
Chapter 2
Joseph Fourier

Joseph Fourier (1768–1830)

2.1 Introduction

Fourier series are trigonometric series used to represent a function, and they are
widely used throughout pure and applied mathematics. Fourier was not the first to
use them, but his name is rightly attached to them because he was the first to use
them in the study of heat diffusion, to display their use in the solution of a partial
differential equation, and to argue successfully for their generality.

There had been a long 18th-century debate about trigonometric series in con-
nection with solutions to the wave equation and the shape of a vibrating string. On
the one hand it seemed reasonable that a string could have any continuous initial
shape—that was Euler’s view—on the other hand the equation could only be solved
by functions to which the calculus applied (we would say that the solutions had to
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14 2 Joseph Fourier

be twice differentiable) and this made them what d’Alembert called analytic. Con-
vergence questions were not central to this debate, which was left unresolved in a
number of ways.

Fourier proposed to reopen the debate by boldly asserting that any solution to the
heat equation, which he was the first to derive, could be written as an infinite sum of
sines and cosines for the simple reason that any function could be written that way.
This is a dramatic claim, and it was still more so in his day, because the consensus
was that however broadly a function might be defined all the functions that arise in
practice are finite sums of familiar ones: polynomials, sines, cosines, exponentials
and logarithms, nth roots, and the like. They could also be infinite power series,
and indeed infinite trigonometric series, but nonetheless they had the usual sorts of
properties, such as smoothly varying graphs. No-one said so in so many words, but
it is clear that the expectation was there, and Fourier in particular simply assumed
that every function is continuous, as is clear from his account of the coefficients of
a Fourier series in his (1822, §423).

One of the dramas introduced by Fourier’s series was that they readily flout all
these expectations. As we shall see, at various stages in the 19th century they provided
fresh, and disturbing, examples of just what functions could do. Contrary to what
Fourier himself believed, if Cauchy’s work began the exploration of what rigorous
mathematics can do, Fourier series can indicate just what theory is up against.

2.2 Fourier’s Career

Joseph Fourier was born in Auxerre, France in 1768. He was orphaned at the age
of 9 and placed in the town’s military school where he learned mathematics and a
sense of civic responsibility. He was nearly guillotined at the height of the Terror
in 1794, but the sentence was withdrawn and Fourier was able to go to the École
Normale. In 1795 he was appointed an assistant lecturer at the École Polytechnique,
working under Lagrange and Monge, and in 1798 Monge, a prominent supporter of
Napoleon, selected Fourier to go on the French expedition to Egypt. After the British
defeated them there, Fourier returned to France in 1801, hoping to resume his work
at the École Polytechnique, but Napoleon had been impressed by his organisational
talents and sent him instead to be the prefect of Governor of the Department of
Isère.1 He was so successful here that Napoleon made him a Baron in 1808, and in
1809 he finished his contribution to the Description d’Egypt, a massive account and
glorification of ancient Egypt based on the surveys that French engineers had made
of Egyptian pyramids and other remains.2

1An administrative region of France that extended from Grenoble to the French border.
2This period is the start of the celebration of ancient Egypt in the modern world, from Cleopatra’s
and other needles to fanciful statements about ancient wisdom, secret knowledge, and so forth, none
of which can be held against Fourier. See Buchwald and Feingold (2012).
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The eventual defeat of Napoleon was the lowest point of Fourier’s life, but in 1816
he obtained a position as Director of the Bureau of Statistics for the Department of
the Seine, a position which left him good time for research. His political enemies
now in power delayed his appointment to the reformed Academy of Sciences for a
year but he eventually rose to become the permanent secretary of the Academy in
1822 and to be elected to the Académie Française in 1827. He died in 1830 as the
result of complications from an illness caught in Egypt.

2.3 Fourier and Series of Sines and Cosines

The book Théorie analytique de la chaleur, in which Fourier presented his ideas,
was written work in several stages. He submitted a version to the Paris Academy
of Sciences in 1807, but although Laplace, Lacroix and Monge were in favour of
publishing it, Lagrange blocked publication, apparently because its treatment of
trigonometric series differed markedly from the way he, Lagrange, had stipulated in
the 1750s. Another chance came in 1810, when the Academy of Sciences announced a
prize competition on heat diffusion. Fourier submitted a revised memoir, which won,
but was criticised for a lack of rigour and generality. Fourier thought the criticism
unfair, but revised it again, and the resulting book came out in 1822 (after Lagrange’s
death and when Fourier’s standing was rising in the Academy).

Heat Diffusion

Fourier was interested in finding the temperature at every point of a solid body,
perhaps as a function of time, when the shape of the body, its physical properties,
and the temperature on some or all of its boundary is given. He made no assumptions
about the nature of heat and concentrated on how it flowed.

He considered that any solid body could be regarded as made of infinitesimal
cubes, and argued, on the basis of some observational evidence, that the amount of
heat that passes from the hotter part of the body to an adjacent colder part in an instant
of time is proportional to the duration of the instant, the infinitesimal temperature
difference between opposite faces of the cubes and a certain function of the distance
between the particles that depends on the nature of the body. So each body determines
some constants that characterise how heat flows in them, such as its conductivity and
its specific heat. In what follows all these physical matters will be consumed in the
single letter K .

He considered what happens as the heat flows through one of these infinitesimal
cubes, where temperature v is a function of x, y, z and t , the time. What enters the
face with sides dx and dy is Kdxdy ∂v

∂z evaluated at that face.3 What leaves the opposite

face is Kdxdy ∂v
∂z evaluated at that face. This amount Fourier evaluated by saying that

the faces are a distance dz apart, so he replaced z by z + dz, and the difference in the
amount of heat between what enters and what leaves is given by

3I have modernised Fourier’s ‘d’ notation by writing ∂v where he wrote dv.
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Kdydxd

(
∂v

∂z

)
= Kdxdydz

∂2v

∂z2 .

Should the temperature be in a steady state the sum of these quantities taken over
the three pairs of opposite faces of a cube is zero and the resulting equation is

∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2 = 0. (2.1)

The more important situation is when the temperature is changing. Fourier now
argued that the amount of heat leaving a cube in the z direction is once again
Kdxdydz ∂2v

∂z2 , but now the sum over the pairs of opposite faces equals the rate of

change of temperature, which is given by dv
dt . The result (see Théorie §128, p. 102)

is the heat equation:
∂v

∂t
= K

(
∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

)
. (2.2)

In each case, solutions of this partial differential equation are required that satisfy
the given boundary conditions, and Fourier confined his attention to bodies with
simple shapes, such as a cuboid, or one equivalent to this by a suitable coordinate
transformation.

For example, in (§166, p. 133) Fourier considered a semi-infinite strip of a given
width, π in suitableunits. He supposed that the temperature at the base is kept constant
at 1 in some units and that the temperature of the infinite sides is kept at at 0, and
looked for the corresponding steady state distribution of temperature. Let y measure
the height above the base and x the horizontal distance of a point from the mid-line
of the strip (I have relabelled his coordinates) so the differential equation, which now
involves only two variables, is

K

(
∂2v

∂x2 + ∂2v

∂y2

)
= 0, (2.3)

Fourier looked for a solution of the form

v(x, y) = f (x)g(y),

which leads to the equation g′′(y)/g(y) = − f ′′(x)/ f (x) in which both sides must
be constant, say m, so the solutions are of the form

f (x) = cos(mx), g(y) = e−my (2.4)

The temperature in the bar surely does not become infinite, so the exponential term
must decrease and so m must be positive. Also, m must be odd so that the solution
vanishes for x = ±π for all y, as required.
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It was clear to Fourier that a sum of solutions of this form is also a solution and
he proceeded at once to consider infinite sums, solutions of the form, as he wrote
(§169, p. 135),

ae−y cos x + be−3y cos 3x + ce−5y cos 5x + de−7y cos 7x + etc. (2.5)

subject to the boundary condition at the base that

1 = a cos x + b cos 3x + c cos 5x + d cos 7x + etc. (2.6)

The arbitrary constants had now to be determined. Fourier first gave a marvellous
argument that involved him in solving the infinitely many equations he could obtain
for his infinitely many unknowns by differentiating equation (2.6) arbitrarily often
(see §§171–176 of the Théorie). Only then did he give the simpler and more general
way that has become standard, and start to claim (§220, see §A.1) that every function
can be written as one of these series. By this he meant that every function is equal to its
corresponding series, and that there is a simple rule for writing down the coefficients
of the series.

He noted (§221) that the integral

∫ π

0
sin j x sin kxdx = 1

2

(
1

k − j
sin(k − j)x − 1

k + j
sin(k + j)x

)∣∣∣∣
π

0
(2.7)

vanishes when j �= k and is π/2 when k = j , and claimed that the coefficients of a
series such as his can be found by integrating the product of the series with sin jx for
each value of j > 0. Similar results apply to series of cosines, to series of sines and
cosines, and to series obtained when the period is different (as it might be, 2π or 1).

He went on to claim that any function f defined on the interval [−π,π] can be
written as an infinite series of sines and cosines in any of these forms (called the
mixed series, the cosine series and the sine series, respectively):

f (x) = 1

2
a0 +

∞∑
n=1

an cos nx + bn sin nx.

f (x) = 1

2
a0 +

∞∑
n=1

an cos nx.

f (x) = 1

2
a0 +

∞∑
n=1

bn sin nx.

The coefficients of the mixed series are given by the formulae a0 = 1
π

∫ π
−π f (x)dx

and

an = 1

π

∫ π

−π
f (x) cos kxdx, bn = 1

π

∫ π

−π
f (x) sin kxdx.
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Examples of these series had already been studied by Euler and Daniel Bernoulli.
He then gave several simple examples of his series, some of which such a function

constant on a given interval, or equal to x on a given interval. He showed how to
obtain the function cos x as an infinite series of sines, dealt with cosine series as well
as sine series, and

Fourier was very proud of his series for the function F(x) = ±π/4:

cos(x) − 1

3
cos(3x) + 1

5
cos(5x) − 1

7
cos(7x) + · · · ,

as well he might be, once you see what it looks like. Here are three graphs of it:
Fig. 2.1 shows the sum of only the first 5 terms in the series, Fig. 2.2 the first 25, and
Fig. 2.3 the first 105.

Note that the difference between the sum of the series and the sum of its first 105
terms is certainly less than 1/209 and generally much less.

It is clear that the infinite series represents a function that is +π/4 on the range
(−π/2,π/2) and that is −π/4 on the range (+π/2, 3π/2). Indeed, it represents a
function that is +π/4 on the range ((4n − 1)π/2, (4n + 1)π/2), that is −π/4 on the
range ((4n + 1)π, (4n + 3)π/2), and that is zero at the points x = (4n ± 1)π/2.

Fig. 2.1 The first 5 terms of
a Fourier series
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Fig. 2.2 The first 25 terms
of a Fourier series
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Fig. 2.3 The first 105 terms
of a Fourier series
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Note that it is plainly not the case that a series of analytic (and therefore in partic-
ular continuous) functions is itself continuous. We shall see that Fourier’s confident
remark (§235) that all these series converge everywhere to the function that they
represent, and his proof of the claim in §423 (see Appendix A.1) that the coefficients
in a ‘Fourier’ series can be evaluated as he indicated, were to be the occasion for
much significant later work.
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