Chapter 2
Video Bioinformatics Methods
for Analyzing Cell Dynamics: A Survey

Nirmalya Ghosh

Abstract Understanding cellular and subcellular interrelations, spatiotemporal
dynamic activities, and complex biological processes from quantitative microscopic
video is an emerging field of research. Computational tools from established fields
like computer vision, pattern recognition, and machine learning have immensely
improved quantification at different stages—from image preprocessing and cell
segmentation to cellular feature extraction and selection, classification into different
phenotypes, and exploration of hidden content-based patterns in bioimaging data-
bases. This book chapter reviews state of the art in all these stages and directs
further research with references from the above-established fields, including key
thrust areas like quantitative cell tracking, activity analysis, and cellular video
summarization—for enhanced data mining and video bioinformatics.

2.1 Introduction

In the postgenomic era of computational biology, automatic and objective analysis
of biomolecular, cellular, and proteomic activities is at the center stage of current
bioinformatics research. Microscopes, the prime instrument for observing the cell
and molecular world, have treaded a long path of revolution. Widefield microscopy
with deconvolution, confocal scanning microscopy, and scanning disk confocal
microscopy have facilitated observing cells and their activities and capturing static
image and video data for precise and automated analysis, both in 2D and 3D
[108, 131]—even closing the gap between live cell imaging and atomic resolution
structures in cryo-electron tomography (3—8 nm) [127]. Green fluorescent protein
(GFP) markers in the antibody have acted as illuminant in the molecular world to
visualize cell activities and brought a new era in cell research [36]. Sometimes
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bright field defocused and/or stereo [131] microscopic imaging are utilized to
analyze multiple cells at diverse depth with advantages of low phototoxicity and
minimal sample preparation, though lower contrast poses difficulty in segmentation
and tracking [80].

The challenge has now shifted from automatic capturing of the slow-varying cell
activity in digital media to automated analysis of this vast amount of digital data
being stored every day with minimum human interaction [17, 64, 96]. Even an
expert cell biologist takes hours to preprocess the microscopic images or videos,
analyze numerically the structure of cells, recognize them, recognize the cell activity,
and come to a biological conclusion. Automated computational methods are abso-
lute necessities to avoid human fatigue-related errors, to perform intensive data
mining beyond human tractability and to make results objective and statistically
comparable across international studies [22, 26]. Established techniques in computer
vision, pattern recognition, and machine learning fields often come handy to rescue
from this tremendous information boom in biology in the recent years [28, 36].

Video bioinformatics is a recently burgeoning field of computational biology
that analyzes biological video and image data to automatically detect, quantify, and
monitor complex biological phenomena—at molecular, cellular, and tissue levels,
internal activities and their interactions, in healthy as well as in injured conditions,
and with/without drugs and antibodies injected. A complex end-to-end video
bioinformatics procedure generally requires multiple major steps as follows. (1) At
first, reduction of computational complexity requires detecting video shots and
extracting key frames based on biological activities. This makes established image
processing techniques effectively applicable to the static key frames. (2) Images are
then enhanced by filtering out noise. (3) Biological regions of interests (ROI) are
automatically segmented out and aligned to models if necessary. (4) Different
morphological, signal intensity, contrast, shape, and texture features are extracted
for different biological objects. (5) Based on their discriminative powers, optimal
sets of features are selected to recognize entities. (6) Segmented objects are then
classified as different biological entities. (7) Multiple consecutive static images (key
frames) are considered again to track entities over space and time and to identify
biological activities for an individual entity. (8) Interactions between different
entities are then automatically monitored using advanced video data mining tech-
niques. (9) Image and video-based information is then stored in a structured and
distributed database for availability and query over the Internet. (10) Machine
learning techniques are applied to improve all previous procedures including
content-based retrieval.

A big proportion of research is devoted to this marriage of quantitative microscopy,
computer vision, and machine learning. A number of research groups have concen-
trated on processing static images of the cells and classifying them using pattern
recognition techniques [11, 17,20, 26,31, 75, 83,94, 106]. Major steps and associated
tools that are involved in such complete high-content screening and analysis
pipeline have been summarized in recent publications [36, 98, 105, 115, 120]. They
derived numerical features from the 2D images and used feature-based classification
of the biological molecules. Relatively less effort has been exerted for dynamics of



2 Video Bioinformatics Methods ... 15

the cells and recognizing the cell activity. Only a small body of research has studied
cell dynamics, migration, tracking, bacterial movement, and biological events
over the 2D/3D microscopic videos [18, 39, 118, 123, 137, 143] but often lack in
automated analysis of such dynamics. This chapter provides reviews of the compu-
tational tools for above ten steps that have been already applied in biology or
demonstrated potential in mainstream computer vision and pattern recognition
(CVPR) field of research for future biological applications. Broad conceptual diagram
of a typical video bioinformatics system is summarized in Fig. 2.1. Instead of the
mainstream biology, this review chapter is from the perspective of the computational
methods applicable in biology.

Biological video data
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Fig. 2.1 Conceptual diagram of a typical video bioinformatics system
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2.2 Salient Video Activity: Shot Detection and Key Frame
Extraction

Cell activities are often very slow and corresponding videos often do not contain
enough changes in visual information over a long sequence of frames. Hence to
reduce computational complexity, images are sometimes captured periodically—
i.e., low frames-per-second (fps) video [64, 118, 143] or periodically sampled from
a high fps video [31, 119]. These methods are naive counterpart of key frame
selection that might ignore some salient quick and transient cell transformation
information.

2.2.1 Shot Detection

Shot detection and key frame selection are two often-used techniques in video
processing to reduce computational complexity without losing details, and more
contextual in cell activity videos with in general slow dynamics with few quick
transients. With low-cost digital storage, taking high-speed (30 fps) cell videos and
detecting shots and key frames to trace salient transient cell activities is more
practical. Although shot detection is now a relatively matured domain in computer
vision, it is surprisingly unused by cell biology community. As cell videos often
have fewer types of cells present in the same videos, established shot detection
techniques from histograms might work well, e.g., global dissimilarity or temporal
changes in different pixel-level features—color components [38], intensity [1, 144],
luminance [112] and their distributions and combinations [1, 16], or regional fea-
tures and likelihood ratios [29, 136] across consecutive video frames.

2.2.2 Key Frame Selection

Key frames are representative frames of a particular video shot, analyzing which
one can safely summarize about the frames they represent. A set of key frames are
generally selected such that these frames contain enough visual information and its
change (dynamics) over the video sequence. The frames acquired periodically or
heuristically [31] and analyzed by the cell biologists in the state-of-the-art systems
are actually a naive substitute of these key frames. Key frame selection is also a
well-established domain in computer vision. Other than clustering-based techniques
[139], most of the keyframing methods attempt to capture the temporal information
flow with varying computational complexity—starting from simple first and last
frame selection [85], periodic selection [113], after constant amount of change in
visual content [19], by minimization of representational error (distortion) in the
feature space [47], by iterative positioning of break points (like sub-shots) and key
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frames (one in each sub-shot) to minimize distortion [61], and by minima in motion
feature trend [133]. Unlike these previous methods, sometimes psychoanalytical
perception models might be used to automatically decide the number of key frames
to be selected depending on change in visual content from the feature trends [40].
From cell video point of view, specifically with morphological transformation
(morphogenesis), tracking geometric structures and keyframing based on salient
differences [141] might be adopted. Based on complexity and application, similar
methods can be envisaged in cellular videos to decide on which frames are to be
analyzed to reduce computational burden.

Once the shots and corresponding key frames are decided, cell videos can be
analyzed in the same way as single static bioimages as discussed in the following
sections. Even for motion-based tracking the cells over the frames, key frames may
reduce the computational burden by few orders, specifically for slowly changing
cell videos.

2.3 Image Processing and Biological Object Detection

After denoising and preprocessing of static images (from keyframing), cellular and
tissue region of interest (ROI) extraction mainly comprises of three stages: detec-
tion, segmentation, and alignment (sometimes called “registration”). All these
stages are often interrelated, mutually supplementary in nature, and even sometimes
inseparable, as depicted in Fig. 2.2. For the simplicity of understanding, they would
be dealt separately in following subsections. All these stages directly depend on
image features and prior biological models.

Fig. 2.2 Interdependency of
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2.3.1 Preprocessing and Noise Reduction

Even after following recommended techniques for sample preparation and data
acquisition [48, 108], noise in bioimages is ubiquitous and almost always requires
preprocessing and denoising. Though few research works adopt simulated (flat)
background without any explicit noise filtering [118], this is an unrealistic
assumption for in vivo cell images and videos. During the conversion of patterns of
light energy into electrical patterns in the recording device (e.g., CCD camera or
photomultiplier tube) random noise is introduced [39]. Specifically because of the
high-frequency noise, biological cell shapes loose sharpness and affect segmenta-
tion and overall analysis.

For any practical automated analysis of bioimaging data, reduction of random and
speckle noises [11, 28, 115, 138] and variations in illumination (e.g., GFP) [123] are
the first steps. Usual low-pass filters, besides reducing the high-frequency noise, also
reduce the sharpness of the edge and contour features (as they are also high-
frequency components of the image). Nonlinear filters (e.g., median filters) often
resolve this problem [109, 114]. Sometimes sophisticated anisotropic diffusion fil-
ters are used that preserve local characteristics and image qualities [39]. The rational
of this method is that image areas containing structure and strong contrast between
edges will have a higher variance than areas containing noise only. Hence diffusion
algorithms remove noise from an image by modifying the image via partial differ-
ential equation. Homogeneous regions are handled by diffusion equation (heat
equation) equivalent to Gaussian linear filters with varying kernel size. While ani-
sotropic diffusion filter controls the diffusion process by an “edge-stopping function”
that depends on local image features, e.g., magnitude of the edge gradient.

Speckle noise generally comes from small intracell structures that can be
reduced by model-based filtering, e.g., modeling cells as ellipse and removing
outliers not fitting the model [138]. Sometimes nonlinear least-square-designed FIR
filters are used to improve contrast between cell objects and fluid background as
they are immersed and then histogram-based dynamic threshold is applied to deal
with illumination variation due to fluorescence decay [49]. This contrast
improvement might be more effective if some fluorescence decay model is applied
[123]. A series of filters often assists in the overall preprocessing—e.g., histogram
equalization [109] or auto-density filter increases the contrast, morphological filters
(in sequence—dilation, histogram-based intensity threshold and erosion) reduce
model-based outliers and finally median filter removes salt-&-pepper (random)
noise [31].

In recent reviews [108, 127] of different preprocessing steps, potential methods
and pitfalls are provided where starting from selection of particular microscope and
acquisition parameters, preprocessing steps like flat field correction and background
subtraction, intensity normalization, different Gaussian filtering techniques, and
deconvolution strategies are discussed.
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2.3.2 Segmentation

After preprocessing, generally explicit segmentation and feature extraction are
required for classification. Rare exceptions are the data with no intercell occlusion
[31], or where chromosome profiles are extracted using dominant points and
variants [104]. Most of current quantitative microscopy data are from cells that are
immersed in an in vitro biochemical solutions (beneath a coverslip) and imaged
individually [31, 115] or in a nonoverlapping (i.e., without occlusion) situation
[118]. Segmentation might be redundant for bioimages in such controlled envi-
ronment [13]. With the assumption of small roughly uniform background, manual
polygonal cropping and dynamic thresholds work well to identify cells [13]. For
in vivo data with different cell types and intercell occlusion, these methods are too
restrictive and explicit automated segmentation is an absolute necessity. Hence later
researchers from Carnegie Mellon University (CMU) have adopted a seeded
watershed algorithm for segmentation in 3D microscopic data where seed for each
nucleus is created by filtering DNA channel output from the confocal scanning
microscope and 93 % segmentation accuracy is reported [49].

An early review paper on interest of image processing in cell biology and
immunology [109] proposes three ways of segmenting cells (illuminated by GFP):
histogram-based bimodal segmentation, background subtraction, and (heuristic)
threshold-based boundary following. Generating outlines of the biological struc-
tures, i.e., image segmentation is a challenging task and influences the subsequent
analysis [53]. This work on analyzing anatomical tissues (conceptually quite similar
to the cell and molecular images) proposes one 2D color image segmentation
method. In the grayscale image, segmentation involves distribution of seed points in
a microscopic image and generating a Voronoi diagram for these seeds. Gradually,
this Voronoi diagram and its associated Delaunay triangulation are modified
according to the intensity homogeneity. For the color images, this region-based
approach is extended with sequential subdivisions of the bioimage, classifying the
subdivisions for foreground (the cell or tissue), or background or both, until each
subdivision is uniquely classified. Voronoi statistics (including HSV mean color
intensities and their variances) of each subdivision are utilized to classify them.
Seed points can be initialized manually or randomly. Then a continuous boundary
of the cell or tissue is obtained by fitting splines. Although this procedure is tested
for anatomical tissues, like segmenting the lungs, the procedure is generic enough
for cell and molecular bioimages and can be extended in 3D using 3D Voronoi
diagrams, of course with increased time complexity.

Another review paper [39] addresses a rather innovative way of segmentation in
cell images. The method applies multiple levels of thresholds to form a confinement
tree that systemizes the knowledge that at what level of threshold, which cells are
merged to a single object. Then morphological filtering reconstructs grayscale
images in various levels. Thus the method is adaptable to the analysis needs. They
also address another edge-based segmentation operating on nonmaximum sup-
pression algorithm and refining the contour by active contours (snakes) with energy
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function associated with curves. Sometimes morphological operations and regional
intensity gradients assist in segmentation. In an application of immunohistochem-
ical stain counting for oesophageal cancer detection [60], the region of interest is
first manually cropped, color image is converted to grayscale image, contrast is
enhanced by histogram equalization, and morphological TopHat (and other) fil-
tering) is performed for initial segmentation. Then watershed algorithm segment out
the nuclei and gradient transform-based edge detection is performed. After
two-stage watershed segmentation nuclei are detected.

In pioneering research of Euro-Biolmaging group (http://www.eurobioimaging.
eu/) in clinical wound-healing video, distinct textural difference between the wound
and normal skin is mentioned [67, 77, 107, 118, 147], but for wound segmentation,
histogram equalization (to improve contrast), edge detection, and modal threshold
are utilized. It is rather surprising that no texture feature is utilized. In another
video-based bacterial activity work [118], individual cells are segmented by
seed-based region growing algorithm. But seed initialization process is not clear.
And in presence of occlusion, which is not considered in this work, region growing
procedure may perform poorly. In such cell videos, motion-based segmentation
from tracking across frames [140] might help, specifically when the background
(however complex it is) does not change too fast. One recent work on automated
wound-healing quantification from time-lapsed cell motility video, cascaded
SVM-based initial segmentation, and graph cut-based outlier rejection are applied
on basic image features [143].

Cell population-based studies (in contrast to study on few cells in an image)
sometimes provide more statistical power—specifically for phenotypic changes by
drugs, compounds, or RNAi [64]. Centerline, seeded watershed, and level set
approaches are common in such applications. Except for such rare cases [50, 64],
multicell images are segmented into individual cells before any phenotyping
(classification). Segmentation in cell images in presence of speckle noise (intra-
cellular structures, like nucleus, mitochondria, etc.) are dealt systematically by the
Lawrence Berkley National Laboratory (LBNL) research group [11] by
model-based approach. In multicell images, they model the cells and intracellular
structures as ellipses and mathematically demonstrate that, removing the speckle
noise and interpolating the cell images accordingly can be done by finding solution
to a Laplace equation. They call it “harmonic cut”. The cells touching one another
are segregated by regularized centroid transform, where normal vectors generated
from cell boundaries are clustered to delineate touching cells. This sophisticated
method is a generic up to some extent as long as cells can be modeled as ellipses
(with smooth quadratic splines). Similar approach has been utilized in model-based
detection of cell boundaries and then seeded watershed separation of touching (but
non-occluding) cells in the same image [115]. But in many cases, like data used by
CMU [13], cells are of irregular shapes. Proper extension of the harmonic cut and
regularized centroid transform method for these irregularities is yet to be tested.
Recently, “tribes”-based global genetic algorithm is applied to segment cells with
partial occlusion by part configuration and learning recurring patterns of specific
geometric, topological, and appearance priors in a single type of cell in histology
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and microscopic images [91]. Different cell shapes (without occlusion) are seg-
mented out from defocused image stack of embryonic kidney cells (HEK 293T),
where the best representative slice is first selected by a nonparametric information
maximization of a Kolmogorov complexity measure, then active contours are ini-
tialized and expanded for level set segmentation [80]. A nice level set and active
snake-based multilevel approach segment out core and membrane of cells from
uncontrolled background [86]. Seeded watershed algorithm and level set approa-
ches could successfully segment out Drosophila cells and nuclei and then tracked
across time-lapsed frames to detect cell divisions and migration with and without
drugs [64]. Interested reviewers are encouraged to read CVPR reviews [30] on
fusion of different features like color, texture, motion, and shape and unified
approach of level set segmentation for potential applications in cell images and
videos.

Cellular and subcellular segmentation and colocalization in fluorescence
microscopic images are still very relevant research areas [106]. Recently, Fuzzy
C-means clustering is found better than baseline hard C-means clustering in seg-
menting single pap smear cells as well as separating their nuclei and cytoplasms for
classification and abnormality detection [23]. In another work, for model-based
segmentation of more-confluent (occluded) cell nuclei, predefined patterns in
attributed graphs of connected Sobel edge primitives (in different orientations: top,
bottom, right, left) are iteratively searched and reassigned as needed to localize
nucleus boundaries and then region growing is performed to separate occluded
nuclei [4]. Sometimes 2D segmentation results can enhance 3D segmentation from
stacks of microscopic images of neuronal nuclei—and also correct some of the 2D
under and over segmentation errors by connectivity and centroid clustering [59]. 3D
watershed segmentation is the baseline for comparison in this work. In a neuron
tracing research, morphological features at multiple levels and in different neuronal
parts can successfully segment the entire neuronal cells [76]. Recent review papers
[115, 127] critically discuss many such segmentation techniques along with asso-
ciated advantages and disadvantages.

Texture-based segmentation is one area where future bioimaging research might
gain momentum. Few nice reviews [6, 52, 103, 124, 145] summarize well-
established texture descriptors that are applied in CVPR applications over decades,
including texture-based feature space smoothing that preserves salient edges with
supervised [126] or unsupervised methods [33], split-and-merge segmentation by
facet models, and region adjacency graphs [72] using multiple resolution [99] tex-
ture information measures [100, 101], or region growing segmentation from gra-
dients of textures [45] utilized as inter- and intraclass dissimilarity [130] for random
walk [102, 103] or quadtree-based methods [121]—to name a few. Cellular and
molecular images have distinct textures for different species and this can immensely
enhance segmentation.

Sometimes pixel-, local-, or object-level relations (based in morphology, color,
proximity, local texture, shape, and motion) can be represented graphically with
objects as nodes and weighted links as strength of interrelations [116]. In such cases
graph matching and partitioning methods like normalized graph cut [129] can
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partition highly connected regions as clusters to segment image objects. Except for
few exceptions [4, 143], graph-based segmentation methods are yet to be applied in
cell images to their full potential.

2.3.3 Object Alignment

Though not very common, image registration—i.e., aligning the object with a
template or model is sometimes required for better feature extraction, quantification,
and analysis. This is performed either before the cell segmentation [18, 105] or after
it [115]. Although segmentation and registration are dealt separately in most works,
they are quite interrelated and mutually cooperative (see Fig. 2.2). For examples, in
atlas-based segmentation methods (very common in medical imaging) data model
alignment is a prior requirement, while segmented structures assist in landmark-
based alignment of test object with the model. Specifically, in shape-based methods
segmentation and registration are so similar that a new term “regmentation” is
coined in medical image analysis [37]. Due to high variability of cellular and
subcellular objects, object alignment is not always possible in a reliable manner and
hence not informative for automated analysis. For protein structure alignment—
where similar structures and partial resemblance are of importance—optimal paths
and distances between atoms are successfully utilized in a graph-matching para-
digm [117]. In database search, image registration is required for developing atlas
or representative model from similar cellular datasets [96, 98] or for comparing with
manually annotated reference images for local features (to overcome variations in
sample preparation) before a multireference graph cut [22] or level set [21] does the
nuclear segmentation. Registration might help in detecting eccentricity of a test data
from the model and thus estimating abnormality for further analysis. Classic image
registration algorithms in CVPR [148] or in medical imaging [93] might have
immense potential in cellular image analysis [115], specifically when close-loop
cooperation between segmentation and registration [37] are adopted in a deformable
model approach [44].

2.4 Feature Extraction

A large proportion of the quantitative microscopic analysis research is done with
“static” images of the cells and molecules. In cell classification, static features
dominate, sometimes due to slow biological processes and sometimes to compro-
mise with the computational burden. Three basic steps in static image analysis are
(1) feature extraction, (2) feature selection, and (3) object (cell, biomolecules)
classification. These steps are interdependent. Human perception of the cell images
provides idea on type of classification strategy expected to perform better. The
classifier type influences the selection of features, which in turn guides the image
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processing strategies. Hence the steps are quite overlapping. This chapter attempts
to address these steps individually as far as possible for better understanding.

Image features that are signatures of the object of interest are extracted after the
segmented image is processed through different types of image (morphological,
textural, intensity-based) operators and filters. Sometimes image processing also
covers the occlusion-handling strategy by interpolation or extrapolation of the cells.
Image processing (just like corresponding features) can be classified into:

Morphological (binary silhouette-based)

Cell regional (color or intensity-based)

Differential (or contrast edge-based) and Structural (or shape-based)
Textural (structural periodicity-based)

Relation between these different types of features is summarized in Fig. 2.3.
Current section describes the example of these image processing types applied in
cell-imaging community, followed by some of the classical CVPR examples to
inspire future research.

Fig. 2.3 Different types of Key-frame (static) images or
extraction, recombination, prior cellular/tissue model
and selection methods for ¢
static image features and / A \
interrelations between them Morphological Cell-regional
(binary (color or
silhouette) intensity)
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(shape) < (contrast edge)
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(periodic pattern of shape/edge)

k Feature extractioy
1

Extracted features
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2.4.1 Morphological Features

Morphological image processing techniques basically consider the binary silhouette
(obtained from segmentation) of the cells or biological molecules and find different
geometric properties [114]. These are probably the lowest level image processing
techniques, yet sometimes very useful—especially as different types of cells and
biomolecules generally have significantly different outer shapes (morphology).

After the sequence of the human genome is determined, next task is to determine
genomic functionality. Proteins encoded by novel human cDNA clones cause
morphological changes and/or protein localization at the cellular level which result
in various cellular forms [122]. After histogram equalizations, first-order principle
component analysis (PCA) of manually segmented sub-images is used as models.
They consider 16-bit grayscale images of subcellular compartments like endo-
plasmic reticulum, Golgi complex, plasma membrane, mitochondrion, nucleolu,
peroxisome, etc. Then morphological convolution of the model and original images
are done to get the local maxima that are taken as the focal points.

CMU researchers have used an extensive morphological image processing and
selected number of features [115]. Extensive list can be found in [82]. Some of the
salient ones are: (1) number of subcellular objects per cell, (2) Euler number of the
cell (i.e., number of objects minus number of holes per cell), (3) average pixel size,
(4) average distance of objects to the center of fluorescence, (5) fraction of
fluorescence not included in the objects, (6) fraction of the area of the convex hull
not in the object, (7) eccentricity of the hull, (8) average length of the skeletons (or
medial axis; found by morphological iterative thinning), (9) average ratio of the
skeleton length to the area of the convex hull, (10) average fraction of the object
pixels (or fluorescence) within skeleton, and (11) ratio of branch points to the
skeleton length. Most of these 2D features are also extended for 3D scanning
microscopic data [24, 115]. For images with multiple (same) cells, features like
ratio of largest to smallest cells are also considered [50].

In the research of Euro-Biolmaging group [118] simple morphological features
are extracted for solving “correspondence problem” to track the bacterial cells in the
cell motility videos for event detection. The features extracted for each segmented
cells include spatial position in the frame (i.e., the centroid of the cell), its area, its
length, and width (determined by PCA, along major and minor axes, respectively)
and its orientation in the space. These morphological features are used to track and
to detect orientation change over the frame sequence for bacterial “tumbling” and
other behavioral response to the drugs applied. In a medical tissue diagnostic work
from wound-healing video [107], they apply morphological cleaning of the wound
area in the image, and compute application-specific morphological features like
wound length and wound-area-per-unit-length. From the dynamic variation of the
“wound-area-per-unit-length” feature, they decide the healing (or worsening) of
the wound with time as drug is applied periodically. LBNL researchers utilize
detailed morphometric analysis of TCGA glioblastoma multiforme for tumor cat-
egorization from hematoxylin and eosin (H&E) stained tissue where they compute
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cellularity (density of cells), nuclear size, and morphological differences of nuclei
[20].

In recent reviews [25, 105] different morphological operations in cell image
analysis—from segmentation to characterization to abnormal cell identification—
are nicely summarized where different cell morphological features are discussed
including circularity, rectangularity, eccentricity (ratio of minor to major axis
length), morphological texture from gray-level co-occurrence matrix: energy, uni-
formity, entropy, smoothness. These features are also extended to 3D morphology
and deformable models [25].

2.4.2 Color and Intensity Features

Intensity value for grayscale cell images and color component values in different
color spaces like red-green-blue (RGB), hue-saturation-value (HSV), or other
application-specific combinations of them [114] sometimes have the unique
region-based features to segment and classify cell and molecular objects in bio-
chemical fluid—especially when salient portions of the cells are illuminated by
GFP tags. Color decomposition might also reduce computational load, and might
assist thresholding, refinement, and normalization of input image to the base image
[20]. Grayscale intensity-based moment of inertia is successfully applied for
chromosome slice estimation and profile extraction [104]. According to this work,
shape profile is the moment of inertia of the normalized gray value distribution in
each slice relative to the tangent to the longitudinal axis at the subdivision point of
the slice. Similarly, different grayscale-based features such as brightness, histogram,
and amplitude of a region assist in genomic classifications [122].

The prognosis of esophageal cancer patients is related to the portion of MIB-1
positively stained tumor nuclei. An image analysis system is developed on LEICA
Image Processing and Analysis System to reduce the subjective, tedious, and
inaccurate manual counting of nuclei staining [60]. It can analyze in 15 min.
Proliferative activity of tumor is a useful parameter in understanding the behavior of
tumor. Correlation between the proliferation activity and overall prognosis has been
observed in some tumor. MIB-1 score by immunohistochemical method and stain
counting is one affective process. Brown nuclear stain is regarded as cancerous cell
and blue nuclear stain as normal cell. Intensity-based classification is performed in
RGB space: brown nuclei by red-component-higher-than-blue-one and blue nuclei
by the vice versa. Automated systems might suffer from variations in illumination
and focusing problems, mainly due to dynamic nature of the protein molecules.
Heuristic application-specific filtering [60], fluorescence decay models [123], or
illumination-invariant color component-like saturation [53] might overcome such
problems.

Haematococcus pluvialis (Chlorophyte) produces carotenoids that are utilized as
color pigments and analyzing agents for different degenerative diseases in humans.
Haematococcus has two distinct phases in its life cycle: green flagellated motile



26 N. Ghosh

phase and nonmotile nonflagellated cyst phase formed due to stress conditions.
Automated evaluation of red component of imaged cells can give estimate of the
carotenoid content without disrupting the cell wall. One work [56] adopts grayscale
conversion, histogram equalization, and edge-based segmentation for ROI extrac-
tion. Then cell pigment percentage change is detected from hue component by
three-layered artificial neural network (ANN) classifier that classifies into two
classes: Chlorophyll and Carotenoid, for medical diagnostics.

Another work on semiautomated color segmentation method for anatomical
tissue [53], considers mean a variance of color in different voronoi cells dividing the
tissues in segmentation and classification of lungs like organs. They have converted
RGB tissue images into HSV space and reported that saturation plays important role
in distinguishing between biological tissue and cell structures. This coincides with
the well-established fact in CVPR that saturation is relatively invariant to the
illumination changes, and might be even better than explicit modeling of temporal
decay of fluorescence strength (called “leaching effect” of GFP) [123]. Sometimes,
to separate out an actual fluorescent tag from noise in low signal-to-noise ratio
(SNR) data, cell spots are detected by intensity-based local maxima detection where
a “spottiness”-value is computed to characterize the similarity of the intensity signal
in the neighborhood of a local maximum with respect to the intensity signal of a
theoretical spot [123]. This theoretical spot neighborhood has been modeled using
the Gaussian point spread function. Gaussian filtering and interpolation of intensity
features have been extensively used in bioimaging [11].

2.4.3 [Edge and Shape Features

Edge and shape features are comparatively higher level features than the last two, as
they have more uniqueness for object recognition (see Fig. 2.3). Naturally, in cell
and biological specimen classification and analysis, edge and shape based features
play significant role. Edges are the convolution output of the images from contrast
differential operators (number of dimensions same as the data), e.g., Sobel, Roberts,
Prewitt, and Canny edge detectors [114]. The edges are connected by boundary-
following algorithms to get the contour of the cells/objects in 2D or 3D. These
contours are low-level representation of shapes for cell classification.

CMU research group extracts number of edge/shape features from differential
operators [82], both in 2D and 3D domain. Salient ones are: (1) fraction of pixels
distributed along the edges, (2) measures of magnitude and directional homogeneity
of the edges, (3) different Zernike moment features (computed by convolving with
Zernike polynomials) to find similarity in shape between the cells and corre-
sponding polynomial. They utilize all these features directly in ANN or other
classifier module without trying to develop any shape models. Probably a middle
level shape model can improve the classification, as is the case for number of
computer vision applications [114].



2 Video Bioinformatics Methods ... 27

In an early work [109], shape features are utilized to study human neutrophils
exposed to chemotactic stimuli, to describe cell polarization and orientation and to
identify chemotactic abnormalities in cells from heavily burnt patients. Information
relevant to the mechanisms of adhesive interaction is extracted from the distribution
of intercellular distances in cell-cell contact areas. This contact area estimation
allows conceptual discrimination between “actual contact” (i.e., with intermem-
brane distance compatible with molecular interactions) and “apparent contact” (i.e.,
apparent membrane apposition with intermembrane distance of 50-100 nm). LBNL
researchers estimate parameters of the elliptical model of individual cells as shape
features [138] and extend their harmonic cut method for iterative tensor voting to
refine ill-defined curvilinear structures and for perceptual regrouping of 3D
boundaries to separate out touching cells [71]. Sometimes cell shapes are utilized
indirectly to classify [31], where the hidden layer of a modular neural network
(MNN) might compute the shape features internally, takes into account the shapes
of the cell at different scales, and maps directly to different cell classes in the output
layer of the MNN. Another work [104] utilizes shape or chromosome boundary and
contour curvature to define the singularities (called dominant points) in the chro-
mosome pattern. Longitudinal axes of the chromosome are found by fitting quad-
ratic splines of the distribution of these dominant points and their variants. These
axes act as the backbones of the grayscale intensity-based slice determination for
extracting chromosome profiles.

In CVPR research shape and boundary-based features are one of the most suc-
cessful ones for decades [3, 8]. These methods are nicely reviewed in [146] and can
be broadly classified under four categories as follows. (1) Scalar boundary trans-
formation techniques: for example, tangents represented as parametric (turning)
function of arc lengths; shape centroid methods with polygonal approximation; radial
distances [70]; Fourier (frequency) domain features or bending energy of
the boundary; circular autoregressive shape models [65]; and central distance of the
boundary from fixed length arc placed at different boundary locations. (2) Spatial
boundary transformation techniques: for example, multilayered chain code for
shapes at different resolution; syntactical coding of strings of primitive shape fea-
tures; split-&-merge spline approximation with minimum error [27]; hierarchical
scale-space representation from multiple-width Gaussian filters [5, 7]; and boundary
decomposition by template contour template matching [68]. (3) Scalar global
transformation techniques: for example, multiple order 2D or generalized polynomial
moments of the silhouette; different shape matrices and vectors from polar raster,
concentric circles or maximum shape radius; and granulometries, morphological
covariance, geometric correlations, residuals [73]. (4) Spatial global transformation
techniques: for example, medial axis, and r-symmetric axis transformations; and
shape decomposition based on convex—concave boundary points and fuzzy likeli-
hood. Among these, only a few methods like Fourier shape descriptors [115], spline
approximation by iterative refinement of curvilinear structure to separate touching
cells [71], elliptical cell shape models [11], Zernike polynomial moments for cellular
matching [28], and shape decomposition for neuron tracing [76] are utilized in
bioimaging research. Accuracy of these results needs to be evaluated more critically
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in classification and image retrieval scenarios [3]. Scale-space shape models and
features [5, 7, 8] from cellular and subcellular images might improve classification in
multicell bioimaging data. One recent work [106] reports a user-friendly freely
available software for colocalization in near real time (<1 min for 2D, <5 min for 3D)
by segmentation and quantification of subcellular shapes (Squass).

2.4.4 Texture Features

Shape features distinguish objects or cells from what is seen from the outside.
Textures are the features of the cells as seen from inside. In cell images, different
cells and biomolecules generally have distinct textures (in 2D patch or 3D surfaces)
compared to the biochemical fluid (in vivo) or solution (in vitro) they are floating
in. Similar is the case for anatomical tissues [107]. These textures are actually
periodicity of similar patterns in visual spectrum and are also affected by bio-
physical and biochemical properties like viscosity, smoothness, fluorescence
absorption, diffuseability, etc. Texture often characterizes the cell or solution when
other surrounding conditions remain the same. Hence, cell-image analyzers also
apply textures as primary features for cell classification [28, 122] and cell video
understanding [118]. Among several texture descriptors utilized by CMU
researchers for subcellular localization [28, 82], the key ones are:

e Haralick texture features [6]: These are computed as gray-level co-occurrence
matrix (might be extended to color co-occurrence matrix for each components)
and then averaged for rotational and translational invariance. Intrinsic statistics
including angular second moment, contrast, correlation, sum of squares, inverse
difference moment, sum average, sum variance, sum entropy, entropy, differ-
ence variance, difference entropy, and information measures are often extracted
as features.

e Gabor wavelet texture features: Spatio-intensity periodicity is extracted using
Gabor kernel with different scales and orientation. Mean and standard deviation
at different abstraction levels are considered as features. Non-orthogonal Gabor
wavelets can capture the derivative information of the images.

e Daubechies four wavelet textures features: Cell images are decomposed up to
level 10. The average energies of the three high-frequency images at each level
are utilized as features. Scales and orientations provide textural fineness and
relative arrangements.

Besides above, Low’s textures and 15-element feature vector describing sym-
metries [114] might be utilized in subcellular localization. Recent bioimage analysis
research starts to look back on some of the established texture descriptors [52, 124,
145] including Haralick’s texture descriptor [6], local binary patterns [87],
co-occurrence matrix-based grayscale textural features [122], and learning-based
local binary patterns [46] in analysis and classification of 2D-Hela databases and
recognition of abnormal smear cells in pap smear medical databases. Multicellular
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textures are found to be excellent descriptors in monitoring wound-healing and
cell-scattering assays in differential interference contrast (DIC) images [143]. There
are inherent differences in tissue and cell textures, and many more such research
efforts in bioimage analysis are expected in the near future.

2.5 Feature Recombination and Selection

Human vision can recognize different biological cells and their activities in
bioimages and videos relatively easily due to complex vision perception experience
cycles. But that is neither well understood nor yet implementable in computer
programs. Human brain automatically selects best features and their different
combinations to analyze the data effortlessly. Automated systems can at the best
extract a very large number of low-level image features with the hope that no
valuable information is lost, sometimes without knowing the actual usefulness of
those features to classify (cells) and recognize (their activities). Cellular and
biomolecular images/videos often capture irregular structures and unknown inter-
dependent dynamics between them. To analyze them often several features are
extracted [82, 115]. But more features mean exponential increase in computational
time. This often leads to overlearned complex model that is good only for the seen
(training) data. Minimum description length (MDL) principle in machine learning
[79] suggests rather simple and generic representation that is valid for unseen (test)
data also. Besides relevance in MDL, feature selection also leads to efficient
learning of classifiers and data mining in growing complex databases [58]. Feature
extraction itself is a dimensional reduction to avoid working with every pixels of
the high-resolution bioimage. Selection of salient features based on their distin-
guishing power is the next step to avoid dimensional explosion [58, 81, 128, 134],
sometimes followed by generating better (often complex) features by recombining
simple features so that the second-level features fit the application better.
Integrating feature from different domains—color, texture, motion, and shape—is
gaining importance in recent image informatics [30, 52]. CMU computational
bioimaging group is among the very few in bioimaging research to address this
major issue in very systemic way [50, 115]. In cell classification domain, classifiers
are sometimes limited by underdetermined classification boundaries due to limited
number of available cell images in comparison to number of features considered.
One solution is feature reduction either by feature recombination or by feature
selection utilizing one or combination of algorithms, as summarized in Fig. 2.3 and
exemplified as follows.
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2.5.1 Component Analysis Methods

Principal Component Analysis (PCA) considers salient eigenvectors of the feature
covariance matrix (in general much fewer than number of features) based on corre-
sponding high eigenvalues (i.e., stronger basis vectors). The strongest eigenvectors
(above a threshold) often define the linear transformation matrix [122]. This trans-
formation provides weighted linear combinations of the original (sometimes nor-
malized) features in least square error sense to fit the actual feature-set variation—but
in a much lower dimensional feature space such that the classes are well separable
(with less overlaps) [105].

Nonlinear PCA (NLPCA) is PCA, but with nonlinear transformation and
combinations of the original features. From infinite possibilities to get such nonlinear
transformations, one way is to learn it from a symmetric neural network [14, 35]. At
the trained state, the first layer of the ANN structure converts the input original
features to a linear combination and the second layer transforms them in a nonlinear
way. Then they are inversely transformed back (first nonlinearly, and then linearly)
to the output features, which are identical (or very close) to the input original
features. Second layer outputs are the NLPCA-recombined features.

Kernel PCA (KPCA) adopts a nonlinear kernel function—like polynomial
function, multilayer perceptron (MLP), radial basis function (RBF) or any other
nonlinear function that first transforms the original feature space to a very
high-dimensional feature space. Thus in a way, KPCA is feature extractor as well.
Then linear PCA reduces the huge ensemble of features to very few recombined
features compared to the original input features.

Independent Component Analysis (ICA) makes use of the fact that less the
dependency among individual features for the acquired dataset, more mutually
cooperative and precise the feature set is to describe the (biological) features of the
(cell) image [105]. Criteria such as non-Gaussian nature are utilized to maximize
the independence among recombined features (sometimes with both linear and
nonlinear transformations) to cover larger area in potentially infinite dimensional
feature space.

2.5.2 Discriminant Analysis Methods

Classification or Decision Trees (DT) is formed with individual original feature
where the effective classification power of each feature is measured by
entropy-based information gain and penalized for too much fragmenting of the data
by a split information feature as defined by C4.5 algorithm [79]. Features with
higher information gain separates different classes better and hence might be
selected for classification.

Fractal Dimensionality Reduction (FDR) works on the principle that few
features are often redundant because same information is shared by multiple
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features, while few other features might be intrinsic because that data points are
cohesive and better classified in the corresponding space. The fractal dimensionality
of the data set, often represented by correlation fractal dimension, describes
self-similarity of the data points and is a good approximation of the intrinsic
dimensionality of the data. Correlation-based fractal dimensionality of the whole
data set is computed first. Partial fractal dimensionality of a feature is measured in
the same way, but without using that particular feature. Feature leading to minimum
decrease in correlation is considered noise and hence not selected for further
consideration. Thus iterative backward elimination is continued to reduce number
of features.

Linear Discriminant Analysis (LDA) selects those features that separate the
classes best (with least classification errors) with linear class boundaries. The cri-
terion to be minimized is directly proportional to intraclass variations and inversely
proportional to interclass distances between means [35]. Thus minimizing this
measure class cohesiveness and as well as interclass separation can be increased.
Feature set that minimizes this criterion is selected [23]. But the number of possible
feature sets explodes with the feature dimensions.

Stepwise Discriminant Analysis (SDA) applies a (split-&-merge like) greedy
search approach to solve computational explosion in LDA. It adopts same criterion
as in LDA for the present feature set and computes F-statistics for each left-out
feature to enter into and for each currently selected feature to exit from the current
set. The feature with highest F-to-enter is added and the feature with lowest
F-to-exit is eliminated in turn based on F-statistics computed in between. Thus
forward selection and backward elimination are iterated till the criterion value
stabilizes [49].

2.5.3 Evolutionary Learning Methods

Genetic Algorithm (GA) attempts to avoid the usual problem of entrapment in
local minima in the feature-dimensional search space inflicting the greedy search
algorithm of SDA. GA follows “survival of the fittest” rule from evolution theory
and utilizes “mutational” randomness to come out of the local minima in the search
of the global minima. It considers a string of bits (1: for feature being selected and
0: for feature being left out) as a species. Systematic variations are applied by
“crossovers” and randomness by “mutations” among the current “chromosomes” to
change the initial populations toward more fitted populations. Defining proper fit-
ness function is critical for evaluation of intermediate populations and individual
species. For feature selection, classification error often defines the fitness function
such that reduced error means better feature sets. To bias the selection toward
minimum possible sets of optimal feature, MDL constraint sometimes works in
parallel with the classification errors [66, 79].
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2.5.4 Performance Analysis and Future Scope

CMU work [115] in recognition of proteomic subcellular location patterns in cel-
lular images reveals that understanding protein functionalities is facilitated by
localization of subcellular compartments as they create unique biochemical envi-
ronment for protein folding and other functionalities [84, 97]. To classify these
patterns with less number of available static images, they start with host of features
(discussed earlier) and then select features with evaluation by above-mentioned
strategies for all ten major subcellular patterns in HeLa cells. Their results reveal
that in this specific application, feature selection procedures (DT, FDR, LDA, SDA,
and GA) perform better than feature recombination procedures (PCA, NLPCA,
KPCA, and ICA). SDA performs the best with reduction of feature dimensionality
by 0.46 factor while increasing the classification accuracy by 2.2 % [50]. GA-based
method is the close second with reduction in dimensionality by 0.51 factor while
increasing the accuracy by 2.3 %.

One possible future research direction for GA-based feature selection might be
cascading a classifier like ANN to evaluate performance of the current set of features.
ANN output is the value of the fitness function that is fed back to GA for crossover
and mutation decisions to reach the fittest set of features in GA output. For feature
recombination, novel ideas of synthetic feature generation adopting genetic pro-
gramming (GP) methods might be successful as in CVPR applications [66]. In GP
method, sequential image operators are represented by tree-like structure and
crossover or mutation of branches (as in GA) leads to generation of novel synthetic
(recombined) features, that might not make sense ordinarily but might define the best
feature to define class boundaries in a lower dimensional feature space. CMU work
[50] underscores the need of proper feature selection procedures before the classi-
fication stage. One recent review [120] discusses different applications of
machine-learning techniques in cell biology—from preprocessing, detection, feature
extraction, feature selection, supervised and unsupervised classification, perfor-
mance optimization, and availability of such software packages for cell biologists.

2.6 Cell Classification

In static image bioinformatics, cellular or subcellular recognition or classification is
often the ultimate goal. As infinite structural variations among cells and intercellular
organelles and molecules are possible, high-throughput automated recognition of
biological structures and distributions requires both robust image feature sets and
accurate classifiers. The dynamic characteristics of the cells and biochemical
activities make classification even more difficult. As an example, the most typical
Golgi images are characterized by compact structure, while prior to mitotic cell
division, Golgi complex undergoes fragmentation to reunite at the later stage in two
offspring cells. This dynamic fragmentation in Golgi complex gives problem in
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simple morphology-based structural classifications even for manual detections,
while computed texture descriptors (imperceptible to human eyes) recognize them
much better [90]. Similarly, in human protein atlas, manual annotations are cor-
rected by automated classification in support vector machine (SVM) classifier
followed by hierarchical clustering [63]. Sometimes, without explicit segmentation,
morphologically preprocessed images themselves are fed to modular neural net-
work [31]. Modularity of the hidden layer considers the image at different scales
and for different regions. As the bioimage data used in this work have no cell-to-cell
occlusion, the different regions of the images generally contain individual cells (i.e.,
segmentation is implicit) and provide good classification results.

CMU group applies several supervised and unsupervised classifiers to recognize
subcellular localizations from multiple biological image sets [50, 115]. They list
links to several proteomic databases that are freely available for comparison, but
notify that unified framework for all expressed proteins in different cell types under
many biological conditions is still a big challenge [90]. Their work reports
recognition accuracy of 95 % for 2D and 98 % for 3D HeLa cell images.
Comparison of results for each image from these classifiers permits estimation of
the lower bound classification error rate for each subcellular pattern, which they
interprets as to reflect the fraction of cells whose patterns are distorted by mitosis,
cell death, or acquisition errors. They claim that sometimes automatic classification
can outperform human visual classification. For easily confused endomembrane
compartments (endoplasmic reticulum, Golgi, endsomes, lysosomes) pattern clas-
sification is improved by 5-15 % over the human classification accuracy [49].
Specifically, cell and organelle characteristics like Gabbor texture features and
Daubechies —4 wavelet features cannot be measured visually for manual classifi-
cation and that makes the difference in favor of statistical pattern classification
strategies. They distinguish ten major eukaryotic subcellular location patterns in 2D
microscopic images and eleven in 3D images, including few that are not discernible
in human eyes.

Some of the image-based cell molecular applications utilize simple histogram-
based thresholds or seed-growing segmentation for classification. For the automated
analysis of epithelial wound-healing process from time-lapsed image sets [107],
simple region-based segmentation and seed-growing technique are used as the
classification between lacerated wound and unaffected skin—although seed ini-
tialized method is not clear. Similar technique is also applied segmenting and
classifying bacteria [118], tracking them individually, estimating spatiotemporal
tracks and recognizing biological activity with and without application of drugs.
When there are similar cellular or subcellular structures in a distinctly different
background (in vitro solutions), segmentation itself is type of pixel-based classifi-
cation, where geometrical models and intensity clustering are adopted in several
works [11]. Sometimes location-based region adjacency graphs could distinguish
lumenal epithelial cells, stromal cells and nuclei from in vitro subcellular images
[20, 22] or sparse features are learnt to classify tumors in histopathology [89].
When several different proteins are present for each location class, local features
information from protein as well as reference marker images (acquired in parallel)
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might be useful to correct classification [28]. In a recent work [23] on classification
and abnormality detection in Pap smear cells, multiclass datasets (4 and 7 classes)
are merged for 2-class problems—normal and abnormal—to compare performance.
Five classifiers are tested—Bayesian classifier, LDA, K-nearest neighbor (KNN),
ANN, and SVM—where ANN performed the best—with >95 % accuracy for
multiclass and >97 % for 2-class problems.

Major pattern classification methodologies used by different bioimaging groups
are depicted in conceptual diagram in Fig. 2.4 and briefly addressed below with
pointers to references for necessary details. Interested readers might review recent
survey papers on complete cell analysis systems that summarize different unsuper-
vised, semi-supervised and supervised machine learning-based classifiers [115, 120].

2.6.1 Artificial Neural Network (ANN)

This are layered directed acyclic graph (DAG) imitating biological neural networks
to transform input signals or features to output activations through linear or com-
plex nonlinear functions. Complex nonlinear multi-input-multi-output (MIMO)
mapping functions are learnt from a training dataset by supervised learning rules
like back-error propagation, reinforcement learning, competitive learning, etc. [14].
This is generally applied when the mapping function might be considered as a black
box and no further structural analysis is warranted. There are number of variants of
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Fig. 2.4 Major pattern recognition techniques utilized in cellular and tissue classification in
biological datasets
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ANN structures [12], although fully connected multilayered-perceptron (MLP) with
sigmoid activation function and back-error propagation learning rule is the most
common and successful [13]. In the feature-based supervised classification of
cellular images, input features and correct output class labels (often visually clas-
sified) are utilized to tune the neuronal connection weights (only changeable
parameters in ANN) over the training cycles and once trained can classify unseen
(test) data [23, 25, 49, 56].

One work [31] adopts a modular neural network (MNN) trained with sets of
confocal sections through cell lines fluorescently stained for markers of key
intracellular structures. MNN is developed as three 2D layers of input. In the
modular structure, MNN input layer obtains monocular pixel-level intensity values,
hidden layer considers different sections of the cellular image at different
resolutions/scale to capture the overlap and the structural relations and the output
layer produces the classes like mitotic nucleus, nucleus, Golgi, etc. Training is done
with standard back-error propagation with 67 % of the randomly sampled data. Key
feature of MNN is capability to capture structure of the organelles in 2D.

2.6.2 Support Vector Machines (SVM)

Unlike ANN, which is a nonlinear classifier, SVM generally is a linear classifier
that finds a hyperplane between the two classes that maximizes the distance
between the plane itself and the data points from different classes closest to the
hyperplane [125]. It is an example of margin-based classifier in pattern recognition.
The plane is supported by multiple pairs of closest data points from different
biological classes, where the plane is at equal distance from both the points in a
particular pair. Actual feature dimension is mapped nonlinearly to a very large
dimensional space with the hope that class overlaps can be nullified or reduced for
better classifications with less error. General two-class SVMs are extended to
multiclass applications by max-win, pairwise, and classifier DAG. SVMs can adopt
different kernel functions for mapping different low-dimension to high-dimension,
like linear, radial basis functions (RBF), exponential RBFs, polynomials, etc. One
way to decide which one to select is to start with complex kernels and gradually
reduce order of complexity and compare performance to stop at an optimum level
for a particular application. In CMU work, SVMs with exponential RBF perform
the best for image-based subcellular location classification [50, 63, 115]. SVM
classifiers are very successful in several bioimaging applications [23, 25].

2.6.3 Ensemble Methods

To avoid the general problem of entrapment in local minima of the error surface
during training (as in ANN) [35, 125], one way of robust classification is
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considering multiple classifiers with different structures and parameters and fusing
the results from these individual classifiers to get the final result. This is the basis of
ensemble methods with many variants based on the technique of fusing the base
classifiers [12]. AdaBoost learning starts with weak classifiers and gradually
increases weights of those classifiers that have made wrong classification in last
iteration. Thus more stress is exerted to learn to classify confusing examples. On the
other hand, Bagging method tries to increase the training dataset by resampling
with replacement and to learn base classifiers with different input sets. Results from
them are combined to get the final result. Mixture of experts is another ensemble
technique that follows divide-and-conquer strategy so that training set is partitioned
by some similarity, classified by different base classifiers for different partitions
(like, gating network) and then combined (e.g., by local expert network). Majority
or consensus voting is one simple ensemble method that, married with Kaplan
Meier test, can effectively perform tumor subtyping [20].

2.6.4 Hierarchical Clustering

When subcellular images cannot be classified by visual inspections (like in Golgi
compartments, due to mitotic cell division), supervised learning is not possible.
Clustering is an unsupervised learning technique to know the classes from unla-
beled training data from proximity in the feature space. After proper normalization
of different features (to give proper weights on different dimensions), proximity can
be measured with any standard distance metric [35], like Euclidean distance or
Mahalanobis distance using feature covariance matrices, etc. Individual classes can
be formed with proximity and multiple discriminant analysis (MDA) of the clusters
in feature space. K-means spectral clustering [25] is one such variant. CMU
researchers adopt bottom-up approach to learn a hierarchical subcellular location
tree (SLT) from clustering, where at first every organelle structure is taken as
individual classes and then classes are iteratively merged by similarity (proximity
and MDA) in layers to form a classification tree [115]. This type of hierarchical
classification tree or SLT is a very high-level tool for cell molecular biology and
can be applied in other medical diagnostic systems as well. A SLT is automatically
developed from cellular and subcellular image sets [90, 115] where classes are
merged correctly as expected from biological knowledge (like first to merge were
giantin and gpp130 as both are the Golgi proteins). In protein regulatory networks,
graphical connectivity-based hierarchical clustering is applied to classify cell lines
and data mine parts of them to categorize whether it is “living” or “dying” [95]. The
biggest problem with unsupervised learning is visual or manual validation of the
classification results is not possible as there is no labeled training set.
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2.6.5 PCA Subspace-Based Classifiers

Classifying cellular forms of proteins encoded by human cDNA clones is a primary
step toward understanding the biological role of proteins and their coding genes.
Classifier surface is successfully estimated in PCA subspace to classify protein
structures with a novel framework I-GENFACE for protein localization [122].
Morphological, geometrical, and statistical features, such as brightness of a region
of pixels, the object boundary, and co-occurrence matrix-based grayscale textural
features, spot and line features, histogram, and amplitude features, etc. are extracted
semiautomatically. Distance-based metric in PCA subspace is adopted to classify
the protein forms and then the corresponding images. Classification accuracy
achieved is approximately 90 % for seven subcellular classes.

2.6.6 Performance Comparison

Beside standard performance evaluation tools in CVPR [12, 35], sometimes
application-specific criteria are defined in cell imaging [49].

(1) Complexity of the decision boundaries that a classifier can generate For a
pair of Golgi proteins, giantin, and gpp130 (ones difficult to classify visually) and
two most informative features derived by SDA-based feature selection (namely,
fraction of fluorescence not in any object and convex hull eccentricity) CMU
research illustrates the complexity on the 2D scatter plot. This is one way to check
the complexity of the classifier needed, like the order of the activation function in
ANN, or polynomial order in kernel-based SVM, etc. Although complex classifiers
sometimes classify small dataset (with less variation) utilizing complex features,
according to minimum description length (MDL) principle [79] these are overfitted
classifiers as they loose generality for the dynamic organic environment.

(2) Dependence of the classifier performance on the size of the training set This
is the capability to learn from limited training set and insensitiveness to the presence
of outliers in the data. In cell molecular biology, complexity of the dynamic
environment might demand multiparameter classifier that in turn needs larger
training sets (to fit the parameters iteratively) which is not always available. CMU
work shows [50] that with more training data classification accuracy improves, as
expected. Even without access of the complete dataset, probabilistic active learning
could model and discover biological response in gene datasets [88]. In this work,
greedy merge structure learning iteratively combines distributions with the
assumption that same conditions affect the unseen variants similarly. Outliers
generally affect in incremental learning modes of different classifiers, like ANN and
reduce accuracy.

(3) Sensitivity of performance to the presence of uninformative features All the
features may not contribute cooperatively toward classification. CMU research
claims that ANN perform better for 3D cell images than 2D images, which is
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somewhat unexpected and underlines the importance of feature selection. They
adopt SDA feature ranking based on information content and gradually add features
according to high-to-low ranking to compare how the classifiers behave [50, 115].
This is a classical pattern recognition method to check how many features are
adequate to work with a particular classifier applied to a particular task [35]. They
also conclude that the ability of a classifier to adapt to more noisy features depends
on the feature space itself.

Above indices are very general for any applications. CMU work also evaluates
classifiers based on statistical paired t-test. They conclude that SVM with expo-
nential RBF kernel performs most consistently for different subcellular location
feature sets [50].

2.6.7 Other Methods and Future Scope

Evolutionary computation a key machine learning paradigm not yet utilized to its
full potential in bioimaging. Methods like genetic algorithms (GA), genetic pro-
gramming (GP) (see Sect. 2.5) and their variant like colony optimization, particle
swarm optimization, “tribe”-based global GA, etc. fall in this class. Only few recent
works report successful usage of such techniques for segmentation [91], feature
selection, and classification [58]. Bayesian learning [57] is another area where very
limited cell classification research is so far invested [23] but might lead to success—
specifically as cellular localizations can easily be represented as cause-and-effect
relations with the surrounding biological processes and injected drugs and antigens.

2.7 Dynamics and Tracking: Cell Activity Recognition

Cellular processes are heterogenous and complex, yet very organized. For under-
standing molecular mechanisms at the systems level, like cell migration and signal
transduction [137], complex spatiotemporal behaviors of cellular processes are
needed to be datamined with objective computational tools. Cell migration, besides
motion, involves shape changes (morphogenesis) and interactions at different
levels, from single cell flagella-driven movement to bacterial swarming to collective
stem cell migration toward chemoattractants. Estimated motion leads to preferred
migratory paths as well as related shape deformations. Sometimes correlation
between signaling events to spatial organization of the biological specimens might
enhance understanding biological processes [105]. One recent work [18] proposes a
complete pipeline of computational methods for analyzing cell migrations and
dynamic events, starting from acquisition, registration, segmentation, and classifi-
cation, and finally addressing cell tracking, event analysis, and interpretation.
Changes in shape and topology are tracked and motion fields are computed.
Another application oriented review [105] of developments and challenges in
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automated analysis summarizes few examples of intracellular dynamics, cell
tracking, and cellular events as follows: (1) Estimation and control of cell cycle
state and its rate of change directly will link to cancer and DNA damage. (2) Very
little is known on intricate dendrite branching pattern unique for each neuronal
class. Tracking of dendrite arbors in 3D microscopy might help estimating dynamic
relationship between dendrite growth and synaptogenesis. (3) Embryonic heart
development and embryogenesis of Zebra fish could be monitored to enhance
understanding and quantifying structural phenotypes in tissue.

The challenge of the postgenomic era is functional genomics, i.e., understanding
how the genome is expressed to produce myriad cell phenotypes [11, 88, 94]. To
utilize genomic information to understand the biology of complex organisms, one
must understand the dynamics of phenotype generation and maintenance. Also
cell signaling and extracellular microenvironment have a profound impact on cell
phenotype. These interactions are the fundamental prerequisites to control cell
cycles, DNA replication, transcription, metabolism, and signal transduction. All the
biological events in the list require some kind of particle tracking and then clas-
sification of the dynamics. Signal transduction is believed to be performed by
protein molecules passing across the cell membrane, carrying some electrochemical
massage to the target cell or organelle, where it initiates some biochemical event
[119]. Hence tracing signals and analyzing their implications also require tracking
over image sequences. Biochemical activities in the molecular (e.g., protein, DNA,
RNA, genes etc.) and atomic levels (e.g., protein folding leads restructured form of
the proteins followed by higher level activities like mitotic fragmentation) in
intracellular compartments (e.g., mitochondria, Golgi bodies, nuclei, cytoplasm
etc.) and intercellular signaling are one of the prime signs of life [97]. Higher level
activities in living organism trace back to these molecular level biochemical
activities [36].

One crucial point in bioinformatics is that the biochemical processes are often
very slow, while few transient processes are very fast—e.g., red blood corpuscles
(RBC) are dying in hundreds every minute, and new RBCs replace them to keep the
equilibrium. After effective shot detection and key frame selection depending on
rate of change of information content of the cellular video (see Sect. 2.2), cell
tracking, and biological activity analysis can be efficiently performed only with
those key frames (see conceptual diagram in Fig. 2.1).

Like RBC lifecycle, many other cellular events are transient in nature—
including plant cell activities. In plant physiology research, cell dynamics analysis
plays a significant role—from monitoring cell morphogenesis [62] to dynamic gene
activity [78] for developmental processes. In one in vivo study of CA*" in the
pollen grain and papilla during pollination in Arabidopsis in fluorescence and
ratiometric imaging, yellow cameleon protein indicator is utilized to detect change
in CA%* dynamics over different phases of pollination [54]. Unfortunately, growth
rate of pollen tube is measured manually by the rulers that, unlike in computational
methods, reduces statistical reliability. Similarly, interactions between B and T cells
are essential for most antibody responses, but the dynamics of these interactions are
poorly understood [92]. By two-photon microscopy of intact lymph nodes, it is
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demonstrated that upon exposure to antigen, B cells migrate with directional pref-
erence toward the B-zone-T-zone boundary in a CCR7-dependent manner. There are
salient variations in velocity, speed, and duration of activity based on antigen doses.
These findings provide evidence of lymphocyte chemotaxis in vivo, and can define
similar dynamics associated with T cell-dependent antibody responses. Development
of many vertebrate tissues involves long-range cell migrations that are often quan-
tified from time-lapsed images and few samples of data. One work [132] utilizes
two-photon laser scanning microscopy and quantitative analysis of four-dimensional
cell migration data to investigate the movement of thymocytes through the cortex in
real time. This work tracks the thymocytes over multiple frames of cell video, forms
time-stamped spatiotemporal trajectories to classify into two classes of motility rates
(higher and lower), and concludes that displacement from origin varies differently for
these motility rates (lower motility follows linear rule, while higher ones follow
quadratic rule). And these two distinct migratory behaviors within wild-type cortical
thymocytes are analyzed for further higher level biological decisions. Cell activities
like cell division, cell migration, protein signaling, and protein folding in biological
videos should be computationally analyzed and classified into spatiotemporal pro-
cesses to understand the dynamics behind them.

Euro-Biolmaging consortium is one of the very few groups actually analyzing
dynamics in cell videos. They analyze bacterial motility videos taken under light
microscopy and in vitro solutions [118]. They record the trajectories of
free-swimming bacteria of the species Rhodobacter spheroids under a variety of
incubation conditions, and estimated trajectories of the rotations of these bacteria
tethered to glass coverslips using an antiflagellin antibody. The rapid rotations of
helical flagella by proton-powered molecular rotary motors (embedded in the
bacterial membrane) cause free-swimming bacteria to swim forward in curved
trajectories. Brief reversal of the direction of rotation of the motors in a single
bacterium induces its flagellar bundle to fly apart, causing the cells to undergo a
“tumble”, leading to randomizations of the new direction of motion upon
resumption of the normal rotational direction. Bacteria swimming up a concen-
tration gradient of a chemoattractant (e.g., glucose) tumble less frequently than
bacteria entering a hostile (e.g., acidic) environment. Euro-Biolmaging group
studies these bacterial responses to environmental stimuli by considering spa-
tiotemporal trajectories of individual bacteria and the times and positions of bac-
terial events, such as tumbles and reverses. It would be impractical and intractable
to undertake such detailed analysis and annotations of events manually.
Image/video processing techniques are indispensable for such analysis. Hence they
track multiple bacterial motions, form spatiotemporal traces (after smoothing and
merging of tracks as in “boundary-tracking” algorithm in CVPR), and detect cell
biological states like “swimming forward” (flagella rotating counterclockwise),
tumbling (flagella rotating clockwise), and stopped. These state transitions are then
mapped to different biochemical ambience and corresponding responses in terms of
bacterial speed, rotational frequency, etc.

Automated monitoring of wound-healing assay in time-lapsed microscopic data
is another application where cell motility dynamics might help clinically [118, 143].
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Euro-Biolmaging group performs textural segmentation and quantify healing by
rate of change of dimensional spread with or without drug [118]. In a recent
sophisticated work on wound-healing and cell-scattering data, cascade of SVMs
performs initial classification of local patches, and then graph cut corrects and
reclassifies [143]. Acceleration effect of Hepatocyte growth factor/scatter factor
(HGF/SF) is utilized for monitoring. Few recent works in cellular biology point out
important future application of CVPR strategies to understand cellular events. In
one system pharmacological application [64], cell population is tracked by mor-
phology, proximity, and specifically the motion fields obtained from particle filters
and interacting multiple model filters. Morphological phenotypes help identification
while SVM, factor analysis, and Gaussian mixture models classify the profiling
types. All the above examples demonstrate how CVPR strategies can enhance the
cellular activity analysis, and how understanding several other similar biological
processes, upon computational analysis and exploratory data mining, can enrich our
higher level knowledge (see Fig. 2.1). Different established object tracking [140]
and structure from motion algorithms [12] could be adopted to analyze these
applications.

2.8 Bioimaging Databases and Content-Based Retrieval

Vitality of living cells and their dynamic behaviors separate them from innate rigid
objects [119]. Innate objects generally have same shapes (e.g., rigid objects like a
car can change its 2D projection due to motion and viewpoint change, but always
have same 3D structure [43]) or shape changes in few discrete predictable ways
(e.g., flexible objects like a military fighter jet changes its 3D structure due to
different missile attachments, wing positions, and other artillery manipulations; but
definitely in a few discrete and predictable ways [32]). In case of living cells and
their intracellular molecules, environmental effects are more complex and often not
yet understood and cause the cell shapes to change in very unpredictable ways
[17, 115]. Like a motile cilium changes its shape unpredictably to extend one part
(like a leg), get hold (like a hand) and then shifts the body organisms toward that
direction. Its shapes have sharp differences, yet it is a cilium [119]. Time-lapsed
imagery demonstrates wide variations that are to be stored in a dynamic database
for future search, research, and analysis. Additionally proper content-based image
retrieval schemes are to be adopted so that mere shapes cannot misguide the
retrieval [26, 88]. Even a single type of cell might have high variability as different
biologists study it at different conditions [22]. Distributed databases and web-based
querying facilities increase cooperative efforts of experts from different parts of the
world [77]. But at the same time this underscores demanding requirements of
necessary mapping between different nomenclatures and formats [147],
content-based indexing strategies [26], and machine learning methods for improved
retrieval [36, 96, 98, 120]. Besides phenotyping and understanding dynamics,
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Fig. 2.5 Bioinformatics modules in large-scale biological dynamic databases that are often
distributed across the globe and datamined by complex content-based queries over the Internet

database might be useful for building atlas for model organisms or for 3D recon-
struction of brain wiring from international data with wide variability [96].

Feature-based image representation, dynamic database maintenance,
content-based indexing, content-based image retrieval (CBIR), and learning-based
improvement of retrieval performance are relatively matured subfields in CVPR.
Interrelations between these broad CVPR modules in bioinformatics context are
summarized in Fig. 2.5. In cell biological image processing, only few works are
reported in this direction, mostly for static images [22, 26, 88, 98] and rarely for cell
dynamics in videos [77, 147]. These efforts are summarized below with relevant
pointers to future research directions.

2.8.1 Data Representation

The first step of any database design is the determination of the scope of the data to
be stored, i.e., together with their complete description, taking into account the
targeted group of users and the applications of interest. To determine these gen-
erally biologists and microscopy experts develop a list of biological descriptors for
data representation and database querying. These descriptors guide modules down
the line including image processing, feature extraction, classification, database
management, and structural query systems.

Organisms express their genomes in a cell-specific manner, resulting in a variety
of cellular phenotypes or phenomes [22]. Mapping cell phenomes under a variety of
experimental conditions is necessary in order to understand the responses of
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organisms to stimuli. Representing such data requires an integrated view of
experimental and informatics protocols. This is more critical when experimental
procedure varies [22] or even nomenclature differs between research groups [147].
BioSig system developed in LBNL [20, 94] adopts a hierarchical data model to
capture experimental variables and map them to light microscopic image collections
and their computed representations (features) at different levels—sample tissues,
cells, and organelles. At each layer, information content is represented with an
attributed graph of cellular morphology, protein localization, and cellular organi-
zation in tissue or cell culture.

There are two kinds of information associated with visual objects (image or
video): information about the object, called its metadata, and information contained
within the object, called visual features [34, 67]. Metadata (such as the name of a
protein) is alphanumeric and generally expressible as a schema of a relational or
object-oriented database [147]. Visual features, in contrast, are mathematical
properties of the image derived by computational tools from image processing,
CVPR, or geometric routines discussed in earlier sections [11, 105, 115]. A database
system that allows a user to search for objects based on contents quantified by
above-mentioned features is said to support content-based image retrieval (CBIR).

Euro-Biolmaging group [34, 147] utilizes following (quite generic) data repre-
sentation covering wide information variability including the rare support to cell
video data.

e General information: administration and organizations: submitter’s name, title,
funding, references, and contacts.

e General information: microscopic data: metadata on location, format, and size,
channel and axes information (coordinate system), annotated figures.

e Biological data: details of the biological specimens (taxonomic information and
parameters that depend on the type of specimen) and observable biological
features.

e Experimental details: sample preparation: experiment, preparation steps, their
biochemical and physical parameters, instruments used (e.g., for microinjec-
tion). Free-text comments for nonstandard information can be provided as well.

e Experimental details: data acquisition and instrumentation: for reproducibility,
microscopic settings, and image-recording schemes are stored.

e Experimental details: image processing: ranging from simple enhancement to
complex 3D reconstruction algorithmic information.

The need of unified data representation comes from the diversity of experimental
procedures followed by biological researchers around the globe [22], like different
application-specific microscopic systems are used: all kinds of light, electron and
scanning probe microscopy with different resolutions. The biological targets are
also diverse, ranging from entire organisms as observed by developmental biolo-
gists to the macromolecules studied by structural biologists [36, 98]. Datasets are
also of quite different sizes ranging from less than 1 MB for many electron
microscopic datasets to hundreds of MB for scanning microscopic videos in cellular
dynamics contexts [67]. Dimensionality of the datasets also differs a lot [108].
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Atomic force microscopy (AFM) images are two-dimensional. Three-dimensional
density distributions are reconstructed from 2D electron microscopy data. Video
microscopy generates 3D files with two spatial axes and one time axis. And con-
focal light microscopes can even record 3D datasets as a function of time. In
addition complementary information may be stored in several channels in multil-
abeling fluorescence microscopy [28]. Sometimes infrared high-spectral frequen-
cies are utilized as an additional dimension for lung cancer tissue diagnosis [2].
Dynamic database should have flexibility to handle such multidimensional data.
Even recent reviews on spatiotemporal dynamics of cellular processes inform that
representation of behavioral knowledge in biological database is still a great
challenge [137]. For distributed and web-based databases that is being accessed by
hundreds of researchers around the globe with diverse datasets, unified data rep-
resentation needs number of seemingly trivial information to be stored and incor-
porated in the relational database model [77].

2.8.2 Database and Indexing

Database indexing is an established field with enormous success in text-based
systems. Success of these systems stands upon the general user-independent defi-
nitions or meanings of text-based database elements. Images and videos often
contain richer information than textual explanations and informatics researchers
work on content-based indexing and querying the image/video databases [10, 55].
There are also specialized databases like those with neuronal morphology [76].
Indexing and CBIR in relational database management systems (RDBMS) with
multidimensional biological and cellular images are very challenging [26].

In biological databases, querying should be based on implicit information content,
rather than by their textual annotations only. “Query-by-content” generally makes
reference to those data modeling techniques in which user-defined functions aim at
“understanding” the informational content of the datasets (at least to some extent)
from the quantified descriptors (features). Euro-Biolmaging consortium of multiple
European nations is engaged in a pioneering effort (http://www.eurobioimaging.eu/)
of developing one such web-based distributed database prototype [34, 77]. There are
number of similar web-based biological databases, not necessarily image databases,
like databases of sequences of nucleic acids (GenBank and EMBL Data Library) and
those for protein sequences (SWISS-PROT and PIR). A digital neuronal database can
help neuromorphological pattern analysis and brain atlas modeling (a significant
paradigm shift) from advanced microscopy and image processing. A recent critical
review discusses challenges in such applications—including dynamics, machine
learning, and associated computations [98].

The complexity of stored information sometimes requires a unique database
modeling tool, like Infomodeler used by the Euro-Biolmaging group [67] to form a
entity—relation (E-R) diagram with biological entities, their attributes, and relation-
ships (like generic: “is related to”, aggregations: “is composed of”, and inheritance:
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“is a” relations). Infomodeler provides database design in two abstraction levels.
First, it allows an object-oriented approach (object role modeling; ORM) and second,
it allows design in a logical model (E-R diagram). They also mention a denormal-
ization step where redundancy is introduced to improve database performance.
Among many entities already entered and several attributes defined among them, not
all of them are relevant for a particular submission, since some of them depend on the
microscopy technique or on the specimen [77]. As an example a commercial
microscope can have number of optional laser beam, objective lens, and filter set-
tings, only few of which are available at a particular location, and still fewer selective
ones are actually used for a particular biological experiment. Hence to reduce the
burden on the submitter, inheritance-based schemes are utilized just to specify the
personal settings, and then the submission database fills out the rest with the default
values (if entered earlier).

Euro-Biolmaging database provides pointers and links to relevant databases at
appropriate place, like SWISS-PROT protein database, EMBL Nucleotide database,
protein data bank (PDB), etc. Their database comprises of three primary interfaces:
submission interface, query interface, and visualization interface and two database
modules: submission database and production database (they are independent to
ensure security) [67]. Submission interface is the most complex one as, beside
handling queries and incorporating results for visualization, it should also normalize
incomplete datasets (by itself or by forcing the user to provide mandatory infor-
mation) and interact integratively with the database in the background. The data is
temporarily stored in submission database. Database curator modules then review
the input, complete the unfilled format if necessary and migrate the data to pro-
duction database. Query interface converts the submission into a structural query
language (SQL) code with logical operations. Visualization interface handles the
results from the SQL code converting to user-understandable forms to incorporate
with the display page.

The backbone of any database system is the RDBMS. Due to high complexity of
the cell video data in biological dynamics, and due to the semantic level queries
preferred by the experts [26, 77], biological databases require Object-Relational
Database Management System (ORDBMS), as it supports complex relationships
between the biological entities [67, 147]. The complexity of the queries demands
extension of the standard SQL for 3D data handling, named SQL-3. Queries are
often needed to be modified for unified framework before actual database search.

2.8.3 Content-Based Querying

In contrast to other databases, the term “query-by-content” (QBC) is seldom used in
the context of biological databases. However, some of the functionality implied by
this term is in common usage in biological databases [34, 67, 77]. When a new gene
sequence is searched for similar sequences in GenBank without using textual
annotations, algorithms like Fast-All (FASTA) will provide a rank-ordered similar
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gene sequence list. Besides textual descriptions, structural databases (e.g., PDB)
store thousands of atomic resolution structures of proteins and nucleic acids with a
list of coordinates of the atoms. In such databases, alongside keywords, queries
might contain organisms, resolution, etc. as structural information and hence con-
sidered QBC. Searching 3D structural similarity could help discovering novel
biologically active molecules and investigating the relationship between proteins’
structures and their functions. Web-based QBC system by Euro-Biolmaging group
[34, 147] is one such protocol which searches for similar 3D structures of the
macromolecules where similarity is measured in terms of features like 3D bounding
size, multiscale shapes, channels of low density areas, internal cavity, and geo-
metric symmetry. First two features are generic ones, while others are
application-specific. Last type of features, although constrains the applicability and
query space, makes the search space more dense with potential match and increases
precision and accuracy. These are more relevant for database querying in terms of
features like run lengths, velocities, and frequencies, and events like durations and
patterns of bacterial tumbles, and correlated bacterial stops and reversals with
changes in environmental conditions [118].

One of the most challenging issues is to choose an effective measure of structural
resemblance (i.e., biological similarity) between two biological objects [26, 67, 77].
To align a pair of proteins, inter-atom distances of a 3D structure are often repre-
sented as 2D matrices and found useful for comparison since similar 3D structures
have similar inter-residue distances. So, the problem of matching two proteins
structures boils down to graph-matching problem where fundamental graph-
partitioning and graph-matching methods [116, 129] can be applied to partition the
proteins into smaller subgroups by forming hierarchical structural relations and
quantifying matching percentages. One similar hierarchical graph cut method
represents eXtended Markup Language (XML) data of complex protein regulatory
networks as connected graphs, decomposes it spectrally into cohesive subnets at
different abstraction levels and then data-mines for hidden cell motifs and cancerous
activities [95]. Another graph-based similarity measure [117] applies combinatorial
extension (CE) of the optimal path to find an optimal 3D alignment of two
polypeptide chains and utilizes characteristics of local geometry (defined by vectors
between C-alpha positions) of the compared peptides. In this web-based system,
users submit complete or partial polypeptide chains in PDB format. Then, statistical
results are returned along with the aligned sequence resulting from the structure
alignment. Similar protocols are adopted for 3D searching in databases of small
molecules to facilitate drug and pesticide discovery [84].

There are two different styles for providing examples or queries [10, 12]:
(1) pictorial example (Virage Image Engine and NETRA system) and (2) feature
value (like color, region area, texture, etc.) and expected percentage similarity as
example (QBIC engine from IBM). In the first style of querying, features are first
computed for the query example and the target images in the database and then it
boils down to the second method. Distance metric is defined as a monotonically
increasing function (e.g., weighted Euclidean measure) of these features to give a
unique value and this metric should satisfy axioms of validity [79]. Generally CBIR
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focuses more on 2D images, less on videos [118] and still lesser for 3D images. In a
content-based 3D neuroradiologic image retrieval system [69], a multimedia data-
base contains a number of multimodal images—namely magnetic resonance and
computer tomography (MR/CT) images as well as patient information (patient’s
age, sex, symptom, etc.). With proper CBIR tool, such a system could help medical
doctors to confirm diagnoses, as well as for exploring possible treatments by
comparing the image with those stored in the medical knowledge databank.

2.8.4 Learning in Content-Based Image Retrieval

When a content-based retrieval system is applied to any specific domain it needs to
answer two pivotal questions discussed earlier in details: (1) feature selection: of the
extended list of features discussed in earlier sections, which computable features are
sufficient to describe all images in the domain and (2) classification: what mathe-
matical function should be used to find a measure of similarity between two objects.
The second one poses more problems due to subjectivity of perceptual similarity
among the observers. Two cells in two biological images can be decided as
“similar” by one biologist due to their partwise structural similarity (e.g., they
consists of a central cell body and cilia projections with the same pattern), while
another biologist may classify them as different due to their functionalities. This
dynamic nature of similarity measure makes CBIR more challenging. Machine
learning strategies based on relevance feedback [12, 110] might help in such cases
where the similarity measure (or even weights for combining different features)
could be learned from user feedback (interactive manual inputs) regarding rele-
vance of the result. This method learns the user query, structures the query and the
search space to take into consideration more potential matches and incrementally
improves the retrieval results over multiple iterations for the same user (see
Fig. 2.5). Moreover, this method is extended for short-term learning from a single
user and long-term learning from multiple users using the system several times to
improve the overall retrieval performance [10]. Query-by-content in biological
databases is yet to adopt this type of practical learning strategies.

2.8.5 Distributed Databases and Web-Based Querying

Distributed computation and web-based dissemination strategies are required [77]
because of several necessary qualities of large dynamic databases: (1) flexibility to
enter new data and update RDBMS continuously and incrementally with streaming
data from users around the world; (2) integration of apparently diverse frameworks
to analyze data and results including cross-database search in a seamless unified
way; (3) fault tolerance of multiserver systems for computationally expensive
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database manipulations that can be split into parallel and multithreaded modules.
More is the complexity and abstractness of the data (like images, videos, cell
activities), more is such requirements. For emerging field like bioinformatics, where
hundreds of research groups are working globally on similar (but not exactly the
same) biochemical processes, distributed database systems, web-based querying
and platform-independent visualization tools are absolute necessities [77, 96].
These will give the researcher facilities to enrich the database, share their results
with international community, statistically compare their results with existing
knowledge and cooperatively work toward better results [36, 105].

A very nice overview of web database operation, implementation, scalability,
interoperability, and future directions are discussed by the Euro-Biolmaging group
[77], including methods to cope up with mapping different names used for the same
entities, integrating the data diversity, and updating the web database incrementally
while the storage location, experimentation and associated parameters are contin-
uously changing [147]. This consortium does a pioneering research in developing a
web-based online biological database system. It describes the ongoing research on
developing the dynamic database on an Informix Dynamic Server with Universal
Data Option [67, 77]. This object-relational system allows handling complex data
using features such as collection types, inheritance, and user-defined data types.
Informix databases are used to provide additional functionality: the Web Integration
Option enables World Wide Web (WWW) access to the database; the Video
Foundation Blade handles video functionality. WWW facility provides the neces-
sary structure for worldwide collaboration and information sharing and dissemi-
nation [34, 147]. Future scopes lie in incorporating new microscopy techniques,
customizing WWW visualization interface that depends on user profile, and tighter
interaction with collaborating databases [147]. Current biomolecular databases
[20, 26] basically follow similar RDBMS structures, just from different providers.

Database over the web has to bear extra burden of providing simple interfaces for
the (sometimes computer-naive) biologists and at the same time ensure security and
integrity of the distributed and dynamic database from intrusion and misleading
submissions. Hence it is better to separate out submission module and actual data-
base by a buffer database. The standard approach to connect with a database involves
calling a CGI application (a program running on the web server) through calls from
flat files containing HTML text [67, 94]. The alternative approach involves making a
direct call to a database program with the page names and all relevant parameters. In
both cases, SQL code is incorporated into standard HTML code. When the WWW
browser requests the HTML file, the SQL code segment is extracted, passed to the
RDBMS, and interpreted [147]. The result is formatted in standard HTML for
visualization. Web pages are created dynamically, i.e., some template formats are
modified based on user needs to create a specific web page. It also reduces the
development time. Other domain-specific creation is stressed with user-defined web
tags. Importantly, all the semantic web standards can still be combined and this
generic framework can be extended to many other web database applications (e.g.,
medicine, arts) [77]. BioSig system developed in LBNL [94] also makes their
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computational biology framework distributed and platform-independent using
eXtended Markup Language (XML) protocol generated by biological experiment
and handling those to reach bioinformatics decisions [20].

2.9 Future Research Directions

Many future research scopes are already discussed under individual sections fol-
lowed by relevant pointers toward related works from CVPR and other research
fields. To summarize, cell video analysis can be immensely enhanced by future
research areas including: (1) cell video summarization methods [40], (2) texture
[52] and graph cut-based segmentation [116], (3) close-loop cooperation between
segmentation and object alignment with deformable models [37, 44], (4) synthe-
sizing combinatorial features by genetic programming [66], (5) evolutionary
learning in feature selection and classification [91, 120], (6) utilizing hyperspectral
image features beyond currently applied frequency ranges [2, 9], (7) application of
Bayesian classifiers [57], (8) improvement of performance even from small training
dataset often encountered in bioimaging [10, 84, 88], (9) motion-based segmen-
tation [15, 111, 135, 142, 143] and tracking [140] in cell videos, and (10) contin-
uous learning by relevance feedback to improve database retrieval [10].

Learning enumerable phenotypes and distinguishing them requires parametric
models that can capture cell and nuclear shapes as well as nonparametric models to
capture complex shapes and relationships between them. Such generative models
could be learned from static datasets [17]. Interesting future direction will be making
those generative models dynamic—to capture temporal evolutions—possibly by
dynamic Bayesian networks [57]. But unified framework of generative models to
handle behavior of cells from diverse pedigree is still a very challenging task [84]—
as model topology itself need to change within and across time. Morphogenesis and
cell fragmentation complicate the Bayesian graphical analysis even more.
Expectation maximization (EM) learning [35] cannot handle such flexibility to learn
widely varying cell shapes, protein distributions within organelles and subcellular
location patterns [97]. Recently an evolvable Bayesian graph has been proposed in
incremental 3D model building application [43]. This generic probabilistic graphical
model has flexibility [41] to represent unpredictable structural changes of the same
cells, replication, and effects of drug or antigen applications over time. This
framework also has potential [42] of modeling cellular behavior caused by different
biochemical environments, analyzing interrelations among neighboring organelles
in uncontrolled unpredictable environment, and even handling content-based video
querying in complex database search engines.
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2.10 Conclusions

Automated analysis of microscopic bioimages is making significant progresses with
application of established tools and algorithms from computer vision, pattern
recognition, and machine learning. Quantification and exploration of dynamic
activities and evolving interrelations between them from cellular and biomolecular
videos are the current key frontiers [36, 98, 105, 120, 137]. More cohesive and
cooperative merger between computational and biological sciences [S51] are
expected to overcome these challenges toward achieving better understanding of
the hidden patterns in living universe [74].
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