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Abstract. The modus operandi for machine learning is to represent data
as feature vectors and then proceed with training algorithms that seek
to optimally partition the feature space S ⊂ R

n into labeled regions.
This holds true even when the original data are functional in nature, i.e.
curves or surfaces that are inherently varying over a continuum such as
time or space. Functional data are often reduced to summary statistics,
locally-sensitive characteristics, and global signatures with the objective
of building comprehensive feature vectors that uniquely characterize each
function. The present work directly addresses representational issues of
functional data for supervised learning. We propose a novel classifica-
tion by discriminative interpolation (CDI) framework wherein functional
data in the same class are adaptively reconstructed to be more similar
to each other, while simultaneously repelling nearest neighbor functional
data in other classes. Akin to other recent nearest-neighbor metric learn-
ing paradigms like stochastic k -neighborhood selection and large margin
nearest neighbors, our technique uses class-specific representations which
gerrymander similar functional data in an appropriate parameter space.
Experimental validation on several time series datasets establish the pro-
posed discriminative interpolation framework as competitive or better in
comparison to recent state-of-the-art techniques which continue to rely
on the standard feature vector representation.

Keywords: Functional data classification · Wavelets · Discriminative
Interpolation

1 Introduction

The choice of data representation is foundational to all supervised and unsuper-
vised analysis. The de facto standard in machine learning is to use feature repre-
sentations that treat data as n-dimensional vectors in Euclidean space and then
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proceed with multivariate analysis in R
n. This approach is uniformly adopted

even for sensor-acquired data which naturally come in functional form—most
sensor measurements are identifiable with real-valued functions collected over a
discretized continuum like time or space. Familiar examples include time series
data, digital images, video, LiDAR, weather, and multi-/hyperspectral volumes.
The present work proposes a framework where we directly leverage functional
representations to develop a k-nearest neighbor (kNN) supervised learner capa-
ble of discriminatively interpolating functions in the same class to appear more
similar to each other than functions from other classes—we refer to this through-
out as Classification by Discriminative Interpolation (CDI).

Over the last 25 years, the attention to statistical techniques with functional
representations has resulted in the subfield commonly referred to as Functional
Data Analysis (FDA) [20]. In FDA, the above mentioned data modalities are rep-
resented by their functional form: f : Rp → R

q. To perform data analysis, one
relies on the machinery of a Hilbert space structure endowed with a collection
of functions. On a Hilbert space H, many useful tools like bases, inner products,
addition, and scalar multiplication allow us to mimic multivariate analysis on R

n.
However, since function spaces are in general infinite dimensional, special care
must be taken to ensure theoretical concerns like convergence and set measures
are defined properly. To bypass these additional concerns, some have resorted to
treating real-valued functions of a real variable f : R → R, sampled at m discrete
points, f = {f(ti)}m

i=1, as a vector f ∈ R
m and subsequently apply standard mul-

tivariate techniques. Clearly, this is not a principled approach and unnecessarily
strips the function properties from the data. The predominant method, when
working with functional data, is to move to a feature representation where fil-
ters, summary statistics, and signatures are all derived from the input functions
and then analysis proceeds per the norm. To avoid this route, several existing
FDA works have revisited popular machine learning algorithms and reformu-
lated them rigorously to handle functional data [9,12,21,22]—showing both the-
oretical and practical value in retaining the function properties. Here we also
demonstrate how utilizing the well-known and simple interpolation property of
functions can lead to a novel classification framework. Intuitively, given A classes
and labeled exemplar functions

{
f j , yj

}
, where labels yj = {1, . . . , A} are avail-

able during training, we expand each f j in an appropriate basis representation
to yield a faithful reconstruction of the original curve. (Note: we use function
and curve synonymously throughout the exposition.) In a supervised framework,
we then allow the interpolants to morph the functions such that they resemble
others from the same class, and incorporate a counter-force to repel similarities
to other classes. The use of basis interpolants critically depends on the func-
tional nature of the data and cannot be replicated efficiently in a feature vector
representation where no underlying continuum is present. Though admittedly,
this would become more cumbersome if for a function with domain dimension
p and co-domain dimension q both were high dimensional, but for most prac-
tical datasets we have p ≤ 4. In the current work, we detail the theory and
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Fig. 1. Three-class classification by discriminative interpolation (CDI). (a) Original
training functions from three different classes, showing 30 curves each. (b) Post training
via the proposed CDI method, functions in each class morphed to resemble k-nearest
neighbors [same 30 curves per class as in (a)].

algorithms for real-valued functions over the real line expanded in wavelet bases
with extensions to higher dimensions following in a straightforward manner.

The motivation for a competing push-pull framework is built on several recent
successful efforts in metric learning [23,24,26,29] where Mahalanobis-style met-
rics are learned by incorporating optimization terms that promote purity of local
neighborhoods. The metric is learned using a kNN approach that is locally sen-
sitive to the the k neighbors around each exemplar and optimized such that
the metric moves data with the same class labels closer in proximity (pulling
in good neighbors) and neighbors with differing labels from the exemplar are
moved out of the neighborhood (pushing away bad neighbors). As these are
kNN approaches, they can inherently handle nonlinear classification tasks and
have been proven to work well in many situations [16] due to their ability to con-
textualize learning through the use of neighborhoods. In these previous efforts,
the metric learning framework is well-suited for feature vectors in R

n. In our
current situation of working with functional data, we propose an analogue that
allows the warping of the function data to visually resemble others in the same
class (within a k-neighborhood) and penalize similarity to bad neighbors from
other classes. We call this gerrymandered morphing of functions based on local
neighborhood label characteristics discriminative interpolation. Figure 1 illus-
trates this neighborhood-based, supervised deforming on a three-class problem.
In Fig. 1(a), we see the original training curves from three classes, colored
magenta, green, and blue; each class has been sub-sampled to 30 curves for
display purposes. Notice the high variability among the classes which can lead
to misclassifications. Fig. 1(b) shows the effects of CDI post training. Now the
curves in each class more closely resemble each other, and ultimately, this leads
to better classification of test curves.

Learning and generalization properties have yet to be worked out for the CDI
framework. Here, we make a few qualitative comments to aid better understanding
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of the formulation. Clearly, we can overfit during the training stage by forcing
the basis representation of all functions belonging to the same class to be iden-
tical. During the testing stage, in this overfitting regime, training is irrelevant
and the method devolves into a nearest neighbor strategy (using function dis-
tances). Likewise, we can underfit during the training stage by forcing the basis
representation of each function to be without error (or residual). During testing,
in this underfitting regime, the basis representation coefficients are likely to be
far (in terms of a suitable distance measure on the coefficients) from members in
each class since no effort was made during training to conform to any class. We
think a happy medium exists where the basis coefficients for each training stage
function strike a reasonable compromise between overfitting and underfitting—
or in other words, try to reconstruct the original function to some extent while
simultaneously attempting to draw closer to nearest neighbors in each class. Sim-
ilarly, during testing, the classifier fits testing stage function coefficients while
attempting to place the function pattern close to nearest neighbors in each class
with the eventual class label assigned to that class with the smallest compro-
mise value. From an overall perspective, CDI marries function reconstruction
with neighborhood gerrymandering (with the latter concept explained above).

To the best of our knowledge, this is the first effort to develop a FDA app-
roach that leverages function properties to achieve kNN-margin-based learning
in a fully multi-class framework. Below, we begin by briefly covering the req-
uisite background on function spaces and wavelets (Section 2). Related works
are detailed in Section 3. This is followed by the derivation of the proposed
CDI framework in Section 4. Section 5 demonstrates extensive experimental
validations on several functional datasets and shows our method to be compet-
itive with other functional and feature-vector based algorithms—in many cases,
demonstrating the highest performance measures to date. The article concludes
with Section 6 where recommendations and future extensions are discussed.

2 Function Representations and Wavelets

Most FDA techniques are developed under the assumption that the given set of
labeled functional data can be suitably approximated by and represented in an
infinite dimensional Hilbert space H. Ubiquitous examples of H include the space
of square-integrable functions L2([a, b] ⊂ R) and square-summable series l2(Z).
This premise allows us to transition the analysis from the functions themselves
to the coefficients of their basis expansion. Moving to a basis expansion also
allows us to seamlessly handle irregularly sampled functions, missing data, and
interpolate functions (the most important property for our approach). We now
provide a brief exposition of working in the setting of H. The reader is referred
to many suitable functional analysis references [17] for further details.

The infinite dimensional representation of f ∈ H comes from the fact that
there are a countably infinite number of basis vectors required to produce an
exact representation of f , i.e.
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f(t) =
∞∑

l=1

αlφl(t) (1)

where φ is one of infinitely possible bases for H. Familiar examples of φ include
the Fourier basis, appropriate polynomials, and in the more contemporary
setting—wavelets. In computational applications, we cannot consider infinite
expansions and must settle for a projection into a finite d-dimensional subspace
P. Given a discretely sampled function f = {f(ti)}1≤i≤m, the coefficients for
this projection are given by minimizing the quadratic objective function

min
{αl}

m∑

i=1

(

f(ti) −
d∑

l=1

αlφl(ti)

)2

or in matrix form
min

α
‖f − φα‖2, (2)

where φ is an m × d matrix with entries φi,l = φl(ti) and α is an d × 1 column
vector of the coefficients. Estimation is computationally efficient with complexity
O(md2) [20]. For an orthonormal basis set, this is readily obtainable via the
inner product of the space αl = 〈f, φi〉. Once the function is represented in
the subspace, we can shift our analysis from working directly with the function
to instead working with the coefficients. Relevant results utilized later in our
optimization framework include

〈fh, f j〉 =
(
αh

)T
Φαj , (3)

where the d × d matrix Φ is defined by Φr,s = 〈φr, φs〉 (not dependent on fh

and f j), and
‖fh − f j‖22 =

(
αh − αj

)T
Φ

(
αh − αj

)
. (4)

For orthonormal basis expansions, such as many useful wavelet families, eq. (4)
reduces to ‖αh − αj‖22.

Though many different bases exist for H = L2([a, b]), wavelet expansions are
now widely accepted as the most flexible in providing compact representations
and faithful reconstructions. Functions f ∈ L2([a, b]) can be represented as a
linear combination of wavelet bases [7]

f(t) =
∑

k

αj0,kφj0,k(t) +
∞∑

j≥j0,k

βj,kψj,k(t) (5)

where t ∈ R, φ(x) and ψ(x) are the scaling (a.k.a. father) and wavelet (a.k.a.
mother) basis functions respectively, and αj0,k and βj,k are scaling and wavelet
basis function coefficients; the j-index represents the current resolution level
and the k-index the integer translation value. (The translation range of k can be
computed from the span of the data and basis function support size at the differ-
ent resolution levels. Also, when there is no need to distinguish between scaling
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or wavelet coefficients, we simply let c =
[
α,β

]T .) The linear combination in
eq. (5) is known as a multiresolution expansion. The key idea behind multires-
olution theory is the existence of a sequence of nested subspaces Vj j ∈ Z such
that

· · · V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 · · · (6)

and which satisfy the properties
⋂

Vj = {0} and
⋃

Vj = L2 (completeness). The
resolution increases as j → ∞ and decreases as j → −∞ (some references show
this order reversed due to the fact they invert the scale [7]). At any particular
level j + 1, we have the following relationship

Vj

⊕
Wj = Vj+1 (7)

where Wj is a space orthogonal to Vj , i.e. Vj

⋂
Wj = {0}. The father wavelet

φ(x) and its integer translations form a basis for V0. The mother wavelet ψ(x)
and its integer translates span W0. These spaces decompose the function into its
smooth and detail parts; this is akin to viewing the function at different scales
and at each scale having a low pass and high pass version of the function. The
primary usefulness of a full multiresolution expansion given by eq. (5) is the
ability to threshold the wavelet coefficients and obtain a sparse representation of
the signal. If sparse representations are not required, functions can be expanded
using strictly scaling functions φ. Our CDI technique adopts this approach and
selects an appropriate resolution level j0 based on empirical cross-validation on
the training data. Given a set of functional data, coefficients for each of the
functions can be computed using eq. (2). Once the coefficients are estimated,
as previously discussed, all subsequent analysis can be transitioned to working
directly with the coefficients. There are also a number wavelet families from
which we can select φ. With our desire to work with orthonormal bases, we
limit ourselves to the compactly supported families of Daubechies, Symlets, and
Coiflets [7].

3 Related Work

Several authors have previously realized the importance of taking the functional
aspect of the data into account. These include representing the data in a different
basis such as B-Splines [1], Fourier [6] and wavelets [3,4] or utilizing the contin-
uous aspects [2] and differentiability of the functional data [18]. Abraham et al.
[1] fit the data using B-Splines and then use the K-means algorithm to cluster
the data. Biau et al. [6] reduce the infinite dimension of the space of functions
to the first d dimensional coefficients of a Fourier series expansion of each func-
tion and then they apply a k-nearest neighborhood for classification. Antoniadis
et al. [3] use the wavelet transform to detect clusters in high dimensional func-
tional data. They present two different measures, a similarity and a dissimilarity,
that are then used to apply the k-centroid clustering algorithm. The similarity
measure is based on the distribution of energy across scales generating a number
of features and the dissimilarity measure are based on wavelet-coherence tools.
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In [4], Berlinet et al. expand the observations on a wavelet basis and then apply
a classification rule on the non-zero coefficients that is not restricted to the
k-nearest neighbors. Alonso et al. [2] introduce a classification technique that
uses a weighted distance that utilizes the first, second and third derivative of the
functional data. López-Pintado and Romo [18] propose two depth-based classifi-
cation techniques that take into account the continuous aspect of the functional
data. Though these previous attempts have demonstrated the utility of basis
expansions and other machine learning techniques on functional data, none of
them formulate a neighborhood, margin-based learning technique as proposed
by our current CDI framework.

In the literature, many attempts have been made to find the best neigh-
borhood and/or define a good metric to get better classification results
[10,19,24,26,29]. Large Margin Nearest Neighbor (LMNN) [8,26] is a locally
adaptive metric classification method that uses margin maximization to esti-
mate a local flexible metric. The main intuition of LMNN is to learn a metric
such that at least k of its closest neighbors are from the same class. It pre-defines
k neighbors and identifies them as target neighbors or impostors—the same class
or different class neighbors respectively. It aims at readjusting the margin around
the data such that the impostors are outside that margin and the k data points
inside the margin are of the same class. Prekopcsk and Lemire [19] classify times
series data by learning a Mahalanobis distance by taking the pseudoinverse of the
covariance matrix, limiting the Mahalanobis matrix to a diagonal matrix or by
applying covariance shrinkage. They claim that these metric learning techniques
are comparable or even better than LMNN and Dynamic Time Warping (DTW)
[5] when one nearest neighbor is used to classify functional data. We show in the
experiments in Section 5 that our CDI method performs better. In [24], Trivedi
et al. introduce a metric learning algorithm by selecting the neighborhood based
on a gerrymandering concept; redefining the margins such that the majority of
the nearest neighbors are of the same class. Unlike many other algorithms, in
[24], the choice of neighbors is a latent variable which is learned at the same time
as it is learning the optimal metric—the metric that gives the best classification
accuracy. These neighborhood-based approaches are pioneering approaches that
inherently incorporate context (via the neighbor relationships) while remaining
competitive with more established techniques like SVMs [25] or deep learning
[13]. Building on their successes, we adapt a similar concept of redefining the class
margins through pushing away impostors and pulling target neighbors closer.

4 Classification by Discriminative Interpolation

In this section, we introduce the CDI method for classifying functional data.
Before embarking on the detailed development of the formulation, we first pro-
vide an overall sketch.

In the training stage, the principal task of discriminative interpolation is
to learn a basis representation of all training set functions while simultaneously
pulling each function representation toward a set of nearest neighbors in the same
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class and pushing each function representation away from nearest neighbors in
the other classes. This can be abstractly characterized as

ECDI(ci) =
∑

i

⎡

⎣Drep(f i,φci) + λ
∑

j∈N (i)

Dpull(ci, cj) − μ
∑

k∈M(i)

Dpush(ci, ck)

⎤

⎦ (8)

where Drep is the representation error between the actual data (training set
function sample) and its basis representation, Dpull is the distance between the
coefficients of the basis representation in the same class and Dpush the distance
between coefficients in different classes (with the latter two distances often cho-
sen to be the same). The parameters λ and μ weigh the pull and push terms
respectively. N (i) and M(i) are the sets of nearest neighbors in the same class
and different classes respectively.

Upon completion of training, the functions belonging to each class have been
discriminatively interpolated such that they are more similar to their neighbors
in the same class. This contextualized representation is reflected by the coeffi-
cients of the wavelet basis for each of the curves. We now turn our attention to
classifying incoming test curves. Our labeling strategy focuses on selecting the
class that is able to best represent the test curve under the pulling influence of
its nearest neighbors in the same class. In the testing stage, the principal task
of discriminative interpolation is to learn a basis representation for just the test
set function while simultaneously pulling the function representation toward a
set of nearest neighbors in the chosen class. This procedure is repeated for all
classes with class assignment performed by picking that class which has the low-
est compromise between the basis representation and pull distances. This can
be abstractly characterized as

â = arg min
a

min
c

Drep(f ,φc) + λ
∑

k∈K(a)

Dpull(c, ck
(a)) (9)

where K(a) is the set of nearest neighbors in class a of the incoming test pattern’s
coefficient vector c. Note the absence of the push mechanism during testing.
Further, note that we have to solve an optimization problem during the testing
stage since the basis representation of each function is a priori unknown (for
both training and testing).

4.1 Training Formulation

Given labeled functional data {(f i, yi)}N
i=1 where f i ∈ H and yi = {1, . . . , A} are

the labels, A is the number of classes. We can express f i as a series expansion

f i =
∞∑

l=1

ci
lφl (10)

where {φd}∞
d=1 form a complete, orthonormal system of H. As mentioned in

Section 2, we approximate the discretized data f i = {f i(tj)}1≤j≤m in a d-
dimensional space. Let ci = [ci

1, c
i
2, · · · , ci

d]
T be the d × 1 vector of coefficients
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associated with the approximation f̂ i of f i and let φ = [φ1, φ2, · · · , φd] be the
m × d matrix of the orthonormal basis. Then the approximation to eq. 10 can
be written in matrix form as

f̂ i = φci. (11)

Getting the best approximation to f i requires minimizing eq. 2, but in CDI
we want to find a weighted approximation f̂ i such that the function resembles
more the functions in its class; i.e. we seek to minimize

∑

j s.t. yi=yj

Mij‖f̂ i − f̂ j‖2 (12)

while reducing the resemblance to functions in other classes; i.e. we seek to
maximize ∑

j s.t. yi �=yj

M ′
ij‖f̂ i − f̂ j‖2 (13)

where Mij and M ′
ij are some weight functions—our implementation of the

adapted push-pull concept. Combining the three objective function terms, we
attempt to get the best approximation by pulling similarly labeled data together
while pushing different labeled data away. This yields the following objective
function and optimization problem:

min
f̂ ,M,M ′

E = min
f̂ ,M,M ′

N∑

i=1

‖f i− f̂ i‖2+λ
∑

i,j s.t. yi=yj

Mij‖f̂ i− f̂ j‖2−μ
∑

i,j s.t. yi �=yj

M ′
ij‖f̂ i− f̂ j‖2 (14)

where Mij ∈ (0, 1) and
∑

j Mij = 1 is the nearest neighbor constraint for yi = yj

where j 
= i, similarly, M ′
ij ∈ (0, 1) and

∑
j M ′

ij = 1 is the nearest neighbor
constraint for yi 
= yj where j 
= i. From Section 2, we showed that given an
orthonormal basis, ‖f̂ i − f̂ j‖2 = ‖ci − cj‖2, eq. 14 can be expressed in terms of
the coefficients as

min
c,M,M ′

E = min
c,M,M ′

N∑

i=1

‖f i − φci‖2 + λ
∑

i,j s.t. yi=yj

Mij‖ci − cj‖2 − μ
∑

i,j s.t. yi �=yj

M ′
ij‖ci − cj‖2.

(15)
As we saw in Section 3, there are many different ways to set the nearest

neighbor. The simplest case is to find only one nearest neighbor from the same
class and one from the different classes. Here, we set Mij ∈ {0, 1} and likewise
for M ′

ij , which helps us obtain an analytic update for ci (while keeping M, M ′

fixed). An extension to this approach would be to find the k-nearest neighbors
allowing k > 1. A third alternative would be to have graded membership of
neighbors with a free parameter deciding the degree of membership. We adopt
this strategy—widely prevalent in the literature [27]—as a softmax winner-take-
all. In this approach, the Mij and M ′

ij are “integrated out” to yield
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Algorithm 1. Functional Classification by Discriminative Interpolation (CDI)

Training

Input: ftrain ∈ R
N×m, ytrain ∈ R

N , λ (CV*), μ (CV), k, kp, η (stepsize)
Output: ci(optimal interpolation)
1. For i ← 1 to N
2. Repeat
3. Find N (i) and M(i) using kNN
4. Compute Mij ∀ i, j pairs (eq. 18)
5. Compute ∇Ei

interp = ∂E
∂ci

(eq. 17)

6. ci ← ci − η∇Ei

interp
8. Until convergence
7. End For
*Obtained via cross validation (CV).

Testing

Input: ftest ∈ R
L×m, ci(from training), λ (CV), μ (CV), k, η′ (stepsize)

Output: ŷ (labels for all testing data)
1. For l ← 1 to L
2. For a ← 1 to A
3. Repeat
4. Find N (a) for c̃lusing kNN
5. Compute Ma

i ∀ i neighborhood (22)
6. Compute ∇El

a = ∂Ea

∂ĉl
(eq. 19)

7. c̃l ← c̃l − η′∇El
a

8. Until convergence
9. compute El

a (eq. 21)
10. End For
11. ỹl ← {a| min El

a ∀a}
12. End For

min
c

N∑

i=1

‖f i−φci‖2− λ

β

∑

i

log
∑

j s.t. yi=yj

e−β‖ci−cj‖2
+

μ

β

∑

i

log
∑

r s.t. yi �=yr

e−β‖ci−cr‖2

(16)

where β is a free parameter deciding the degree of membership. This will allow
curves to have a weighted vote in the CDI of f i (for example).

An update equation for the objective in eq. 16 can be found by taking the
gradient with respect to ci, which yields

∂E

∂ci
= −2

⎛

⎝φT f i − φT φci − λ
∑

j s.t. yi=yj

Mij(ci − cj) + λ
∑

k s.t. yk=yi

Mki(ck − ci) · · ·

+μ
∑

r s.t. yi �=yr

Mir(ci − cr) − μ
∑

s s.t. ys �=yi

Msi(cs − ci)

⎞

⎠ (17)
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where

Mij =
exp

(−β‖ci − cj‖2)
∑

t, s.t. yi=yt

exp (−β‖ci − ct‖2) . (18)

The computational complexity of this approach can be prohibitive. Since the
gradient w.r.t. the coefficients involves a graded membership to all the datasets,
the worst case complexity is O(Nd). In order to reduce this complexity, we use an
approximation to eq. 17 via an expectation-maximization (EM) style heuristic.
We first find the nearest neighbor sets, N (i) (same class) and M(i) (different
classes), compute the softmax in eq. 18 using these nearest neighbor sets and then
use gradient descent to find the coefficients. Details of the procedure are found
in Algorithm 1. Future work will focus on developing efficient and convergent
optimization strategies that leverage these nearest neighbor sets.

4.2 Testing Formulation

We have estimated a set of coefficients which in turn give us the best approximation
to the training curves in a discriminative setting. We now turn to the testing stage.
In contrast to the feature vector-based classifiers, this stage is not straightforward.
When a test function appears, we don’t know its wavelet coefficients. In order to
determine the best set of coefficients for each test function, we minimize an objec-
tive function which is very similar to the training stage objective function. To test
membership in each class, we minimize the sum of the wavelet reconstruction error
and a suitable distance between the unknown coefficients and its nearest neigh-
bors in the chosen class. The test function is assigned to the class that yields the
minimum value of the objective function. This overall testing procedure is
formalized as

arg min
a

(
min
c̃

Ea(c̃)
)

= arg min
a

⎛

⎝min
c̃

‖f̃ − φc̃‖2 + λ
∑

i s.t. yi=a

Ma
i ‖c̃ − ci‖2

⎞

⎠ (19)

where f̃ is the test set function and c̃ is its vector of reconstruction coefficients.
Ma

i is the nearest neighbor in the set of class a patterns. As before, the mem-
bership can be “integrated out” to get

Ea(c̃) = ‖f̃ − φc̃‖2 − λ

β
log

∑

i s.t. yi=a

exp
{−β‖c̃ − ci‖2} . (20)

This objective function can be minimized using methods similar to those used
during training. The testing stage algorithm comprises the following steps.

1. Solve Γ (a) = minc̃ Ea(c̃) for every class a using the objective function gra-
dient

∂Ea

∂c̃
= −2φT f̃ + 2φT φc̃ + λ

∑

i s.t. yi=a

Ma
i

(
2c̃ − 2ci

)
(21)
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where

Ma
i =

exp
{−β‖c̃ − ci‖2}

∑
j∈N (a) exp {−β‖c̃ − cj‖2} . (22)

2. Assign the label ỹ to f̃ by finding the class with the smallest value of Γ (a),
namely arg mina(Γ (a)).

5 Experiments

In this section, we discuss the performance of the CDI algorithm using publicly
available functional datasets, also known as time series datasets from the “UCR
Time Series Data Mining Archive” [15]. The multi-class datasets are divided into
training and testing sets with detailed information such as the number of classes,
number of curves in each of the testing sets and training sets and the length
of the curves shown in Table 1. The datasets that we have chosen to run the
experiments on range from 2 class datasets—the Gun Point dataset, and up to
37 classes—the ADIAC dataset. Learning is also exercised under a considerable
mix of balanced and unbalanced classes, and minimal training versus testing
exemplars, all designed to rigorously validate the generalization capabilities of
our approach.

For comparison against competing techniques, we selected four other leading
methods based on reported results on the selected datasets. Three out of the
four algorithms are classification techniques based on support vector machines
(SVM) with extensions to Dynamic Time Warping (DTW). DTW has shown
to be a very promising similarity measurement for functional data, supporting
warping of functions to determine closeness. Gudmundsson et al. [11] demon-
strate the feasibility of the DTW approach to get a positive semi-definite kernel
for classification with SVM. The approach in Zhang et al. [28] is one of many that
use a vectorized method to classify functional data instead of using functional
properties of the dataset. They develop several kernels for SVM known as elas-
tic kernels—Gaussian elastic metric kernel (GEMK) to be exact and introduce
several extensions to GEMK with different measurements. In [14], another SVM

Table 1. Functional Datasets. Datasets contain a good mix of multiple classes, class
imbalances, and varying number of training versus testing curves.

Dataset
Number of

Classes
Size of

Training Set
Size of

Testing Set
Length

Synthetic Control 6 300 300 60
Gun Point 2 50 150 150
ADIAC 37 390 391 176

Swedish Leaf 15 500 625 128
ECG200 2 100 100 96

Yoga 2 300 3000 426
Coffee 2 28 28 286

Olive Oil 4 30 30 570
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Table 2. Experimental parameters. Free parameter settings via cross-validation for
each of the datasets. | · | represents set cardinality.

Dataset λ μ |N | |M|
Synthetic Control 2 0.01 10 5

Gun Point 0.1 0.001 7 2
ADIAC 0.8 0.012 5 5

Swedish Leaf 0.1 0.009 7 2
ECG200 0.9 0.01 3 3

Yoga 0.08 0.002 2 2
Coffee 0.1 0.005 1 1

Olive Oil 0.1 0.005 1 1

classification technique with a DTW kernel is employed but this time a weight is
added to the kernel to provide more flexibility and robustness to the kernel func-
tion. Prekopcsák et al. [19] do not utilize the functional properties of the data.
Instead they learn a Mahalanobis metric followed by standard nearest neighbors.
For brevity, we have assigned the following abbreviations to these techniques:
SD [11], SG [28], SW [14], and MD [19]. In addition to these published works,
we also evaluated a standard kNN approach directly on the wavelet coefficients
obtained from eq. 2, i.e. direct representation of functions in a wavelet basis
without neighborhood gerrymandering. This was done so that we can compre-
hensively evaluate if the neighborhood adaptation aspect of CDI truly impacted
generalization (with this approach abbreviated as kNN).

A k-fold cross-validation is performed on the training datasets to find the
optimal values for each of our free parameters (λ and μ being the most promi-
nent). Since the datasets were first standardized (mean subtraction, followed by
standard deviation normalization), the free parameters λ and μ became more
uniform across all the datasets. λ ranges from (0.05, 2.0) while μ ranges from
(10−3, 0.01). Table 2 has detailed information on the optimal parameters found
for each of the datasets. In all our experiments, β is set to 1 and Daubechies 4
(DB4) at j0 = 0 was used as the wavelets basis (i.e. only scaling functions used).
We presently do not investigate the effects of β on the classification accuracy
as we perform well with it set at unity. The comprehensive results are given in
Table 3, with the error percentage being calculated per the usual:

Error = 100
# of misclassified curves
Total Number of Curves

. (23)

The experiments show very promising results for the proposed CDI method
in comparison with the other algorithms, with our error rates as good or better in
most datasets. CDI performs best on the ADIAC dataset compared to the other
techniques, with an order of magnitude improvement over the current state-of-
the-art. This is a particularly difficult dataset having 37 classes where the class
sizes are very small, only ranging from 4 to 13 curves. Figure 2(a) illustrates all
original curves from the 37 classes which are very similar to each other. Hav-
ing many classes with only a few training samples in each presents a significant
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(a) Original ADIAC
Curves

(b) Discriminatively Interpolated
ADIAC Curves

Fig. 2. ADIAC dataset 37 classes - 300 Curves. The proposed CDI method is an order
of magnitude better than the best reported competitor. Original curves in (a) are
uniquely colored by class. The curves in (b) are more similar to their respective classes
and are smoothed by the neighborhood regularization—unique properties of the CDI.

Table 3. Classification Errors. The proposed CDI method achieves state-of-the-art per-
formance on half of the datasets, and is competitive in almost all others. The ECG200
exception, with kNN outperforming everyone, is discussed in text.

Dataset SD [11] SG [28] SW [14] MD [19] kNN CDI

Synthetic Control 0.67 (2) 0.7 (4) 0.67 (2) 1 (5) 9.67 (6) 0.33 (1)
Gun Point 4.67 (3) 0 (1) 2 (2) 5 (4) 9 (6) 6 (5)
ADIAC 32.48 (5) 24(3) 24.8 (4) 23 (2) 38.87 (6) 3.84 (1)

Swedish Leaf 14.72 (3) 5.3 (1) 22.5 (6) 15 (4) 16.97 (5) 8.8 (2)
ECG200 16 (6) 7 (2) 14 (5) 8 (3) 0 (1) 8 (3)

Yoga 16.37 (5) 11 (2) 18 (6) 16 (4) 10 (1) 15 (3)
Coffee 10.71 (4) 0 (1) 23 (5) - 8.67 (3) 0 (1)

Olive Oil 13.33 (4) 10 (1) 17.3 (5) 13 (3) 20.96 (6) 10 (1)

classification challenge and correlates with why the competing techniques have a
high classification error. In Figure 2(b), we show how CDI brings curves within
the same class together making them more “pure” (such as the orange curves)
while also managing to separate classes from each other. Regularized, discrimi-
native learning also has the added benefit of smoothing the functions. The com-
peting SVM-based approaches suffer in accuracy due to the heavily unbalanced
classes. In some datasets (e.g. Swedish Leaf or Yoga) where we are not the leader,
we are competitive with the others. Comparison with the standard kNN resulted
in valuable insights. CDI fared better in 6 out of the 8 datasets, solidifying the
utility of our push-pull neighborhood adaptation (encoded by the learned μ and
λ), clearly showing CDI is going beyond vanilla kNN on the coefficient vectors.
However, it is interesting that in two of the datasets that kNN beat not only
CDI but all other competitors. For example, kNN obtained a perfect score on
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ECG200. The previously published works never reported a simple kNN score on
this dataset, but as it can occur, a simple method can often beat more advanced
methods on particular datasets. Further investigation into this dataset showed
that the test curves contained variability versus the training, which may have
contributed to the errors. Our error is on par with all other competing methods.

6 Conclusion

The large margin k-nearest neighbor functional data classification framework
proposed in this work leverages class-specific neighborhood relationships to dis-
criminatively interpolate functions in a manner that morphs curves from the
same class to become more similar in their appearance, while simultaneously
pushing away neighbors from competing classes. Even when the data naturally
occur as functions, the norm in machine learning is to move to a feature vector
representation, where the burden of achieving better performance is transferred
from the representation to the selection of discriminating features. Here, we have
demonstrated that such a move can be replaced by a more principled approach
that takes advantage of the functional nature of data.

Our CDI objective uses a wavelet expansion to produce faithful approxima-
tions of the original dataset and concurrently incorporates localized push-pull
terms that promote neighborhood class purity. The detailed training optimiza-
tion strategy uses a familiar iterative, alternating descent algorithm whereby
first the coefficients of the basis expansions are adapted in the context of their
labeled, softmax-weighted neighbors, and then, the curves’ k-neighborhoods are
updated. Test functional data are classified by the cost to represent them in each
of the morphed training classes, with a minimal cost correct classification reflect-
ing both wavelet basis reconstruction accuracy and nearest-neighbor influence.
We have extensively validated this simple, yet effective, technique on several
datasets, achieving competitive or state-of-the-art performance on most of them.
In the present work, we have taken advantage of the interpolation characteristic
of functions. In the future, we intend to investigate other functional properties
such as derivatives, hybrid functional-feature representations, and extensions to
higher dimensional functions such as images. We also anticipate improvements
to our optimization strategy which was not the focus of the present work.
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