N

m0
� · m0

subpixels with probability t/m0. Suppose there is a Boolean matrix the same size
as the original secret image, then there is a one-to-one mapping between a secret
pixel and an entry in the Boolean matrix. If the secret pixel is assigned by 
m N

m0
� · m0

subpixels, we denote the corresponding entry as 0, else if the secret pixel is assigned
by �m N

m0
� · mo subpixels, we denote the corresponding entry as 1. Then we will get a

Booleanmatrix for which t ×m0 proportion of its entries are 1, and the entries of 1 are
evenly distributed. Meanwhile the entries of 0 are evenly distributed in the Boolean
matrix too. For example, for a (2, 2)-DVCS with pixel expansion 2. Suppose the
pool is three times as large as the original secret image. We distribute two subpixels
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for 50% water nozzles and four subpixels for the remaining 50% water nozzles,
where there will be three subpixels for each water nozzle on average. And the two
cases (two subpixels for a water nozzle, four subpixels for a water nozzle) are evenly
distributed in the pool.

Algorithm 2.3: The fountain algorithm.
Input : The original secret image SI , overall pixel expansion m N , an original DVCS with

pixel expansion m0.
Output: The non-distortion shares S1, S2, . . . , Sn .

Preprocess Let s = 
 m N
m0

� · m0, t = � m N
m0

� · m0 where s and t satisfy s × m0 ≤ m N ≤ t × m0.
Let a and b be two non-negative real numbers satisfying a + b = 1 and
a × (s × m0) + b × (t × m0) = m N . Suppose the size of SI is m × n. Then we
generate an m × n random Boolean matrix D, in which 0 appears with probability
a and 1 appears with probability b. Then, there is a one-to-one mapping between
the pixels of the original secret image and the entries of D.

Step 1-3. Step 1–3 are as the same as that of Algorithm2.2.
Step 4. Step 4 For each secret pixel (water injection nozzle) in the blank image M , if the

entry of D is 0, and s/m0 nearest and undistributed subpixels, else if the entry of D
is 1, and t × m0 nearest and undistributed subpixels. Suppose the position of the
secret pixelis (p′, q ′). Add the positions of the subpixels to list L p,q .

Step 5. Encrypt the secret pixel (p, q) by applying the original DVCS in order, by s or t
times and distribute the subpixels of the shares in order, to the positions of L p,q in
S1, S2, . . . , Sn , respectively. The undistributed subpixels in the pool are simply set
to black. If the entry in D is 0, we distribute s × m0 subpixels for the corresponding
pixel of the original secret image. If the entry in D is 1, we distribute t × m0
subpixels for the corresponding pixel of the original secret image.

In the above construction, if the pool expansion m N is a multiple of the pixel
expansionm0, hence everywater nozzle will be assigned bym N subpixels. If the pool
expansionm N is smaller than the pixel expansion of the original DVCSm0, then each
water nozzle will be assigned by m0 subpixels with probability m N /m0 or assigned
by no subpixels with probability (m0−m N )/m0, which implies that (m0−m N )/m0
of the secret pixels in the original secret image are lost in the recovered secret image
on average.

In the following, we give a comparison for Algorithms2.2 and 2.3 for (2, 2)-VCS,
where the original DVCS is the same as that of Example3.1.

Example 2.2 Suppose that the pool is 1.37311 (this value can be arbitrarily chosen)
times as large as that of the original secret image. Thus the length (resp. width) of
the pool is 1.1718 times the length (resp. width) of the original secret image. The
parameters in the stage of preprocess of Algorithm2.3 are m N = 1.37311, m0 = 2,
s = 0 and t = 1. In Algorithm2.3, we assign one or two subpixels for each secret
pixel (water injection nozzle), for which about 37.311% secret pixels are assigned
with two subpixels (filled by a (2, 2)-DVCS) and about 62.689% secret pixels are
assigned with one subpixel (filled by a (2, 2)-PVCS with pixel expansion 1). In

http://dx.doi.org/10.1007/978-3-319-23473-1_3
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Fig. 2.19 a is the original secret image characters with image size 300 × 300. b and c are
the recovered secret images of Algorithms2.2 and 2.3 with image size 352 × 352, respectively.
d is the recovered secret image of Yang’s VCS with image size 352 × 352

Fig. 2.20 a is the original secret image Human face with image size 512 × 512. b and c are the
recovered secret images of Fig. 2.18 and Algorithm2.3 with image size 600 × 600, respectively.
d is the recovered secret image of Yang’s VCS with image size 600 × 600

Algorithm2.3, we assign two subpixels for 68.6555% secret pixels (water injection
nozzles) and assign no subpixel for 31.3445% secret pixels (water injection nozzles).

We make use of two types of secret images: characters and human face. The
original secret images are in the first column. The visual quality of Algorithm2.3
can be found in the second column of Figs. 2.19 and 2.20. The visual quality of
Construction3.1 can be found in the third column of Figs. 2.19 and 2.20.

As depicted in Figs. 2.19 and 2.20, by comparing the recovered secret images
(generated by Algorithm2.3 and that of Algorithm2.3, we can observe that, the
recovered secret images for both constructions are clear and one can easily identify
the contents of the original secret image. One also can observe that Construction2.2
results in better visual quality than Construction2.2 with respect to the evenness.
Particularly, the recovered secret image is much more even at the white background
areas.

2.4 Thin Line Problems (TLP)

Traditionally, the SIVCS is only suitable to encrypt coarse secret images that do
not contain much detail information. The reason is that, SIVCS can only recover
the secret image from an overall view point, each secret pixel can only be correctly

http://dx.doi.org/10.1007/978-3-319-23473-1_3
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Fig. 2.21 The visual quality for secret images with thin lines, the image size is: 200×200. a Secret
image b TLP share 1 c TLP share 2

representedwith a certain probability in the recovered secret image. In such a case the
thin lines, in the secret image, are usually unclear andmisrepresented in the recovered
secret image of SIVCS, where we call such phenomena the thin line problem (TLP).
In this section, we classify the TLP into three types.

According to the recovered secret image (b) of Fig. 2.21, for P-SIVCS, the visual
quality of the recovered secret image is seriously degraded. One can observe that,
there are many chaotic pixels appear in the recovered secret image, especially for the
white background areas. It is hard to identify the thin lines from thewhite background.
We call this type of thin line problem as the first type thin line problem (TLP-1).

According to the recovered secret image (c) of Fig. 2.21, it is clear that the thin
lines can be seen more clearly especially the horizon lines, diagonal lines and the
right part of the circle, i.e., the TLP-1 is avoided in the Construction2.2. The reason
is that, it has smaller variance of the darkness level of each block of two secret
pixels. However, according to Construction2.2, because every m of Bm,b blocks are
encrypted by b of M1 and m − b of M0 alternatively, it is possible that the patterns
in the secret image can be falsely recovered, especially for images only consisting
of thin lines, where the blocks on a thin line may be always encrypted by M0 (resp.
M1), which means the thin line may be missing if it is a black (resp. white) thin line
on the white (resp. black) background. This problem can be clearly observed in (c)
of the Fig. 2.21, where the vertical lines and the left part of the circle are missing.
We call this type of thin line problem as the second type thin line problem (TLP-2).

One way to solve the TLP-1 and TLP-2 is to replace thin lines by thick lines in the
secret images. They also calculated the reference thickness of the lines which can be
found in Table2.1. However, if secret information in the secret image is characters,
maps or geometry shapes etc., then after replace the thin lines by thick lines. One
needs to enlarge the secret image, put down the given amount of secret information.
This process will result in larger share images. Recall that the main advantage of
SIVCS is the ability to generate smaller share images. Hence, for Yang’s solution
for TLP-1 and TLP-2, the advantage of SIVCS on the pixel expansion is no more.
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Fig. 2.22 Experimental results for image Ruler, the image size is: 500 × 500. a and b are secret
images; c and d TLP are image shares; e and f TLP has been successfully removed
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Another problem of the recovered secret image (c) of Fig. 2.21 is that, a thin line
in the secret image may be represented by a thicker line. Particularly, the vertical
and diagonal thin lines that are with width 1, are represented by lines with width
2. The reason of this problem is that, a Bm,b block may be encrypted by M1 (resp.
M0), and in the recovered secret image, the Bm,b block is represented by m pixels
which contains h (resp. l) black pixels, and these black pixels spread evenly in the m
positions of the Bm,b block, hence, the human eyes will view the block as a uniform
area, i.e., the thin lines become as thick as the size of the block. We call this problem
the third thin line problem (TLP-3).

One also can observe the thin line problems TLP-1, TLP-2, and TLP-3 in the
images (c) and (d) of Fig. 2.22, where we use the fine image Ruler as the original
secret image.

In Fig. 2.22 shows, all the three thin line problems TLP-1, TLP-2, and TLP-3
are avoided. For the TLP-3, taking the encryption of b black pixels in a block Brs ,b

as example, because the black pixels and white pixels are encrypted separately, the
b · h/m black pixels in the recovered secret image only spread evenly in the original
b positions of the b black pixels in Brs ,b. Similarly, for the rs − b white pixels in
Brs ,b, the (rs − b) · l/m black pixels in recovered secret image only spread evenly in
the original rs × b positions of the rs × b white pixels in Brs ,b. Hence, the average
darkness level for the white and black pixels are different, and the human eyes can
identify the difference, i.e., the TLP-3 problem is avoided in the recovered secret
image of Construction2.2.

The TLP is, more or less, a common problem for all kinds of SIVCS. There may
be no perfect solution for the secret image which is a simple and regular line image.

2.5 Exercises

(1) Shifting one of the shares by a number (at most m − 1) of subpixels to the right
(resp. left) is presented in this chapter. Please think another alignment problem:
shifting one of the shares up (resp. down) by a number (at most m − 1) of
subpixels, and give the analysis and proof.

(2) Take (2, 3)-TVCS as an example to show how two participants collude to cheat
the victim.

(3) The Fountain algorithm is utilized in VCS to resolve the distortion problem of
conventional VCS, please analyze the reason of flexibility of this scheme.

(4) How are the thin line problems generated in SIVCS? How to resolve the relevant
thin line problems?
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