
Reframing on Relational Data

Chowdhury Farhan Ahmed, Clément Charnay,
Nicolas Lachiche(B), and Agnès Braud

ICube Laboratory, University of Strasbourg, Strasbourg, France
{cfahmed,charnay,nicolas.lachiche,agnes.braud}@unistra.fr

Abstract. Construction of aggregates is a crucial task to discover
knowledge from relational data and hence becomes a very important
research issue in relational data mining. However, in a real-life scenario,
dataset shift may occur between the training and deployment environ-
ments. Therefore, adaptation of aggregates among several deployment
contexts is a useful and challenging task. Unfortunately, the existing
aggregate construction algorithms are not capable of tackling dataset
shift. In this paper, we propose a new approach called reframing to han-
dle dataset shift in relational data. The main objective of reframing is to
build a model once and make it workable in many deployment contexts
without retraining. We propose an efficient reframing algorithm to learn
optimal shift parameter values using only a small amount of labelled
data available in the deployment. The algorithm can deal with both sim-
ple and complex aggregates. Our experimental results demonstrate the
efficiency and effectiveness of the proposed approach.

Keywords: Relational data mining · Aggregates · Dataset shift · Super-
vised learning · Stochastic optimization

1 Introduction

Data mining discovers hidden knowledge from databases. Relational data min-
ing [7] is an important field of data mining which aims at extracting interesting
and useful knowledge from relational databases. In a relational database, data
are stored in multiple relations/tables and connected through some common
keys/fields. One to many relationships are a special kind of link where each
tuple of a primary table may be linked to several keys of a secondary table.
An example is Department table and Student table. Here Department is a pri-
mary table and one department has many students in the Student table which
implies a one to many relationship. This type of relationship is very useful for
representing several real-life scenarios for example customers and purchases in
market basket databases, urban blocks and buildings in geographical databases,
molecules and atoms in chemical databases, phone numbers and call records in
telecommunication databases, and so on.

Aggregates [4,8,12,19,20] are used to carry information from the secondary
to the primary table. Consider a given customer has many transactions in the
c© Springer International Publishing Switzerland 2015
J. Davis and J. Ramon (Eds.): ILP 2014, LNAI 9046, pp. 1–15, 2015.
DOI: 10.1007/978-3-319-23708-4 1

2 C.F. Ahmed et al.

Purchase table and we want to add this information in the primary table Cus-
tomer. Then the sum aggregate can be used to accumulate it as an attribute
total purchase in the primary table. Complex aggregates [4,19,20] may have
multiple conditions and/or thresholds inside them. They are very useful for
propositionalization [8,12,13]. Consider the following complex aggregate CA1.
It can be used to define a threshold of two classes of urban blocks in a city. For
example, urban blocks satisfying CA1 fall into class X (e.g., individual housing
area), and otherwise into class Y (e.g., apartment housing area).

CA1 : count(buildings such that area < 200) > 30

On the other hand, reuse of learnt knowledge is of critical importance in
the majority of knowledge-intensive application areas, particularly because the
operating context can be expected to vary from training to deployment. Dataset
shift [14] is a crucial example of this phenomenon where training and testing
datasets follow different distributions. Consider the above complex aggregate
CA1 is used to train a classifier in City 1 and we need to classify the data
of City 2 and City 3 while the average area of individual houses in City 2 is
comparatively smaller than City 1 and housing in a given area is more compact
in City 3 than City 1. Suppose CA2 and CA3 represent the appropriate complex
aggregates to classify the data of City 2 and City 3, respectively.

CA2 : count(buildings such that area < 100) > 30
CA3 : count(buildings such that area < 200) > 50

Existing relational data mining algorithms use retraining (building a new
model in the deployment from the very beginning) to classify the data of City 2 or
City 3. Can we use the existing model of City 1 and avoid this costly retraining?
This motivates us to design a new approach of reframing on relational data. The
contributions of our approach are described as follows

• We develop a new idea of reframing on relational data, and design an effi-
cient algorithm, called Reframing Aggregates with Stochastic Hill Climbing
(RASHC) for reframing both the aggregate condition and the aggregate out-
put.

• It can handle both simple and complex aggregates.
• Both classification and regression tasks can be addressed.
• Our approach has the capability of tackling different changes in data distribu-

tions and decision functions and make the existing model workable in different
deployment environments.

• It can discover optimal shift parameter values although a small amount of
labelled deployment data are available.

• We experimentally show the efficiency and effectiveness of the proposed algo-
rithm using synthetic and real-life datasets. In particular, we present the exis-
tence of dataset shift problem in a real-life dataset [1,9] and capability of our
algorithm to approximate these unknown real-life shifts accurately.

Reframing on Relational Data 3

The remainder of this paper is organized as follows. Section 2 discusses related
work. In Sect. 3, we describe our proposed reframing approach for relational
data. In Sect. 4, our experimental results are presented and analyzed. Finally,
conclusions are drawn in Sect. 5.

2 Related Work

A way of mining relational databases is propositionalization [8,12,13] which
transforms the data of primary and secondary tables into a single attribute
value table. There are some existing methods of propositionalization such as
Relaggs [12], Cardinalization and Quantiles [8]. TILDE [3] introduced a logical
representation for relational decision trees and has been extended to handle
complex aggregates. A method called FORF (first order random forests) [19]
has been proposed for learning relational classifiers with complex aggregates.
Another research work was done to refine aggregate conditions in relational
learning [20]. Charnay et al. [4] proposed a method for incremental construction
of complex aggregates.

On the other hand, several methods [5,11,14,18,22] have been proposed to
handle the situation where training and testing environments are different. Input
variable shift is most often known as covariate shift [14] in the data mining
and machine learning literature. Some research works have been done to tackle
covariate shift [2,14,18] where shifts in input variables are considered over differ-
ent deployment contexts. For example, a new variant of cross validation, called
Importance Weighted Cross Validation (IWCV), is proposed by assuming that
the ratio of the test and training input densities is known at training time [18].
According to this ratio, it applies different weights to each input during cross
validation to handle covariate shift. Another method, called Integrated Opti-
mization Problem (IOP), finds contribution of each training instance to the
optimization problem ideally needs to be weighted with its test-to-training den-
sity ratio [2]. It uses a discriminative model that characterizes the possibility of
an instance to occur in the test set rather than in the training set. Instantiat-
ing the general optimization problem leads to a kernel logistic regression and an
exponential model classifier for covariate shift [2]. In order to cope with covariate
shift, Kernel Mean Matching (KMM) approach [10] reweighs the training data
such that the means of the training and test data in a reproducing kernel Hilbert
space (i.e., in a high dimensional feature space) are close.

Recently, an input transformation based approach, called GP-RFD (Genetic
Programming-based feature extraction for the Repairing of Fractures between
Data), has been proposed which can handle general dataset shift [16]. At first, it
creates a classifier C for a training dataset A and considers B as a test dataset
with a different distribution. To discover optimal transformation, it applies sev-
eral genetic operators (e.g., selection, crossover, mutation) on B and creates
dataset S. Subsequently, it applies C on dataset S and calculates the accuracy
in order to determine the best transformation. This approach is computation-
ally expensive and needs a large amount of deployment data to be labelled. In

4 C.F. Ahmed et al.

addition, another related research area is transfer learning [6,17] which learns a
new model for the deployment data reusing knowledge from the base model, but
it often (re)trains a new model rather than adapting the original.

However, the existing dataset shift adapting algorithms need retraining to
be applied in a different deployment environment and hence are not suitable for
reframing which aims at building a model once and make it (i.e., the same model)
workable in several deployment environments without retraining. Moreover, they
are not capable of tackling relational data. Therefore, we propose a new approach
called reframing to handle dataset shift on relational data.

3 Our Proposed Approach

The main reason behind changing the condition and/or output of an aggregate is
the change in data distribution. Suppose M is a model built with a base learner C
using some labelled training data Ttr; and CAtr and CAd are complex aggregates
to classify the training and deployment data, respectively. In this example, we
have shown one aggregate condition for simplicity. But, there may be multiple
aggregate conditions in a complex aggregate. However, if we want to use M to
classify the deployment data, we have to transform the shifted parameter values
of CAd to the appropriate parameter values of CAtr. By using a transformation
function T and a few labelled deployment data Td, our approach will find optimal
shift parameter values for this transformation. Thus, it will be able to use the
existing model that has been built with the training data. In the first and second
subsections, we demonstrate the concept of reframing aggregate condition and
output, respectively. Finally, our proposed reframing algorithm is presented.

CAtr : AggF (buildings such that attV altr < aggCondtr) > aggOutCondtr

CAd : AggF (buildings such that attV ald < aggCondd) > aggOutCondd

3.1 Reframing Aggregate Condition

For reframing aggregate condition, T transforms the input attribute value
attV ald of deployment to the appropriate (approximate) corresponding input
attribute value attV al

̂tr of training by an equation e.g., Eq. 1 so that they can
properly be classified.

attV al
̂tr = α(attV ald) + β (1)

Hence, for reframing the aggregate condition, our reframing model M eval-
uates the following

AggF (T (attV ald) < aggCondtr) = AggF ((α(attV ald) + β) < aggCondtr)
= AggF (attV al

̂tr < aggCondtr)

The main challenging task is to find optimal shift parameter values (values
of α, β in this case) so that it can transform the deployment data with these
values and able to predict attV al

̂tr very close to attV altr. Our method can

Reframing on Relational Data 5

Fig. 1. Reframing aggregate condition.

perform this task properly. In addition, it can learn multiple {α, β} pairs if
there are multiple aggregate conditions in a complex aggregate. Hence, it enables
M to be built once and used over several deployment contexts without any
modification. On the other hand, retraining means building a new model Mnew

for every deployment context using the few labelled data available over there
while not using any knowledge of M at all. And, using a base model to other
contexts means that applying model M to other deployment contexts directly,
i.e., without any reframing or retraining. Accordingly, reframing will be useful
to handle most of the cases of dataset shift compared to apply the base model
or retraining.

CA4 : count(buildings such that area < 250) > 30

Now, consider the scenario in Fig. 1 where a training environment is City
1 and deployment environments are City 2 and City 4. Complex aggregates of
these cities are described in CA1, CA2 and CA4, respectively. An individual
housing block in City 1 contains at least 30 buildings with area less than 200.
But in City 2, buildings are comparatively smaller (half compared to the building
area of City 1) and in City 4 they are comparatively larger(larger than 50 units
compared to the building area of City 1). However, their cardinality (aggregate
output) is same like City 1 (i.e., 30). We can use the following transformation to
re-scale the deployment data to fit in our existing model. For City 2, we can use
α = 2 and β = 0 (Eq. 1), so that a building area of 100 in City 2 can be mapped
to its appropriate value of 200 (100× 2 + 0) in City 1 and properly be classified
by the existing model of City 1. Similarly, we can use α = 1 and β = −50 for
reframing the data of City 4.

3.2 Reframing Aggregate Output

Here, we have to transform the aggregate output with T in a similar way as
follows

T (AggF (attV ald < aggCondd)) = T (aggOutd)
= α(aggOutd) + β

= aggOut
̂tr (2)

6 C.F. Ahmed et al.

Fig. 2. Reframing aggregate output.

Our reframing approach tries to make aggOut
̂tr very close to aggOuttr so

that it can properly be classified by aggOutCondtr. Consider the scenario in
Fig. 2 where a training environment is City 1 and deployment environments are
City 3 and City 5. Complex aggregates of these cities are described in CA1, CA3

and CA5, respectively. A residential housing block in City 1 contains at least
30 buildings with area less than 200. But in City 3, even though buildings have
the same size, the blocks are very crowded (too many buildings in a block) and
contain at least 50 buildings. On the other hand, the reverse situation occurs in
City 5, i.e., even though buildings have the same size, the blocks contain fewer
buildings compared to City 1 (at least 15 buildings in a block).

CA5 : count(buildings such that area < 200) > 15

For City 3, we can use α = 1 and β = −20 (Eq. 2), so that an aggregate
output of 50 in City 3 can be mapped to its appropriate value of 30 (50×1−20)
in City 1 and properly be classified by the existing model of City 1. Similarly,
we can use α = 2 and β = 0 for reframing the aggregate output of City 5.

3.3 RASHC: Our Proposed Algorithm

In this subsection, we present our reframing algorithm on relational data called
RASHC (Reframing Aggregates with Stochastic Hill Climbing). We have con-
sidered a relational decision tree learner [4] to build the classification model M .
For reframing, we consider there are n conditions in M , where each condition
represents either an aggregate condition c or an aggregate output o. Consider
the models of three cities given in Fig. 3 where City 1 is the training context
and City 2 and City 3 are the deployment contexts. Please note that City 2
has different parameter values in the root node while leaf nodes have the same
parameter values. On the other hand, City 3 has different parameter values in all
the nodes (six parameters in three nodes). As described earlier, our method will
learn optimal shift parameter values for these aggregates with a small amount of
available labelled deployment data. In this example, it will learn total six (α, β)
pairs. If there is no change, it can safely learn α = 1, β = 0 values.

The RASHC algorithm is presented in Fig. 4. It uses a stochastic hill climb-
ing search to find optimal shift parameter values. Indeed, the solution of our

Reframing on Relational Data 7

Fig. 3. Relational decision trees for three different cities.

problem space is non-convex, and according to [21] this technique provides opti-
mal solution in most of the cases of this situation. Therefore, we have chosen
this technique for discovering our reframing solutions. The RASHC algorithm
(Fig. 4) builds a classification model M using the training labelled data (line 2).
The transformation function T uses the few available labelled data of deploy-
ment (Td) to perform the transformation (line 4). The loop described in lines 7
to 18 learns global optimal shift parameter values. In the nested loop (lines 8 to
13), it learns a set of local optimal shift parameter value using the HillClimbing
procedure shown in lines 21 to 41. The shouldRestart procedure (invoked in line
14) updates bestShift with the value of current Sft and makes the count value
equal to zero, if the current Sft produces better performance than the current
bestShift. Otherwise, count is incremented by one. It returns True if the count is
less than 10, and False (i.e., bestShift remains unchanged for the last 10 times)

8 C.F. Ahmed et al.

Input: A base learner C, e.g., relational decision tree learner;
Labelled training data Ttr; Few labelled data of the deployment Td;
Unlabelled test data Ttst; Precision of adjustment p > 0.

Output: Optimal shift parameter values and the predicted class labels.
begin1

Train a model M by using C from Ttr;2

Let n be the no. of conditions in M ; where each condition represents3

either an aggregate condition c or an aggregate output o;
Let T be a transformation function which shifts the attribute values4

∀c ∈ M and the output values ∀o ∈ M by Eq. 1 and Eq. 2, respectively;
Sft = (α1, β1,, αn, βn) = (1, 0,, 1, 0);5

bestSft = Sft; Continue = True; p = 1; count = 0;6

while Continue=True do7

repeat8

Sftold = Sft;9

for i = 1 to 2n do10

HillClimbing(Sft, i, p);11

end12

until Sft = Sftold ;13

Continue = shouldRestart(Sft, count);14

if Continue = True then15

Select randomly another Sft value;16

end17

end18

Apply bestSft to Ttst and Output the class labels by using M ;19

end20

Procedure HillClimbing(Sft, i, p)21

begin22

Sft+ = Sft− = Sft; Sft+[i] = Sft[i] + p; Sft−[i] = Sft[i] − p;23

if Acc(M(T (Sft+))) > Acc(M(T (Sft))) then24

δ = 1 ;25

end26

else if Acc(M(T (Sft−))) > Acc(M(T (Sft))) then27

δ = −1 ;28

end29

else30

return;31

end32

Sftprev = Sft;33

repeat34

Incr = 1; Sft = Sftprev;35

repeat36

Sftnext = Sftprev = Sft; Sft[i] = Sft[i] + (Incr ∗ p ∗ δ);37

Incr = Incr ∗ 2; Sftnext[i] = Sft[i] + (Incr ∗ p ∗ δ);38

until Acc(M(T (Sftnext))) < Acc(M(T (Sft))) ;39

until Incr ≤ 2 ;40

end41

Fig. 4. The RASHC algorithm.

Reframing on Relational Data 9

otherwise. Accordingly, we need to start with another Sft value if the returned
value is True. This part is performed in lines 15 to 17. Finally, learnt optimal
parameter values of bestShift are applied to transform the input values of Ttst

and M is used to predict the class labels (line 19).

4 Experimental Results

We have performed several experiments on synthetic and real-life datasets to
show the efficiency and effectiveness of our approach. We show the performance
of reframing with respect to retraining and the base model. We have used a
relational decision tree [4] as the base learner.

4.1 Performance in Synthetic Datasets

Three synthetic relational datasets have been generated to represent building
blocks data of three different cities. The decision functions have been taken
from the example given in Fig. 3. For each city, there are two tables. The pri-
mary and the secondary tables are called as Block(Block Id, Class) and Build-
ing(Building Id, Block Id, Building area, Building perimeter), respectively. We
have generated 500 data for blocks of a particular city. For each block, the num-
ber of buildings is taken from a Geometric distribution with a mean of 10. In
addition, Gaussian distributions have been used to generate the data of area
(μ = 180, σ = 40) and perimeter (μ = 450, σ = 50) of a building.

At first, we report the accuracies of the base models of these three cities in
Table 1. Now, we assume training data are available for City 1 and only a small
amount of labelled data in City 2 and City 3. The number of labelled data avail-
able in the deployment is denoted as N , and we have considered N = 10% here.
As mentioned in the previous sections, we have two straightforward options in
this situation. Firstly, we can use the base model of City 1 directly in City 2

Table 1. Performance of the Base models of different cities.

Base Accuracy (%)

City 1 98.4

City 2 99.8

City 3 86.4

Table 2. Performance (accuracy (%)) of the reframing algorithm.

Deployment RASHC Retraining Base

N = 10 % (City-1)

City 2 97.78 43.56 88.89

City 3 82.67 59.11 72.67

10 C.F. Ahmed et al.

Fig. 5. Learning curves for reframing, retraining and base model (City 1) considering
City 1 as training and City 2 as deployment.

and City 3. Secondly, we can develop a new model (retraining) in City 2 and
City 3. The results are shown in Table 2. Please note that, the accuracy of the
base model of City 1 is 98.4%, but when it is applied in City 2 and City 3, it
can achieve only 88.89% and 72.67% of accuracies, respectively. While accuracy
of the base models of City 2 and City 3 are 99.8% and 86.4%, respectively. It
clearly shows that dataset shift exists among these cities. Table 2 clearly indi-
cates that the performance of retraining model with only N = 10% of labelled
deployment data is bad. On the other hand, our reframing algorithm RASHC
achieves 97.78% and 82.67% of accuracies in City 2 and City 3, respectively;
which are very close to the accuracy value of the base model of the corresponding
cities.

Subsequently, we show learning curves in Fig. 5 for reframing, retraining and
base model (City 1) considering City 1 as training and City 2 as deployment
in order to represent the learning capabilities of these models more elaborately.
By using the base classifier, we can only get an accuracy of 88.89% and it is
constant for all N as it does not learn anything from the labelled deployment
data. From Fig. 3, we can see that optimal shift parameter values from City 2
to City 1 would be β = 20 and β = 1 for aggregate condition and aggregate
output, respectively in the root node while values of the other nodes should be
kept unchanged. When N = 5%, RASHC is equivalent to the base model. It also
illustrates that the accuracy of RASHC does not fall below the base classifier.
When N = 10%, it achieves around 98% of accuracy which is very close to the
original base model of City 2. On the other hand, retraining can reach nearly
RASHC when N = 30%.

Reframing on Relational Data 11

4.2 Performance in a Real-Life Dataset with Artificial Shifts

Here, we have used a real-life relational dataset, the PKDD’99 Financial1, which
contains some information of a bank regarding accounts, loans, transactions etc.
The bank wants to distinguish their clients as good or bad before providing them
loans according to their financial history. Therefore, we have taken two tables
Loan (as primary table) and Transactions (as secondary table) for our experi-
ment. However, the Financial dataset is highly imbalanced (around 90% loans
are positive) between the positive and negative classes, hence, we have taken
100 loans (50 positive and 50 negative classes) and their corresponding 5,755
transactions. This dataset does not have any dataset shift. Recently, research
has been done [14–16] in non-relational domains to inject different kinds of arti-
ficial shift in real-life datasets because of the unavailability of shifts inside them.
Similarly, we have injected three kinds of shift (low, medium and high) in this
real-life relational dataset.

The accuracy of the base model is 91% when no shift is used. Table 3 reports
how the base model is affected by the extremeness of shift values. Like the pre-
vious experiments, we have used N = 10% here. The performance of retraining
shows that it is not affected by the shifts as it rebuilds the model every time
with the labelled data available in the deployment rather than learning the shifts.
Furthermore, it does not use any knowledge from the training section. But obvi-
ously, it cannot rebuild a good new model with this few available labelled data.
On the other hand, it is noticeable that our RASHC algorithm has learnt optimal
shift parameter values in all the cases and achieved good accuracies.

These experimental results demonstrate that our approach is very useful
and effective to learn optimal shift parameter values, using a small amount of
available labelled data (around 10%) in deployment. It is remarkably better
than retraining and its performance does not fall below the performance of the
base model. Furthermore, the capability of our approach is shown for handling
different changes in decision functions. Therefore, it can be built in one training
context and used over several deployment contexts.

Table 3. Accuracy (%) comparison in the real-life Financial dataset

Shift RASHC Retraining Base

Low 90 45.56 81.11

Medium 87.78 45.56 73.33

High 83.33 45.56 55.56

4.3 Performance in a Real-Life Dataset with Real Shifts

A real-life dataset, called Bike Sharing dataset [1,9], has been used here to show
the presence of real shifts and the capability of our method to handle these shifts
1 http://lisp.vse.cz/pkdd99/Challenge/chall.htm.

http://lisp.vse.cz/pkdd99/Challenge/chall.htm

12 C.F. Ahmed et al.

Table 4. Performance of Base models (different seasons) of the Bike Sharing dataset.

Measure Spring Summer Fall Winter

|Days| = 181 |Days| = 184 |Days| = 188 |Days| = 178

|Hours| = 4242 |Hours| = 4409 |Hours| = 4496 |Hours| = 4232

MAE 1068.623 1216.842 1305.509 1272.703

RMSE 1354.019 1497.588 1570.728 1568.031

properly. The Bike Sharing dataset contains usage logs of a bike sharing system
called Capital Bike Sharing (CBS) at Washington, D.C., USA for two years (2011
and 2012). It was prepared by Fanaee-T and Gama [9], and is publicly available
in UCI Machine Learning Repository [1].

The dataset contains bike rental counts hourly and daily based on the envi-
ronmental and seasonal settings. The hour.csv file [1] contains 17,379 records
where the values of bike sharing counts have been aggregated on hourly basis.
Similarly the day.csv file [1] aggregates the bike sharing counts on daily basis
and contains 731 records. The input variables contain day, hour, season, work-
day/holiday and some weather information such as temperature, feels like tem-
perature, humidity and wind speed. We have considered the day format as the
primary table named Day(Day Id, Bike rental count) and the hour format as
secondary table named Hour(Hour Id, Day Id, Temperature, Feels like tem-
perature, Humidity, Windspeed). Our goal is to solve a regression task in this
relational database which predicts the daily bike rental counts based on hourly
given weather information.

Since this dataset contains data of different seasons (1:Spring, 2:Summer,
3:Fall, 4:Winter in the Season attribute), we have divided the original dataset
according to different seasons in order to observe dataset shift. Table 4 shows the
performance of the base models of different seasons using 10-fold cross validation.
We have used the MAE (mean absolute error) and RMSE (root mean square
error) measures to represent the performance in regression. To show a real-life
dataset shift, we deploy the regression model trained in Spring into Summer, Fall
and Winter. Please notice that the base model of Spring has a MAE value of
1068.623 in Spring (Table 4), but MAE values of 1544.563, 3193.662 and 1658.313
in Summer, Fall and Winter, respectively (Table 5). While the base models of
Summer, Fall and Winter have MAE values of 1216.842, 1305.509 and 1272.703,
respectively (Table 4). It clearly shows that dataset shift exists among these
seasons.

Now, we run our reframing algorithm RASHC on this dataset considering
Spring as training; Summer, Fall and Winter as deployments with only 10%
available labelled data at each deployment. Results are reported in Table 5. It
is noticeable that the performance of RASHC is very close to the base model of
that particular deployment season. For example, the base model of Summer has
MAE and RMSE values of 1216.842 and 1497.588, respectively; while RASHC
algorithm has MAE and RMSE values of 1314.306 and 1609.793, respectively in

Reframing on Relational Data 13

Table 5. Performance comparison in the Bike Sharing dataset.

Deployment Measure RASHC Retraining Base

N = 10 % (Spring)

Summer MAE 1314.306 2898.77 1544.563

RMSE 1609.793 3181.496 1954.986

Fall MAE 1366.234 1495.57 3193.662

RMSE 1645.177 1849.431 3691.34

Winter MAE 1446.568 1793.186 1658.313

RMSE 1752.089 2155.191 1988.834

this season. Moreover, reframing algorithm RASHC is significantly better than
retraining and the base model of Spring.

Experimental results in this real-life dataset demonstrate that our approach
is quite capable of learning optimal shift parameter values, using a small amount
of labelled data (around 10%) at deployment, in a real-life environment where
the nature of a shift is unknown from source to deployment. These results also
reveal the applicability of linear shift in real-life domains by clearly expressing
its strength to tackle these unknown dataset shifts between one training and
different deployment contexts. In addition, applicability of our approach can
also be observed in sequential time series data mining.

5 Conclusions

In this paper, we have proposed a new approach of reframing on relational data.
We have designed an efficient algorithm to learn optimal shift parameter values
for aggregate condition and output. It can deal with both simple and complex
aggregates. Our approach has the capability of tackling different changes in
data distributions and decision functions, and make the existing model workable
in different deployment environments. Even though a small amount of labelled
data are available in the deployment, it can discover desired optimal parameter
values to handle the actual dataset shift. Using synthetic and real-life datasets,
we have experimentally shown the efficiency and effectiveness of the proposed
algorithm. In the worst case, our approach is equivalent to the base model which
is an important property for dataset shift adaptation. Furthermore, it is quite
suitable for those environments where retraining is not applicable to learn the
decision functions. Finally, we have presented the existence of dataset shift in a
real-life dataset by considering one season as training context and other seasons
as deployment contexts. We have demonstrated the capability of our approach
to approximate these unknown real-life dataset shifts accurately.

Acknowledgements. This work was supported by the REFRAME project granted
by the European Coordinated Research on Long-term Challenges in Information and
Communication Sciences & Technologies ERA-Net (CHIST-ERA).

14 C.F. Ahmed et al.

References

1. Bache, K., Lichman, M.: UCI machine learning repository (2013) http://archive.
ics.uci.edu/ml/

2. Bickel, S., Brückner, M., Scheffer, T.: Discriminative learning under covariate shift.
J. Mach. Learn. Res. 10, 2137–2155 (2009)

3. Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees.
Artif. Intell. 101(1–2), 285–297 (1998)

4. Charnay, C., Lachiche, N., Braud, A.: Incremental construction of complex aggre-
gates: counting over a secondary table. In: Late Breaking Papers of the 23rd Inter-
national Conference on Inductive Logic Programming (ILP), pp. 1–6 (2013)

5. Charnay, C., Lachiche, N., Braud, A.: Pairwise optimization of bayesian classifiers
for multi-class cost-sensitive learning. In: Proceedings of the 25th IEEE Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI), pp. 499–505 (2013)

6. Davis, J., Domingos, P.: Deep transfer via second-order markov logic. In: Proceed-
ings of the 26th Annual International Conference on Machine Learning (ICML),
pp. 217–224 (2009)

7. Dzeroski, S.: Relational data mining. In: Maimon, O., Rokach, L. (eds.) Data Min-
ing and Knowledge Discovery Handbook, pp. 887–911. Springer, New York (2010)

8. El Jelali, S., Braud, A., Lachiche, N.: Propositionalisation of continuous attributes
beyond simple aggregation. In: Riguzzi, F., Železný, F. (eds.) ILP 2012. LNCS,
vol. 7842, pp. 32–44. Springer, Heidelberg (2013)

9. Fanaee-T, H., Gama, J.: Event labeling combining ensemble detectors and back-
ground knowledge. Prog. Artif. Intell. 2(2–3), 113–127 (2014)

10. Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., Schölkopf, B.:
Covariate shift by kernel mean matching. In: Dataset Shift in Machine Learning,
pp. 131–160. MIT Press, Cambridge (2009)

11. Hernández-Orallo, J.: ROC curves for regression. Pattern Recogn. 46(12),
3395–3411 (2013)

12. Krogel, M.-A., Wrobel, S.: Transformation-based learning using multirelational
aggregation. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol.
2157, p. 142. Springer, Heidelberg (2001)

13. Lachiche, N.: Propositionalization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia
of Machine Learning, pp. 812–817. Springer, New York (2010)

14. Moreno-Torres, J.G., Raeder, T., Aláız-Rodŕıguez, R., Chawla, N.V., Herrera, F.:
A unifying view on dataset shift in classification. Pattern Recogn. 45(1), 521–530
(2012)

15. Moreno-Torres, J.G.: Dataset shift in classification: terminology, benchmarks and
methods. Ph.D thesis (2013)

16. Moreno-Torres, J.G., Llorà, X., Goldberg, D.E., Bhargava, R.: Repairing fractures
between data using genetic programming-based feature extraction: a case study in
cancer diagnosis. Inf. Sci. 222, 805–823 (2013)

17. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2010)

18. Sugiyama, M., Krauledat, M., Müller, K.R.: Covariate shift adaptation by impor-
tance weighted cross validation. J. Mach. Lear. Res. 8, 985–1005 (2007)

19. Van Assche, A., Vens, C., Blockeel, H., Dzeroski, S.: First order random forests:
learning relational classifiers with complex aggregates. Mach. Learn. 64(1–3),
149–182 (2006)

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/

Reframing on Relational Data 15

20. Vens, C., Ramon, J., Blockeel, H.: Refining aggregate conditions in relational learn-
ing. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS
(LNAI), vol. 4213, pp. 383–394. Springer, Heidelberg (2006)

21. Weise, T.: Global optimization algorithms -theory and application, Second Edition
(2009)

22. Zhao, H., Sinha, A.P., Bansal, G.: An extended tuning method for cost-sensitive
regression and forecasting. Decis. Support Syst. 51(3), 372–383 (2011)

http://www.springer.com/978-3-319-23707-7

	Reframing on Relational Data
	1 Introduction
	2 Related Work
	3 Our Proposed Approach
	3.1 Reframing Aggregate Condition
	3.2 Reframing Aggregate Output
	3.3 RASHC: Our Proposed Algorithm

	4 Experimental Results
	4.1 Performance in Synthetic Datasets
	4.2 Performance in a Real-Life Dataset with Artificial Shifts
	4.3 Performance in a Real-Life Dataset with Real Shifts

	5 Conclusions
	References

