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Preface

This Supplement is a companion to the book by Edward J. Specht, Harold

T. Jones, Keith G. Calkins, and Donald H. Rhoads entitled Euclidean Geom-

etry and its Subgeometries published in 2015 by Birkhäuser. We shall refer

to this work as Specht.

Chapter 1 of this Supplement is an expansion of Specht Ch.18 (Section

18.2) in Specht. It duplicates some of the material found there, as well as

parts of Specht Ch.1, Section 1.5. Chapter 2 defines and develops complex

numbers on the coordinate plane.

Chapter 3 develops the notion of the length of an arc; Chapter 4 uses arc

length to define the circular functions sin and cos in a treatment originated

by our first author, Edward Specht. Chapter 5 builds on the previous two

chapters to define angle measure.

Chapter 6 is a leisurely exploration of properties of polygons on a Pasch

plane, eventuating in a proof of the Jordan Curve Theorem for the polygonal

case. It does not try to achieve this proof in the most economical way.

The final chapters are essentially fragments which were left over from the

main development, but which might have some interest for their own sakes.

Chapter 7 is a proof of “Property PE,” which says that given a line L
on a Pasch plane and a point Q not on L, there exists a line M containing

Q that is parallel to L. This was proved in Chapter 8 of Specht as part of

neutral geometry. Here we prove it for a Pasch plane (without assuming the

existence of a reflection set) on which the line L has been ordered according

to Specht Ch.6 and Axiom LUB holds.

Chapter 8 shows that in Specht Ch.8 Definition NEUT.2, property R.6

(existence of midpoints) is a consequence of properties R.1 through R.5, pro-

vided Axiom PW holds.
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Citations and references. In this Supplement, we will often refer to the-

orems, definitions, and remarks, both from this Supplement, and from Specht.

Our preferred (brief) style of reference will be simply by label, acronym, and

number, as, for instance, “Theorem ISM.5” or “Definition VEC.12.” When

first referencing items of a particular acronym from Specht, we will include ad-

ditional labeling, as, for instance, “Specht Ch.12 Theorem ISM.5.” Repeated

uses of the same acronym will usually revert to the shorter style.

Condensed Table of Contents for Specht, Euclidean Geometry

and its Subgeometries
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Chapter 1

The Plane as a Vector Space (VEC)

Dependencies: This chapter is dependent on Euclidean Geometry and

its Subgeometries, by Specht, Jones, Calkins, and Rhoads, published by

Birkhäuser, 2015

Acronym: VEC

Terms defined: addition, scalar product on the plane; coordinatization (right

or left-handed), axes, origin, clockwise and counterclockwise; first and second

coordinates on a plane; vector or linear space, vector space isomorphism,

coordinatization map; linearly independent, span, basis, dimension; ordered

triples, n-tuples; vertical, horizontal, slope, norm, inner (dot) product, or-

thogonal; linear mapping, sum and scalar product of linear mappings, matrix,

determinant; affine mapping

The first part of this chapter is an expansion of Chapter 18 of Euclidean

Geometry and its Subgeometries by Specht, Jones, Calkins, and Rhoads, here-

after referred to as Specht. This duplicates some of the material found in

Specht Chapter 18, as well as parts of Chapter 1, Section 1.5. Later in the

present chapter we provide some results on linear and affine mappings which

are relevant to the main development in Specht.

In Section 18.3 of Specht Ch.18 we assigned a real number to each point

on an arbitrary line in a Euclidean/LUB plane. This process might be char-

acterized as coordinatizing the line. In Section 18.4 of the same chapter we

briefly outlined the process by which the Euclidean/LUB plane itself may be

coordinatized, assigning to each point on it a pair (a, b) of numbers.1 Here

we develop this process in greater detail.

1 It is possible to coordinatize Euclidean space, assigning to each point a triple (a, b, c) of

real numbers, but we do not pursue this.

1



2 1 The Plane as a Vector Space (VEC)

Here, references to items labeled VEC will be to the current chapter; all

other references are to Specht. In particular, this chapter contains numerous

references to Chapter 18 of that work, which uses acronyms REAL and RR.

We refer the reader to the note Citations and references at the end

of the Preface to this Supplement and to the abbreviated Table of Contents

(with acronyms) for Specht.

1.1 Operations on the plane

Throughout this chapter, P will denote a Euclidean/LUB plane as defined

in Specht Ch.18 Definition REAL.2.

Definition VEC.1 (A) For each A ∈ P \ {O}, define τA to be the trans-

lation of P such that τA(O) = A. Specht Ch.12 Theorem ISM.5 says that

such a translation exists and is unique.

(B) Define τO = ı, the identity.

(C) For any A and B in P, define

A+B = (τB ◦ τA)(O) = τB(τA(O)) = τB(A).

The operation + is called addition and A+B is the sum of A and B.

Remark VEC.2 (A) The operation + from Definition VEC.1 applied

to points on a line L through O is identical to the operation ⊕ from Specht

Ch.14 Definition OF.1(A) and (C).

(B) Since we have made the identification of a line on the plane with the

real numbers, we abandon the use of the symbol ⊕ and henceforth will use

simply +. However, in cases where we wish to emphasize that we are adding

two points in a single line through O, we may revert temporarily back to ⊕.
Also, if we should have occasion to multiply points on such a line we may

continue to use ⊙—at this point there is no definition of the product of ar-

bitrary points on the plane.

Theorem VEC.3 The Euclidean/LUB plane P is an Abelian group under

the operation +.

Proof. Let T = {α | α is a translation of P or α = ı}, then by Theorem

ISM.8(A) T is an Abelian group under composition of mappings. Routine

calculations based on Definition VEC.1 confirm that P is an Abelian group



1.1 Operations on the plane 3

under the operation +; we leave these to the reader as Exercise VEC.1. ⊓⊔

Theorem VEC.4 If O, A, and B are noncollinear, then A + B is the

fourth corner of the parallelogram whose other corners are O, A, and B.

Proof. This is an immediate consequence of Exercise ISM.2. ⊓⊔

Remark VEC.5 (A) Note that τA is the translation that not only maps

O to A but also maps B to A + B. Also, τA−B(B) = (A − B) + B = A so

τA−B maps B to A.

(B) If A and B are any two points then τ−B(B) = O and τ−B(A) = A−B.

By Specht Ch.8 Theorem NEUT.15 (since τ−B is an isometry) τ−B(
px qy

AB) =
px qy

(A−B)O and hence
px qy

AB ∼=
px qy

O(A −B).

(C) The line L =
←→
OA can be built into an ordered field using the machinery

of Specht Chapter 14; by Theorem OF.10(A)(1) of that chapter, for each

A ∈ P, −A = RO(A). Hence for any A, RO(
px qy

OA) =
px qy

ORO(A) =
px qy

O(−A) and
px qy

OA ∼=
px qy

O(−A). (cf Theorem OF.10(A)(4).)

(D) Combining parts (B) and (C), we have
px qy

AB ∼=
px qy

O(A −B) ∼=
px qy

O(B −A).

Definition VEC.6 For every point A ∈ P, and every real number x, de-

fine xA as in Definition REAL.19 (and summarized in Theorem REAL.20),

where the line
←→
OA has been built into an ordered field. xA is called the scalar

product of x and A, and the number x is called a scalar.

Remark VEC.6.1 (A) By Theorem REAL.37 we know that for each

real number x there exists a dilation δx with fixed point O such that for all

A ∈ P \ {O}, xA = δx(A).

(B) Definition VEC.6 depends explicitly on the fact that the line
←→
OA has

been built into a field. The multiplicative field properties of this line are es-

sential to the development of the properties of scalar product such as those

stated in Theorems REAL.23 and Corollary REAL.35.1.

Theorem VEC.7

(A) For every A ∈ P \ {O}, ←→OA = {xA ∈ P | x ∈ R}. That is, every line

through the origin is the set of all scalar multiples of any non-O point in that

line.

Moreover, if A and B are any points in P and x and y are any real numbers,

(B) x(yA) = (xy)A, (scalar multiplication is associative)
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(C) x(A+B) = xA+xB, (scalar multiplication is distributive with respect

to addition of points)

(D) (x+ y)A = xA+ yA, (scalar multiplication is distributive with respect

to addition of scalars)

(E) 1A = A, and

(F) xA = O iff x = 0 or A = O (or both).

Proof. (A)
←→
OA is a line through the origin O and therefore is a fixed line for

the dilation δx, whose existence is noted in Remark VEC.6.1, and hence if

x 6= 0, xA ∈ ←→OA. By Theorem REAL.35(A), for every A′ ∈ ←→OA \ {O}, there
exists a real number t 6= 0 such that tU1 = A′ and a real number s 6= 0 such

that sU1 = A, so that A′ = t
s
A.

(B) This is Specht Ch.18 Theorem REAL.23.

(C) This is Theorem REAL.32.

(D) This is Theorem REAL.31.

(E) 1A = A is immediate from Specht Ch.17 Definition QX.1(C).

(F) If x = 0 or A = O (or both), xA = O by Definition REAL.19(A)(1). If

xA = O, then by Theorem REAL.25 xA = x(U ⊙A) = xU ⊙ A = O and by

Specht Ch.14 Theorem OF.10(H), xU = O or A = O. If xU = O then x = 0

by Corollary REAL.34(B).

In parts (E) and (F) we used the ⊙ symbol because we were referring back

to the product operation used in OF and REAL on the line L. ⊓⊔

1.2 Vector spaces, R
2 and isomorphisms

Theorem VEC.8 Let P be a Euclidean/LUB plane, and let O be its

origin. Let L1 and L2 be lines in P such that L1 ∩ L2 = {O}. Using the

machinery of Chapters 14 and 18 of Specht, build each of the lines L1 and L2

into an ordered field which is isomorphic to R, the set of all real numbers, and

let U1 and U2, respectively, be their units, so that both U1 and U2 correspond

to the real number 1 under their respective isomorphisms.

(A) For every A ∈ P, there exist unique real numbers a and b such that

A = aU1 + bU2.

(B) aU1 + bU2 = O iff a = b = O.

(C) If A 6∈ L1 ∪ L2, so that both a 6= 0 and b 6= 0,
px qy

O(aU1) ∼=
px qy

(bU2)A and
px qy

O(bU2) ∼=
px qy

(aU1)A.
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Proof. If A is any point on P, by Axiom PS there exists a unique line M1

containing the point A such that either M1 = L1 (in case A ∈ L1) or

M1 ‖ L1; and there exists a unique line M2 such that either M2 = L2

(in case A ∈ L2) orM2 ‖ L2.

By Exercise I.1, M1 intersects L2 in exactly one point, which we shall

call A2, and M2 intersects L1 in exactly one point which we call A1. By

Theorem REAL.35, there exists a unique real number a such that A1 = aU1

and a unique real number b such that A2 = bU2. Since A uniquely determines

M1 andM2, and these lines uniquely determine the points A1 and A2, which

in turn uniquely determine a and b, a and b are uniquely determined by A.

Moreover, A ∈ L1 iff A2 = O iff b = 0, in which case

A = A1 +O = A1 +A2 = aU1 + bU2;

A ∈ L2 iff A1 = O iff a = 0, in which case

A = O +A2 = A1 +A2 = aU1 + bU2;

and A = O iff A ∈ L1 ∩ L2 iff a = b = 0, and again in this case

A = O +O = aU1 + bU2.

If A ∈ P \ (L1 ∪ L2), by Theorem VEC.4, aU1 + bU2 is the fourth corner

of the parallelogram of which O, aU1, bU2 are the other three corners. Since

M1 contains the point A1 and M2 contains the point A2 and are parallel

to (or equal to) L1 and L2, respectively, they are the same, respectively, as

the sides
←−−−−−−−−−−−→
(aU1)(aU1 + bU2) and

←−−−−−−−−−−−→
(aU2)(aU1 + bU2) of this parallelogram. Since

both M1 and M1 contain A, A = aU1 + bU2. This completes the proof of

parts (A) and (B).

(C) The quadrilateral ⊔⊓O(aU1)A(bU2) is a parallelogram becauseM1 ‖ L1

andM2 ‖ L2. The result follows from Specht Ch.11 Theorem EUC.12(A). ⊓⊔

Definition VEC.9 (A) In Theorem VEC.8, if L1 ⊥ L2, the two units

U1 and U2, together with their lines L1 and L2 will be referred to as a

coordinatization of P. A coordinatization based on lines L1 and L2 and

their units U1 and U2 will be referred to as the coordinatization (U1, U2).

(cf Definition VEC.14(B).)

(B) L1 and L2 are the axes of this coordinatization, and O is its origin.

For a visualization, see Figure 1.1.

(C) Interpreting P as a physical plane, such as a sheet of paper or a chalk-

board, if a person’s right hand is placed with the palm toward the surface so

that the index finger points in the direction of
qy →
OU1 and the thumb points in

the direction
qy →
OU2, then the coordinatization of P is right-handed.



6 1 The Plane as a Vector Space (VEC)

U2

U1

U2

U1O O

Fig. 1.1 Figures for Definition VEC.9: left-handed (left) and right-handed (right).

Whereas, if a person’s left hand is placed palm toward the surface so that

the index finger points in the direction of
qy →
OU1 and the thumb points in the

direction
qy →
OU2, then the coordinatization of P is left-handed.

The rotation P such that ρ(
qy →
OU1) =

qy →
OU2 is clockwise for left-handed co-

ordinatization and is counterclockwise for right-handed coordinatization.

Definition VEC.10 Let R2 denote the set

R× R = {(a, b) | a and b are both members of R},
that is, R2 is the Cartesian product of R and R (cf Specht Ch.1 Section 1.3).

For any (a, b) and (c, d) in R2, and any real number x, define

(A) (a, b) + (c, d) = (a+ c, b+ d) and

(B) x(a, b) = (xa, xb).

(C) For any point (a, b) ∈ R2, we will refer to a as the first coordinate

of (a, b), and to b as the second coordinate.

Theorem VEC.11 For any (a, b), (c, d), and (e, f) in R2, and any real

numbers x and y,

(A) (1) (a, b) + (c, d) = (c, d) + (a, b) (addition is commutative).

(2) (a, b) + ((c, d) + (e, f)) = ((a, b) + (c, d)) + (e, f) (addition is asso-

ciative).

(3) (a, b) + (0, 0) = (a, b) ((0, 0) is the additive identity.)

(4) (−a,−b)+(a, b) = (0, 0) ((−a,−b) is the additive inverse of (a, b).)

(B) (1) x(y(a, b) = (xy)(a, b) (scalar multiplication is associative).

(2) 1(a, b) = (a, b).

(C) (1) x((a, b) + (c, d)) = x(a, b) + x(c, d) (scalar multiplication is dis-

tributive with respect to addition of points).
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(2) (x+y)(a, b) = x(a, b)+y(a, b) (scalar multiplication is distributive

with respect to addition of scalars).

(D) x(a, b) = (0, 0) iff x = 0 or (a, b) = (0, 0) (or both).

Proof. Using Definition VEC.10 and properties of real numbers,

(A) (1) (a, b) + (c, d) = (a+ c, b+ d) = (c+ a, d+ b) = (c, d) + (a, b).

(2) (a, b) + ((c, d) + (e, f)) = (a, b) + (c+ e, d+ f)

= ((a+ (c+ e), b+ (d+ e)) = ((a+ c) + e, (b+ d) + e)

= (a+ c, b+ d) + (e, f) = ((a, b) + (c, d)) + (e, f).

(3) ((a, b) + (0, 0) = ((a+ 0, b+ 0) = (a, b).

(4) (−a,−b) + (a, b) = (a− a, b− b) = (0, 0).

(B) (1) x(y(a, b) = x(ya, yb) = (xya, xyb) = (xy)(a, b).

(2) 1(a, b) = (1a, 1b) = (a, b).

(C) (1) x((a, b) + (c, d)) = x((a + c, b+ d)) = (x(a + c), x(b + d))

= (xa+ xc, xb + xd) = (xa, xb) + (xc, xd)

= x(a, b) + x(c, d).

(2) (x + y)(a, b) = (x + y)a, (x+ y)b) = (xa+ ya, xb+ yb)

= (xa, xb) + (ya, yb) = x(a, b) + y(a, b).

(D) x(a, b) = (0, 0) iff (xa, xb) = (0, 0) iff xa = 0 and xb = 0 iff (x = 0

or a = 0) and (x = 0 or b = 0) iff x = 0 or (a = 0 and b = 0) iff x = 0 or

(a, b) = (0, 0). ⊓⊔

Definition VEC.12 A vector space, or linear space over the field R of

real numbers (called scalars) is a set V of elements called vectors satisfying

the following conditions (A), (B), and (C):

(A) To every pair A and B of vectors in V there corresponds a vector

A+B, called the sum of A and B, such that V forms an abelian group with

respect to the operation +, that is,

(1) A+B = B+A for all A and B in V (addition is commutative),

(2) A+ (B +C) = (A+B) +C for all A, B, and C in V (addition is

associative),

(3) there exists in V a unique vector O (called the origin such that

for every A ∈ V, A+O = O (O is the additive identity), and

(4) to every vector A ∈ V there corresponds a unique vector −A such

that A+ (−A) = O (−A is the additive inverse of A.

(B) To every pair A and x, where A ∈ V and x is a real number, there

corresponds a vector xA ∈ V called the product, or scalar product of x

and A, such that
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(1) x(yA) = (xy)A for any real numbers x and y and every A ∈ V

(multiplication by scalars is associative), and

(2) 1A = A for every vector A ∈ V.

(C) (1) x(A + B) = xA + xB for every real number x and all vectors A

and B in V (scalar multiplication is distributive with respect to addition of

vectors), and

(2) (x + y)A = xA + yA for all real numbers x and y and every

vectors A ∈ V (scalar multiplication is distributive with respect to addition

of scalars).

(D) If V is a vector space, a subset U ⊆ V is a subspace of V iff it is a

vector space under the same operations as in V. A subspace U of V is said to

be a proper subspace if there exists at least one point A ∈ V such that A 6∈ U.

Remark VEC.12.1 (A) By Theorem VEC.3 and Theorem VEC.7(A),

(B), (C), and (D), P is an additive abelian group and a vector space. By

Theorem VEC.11, R2 = R× R is a vector space.

(B) The reader should verify for herself that R is a vector space over

itself—the vector space axioms are just a subset of the field axioms.

(C) The word vector in the term vector space does not imply their visual-

ization as arrows on the plane in various locations (that is, “bound vectors”);

if they are visualized as arrows, the initial point is always the origin O.

(D) The word space in the terms vector or linear space does not imply

that it is ordinary “space” as in the incidence axioms. A vector space is a

very general concept encompassing lines, planes, space, and spaces of higher

dimension—see also Remark VEC.17.

(E) A subset U of V is a subspace iff for all A and B in U and every real

number t, both A+B ∈ U and tA ∈ U. This is because all the computational

properties of V are “inherited” by U. The set {O} is a trivial subspace of V;

also, V is a subspace of itself.

Theorem VEC.13 Every proper subspace (other than the trivial subspace

O) of V of the plane P is a line through the origin O.

Proof. Let A 6= O be a point of V. Then
←→
OA ⊆ V. If U is a proper subspace

of P we show that it cannot contain any points other than those of
←→
OA.

Suppose the contrary, that B 6= O is also a point of V and B 6∈ ←→OA. Then
also

←→
OB ⊆ V. If C is any point of P, let M be the line through C which

is parallel to
←→
OA, as guaranteed by Axiom PS. Since

←→
OB intersects

←→
OA at
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O it must also intersectM at some point D, by Specht Ch.2 Exercise IP.4.

Then C + (−D) ∈ ←→OA. Hence C − D + D = C ∈ ←→OA +
←→
OB and therefore←→

OA+
←→
OB = P, and V = P, so it is not a proper subspace. Therefore the only

proper subspaces of P are lines through the origin. ⊓⊔

Definition VEC.14 (A) Let P be the Euclidean/LUB plane, O be its

origin, and let L1 and L2 be perpendicular lines in P such that L1∩L2 = {O}
which have been built into ordered fields with U1 and U2, respectively, as

their units. Define λ to be a mapping from P to R2 as follows: for every

A = aU1 + bU2 ∈ P, define λ(A) = λ(aU1 + bU2) = (a, b).

(B) The mapping λ defined in part (A) may be referred to as the coor-

dinatization map belonging to the coordinatization (U1, U2) (cf Definition

VEC.9(A)).

(C) A mapping Φ from a vector space V to a vector space U is a vec-

tor space isomorphism, or, if the context is well understood, simply an

isomorphism iff

(1) Φ is a group isomorphism between the two spaces (as additive

groups), and

(2) for every real number x and every A ∈ V, Φ(xA) = xΦ(V ).

Again, as with isomorphisms of groups and fields, if two vector spaces

are isomorphic, they cannot be distinguished algebraically and hence may be

identified.

Remark VEC.15 It is easy to show that a bijection Φ of V to U is a

vector space isomorphism iff for all real numbers x and y and all members

A and B of V, Φ(xA + yB) = xΦ(A) + yΦ(B). The proof of this is Exercise

VEC.2.

Theorem VEC.16 Let P, R2, L1, L2 and λ be as in Definition VEC.14.

(A) λ is a bijection onto R2 and is a vector space isomorphism between P

and R2.

(B) If A 6= O is any point of L1, then L1 = {xA | x ∈ R} and
λ(L1) = {(x, 0) | x ∈ R}.

If B 6= O is any point of L2, then L2 = {yB | y ∈ R} and
λ(L2) = {(0, y) | y ∈ R}.

(C) A line L ‖ L1 iff for some point C ∈ P \ L1, L = L1 + C iff for some

real number c 6= 0, λ(L) = {(x, c) | x ∈ R}.
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A line L ‖ L2 iff for some point D ∈ P \ L2, L = L2 +D iff for some real

number d 6= 0, λ(L) = {(d, y) | y ∈ R}.

Proof. (A)(I) λ is a one-to-one mapping, for if λ(A) = λ(B), where A =

aU1+ bU2 and B = cU1+dU2, then (a, b) = (c, d). λ is onto R2, for if (a, b) is

any member of R2, λ(aU1 + bU2) = (a, b). To see that it is an isomorphism,

we must prove properties (1) and (2) of Definition VEC.14(C).

(1) λ is a group isomorphism between the two spaces (as additive groups),

since for every A = aU1 + bU2 and B = cU1 + dU2 in P,

λ(A+B) = λ(aU1 + bU2 + cU1 + dU2) = λ(aU1 + cU1 + bU2 + dU2)

= λ((a + c)U1 + (b + d)U2) = (a+ c, b+ d)

= (a, b) + (c, d) = λ(A) + λ(B).

(2) For every A = aU1 + bU2 and every real number x, using part (1)

λ(xA) = λ(x(aU1 + bU2)) = λ(xaU1 + xbU2) = (xa, xb)

= x(a, b) = xλ(aU1 + bU2) = xλ(A).

The proofs of parts (B) and (C) are Exercise VEC.4. ⊓⊔

Remark VEC.17 (A) One of our objectives here is to use the fact of

isomorphism between R2 and P to simplify the way in which we think about

points in the plane. There is something quite clumsy about having constantly

to refer to a point A in the plane as aU1+ bU2. For many purposes it’s easier

to think of (and easier to write!) such a point as a pair (a, b) of real numbers.

In the following, we make the identification between aU1 + bU2 and (a, b),

treating them as if they were the same thing. We will be switching notations

back and forth at will—doing so is legitimate because of the isomorphism

λ and Theorem VEC.16. In particular, it is legitimate to write part (C) of

Theorem VEC.16 just above as:

A line L ‖ L1 iff for some real number c 6= 0, L = {(x, c) | x ∈ R}.
A line L ‖ L2 iff for some real number d 6= 0, L = {(d, y) | y ∈ R}.

Citations to Theorem VEC.16(C) will, without further reference, be consid-

ered to include this version.

(B) In the language of vector space theory, part (B) of Theorem VEC.8

(aU1+bU2 = O iff a = b = 0) says that the two vectors U1 and U2 are linearly

independent. Also, the fact that every point A in P can be expressed as

A = aU1 + bU2 for some a and b says that the two vectors U1 and U2 span

the space P. In any vector space, a set of vectors which is both linearly

independent and spans the space is called a basis for the space.
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It can be shown that every vector space has a basis, and that any two bases

for a given vector space have the same number of vectors, that is they have

the same cardinal number (cf Specht, Chapter 1, Section 1.4). The number

of elements in a basis of a space is called its dimension. Two vector spaces

which are isomorphic must have the same dimension. The plane P and R2

both have dimension 2. That R2 has dimension 2 can be seen without resort-

ing to the isomorphism, by verifying that the set {(1, 0), (0, 1)} is a basis for

R2.

(C) It is quite natural to extend Definition VEC.10 to vector spaces con-

sisting of ordered triples of real numbers, and with some effort we might

show that space (as defined in the axioms for incidence geometry) is isomor-

phic to this vector space.

We may extend these notions further to n-tuples of real numbers. Define

the sum of any two n-tuples (a1, a2, ..., an) and (b1, b2, ..., bn) in Rn = R ×
R× ...× R, as

(a1, a2, ..., an) + (b1, b2, ..., bn) = (a1 + b1, a2 + b2, ..., an + bn),

and for any real number x define the scalar product

x(a1, a2, ..., an) = (xa1, xa2, ..., xan).

Then it is easy to show (as we did in Theorem VEC.11 for R2) that Rn is

a vector space, and that the set

{(1, 0, 0, ..., 0), (0, 1, 0, ..., 0), (0, 0, 1, ..., 0), ..., (0, 0, 0, ...., 1)}
is a basis for Rn. Thus Rn has dimension n.

(D) In more advanced vector space theory, these notions are extended to

spaces of infinite dimension. It is quite easy to see that the set of all real-

valued functions defined on the unit interval [0,1] (or for that matter, defined

on any other fixed interval or on the whole real line) is a vector space, under

pointwise addition of functions and scalar multiplication. That is, for any

two functions f and g define f + g to be the function whose value at each x

in their common domain is f(x) + g(x), and for any real number t define tf

to be the function whose value at each x in its domain is tf(x). In general,

spaces of functions do not have finite dimension.

1.3 Lines and their slopes

Again, P will denote the Euclidean/LUB plane, O its origin, and L1 and

L2 will be perpendicular lines in P such that L1∩L2 = {O}, which have been
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built into ordered fields with U1 and U2, respectively, as their units, so that

(U1, U2) is a coordinatization of P. Every point aU1 + bU2 ∈ P is identified

with the point (a, b) ∈ R2 using the isomorphism λ, as in Definition VEC.14.

Definition VEC.18 (A) A line L on P is vertical iff L PE L2 (meaning

that either L ‖ L2 or L = L2, as defined in Specht Ch.3 Definition CAP.10).

(B) A line L on P is horizontal iff L PE L1.

Remark VEC.18.1 (A) Part (C) of Theorem VEC.16 says that a line

L ‖ L1 (and is horizontal) iff for some real number c 6= 0, L = {(x, c) | x ∈ R}.
Also, L ‖ L2 (and is vertical) iff for some real number d 6= 0, L = {(d, y) |
y ∈ R}.

(B) At the risk of seeming overly pedantic, we note the reasoning it takes

to verify that any horizontal line is perpendicular to any vertical line:

By Definition VEC.9, L1 and L2 are perpendicular; by Specht Ch.8 Theo-

rem NEUT.32 each is a fixed line for the reflection over the other; by Specht

Ch.11 Corollary EUC.3.1 every line parallel to a fixed line for a reflection is

a fixed line for that reflection. It follows that lines parallel to L1 are fixed

lines for the reflection over L2, and by Theorem NEUT.32 are perpendicular

to L1.

By a similar argument all lines parallel to L2 are perpendicular to L1. By

Theorem EUC.3, any line parallel to L1 is perpendicular to any line parallel

to L2.

Theorem VEC.19 Let L be a line in P which is not vertical. There exists

a real number m such that for any two points X = (x1, x2) and Y = (y1, y2)

of L, m = y2−x2

y1−x1
.

Proof. (Case 1: L is horizontal.) For any two points X = (x1, x2) and Y =

(y1, y2) of P, x2 = y2 so that for all X and Y in P, y2−x2

y1−x1
= 0.

(Case 2: L is not horizontal and O ∈ L.) By Theorem REAL.37, for every

real number t 6= 0 there exists a dilation δt with fixed point O such that for

every X 6= O in P, tX = δt(X). From Specht Ch.3 Theorem CAP.18 L is a

fixed line for δt so for every t and every point X ∈ L, δt(X) ∈ L.
Assume that L has been built into an ordered field with unit U = (a, b).

Then by Corollary REAL.35.1, for any two non-O points X = (x1, x2) and

Y = (y1, y2) of L there exists a real number t such that tX = Y . Then

tX = t(x1, x2) = (tx1, tx2) = Y = (y1, y2)
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and tx1 = y1 and tx2 = y2. It follows that
x2

x1
= tx2

tx1
= y2

y1
for any two points

(x1, x2) and (y1, y2) in L. Also,
y2−x2

y1−x1
= tx2−x2

tx1−x1
= (t−1)x2

(t−1)x1
= x2

x1
= y2

y1
,

Now suppose that Z = (z1, z2) and W = (w1, w2) are any distinct non-O

points of L. By the same reasoning,
z2−w2

z1−w1
= z2

z1
= x2

x1
.

Therefore y2−x2

y1−x1
is independent of our choice of points X and Y on the line

L, so long as neither X = O or Y = O.

Finally, if X = (x1, x2) = (0, 0) = O, and Y = (y1, y2) is any other point

on L, y2−x2

y1−x1
= x2

x1
. If we let m = x2

x1
, then m = y2−x2

y1−x1
for any choice of X and

Y on L.
(Case 3: L is not horizontal and O 6∈ L.) Let A = (a, b) be a point of L,

which will be fixed for the rest of this argument. Let

M = L−A = {X −A | X ∈ L} = τ−A(L).
By Definition CAP.6,M is a line passing through O which is parallel to L.
A point X = (x1, x2) ∈ L iff X − A = (x1 − a, x2 − b) ∈ M, and a point

Y = (y1, y2) ∈ L iff Y −A = (y1 − a, y2 − b) ∈ M. Then
(y2−b)−(x2−b)
(y1−a)−(x1−a) =

y2−b−x2+b
y1−a−x1+a

= y2−x2

y1−x1
;

this fraction, however, has been shown in Case 2 to be independent of the

points X and Y , hence independent of the points X − A and Y − A. This
proves the theorem. ⊓⊔

Definition VEC.20 Let L be a nonvertical line on P, and let X =

(x1, x2) and Y = (y1, y2) be points on L. The slope of L is m = y2−x2

y1−x1
.

Theorem VEC.21 Let s be any real number and Q be any point on P.

Then there exists a unique line L through Q with slope s.

Proof. (I: Existence.) Let L be the line through Q = (q1, q2) and (q1+1, q2+

s). Then the slope of L is q2+s−q2
q1+1−q1 = s.

(II: Uniqueness.) LetM be any nonvertical line through Q which has the

same slope s as L. Let the intersection of M and the vertical line through

(q1 +1, q2) be T = (q1 +1, q2 + t), for some real number t. The slope ofM is
q2+t−q2
q1+1−q1 = t

1 = t. But the slope ofM is s, so s = t and T = (q1+1, q2+s) ∈ L
so that L andM have two points in common, and are the same line. ⊓⊔

Theorem VEC.22 (A) If L andM are non-vertical lines on P, then L
andM have the same slope iff L PEM.
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(B) If L with slope s andM with slope t are distinct non-vertical lines on

P, then L ⊥M iff st = −1.

Proof. (A) If L 6= M, let A = (a, b) ∈ L and B = (c, d) ∈ M. Then

L+ (B −A) = τB−A(L) is a line that is parallel or equal to L, by Definition

CAP.6. Since A ∈ L, A+(B−A) = B so L+(B−A) andM intersect at the

point B, and therefore they are the same line. If X = (x1, x2) is any point

distinct from A in L, then the point Y = X+(B−A) = (x1+c−a, x2+d−b)
is a point of M distinct from B, and the slope of M is (x2+d−b)−d

(x1+c−a)−c = x2−b
x1−a

which is the slope of L. Therefore if L and M are parallel, they have the

same slope.

Conversely, if these two lines have the same slope, then by the previous

argument, L+(B−A) has the same slope as L because they are parallel, and

since L+(B−A) andM intersect at B, by the uniqueness part of Theorem

VEC.21, L+ (B −A) =M and hence L ‖ M.

(B) The proof is Exercise VEC.13. ⊓⊔

Theorem VEC.23 Let Q = (q1, q2) be a point on P, s a real number,

and let L be the line through Q with slope s. Then

L = {(x1, x2) | x2 − q2 − s(x1 − q1) = 0}.
That is to say, a point (x1, x2) ∈ L iff x2 = q2 + s(x1 − q1).

Proof. Let X = (x1, x2), then by the uniqueness part of Theorem VEC.21,

X ∈ L\{(q1, q2)} iff x2−q2
x1−q1 = s. Hence X ∈ L iff x2− q2− s(x1− q1) = 0. ⊓⊔

Theorem VEC.24 Let U = (u1, u2) and V = (v1, v2) be distinct points

on P. Then
←→
UV = {(x1, x2) | (v2 − u2)(x1 − u1)− (v1 − u1)(x2 − u2) = 0}.

Proof. (Case 1:
←→
UV is nonvertical.) Let (x1, x2) be any ordered pair of real

numbers. The slope of
←→
UV is v2−u2

v1−u1
, by Theorem VEC.19. Let U play the

role of Q in Theorem VEC.23; then by that theorem,

X ∈ ←→UV iff x2 − u2 −
(

v2−u2

v1−u1

)
(x1 − u1) = 0,

i.e., (v1 − u1)(x2 − u2)− (v2 − u2)(x1 − u1) = 0.

(Case 2:
←→
UV is vertical.) Let X = (x1, x2) be any point of P. Then

←→
UV

is vertical iff u1 = v1, so that (v1 − u1)(x2 − u2) − (v2 − u2)(x1 − u1) = 0

becomes (v2 − u2)(x1 − u1) = 0. This is true iff x1 = u1, which is to say,

X = (x1, x2) ∈
←→
UV . ⊓⊔
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Theorem VEC.25 Let U and V be distinct points on P, U = (u1, u2),

and V = (v1, v2). Then←→
UV = {X | X = t(V − U) + U and t ∈ R}

= {(x1, x2) | (x1, x2) = t(v1 − u1) + u1

and t(v2 − u2) + u2 and t ∈ R}.

Proof. (Case 1:
←→
UV is nonvertical.)

←→
UV −U is a line L which passes through

O. Assume L has been built into an ordered field with O 6= V −U as its origin

and unit U . Then V −U 6= O is a point of L, and a point X = (x1, x2) ∈
←→
UV

iff X − U = (x1 − u1, x2 − u2) ∈ L.
By Corollary REAL.35.1 and the fact that the line L is fixed for δt, where

t is any real number, we know that X = (x1, x2) ∈
←→
UV iff there exists a real

number t such that X − U = t(V − U). That is to say,

(x1 − u1, x2 − u2) = t(v1 − u1, v2 − u2) = (t(v1 − u1), t(v2 − u2)),
or (x1, x2) = (t(v1 − u1) + u1, t(v2 − u2) + u2).

This proves Case 1.

(Case 2:
←→
UV is vertical.) Let (x1, x2) be any ordered pair of real numbers.

Then
←→
UV is vertical iff u1 = v1. Hence in this case X ∈ ←→UV iff x1 = u1. We

know there exists a real number t such that x2 = t(v2−u2)+u2. Then for this

value of t in particular, x1 = t(0)+u1 = t(v1−u1)+u1. Conversely, suppose

x2 = t(v2 − u2) + u2; then since u1 = v1, x1 = t(0) + u1 = t(v1 − u1)t+ u1.

⊓⊔

Theorem VEC.25.1 Let U and V be distinct points on P, U = (u1, u2),

and V = (v1, v2). The mapping Θ of R onto
←→
UV such that for each real

number t, Θ(t) = t(V −U)+U preserves order and betweenness. That is, for

any real numbers r, s, and t,

r < s iff Θ(r) = r(V − U) + U < Θ(s) = s(V − U) + U and

r s t iff (r(V − U) + U) (s(V − U) + U) (t(V − U) + U).

Proof. Build
←→
UV into an ordered field with origin Ô = U and unit Û = V −U .

Then by Theorem VEC.25
←→
UV = {X | X = tÛ+Ô and t ∈ R}. By Theorem

REAL.35, the mapping Θ(t) = t(V − U) + U = tÛ + Ô = tÛ is order

preserving, that is, t < s iff tÛ < sÛ iff t(V − U) + U < s(V − U) + U .

So for any three points X = rÛ , Y = sÛ , and Z = tÛ on
←→
UV , by Specht

Ch.6 Theorem ORD.6

X Y Z iff (X < Y < Z or Z < Y < X) iff (r < s < t or t < s < r)

which is true iff r s t. ⊓⊔
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1.4 Norms and inner products

In this section, P will denote the Euclidean/LUB plane, O its origin, and

L1 and L2 will be perpendicular lines in P such that L1 ∩ L2 = {O}, which
have been built into ordered fields with U1 and U2, respectively, as their

units, so that (U1, U2) is a coordinatization of P, and
px qy

OU1
∼=

px qy

OU2. Every

point aU1+ bU2 ∈ P is identified with the point (a, b) ∈ R2 using the isomor-

phism λ, as in Definition VEC.14.

Theorem VEC.26 Let A = a1U1 + a2U2 be any member of P. Then

there exists a unique real number c > 0 such that [
px qy

OcU1 ] = [
px qy

OA ] and cU1 =

Φ[
px qy

OA ], where Φ is the mapping defined in Specht Ch.9 Definition FSEG.14.

Proof. By Theorem FSEG.13 there exists a unique point X ∈ qy →
OU1 such that

[
px qy

OX ] = [
px qy

OA ]. By Theorem REAL.35(A) there exists a unique real number

c such that X = cU1, and since X ∈ qy →
OU1, c > 0. ⊓⊔

Definition VEC.26.1 Let A be any member of P. Then if A 6= O,

define the norm of A (denoted ‖A‖) as the positive real number c such that
px qy

OA ∼=
px qy

OcU1 (i.e. cU1 = Φ[
px qy

OA ]) the existence of which is guaranteed by

Theorem VEC.26; if A = O define ‖A‖ = 0.

By Definition OF.16, ‖A‖ is the length of the segment
px qy

OA, or the distance

from O to A.

Theorem VEC.26.2 For any two vectors A and B in P \ {O},
‖A‖ = ‖B‖ iff px qy

OA ∼=
px qy

OB.

Proof.
px qy

OA ∼=
px qy

OB iff [
px qy

OA ] = [
px qy

OB ] iff Φ[
px qy

OA ] = Φ[
px qy

OB ]. ⊓⊔

Theorem VEC.26.3 For any two vectors A and B in P,
px qy

AB ∼=
px qy

O(B −A).

Proof. Since τA is a translation, the lines
←−−−−−→
O(B −A) and τA(

←−−−−−→
O(B −A)) =←→AB

are parallel (cf Definition CAP.6). By Theorem VEC.4 ⊔⊓AO(B − A)B is a

parallelogram. By Theorem EUC.12(A),
px qy

AB ∼=
px qy

O(B −A), since these seg-

ments are opposite edges of this parallelogram. ⊓⊔

Theorem VEC.26.4 For any distinct vectors A and B in P, ‖B − A‖
is the length of the segment

px qy

AB, as defined in Definition OF.16.
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Proof. By Theorem VEC.26.3, [
px qy

AB ] = [
px qy

O(B −A) ], so that by Definition

OF.16, the length of the segment
px qy

AB is Φ[
px qy

AB ] = Φ[
px qy

O(B −A) ] = ‖B − A‖.
⊓⊔

Theorem VEC.26.5 (Third form of the Pythagorean Theorem)

For any three distinct non-collinear vectors A, B, and C in P,

‖A−B‖2 = ‖B − C‖2 + ‖A− C‖2 iff ∠ACB is a right angle.

Proof. By Theorem VEC.26 and Theorem VEC.26.3, there exist positive real

numbers a, b, and c such that aU1 = Φ[
px qy

BC ] = Φ[
px qy

O(B − C) ], bU1 = Φ[
px qy

AC ] =

Φ[
px qy

O(A − C) ], and cU1 = Φ[
px qy

AB ] = Φ[
px qy

O(A −B) ]. By Definition VEC 26.1,

a = ‖B − C‖, b = ‖A− C‖, and c = ‖A−B‖.
In the notation of Specht Ch.15 Theorem SIM.23.1 (Second form of

the Pythagorean Theorem), let Â = aU1 = Φ[
px qy

O(B − C) ], B̂ = bU1 =

Φ[
px qy

O(A − C) ], and Ĉ = cU1 = Φ[
px qy

O(A −B) ]. Then by that theorem, ∠ACB

is right iff (cU1)
2 = (aU1)

2 + (bU1)
2, and by Theorem REAL.25, this is

c2U1 = a2U1 + b2U1, or

c2U1 − a2U1 − b2U1 = (c2 − a2 − b2)U1 = O.

By Corollary REAL.34(B) this is true iff c2 − a2 − b2 = 0 or c2 = a2 + b2.

That is, ‖A−B‖2 = ‖B − C‖2 + ‖A− C‖2. ⊓⊔

Theorem VEC.27 (A) For any vector A = a1U1 + a2U2 ∈ P, ‖A‖2 =

a1
2 + a2

2.

(B) For any distinct vectors A = a1U1 + a2U2 and B = b1U1 + b2U2 in P,

‖A−B‖2 = (a1 − b1)2 + (a2 − b2)2.

Proof. (A) The quadrilateral ⊔⊓O(a1U1)A(a2U2) is a parallelogram and←−−−−→
O(a1U1) ⊥

←−−−−→
O(a2U2)

so by Theorem EUC.3
←−−−−→
O(a1U1) ⊥

←−−−−→
(a1U1)A. By Theorem EUC.12(A)

(i)
px qy

(a1U1)A ∼=
px qy

O(a2U2).

The three points O, a1U1, and A form a triangle, where ∠O(a1U1)A is

right. Since
px qy

OU2
∼=

px qy

OU1, by Specht Ch.13 Theorem DLN.17 and Theorem

REAL.37,

(ii)
px qy

O(a2U2) ∼=
px qy

O(a2U1).

By Theorem VEC.26.3,

(iii)
px qy

(a1U1)A ∼=
px qy

O(A − a1U1).

Putting congruences (i), (ii) and (iii) together,
px qy

O(A− a1U1) ∼=
px qy

(a1U1)A ∼=
px qy

O(a2U2) ∼=
px qy

O(a2U1),
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so by Definition VEC.26.1 ‖A − a1U1‖ = ‖a2U1‖ = |a2|. Also by definition,

‖a1U1 −O‖ = ‖a1U1‖ = |a1|. By Theorem VEC.26.5,

‖A‖2 = ‖A−O‖2 = ‖a1U1 −O‖2 + ‖A− a1U1‖2
= |a1|2 + |a2|2 = a1

2 + a2
2.

(B) A−B = a1U1 + a2U2 − b1U1 − b2U2

= a1U1 − b1U1 + a2U2 − b2U2 = (a1 − b1)U1 + (a2 − b2)U2

so by part (A) ‖A−B‖2 = (a1 − b1)2 + (a2 − b2)2. ⊓⊔

Remark VEC.28 (A) Without proof one cannot assume that for a given

real number t, the point tU1 rotated onto
qy →
OU2 would be the same point as tU2.

That is, it’s not automatic that the scale for scalar multiplication on L1 is the

same as for scalar multiplication on L2. If
px qy

OU1
∼=

px qy

OU2, Theorem REAL.37

assures us that these two scales are indeed the same, that is,
px qy

OtU1
∼=

px qy

OtU2.

This was important in the proof just above, because the norm is defined in

terms of a scalar multiple on L1, but we wanted to express the result in terms

of a scalar multiple on L2. That is why we invoked congruence (ii) in this

proof.

(B) We defined the norm of a vector as a point of P, in a manner quite

specific to the plane. Under the identification between P and R2 provided by

Definition VEC.14 and Theorem VEC.16, for any point (a, b) ∈ R2 the result

of Theorem VEC.27(A) above becomes

‖(a, b)‖2 = a2 + b2 or ‖(a, b)‖ =
√
a2 + b2.

For any two points (a, b) and (c, d) of R2, part (B) of Theorem VEC.27

becomes

‖(a, b)− (c, d)‖2 = (a− c)2 + (b − d)2
or ‖(a, b)− (c, d)‖ =

√
(a− c)2 + (b − d)2.

(C) In Rn, expressions similar to those in (A) are generally used for the

definition of norm. That is, for any point (a1, a2, ..., an) ∈ Rn, the norm

‖(a1, a2, ..., an)‖ =
√
a12 + a22 + ...+ an2.

Norms on vector spaces have a number of useful properties; we state the

most fundamental of these in the following Theorem; in more general vec-

tor spaces these three properties are sometimes used as a definition of a norm.

Theorem VEC.29 For all points A = (a, b) and B = (c, d) in R2, and

every real number x,

(1) ‖A‖ > 0 iff (a, b) 6= (0, 0);

(2) ‖A+B‖ ≤ ‖A‖+ ‖B‖; that is ‖(a+ c, b+ d)‖ ≤ ‖(a, b)‖+ ‖(c, d)‖
(the triangle inequality); and
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(3) ‖xA‖ = |x|‖A‖, that is ‖x(a, b)‖ = |x|‖(a, b)‖ (the homogeneity

property).

Proof. The proof is Exercise VEC.6. ⊓⊔

Definition VEC.30 (A) The inner product (sometimes called the dot

product) of two vectors (a, b) and (c, d) in R2 is the real number ac + bd,

and is denoted here by the symbol (a, b) • (c, d).
(B) Two vectors (a, b) and (c, d) are orthogonal iff (a, b) • (c, d) = 0.

Remark VEC.31 (A) Properties of the inner product are listed and

proved in Exercise VEC.7.

(B) In general vector spaces (over the field of real numbers) the inner prod-

uct is defined as a real-valued function which satisfies the properties listed in

Exercise VEC.7. The present definition (and its natural extensions) are valid

only on Rn. In more general theory, the inner product of two vectors A and

B is usually denoted (A,B) but for our very limited treatment we avoid this

notation since it may be confused with our notation for vectors in R2.

Theorem VEC.32 For every vector A = (a, b), A •A = ‖A‖2.

Proof. A •A = (a, b) • (a, b) = a2 + b2 = ‖A‖2. ⊓⊔

Theorem VEC.33 Two nonzero vectors A = (a, b) and B = (c, d) are

orthogonal iff
←−−−−−→
(0, 0)(a, b) ⊥ ←−−−−−→(0, 0)(c, d).

Proof. Using the properties of inner product from Exercise VEC.4,

|A− B|2 = (A−B) • (A−B) = A •A− 2A •B +B •B
= |A|2 + |B|2 − 2A •B.

By the Pythagorean Theorem and its converse (cf Specht Ch.15 Theorem

SIM.23)
←→
OA ⊥ ←→OB iff |A−B|2 = |A|2+ |B|2. Hence A•B = 0 iff A ⊥ B. ⊓⊔

The equality |A − B|2 = |A|2 + |B|2 − 2A • B is a generalization of the

Pythagorean Theorem since it holds for any triangle.
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1.5 Linear mappings

In this section, P will denote the Euclidean/LUB plane, O its origin, and

L1 and L2 will be perpendicular lines in P such that L1 ∩ L2 = {O}, which
have been built into ordered fields with U1 and U2, respectively, as their units,

so that (U1, U2) is a coordinatization of P. Every point aU1+bU2 ∈ P is iden-

tified with the point (a, b) ∈ R2 using the isomorphism λ, as in Definition

VEC.14.

Definition VEC.34 Let V be a vector space over the field of real num-

bers.

(A) A linear mapping (or linear transformation or linear operator)

α on V is a mapping of V into V which satisfies the following conditions:

(1) for all A and B in V, α(A+B) = α(A) + α(B), and

(2) for every A ∈ V and every real number t, α(tA) = tα(A).

(B) The mapping O is the mapping such that O(A) = O for every A ∈ V.

(C) The mapping −α is the mapping such that for every A ∈ V,

(−α)(A) = −(α(A)).
(D) (1) The sum of two linear mappings α and β on V is the mapping

α+ β such that for every A ∈ V, (α+ β)(A) = α(A) + β(A).

(2) The product or scalar product of a real number t and a

linear mapping α on V is the mapping tα such that for every A ∈ V,

(tα)(A) = t(α(A)).

Theorem VEC.35 Let V be a vector space over the field of real numbers.

(A) If α and β are linear mappings on V, and t is any real number, then

the mappings α+ β and tα are linear mappings on V.

(B) The mappings O and ı are linear mappings on V.

(C) For every linear mapping α on V, the mapping −α as in Definition

VEC.34(C) is a linear mapping.

(D) If α is any linear mapping on V, then

(1) α(O) = O; and

(2) for any A ∈ V, α(−A) = −(α(A)).
(E) The set of all linear mappings on the vector space V, with the defi-

nitions of sum and scalar product given in Definition VEC.34(C) is itself a

vector space over the real numbers.
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Proof. The proof of parts (A) through (D) is Exercise VEC.8. The proof of

part (E) is Exercise VEC.9. ⊓⊔

Theorem VEC.36 (A) A linear mapping α on a vector space V is not

one-to-one iff for some A 6= O in V, α(A) = O.

(B) If α is a linear mapping on a vector space V, then the image α(V) of

V under α is a subspace of V.

Proof. (A) If for some A 6= O in V, α(A) = O, by Theorem VEC.35(D)(1)

α(O) = O so α is not one-to-one. Conversely, if α is not one-to-one, there exist

distinct points A and B of V such that α(A) = α(B) and hence α(A−B) = O.

(B) Let A and B be points of α(V) and let t be a real number. Then

there exist points C and D of V such that α(C) = A and α(D) = B. It

follows that α(C +D) = α(C) + α(D) = A+B so that A+B ∈ α(V). Also,
α(tC) = tα(C) = tA so that tA ∈ α(V). By Remark VEC.12.1(E), α(V) is

a subspace of V. ⊓⊔

Definition/Remark VEC.37 (A) In the remainder of this section we

will often write points X = (x1, x2) of R2 in the form X =

[
x1

x2

]
. For each

X =

[
x1

x2

]
∈ R2 define α

[
x1

x2

]
=

[
a11x1 + a12x2

a21x1 + a22x2

]
.

(B) It should be noted here that the mapping α is often defined in terms

of matrices and matrix multiplication. A matrix is a rectangular array of

numbers such as

[
a11 a12

a21 a22

]
. This one is a “square 2 by 2 matrix.”

Two matrices can be multiplied provided the number of columns in the

left-hand matrix (multiplicand) is the same as the number of rows in the

right hand matrix. Thus,

[
a11 a12

a21 a22

]
and

[
b11 b12 b13

b21 b22 b23

]
can be multiplied,

but

[
a11 a12

a21 a22

]
and



b11 b12

b21 b22

b31 b32


 can’t.

Multiplication is carried out by the “row by column rule.” by which the

ijth entry of the product (that is, the entry in the ith row and the jth

column) is the sum of the products of the entries in the ith row of the left-
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hand matrix with the entries in the jth column of the right hand matrix.

Thus, the product
[
a11 a12

a21 a22

]
·
[
b11 b12 b13

b21 b22 b23

]

=

[
(a11b11 + a12b21) (a11b12 + a12b22) (a11b13 + a12b23)

(a21b11 + a22b21) (a21b12 + a22b22) (a21b13 + a22b23)

]
.

We can use the same rule to express the value of the mapping α on R2.

Recall that for each X ∈ R2 we wrote X = (x1, x2) as a matrix with 2 rows

and 1 column, that is, as

[
x1

x2

]
, and we defined α

[
x1

x2

]
=

[
a11x1 + a12x2

a21x1 + a22x2

]
.

The right-hand side here is precisely the product

[
a11 a12

a21 a22

]
·
[
x1

x2

]
using the

row by column rule. In this usage, the matrix

[
a11 a12

a21 a22

]
is said to be the

matrix of the mapping α. If we know the values of α at the points (1, 0)

and (0, 1), we can easily find the matrix of α, since

α

[
1

0

]
=

[
a11

a21

]
and α

[
0

1

]
=

[
a12

a22

]
.

The determinant of the matrix

[
a11 a12

a21 a22

]
is the quantity a11a22−a12a21,

which is usually denoted by the symbol

∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣. If
[
a11 a12

a21 a22

]
is the matrix

of the mapping α we will often say that a11a22−a12a21 is the determinant of α.

Theorem VEC.38 The mapping α defined in Definition VEC.37 is a

linear mapping on R2.

Proof. Let X =

[
x1

x2

]
and Y =

[
y1

y2

]
be any two points of R2, and let t be

any real number. Then

α(X + Y ) = α(

[
x1

x2

]
+

[
y1

y2

]
) =

[
a11(x1 + y1) + a12(x2 + y2)

a21(x1 + y1) + a22(x2 + y2)

]

=

[
a11x1 + a11y1 + a12x2 + a12y2

a21x1 + a21y1 + a22x2 + a22y2

]
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=

[
a11x1 + a12x2

a21x1 + a22x2

]
+

[
a11y1 + a12y2

a21y1 + a22y2

]
= α(X) + α(Y ).

Also α(tX) = α(

[
tx1

tx2

]
) =

[
a11(tx1) + a12(tx2)

a21(tx1) + a22(tx2)

]
=

[
t(a11(x1) + a12(x2))

t(a21(x1) + a22(x2))

]

= tα(X). ⊓⊔

Theorem VEC.39 The mapping α defined in Definition VEC.37 is one-

to-one iff its determinant a11a22 − a12a21 6= 0.

Proof. We show that there exist real numbers x1 and x2, not both zero, such

that a11x1 + a12x2 = 0 and a21x1 + a22x2 = 0 iff the determinant a11a22 −
a12a21 = 0. That is, the mapping α is not one-to-one iff the determinant is 0.

(I) Suppose the determinant a11a22 − a12a21 = 0. It is quite easy to show

that the mapping is not one-to-one if none of the entries a11, a22, a12 or a21

is zero. Sorting through the various cases where one or more of the entries

is zero is not difficult, but tedious, and we leave this work to the reader as

Exercise VEC.10.

If all entries are non-zero, then let x1 = 1 and let x2 = −a11

a12
. Then

a21 = a11a22

a12
, so that

a11x1 + a12x2 = a11 + a12(−a11

a12
) = a11 − a11 = 0

and a21x1 + a22x2 = a21 + a22(−a11

a12
) = a11a22

a12
− a22(a11

a12
) = 0,

so that α(x1, x2) = (0, 0). But (x1, x2) 6= (0, 0), so by Theorem VEC.36, α is

not one-to-one.

(II) Suppose a11x1 + a12x2 = 0 and a21x1 + a22x2 = 0, where not both x1

and x2 are zero.

If x1 6= 0, a11 + a12
x2

x1
= 0 and a21 + a22

x2

x1
= 0, so that there is no loss

of generality to assume that x1 = 1. Then the assumption takes the form

a11 + a12x2 = 0 and a21 + a22x2 = 0, so that x2 = −a11

a12
and also x2 = −a21

a22

hence a11

a12
= a21

a22
and a11a22 − a12a21 = 0. If x1 = 0 and x2 6= 0 then

0 = a11x1 + a12x2 = a12x2 and 0 = a21x1 + a22x2 = a22x2, hence a12 = 0,

a22 = 0 and a11a22 − a12a21 = 0. ⊓⊔

Theorem VEC.40 A linear mapping α defined on P is one-to-one iff it

is onto. That is, it is a bijection iff it is either one-to-one or onto.

Proof. (I) Suppose α is onto P and not one-to-one. There exists some point

U1 6= O of such that α(U1) = O. Let U2 be any point such that
←−→
OU1 ⊥

←−→
OU2.

Build
←−→
OU1 and

←−→
OU2 into ordered fields with U1 and U2 as their units. α is
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onto means that for every point B ∈ P, there exists a point A such that

α(A) = B.

By Theorem VEC.8, for some real numbers s and t, A = sU1 + tU2. Then

B = α(A) = α(sU1) + α(tU2) = sα(U1) + tα(U2) = tα(U2)

since α(U1) = O.

Therefore, every point of P is a member of
←−−−→
Oα(U2). But by Axiom I.5(B)

we know there are points of P that are not on this line, contradicting the

assumption that α is not one-to-one.

(II) Conversely, suppose that α is not onto P. Then α(P) is a proper

subspace of P, and by Theorem VEC.13 it is a line through the origin.

Again using Theorem VEC.8, let U1 and U2 be any two non-O points of

P such that U1, U2 and O are noncollinear and assume that the lines
←−→
OU1

and
←−→
OU2 have been built into ordered fields such that for every point A of P

there are real numbers a and b such that A = aU1 + bU2. Then both α(U1)

and α(U2) are members of the line α(P). If either α(U1) = O or α(U2) = O,

α is not one-to-one. If neither, then by Corollary REAL.35.1 there exists a

real number t such that α(U1) = tα(U2), and

O = α(U1)− tα(U2) = α(U1)− α(tU2) = α(U1 − tU2).

Since the lines
←−→
OU1 and

←−→
OU2 have only the point O in common, U1 6= tU2

and hence U1 − tU2 6= O. Therefore α is not one-to-one. ⊓⊔

Theorem VEC.41 The linear mapping α defined on R2 by Definition

VEC.37 is a bijection iff its determinant a11a22 − a12a21 6= 0.

Proof. By Theorem VEC.39 α is one-to-one iff a11a22− a12a21 6= 0. By The-

orem VEC.40 α is a bijection iff it is one-to-one.

Note that here we have used the identification between P and R2 that was

made in Theorem VEC.16 and Remark VEC.17(A). ⊓⊔

Theorem VEC.42 (A) The set of all bijective linear mappings on a

vector space V forms a group under composition of mappings.

(B) The group defined in part (A) is not abelian.

Proof. (A) By elementary function theory, composition of mappings, hence of

bijective linear maps, is associative. There exists an identity ı for composition,

and it is a linear mapping. The composition of two bijections is a bijection,

by elementary function theory. The composition of two linear mappings is

linear, as can be seen from the following calculations.
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Let α and β be linear maps. Then for every A and B in V, and every real

number t, we have

α ◦ β(A+B) = α(β(A +B)) = α(β(A) + β(B))

= α(β(A)) + α(β(B)) = α ◦ β(A) + α ◦ β(B)

and

α ◦ β(tA) = α(β(tA)) = α(tβ(A)) = tα(β(A)) = tα ◦ β(A).
Again by elementary function theory, every bijection has an inverse which

is a bijection. It remains only to prove that the inverse of a linear mapping is

linear. Let α be a bijective linear map, and let β be its inverse. Then for every

A and B in V, since α is onto, there exist points C and D in V such that

α(C) = A and α(D) = B, and by linearity of α, α(C +D) = A +B so that

β(A +B) = C +D. Then β(A + B) = C +D = β(A) + β(B). Also, for any

real number t, α(tC) = tα(C) = tA so that β(tA) = β(α(tC)) = tC = tβ(A).

Hence β is linear.

(B) The proof is Exercise VEC.11. ⊓⊔

Theorem VEC.43 Let α be a bijective linear map on a vector space V.

Then α has a fixed point other than O iff the mapping α− ı is not one-to-one.

Proof. α has a fixed point other than O iff for some point A 6= O, α(A) = A,

that is, α(A) −A = O, or the mapping α− ı is not one-to-one. ⊓⊔

1.6 Affine mappings and belineations

In this section, P will denote the Euclidean/LUB plane, O its origin, and

L1 and L2 will be perpendicular lines in P such that L1 ∩ L2 = {O}, which
have been built into ordered fields with U1 and U2, respectively, as their units,

so that (U1, U2) is a coordinatization of P. Every point aU1+bU2 ∈ P is iden-

tified with the point (a, b) ∈ R2 using the isomorphism λ, as in Definition

VEC.14.

Definition VEC.44 Let V be a vector space. A mapping β of V to V is

an affine mapping iff there exists a linear mapping α on V and a point D of

V such that for every A ∈ V, β(A) = α(A) +D. That is, β = τD ◦ α, where
τD is the translation such that τ(O) = D.

When we wish to emphasize the relationship between α and β we will refer

to β as an affine mapping associated with the linear mapping α, or to α as
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the linear mapping associated with the affine mapping β.

Remark VEC.45 An affine mapping β on R2 (identified with P) takes

the form

α

[
x1

x2

]
=

[
a11x1 + a12x2 + d1

a21x1 + a22x2 + d2

]
, where D =

[
d1

d2

]
.

Theorem VEC.46 (A) Let α be a linear mapping on a vector space V

and let β be an affine mapping associated with α. Then α is a bijection iff β

is a bijection.

(B) Let α be a linear mapping on R2 and β be an affine mapping associated

with α. Then β is a bijection iff the determinant a11a22− a12a21 is non-zero.

Proof. (A) For some D ∈ V, β(A) = τD ◦ α. Since translations are bijections

(cf Theorem ISM.6 and Theorem NEUT.11), by elementary function theory,

β is a bijection iff α is a bijection.

(B) Follows directly from Part (A) and Theorem VEC.41. ⊓⊔

Theorem VEC.47 If f1, h1, f2, and h2 are real numbers such that

(f1, f2) 6= (0, 0), then L = {(f1t + h1, f2t + h2) | t ∈ R} is the line through

(f1 + h1, f2 + h2) and (h1, h2).

Proof. This is an immediate consequence of Theorem VEC.25, if we let

vi = fi − hi and ui = hi for i = 1, 2. ⊓⊔

Theorem VEC.48 Let D be a point of R2 and let α be linear map-

ping on R2. Define β to be the mapping on R2 such that for every A ∈ R2,

β(A) = α(A) +D (so that β is an affine mapping associated with α). If the

determinant of α is nonzero, then

(A) β is a belineation, that is, a bijection preserving betweenness; and

(B) β is a collineation, mapping lines to lines.

Proof. (A) By Theorem VEC.46 both α and β are bijections. Let A, B, and

C be points of R2; using Definition LC.8 (from Specht, Chapter 21, section

21.5.2) and Theorem LC.12, A B C iff there exists a real number t such that

0 < t < 1 and B = A+ t(C −A). Then
β(B) = α(B) +D = α((A) + t(C −A)) +D = α(A) + α(t(C −A)) +D

= α(A) + tα(C −A) +D = α(A) + tα(C) − tα(A) +D

= α(A) +D + tα(C) + tD − tα(A) − tD
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= α(A) +D + t[(α(C) +D)− (α(A) +D)]

= β(A) + t[β(C) − β(A)],
so that β(A) β(B) β(C) and β is a belineation.

(B) By Specht Ch.21 Theorems LC.2 through LC.20, R2 is a Pasch plane,

since all the axioms through Axiom PSA hold. Then by Specht Ch.7 Theorem

COBE.2, β is a collineation. ⊓⊔

Theorem VEC.49 Every belineation of R2 is an affine mapping of R2.

Proof. Let γ be any belineation of R2. By Specht Ch.19 Theorem AA.10, γ

is determined by its values on any three noncollinear points. Since

[
0

0

]
,

[
1

0

]
,

[
0

1

]
are noncollinear, let q1, q2, r1, r2, s1, and s2 be real numbers such that

γ

([
0

0

])
=

[
q1

q2

]
, γ

([
1

0

])
=

[
r1

r2

]
, γ

([
0

1

])
=

[
s1

s2

]
,

and let β be the affine mapping such that

β

([
x1

x2

])
=

[
(r1 − q1)x1 + (s1 − q1)x2 + q1

(r2 − q2)x1 + (s2 − q2)x2 + q2

]
;

then

β

([
0

0

])
=

[
q1

q2

]
, β

([
1

0

])
=

[
r1

r2

]
, β

([
0

1

])
=

[
s1

s2

]
.

Hence γ = β. Here we have followed Martin [3].2 ⊓⊔

Theorem VEC.50 (A) A mapping α is a belineation of R2 with fixed

point (0, 0) iff it is a bijective linear map of R2.

(B) The set of all belineations of R2 with fixed point (0, 0) is a group under

composition of mappings.

Proof. (A) By Theorem VEC.49, a belineation of R2 is a bijective affine

mapping β whose value at each point A is β(A) = α(A)+D (α is its associated

linear map). Since α is a linear map, α(0, 0) = (0, 0), so β(0, 0) = (0, 0) iff

D = (0, 0), which means that β = α. Hence, every belineation of R2 with

fixed point (0, 0) is a bijective linear map. Conversely, by Theorem VEC.48

2 George E. Martin, Transformation Geometry, An Introduction to Symmetry, Springer,

1982 (Theorem 15.11).
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every bijective linear map is a belineation, and every linear map has (0, 0) as

a fixed point.

(B) By Theorem VEC.42 the set of all bijective linear maps forms a group

under composition. ⊓⊔

Theorem VEC.51 Let α be a belineation of R2 with fixed point (0, 0).

Then by Theorem VEC.50, α is a bijective linear map. Hence by Definition

VEC.37 and Theorem VEC.38, there exist real numbers a11, a22, a12 and a21

such that for every member

[
x1

x2

]
of R2, α

([x1
x2

])
=

[
a11x1 + a12x2

a21x1 + a22x2

]
. Then

α has no other fixed points iff (a11 − 1)(a22 − 1)− a12a21 6= 0.

Proof. By Theorem VEC.43, α has a fixed point other than (0, 0) iff the

mapping α− ı is not one-to-one.

For every every member

[
x1

x2

]
of R2,

(α− ı)
([x1
x2

])
=

[
(a11 − 1)x1 + a12x2

a21x1 + (a22 − 1)x2

]
.

By Theorem VEC.39, this mapping is one-to-one, hence has no fixed points

other than (0, 0) iff (a11 − 1)(a22 − 1)− a12a21 6= 0. ⊓⊔

Theorem VEC.52 A belineation ϕ of R2 = R×R is an isometry iff for

every two distinct members (x1, x2) and (y1, y2) of R
2,

‖ϕ(x1, x2)− ϕ(y1, y2)‖ = ‖(x1, x2)− (y1, y2)‖ =
√
(x1 − y1)2 + (x2 − y2)2.

Proof. (I) Let (x1, x2), (y1, y2), and (z1, z2) be three noncollinear members

of R2. If the equality holds for every two distinct members of R2, then

‖ϕ(x1, x2)− ϕ(y1, y2)‖ = ‖(x1, x2)− (y1, y2)‖,
‖ϕ(x1, x2)− ϕ(z1, z2)‖ = ‖(x1, x2)− (z1, z2)‖, and
‖ϕ(y1, y2)− ϕ(z1, z2)‖ = ‖(y1, y2)− (z1, z2)‖.

By Theorem VEC.26
px qy

ϕ(x1, x2)ϕ(y1, y2) ∼=
px qy

(x1, x2)(y1, y2),
px qy

ϕ(x1, x2)ϕ(z1, z2) ∼=
px qy

(x1, x2)(z1, z2), and
px qy

ϕ(y1, y2)ϕ(z1, z2) ∼=
px qy

(y1, y2)(z1, z2).

By Theorem NEUT.62 there exists an isometry ψ of R2 such that

ψ(△(x1, x2)(y1, y2)(z1, z2)) = △ϕ(x1, x2)ϕ(y1, y2)ϕ(z1, z2).
Since the values of ϕ and ψ agree on the three noncollinear points (x1, x2),

(y1, y2), and (z1, z2), by Theorem AA.10 ϕ = ψ.
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(II) If ϕ is an isometry of R2, by Theorem NEUT.15,

ϕ(
px qy

(x1, x2)(y1, y2)) =
px qy

ϕ(x1, x2)ϕ(y1, y2)

and by Definition NEUT.6(B)
px qy

(x1, x2)(y1, y2) ∼=
px qy

ϕ(x1, x2)ϕ(y1, y2).

By Theorem VEC.26.3, this is
px qy

O((x1, x2)− (y1, y2)) ∼=
px qy

O(ϕ(x1 , x2)− ϕ(y1, y2)).
and by Theorem VEC.26.2 this is equivalent to

‖(x1, x2)− (y1, y2)‖ = ‖ϕ(x1, x2)− ϕ(y1, y2)‖. ⊓⊔

Theorem VEC.53 There exists a belineation of R2 which has no fixed

point and is not an isometry.

Proof. By Theorem VEC.48, an affine mapping whose associated linear map

has non-zero determinant, is a collineation.

Let ϕ be the linear map of R2 such that for every member (x1, x2) ∈ R2,

ϕ(x1, x2) = (x1, 2x2). That is,

ϕ

[
x1

x2

]
=

[
1 · x1 + 0 · x2
0 · x1 + 2 · x2

]
,

and the determinant of ϕ is a11a22−a12a21 = 1 ·2−0 ·0 = 2 6= 0, so that ϕ is

a collineation. Let ψ be the affine map such that for every member (x1, x2)

of R2, ψ(x1, x2) = (x1 + 1, x2). Then

ψ

[
x1

x2

]
=

[
1 · x1 + 0 · x2 + 1

0 · x1 + 1 · x2 + 0

]
, where D =

[
1

0

]
,

and the determinant of the linear mapping associated with ψ is

a11a22 − a12a21 = 1 · 1− 0 · 0 = 1 6= 0,

so that ψ is a collineation. Let θ = ψ ◦ ϕ. Then
θ(x1, x2) = ψ(ϕ(x1, x2)) = ψ(x1, 2x2) = (x1 + 1, 2x2).

If θ had a fixed point (x1, x2), x1 = x1 + 1 and 1 = 0, which is false, so θ

has no fixed point. If θ were an isometry,

‖θ(x1, x2)− θ(y1, y2)‖=‖(x1 + 1, 2x2)−(y1 + 1, 2y2)‖
= ‖(x1, x2)− (y1, y2)‖,

so that
√
(x1 − y1)2 + 4(x2 − y2)2 =

√
(x1 − y1)2 + (x2 − y2)2, and thus

4 = 1 which is false. By Theorem VEC.52, θ is not an isometry. ⊓⊔
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1.7 Exercises for vector spaces

Exercise VEC.1* Complete the routine computations necessary to

prove Theorem VEC.3, that is, show that P is an Abelian group under the

operation + .

Exercise VEC.2* Prove Remark VEC.15: a bijection mapping Φ from

V to U is a (vector space) isomorphism iff for all real numbers x and y and

all members A and B of V, Φ(xA + yB) = xΦ(A) + yΦ(B).

Exercise VEC.3* Assuming the hypotheses of Theorem VEC.8, let A =

aU1 + bU2 and B = cU1 + dU2 be points of P. Rewrite the assertions (B)

through (F) of Theorem VEC.7 in terms of U1 and U2.

Exercise VEC.4* Prove Theorem VEC.16(B) and (C).

Exercise VEC.5* Let P be a Euclidean/LUB plane, and let Q = (q1, q2)

and R = (r1, r2) be distinct points of P. Then the point M = ( q1+r1
2 , q2+r2

2 )

is the midpoint of
px qy

QR.

Exercise VEC.6* Prove Theorem VEC.29: for any points A = (a, b)

and B = (c, d) in P = R2, and any real number x,

(1) ‖A‖ = ‖(a, b)‖ ≥ 0;

(2) ‖A+B‖ = ‖(a+ c, b+ d)‖ ≤ ‖(a, b)‖+ ‖(c, d)‖ = ‖A‖+ ‖B‖; and
(3) ‖xA‖ = ‖x(a, b)‖ = |x|‖(a, b)‖ = |x|‖A‖.
Exercise VEC.7* Let A, B, and C be vectors and t be a real number;

then

(A) A •B = B •A;
(B) t(A •B) = (tA) •B = A • (tB);

(C) A • (B + C) = A •B +A • C; and
(D) A •A = ‖A‖2 > 0, and A •A = 0 iff A = O.

Exercise VEC.8* Prove Theorem VEC.35(A) through (D):

(A) If α and β are linear mappings on V, and t is any real number, then

the mappings α+ β and tα are linear mappings on V.

(B) The mappings O and ı are linear mappings on V.

(C) For every linear mapping α on V, the mapping −α as in Definition

VEC.34(C) is a linear mapping.

(D) If α is any linear mapping on V, then

(1) α(O) = O; and

(2) for any A ∈ V, α(−A) = −(α(A)).
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Exercise VEC.9* Prove Theorem VEC.35(E): the set of all linear map-

pings on the vector space V, with the definitions of sum and scalar product

given in Definition VEC.34(C) is itself a vector space over the real numbers.

Exercise VEC.10* Complete the proof of Theorem VEC.39: if the de-

terminant a11a22 − a12a21 = 0 and one or more of the entries a11, a22, a12 or

a21 is zero, show that the mapping is not one-to-one.

Exercise VEC.11* Prove part (B) of Theorem VEC.42, by giving a

counterexample showing that the set of all bijective linear mappings on the

vector space R2 is not abelian.

Exercise VEC.12* Let P be a Euclidean/LUB plane, and let L be a

line with slope s on P which is neither vertical nor horizontal. Let Q be a

point on L such that Q = (q1, q2), and let X 6= Q be a point on L such that

X = (x1, x2).

If s > 0, then x1 < q1 and x2 < q2, or x1 > q1 and x2 > q2.

If s < 0, then x1 < q1 and x2 > q2, or x1 > q1 and x2 < q2.

Exercise VEC.13* Prove Theorem VEC.22(B): iff L andM be distinct

lines which are neither vertical nor horizontal and which have respective

slopes s and t, then L ⊥M iff st = −1.
Exercise VEC.14* Let a, b, and c be real numbers such that a and b

are not both zero. Then L = {(x1, x2) | ax1 + bx2 + c = 0} is characterized

as follows:

(I) If b = 0, then a 6= 0 and L is the vertical line through (−c
a
, 0).

(II) If b 6= 0, then L is the line through (0, −c
b
) with slope −a

b
.

Exercise VEC.15* Let P be a Euclidean/LUB plane, and a, b, and c be

real numbers where not both a and b are 0; let

L = {(x1, x2) | ax1 + bx2 + c = 0}
and

M = {(x1, x2) | bx1 − ax2 + c = 0}.
Then L ⊥M.

Exercise VEC.16* The set of collineations of R2 with (0, 0) as a sole

fixed point, together with the identity mapping ı, is not a group under com-

position of mappings.

Exercise VEC.17* There exist stretches S and T of R2 such that T ◦S
has only the fixed point (0, 0).
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Exercise VEC.18 Let k be a nonzero real number and let ϕ be a

collineation of R2 such that for every member (x1, x2) of R2, ϕ(x1, x2) =

(kx1, kx2). Prove that

(1) ϕ is a dilation of R2 with fixed point (0, 0) (cf Specht Ch.3 Theorem

CAP.22).

(2) Using the equality ϕ(x1, x2) = (kx1, kx2) prove that the set of dilations

of R2 with fixed point (0, 0), together with ı (the identity mapping of R2 is

a group under composition of mappings.

Exercise VEC.19 Let k be a nonzero real numbers, ϕ be the collineation

of R2 such that for every member (x1, x2) of R2 ϕ(x1, x2) = (kx1, x2) and

let ψ be the collineation of R2 such that for every member (x1, x2) of R2,

ψ(x1, x2) = (x1, kx2).

Prove: (1) ϕ is a stretch of R2 with axis L1.

(2) ψ is a shear of R2 with axis L2.

(3) ϕ ◦ ψ = ψ ◦ ϕ is a dilation of R2 with fixed point (0, 0).

(4) The set of stretches with axis L1 together with the identity ı is a group

under composition of mappings. (Use the equality ϕ(x1, x2) = (kx1, k2).

(5) The set of stretches with axis L2 together with the identity ı is a group

under composition of mappings. (Use the equality ψ(x1, x2) = (x1, kx2).

Exercise VEC.20 Let V be a set of collineations of R2 with the property

that for every member ϕ of V there exist nonzero real numbers r and s such

that for every member (x1, x2) of R2, ϕ(x1, x2) = (rx1, sx2). Prove that

V ∪ {ı} is an abelian group under composition of mappings.

1.8 Selected answers for vector spaces

Exercise VEC.1 Proof. Let A, B, and C be any points of P, and let τA,

τB, and τC be the translations in T such that τA(O) = A, τB(O) = B, and

τC(O) = C.

A+B = (τA ◦ τB)(O) ∈ P since τA ◦ τB is a mapping of P to P, so that P

is closed under addition.

A+ (B + C) = (τA ◦ (τB ◦ τC))(O) = ((τA ◦ τB) ◦ τC)(O) = (A+ B) + C

so that addition is associative.

A+B = (τA ◦τB)(O) = (τB ◦τA)(O) = B+A, so addition is commutative.

A + O = (τA ◦ τO)(O) = (τA ◦ ı)(O) = τA(O) = A so O is the additive

identity.
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For any translation τA which maps O to A, there exists an inverse trans-

lation τA
−1. If we define −A = τA

−1(O), A+ (−A) = (τA(τA
−1(O)) = O so

that −A is the additive inverse of A. ⊓⊔

Exercise VEC.2 Proof. If Φ is an isomorphism then for all real numbers x

and y and all A and B in V, Φ(xA+yB) = Φ(xA)+Φ(yB) = xΦ(A)+yΦ(B).

Conversely, assume that for all real numbers x and y and all A and B in V,

Φ(xA + yB) = Φ(xA) + Φ(yB) = xΦ(A) + yΦ(B).

Let x = y = 1; then

Φ(A+B) = Φ(xA + yB) = Φ(xA) + Φ(yB) = Φ(A) + Φ(B).

Let y = 0; then

Φ(xA) = Φ(xA + 0 · B) = xΦ(A) + 0 · Φ(B) = xΦ(A).

Therefore Φ is an isomorphism. ⊓⊔

Exercise VEC.3 Proof.

(B) x(y(aU1 + bU2)) = x(yA) = (xy)A = (xy)aU1 + (xy)bU2,

(C) x(aU1 + bU2 + cU1 + dU2) = x(A +B) = xA+ xB

= x(aU1 + cU1 + bU2 + dU2)

= x(a+ c)U1 + x(b+ d)U2,

(D) (x+y)(aU1+bU2) = (x+y)A = xA+yA = x(aU1+bU2)+y(aU1+bU2),

(E) 1(aU1 + bU2) = 1A = aU1 + bU2, and

(F) x(aU1 + bU2) = xA = O = 0U1 + 0U2 iff x = 0 or A = O, and by the

proof of Theorem VEC.7, A = O means that both a = 0 and b = 0. ⊓⊔

Exercise VEC.4 Proof. (B) By Theorem VEC.7(A) a point X ∈ L1 iff

for some real number x, X = xA, proving the first assertion. This is true in

particular if A = U1. By Theorem VEC.8(A) there exist real numbers a and

b such that X = aU1 + bU2. Thus X ∈ L1 iff for some real number x

O = aU1 + bU2 − xU1 = aU1 − xU1 + bU2 = (a− x)U1 + bU2

which by Theorem VEC.8(B) is true iff a = x and b = 0. Therefore X =

aU1 + bU2 ∈ L1 iff a = x and b = 0 iff λ(X) = λ(aU1 + bU2) = (a, b) = (x, 0)

for some real number x.

A similar proof shows that X = aU1 + bU2 ∈ L2 iff a = 0 and b = y iff

λ(X) = λ(aU1 + bU2) = (a, b) = (0, y) for some real number y.

(C) Let L be a line in P which is parallel to L1, and let C ∈ L, and τC

be the unique translation such that τC(O) = C. Then by Definition CAP.6

τC(L1) is a line which is either equal to or parallel to L1, and which contains
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the point C. By Axiom PS (from Specht Chapter 2) L = τC(L1) = C + L1,

and since C ∈ L and L ‖ L1, C 6∈ L1.

Conversely, if for some C ∈ P\L1, L = C+L1, then since τC(L1) = C+L1

and τ is a translation, either C+L1 ‖ L1 or C+L1 = L1. But C = C+O 6∈ L1

so the latter is ruled out, and C + L1 ‖ L1.

This shows that L ‖ L1 iff there exists a C 6∈ L1 such that L = C + L1.

By Theorem VEC.8(A) every point C ∈ P can be written as C = eU1+cU2

for some real numbers e and c. Suppose that for some C ∈ P\L1, L = C+L1.

By Part(B), c 6= 0, and also by Part (B) X ∈ L1 iff X = xU1 for some real

number x. Thus for every X ∈ C + L1, X = eU1 + cU2 + xU1 = yU1 + cU2

for some real number y = e+ x.

Conversely, suppose that there exists a real number c 6= 0 such that for

every X , X = xU1 + cU2 for some real number x. Let C = cU2, so that

C 6∈ L1. Then since xU1 ∈ L1, for every X = cU2 + xU1 where x is a real

number, X = cU2 + xU1 = C + xU1 ∈ C + L1.

This shows that for C 6∈ L1, X ∈ C + L1 iff there exists a real number

c 6= 0 such that X = cU2 + xU1.

Therefore L ‖ L1 iff there exists a point C ∈ L and a real number c 6= 0

such that L = C + L1 = {X | X = cU2 + xU1 and x ∈ R}, and this is true

iff λ(L) = λ(C + L1) = {(x, c) | x ∈ R}.
A similar proof shows that a line L ‖ L2 iff for some point D ∈ P \ L2,

L = D + L2 iff for some real number d 6= 0, λ(L) = {(d, y) | y ∈ R}. ⊓⊔

Exercise VEC.5 Proof. By Theorem VEC.25,←→
QR = {X | X = t(R−Q) +Q and t ∈ R}

= {(x1, x2) | (x1, x2) = t(r1 − q1) + q1 and t(r2 − q2) + q2 and t ∈ R}.
If t = 0, X = 0(R−Q) +Q = Q and if t = 1, X = 1(R−Q) +Q = R.

If t = 1
2 then

X = 1
2 (R−Q) +Q = 1

2R− 1
2Q+Q = 1

2R+ 1
2Q = R+Q

2

and this point belongs to
←→
QR. But R+Q

2 = ( q1+r1
2 , q2+r2

2 ) which is M . By

Theorem VEC.25.1, since 0 < 1
2 < 1, Q M R so M ∈ qy px

QR. Now

‖Q−M‖ =
√
(q1 − ( r1+q1

2 ))2 + (q2 − ( r2+q2
2 ))2

=
√
( q12 − r1

2 )
2 + ( q22 − r2

2 )
2,

and

‖R−M‖ =
√
(r1 − ( r1+q1

2 ))2 + (r2 − ( r2+q2
2 ))2

=
√
( r12 −

q1
2 )

2
+ ( r22 −

q2
2 )

2
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=
√
(−( q12 − r1

2 ))
2 + (−( q22 − r2

2 ))
2 = ‖Q−M‖.

Hence by Theorem VEC.26.2,
px qy

RM ∼=
px qy

QM and by Definition NEUT.6(C),

M is the midpoint of
px qy

QR. ⊓⊔

Exercise VEC.6 Proof.

(1) ‖(a, b)‖ =
√
a2 + b2 ≥ 0, by properties of real numbers.

(2) For any real numbers a, b, c and d

0 ≤ (bc− ad)2 = b2c2 − 2abcd+ a2d2

so b2c2 + a2d2 ≥ 2abcd. Then

0 ≤ (ac+ bd)2 = a2c2 + 2abcd+ b2d2 ≤ a2c2 + b2c2 + a2d2 + b2d2

= (a2 + b2)(c2 + d2) = ‖A‖2‖B‖2
hence ac+ bd ≤ ‖A‖‖B‖. Then

‖A+B‖2 = ‖(a, b) + (c, d)‖2 = ‖(a+ c, b+ d)‖2
= (a+ c)2 + (b+ d)2 = a2 + c2 + 2ac+ b2 + d2 + 2bd

= (a2 + b2) + (c2 + d2) + 2(ac+ bd)

≤ ‖A‖2 + ‖B‖2 + 2‖A‖2‖B‖2 = (‖A‖+ ‖B‖)2.
Hence ‖A+B‖ ≤ ‖A‖+ ‖B‖.

(3) ‖xA‖ = ‖x(a, b)‖2 = ‖(xa, xb)‖2 = (xa)2 + (xb)2

= x2a2 + x2b2 = x2(a2 + b2) = |x|2(a2 + b2) = |x|2‖A‖2
so ‖xA‖ = ‖x(a, b)‖ = |x|‖(a, b)‖ = |x|‖A‖. ⊓⊔

Exercise VEC.7 Proof. Let A = (a1, a2), B = (b1, b2), C = (c1, c2), where

a1, a2, b1, b2, c1, and c2 are real numbers.

(1) A •B = a1b1 + a2b2 = b1a1 + b2a2 = B •A.
(2) t(A •B) = t(a1b1 + a2b2),

(tA) •B = (t(a1, a2)) • (b1, b2) = (ta1, ta2) • (b1, b2)
= t(a1 • b1) + t(a2 • b2) = t(a1b1 + a2b2),

A • (tB) = (a1, a2) • (t(b1, b2)) = (a1, a2) • (tb1, tb2)
= a1(tb1) + a2(tb2) = t(a1b1 + a2b2).

(3) (a1, a2) • ((b1, b2) + (c1, c2)) = (a1, a2)(b1 + c1, b2 + c2)

= (a1(b1 + c1), a2(b2 + c2)) = (a1b1 + a1c1, a2b2 + a2c2)

= (a1, a2) • (b1, b2) + (a1, a2) • (c1, c2).
(4) A •A = a21 + a22 = ‖A‖2. ⊓⊔

Exercise VEC.8 Proof. Prove Theorem VEC.35 parts (A) through (D):

for all A and B in V, and all real numbers t and s,

(A) (α+ β)(A +B) = α(A +B) + β(A +B)

= α(A) + α(B) + β(A) + β(B)
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= (α(A) + β(A)) + (α(B) + β(B))

= (α+ β)(A) + (α + β)(B);

and

(α+ β)(tA) = α(tA) + β(tA) = tα(A) + tβ(A)

= t(α(A) + β(A)) = t(α+ β)(A).

Thus α+ β is linear.

(tα)(A +B) = t(α(A +B)) = t(α(A) + α(B))

= t(α(A)) + t(α(B)) = (tα)(A) + (tα)(B)

and by associativity of scalar product,

(tα)(sA) = t(α(sA)) = t(sα(A)) = (ts)α(A)

= (st)α(A) = s(tα(A) = s(tα)(A).

Thus tα is linear.

(B) O(A+B) = O = O(A) +O(B); O(tA) = O = t ·O = t · O(A).
ı(A+ B) = A+B = ı(A) + ı(B); ı(tA) = tA = t · ı(A).

(C) (1) α(A+B) + (−α(A)) + (−α(B))

= α(A) + α(B) + (−α(A)) + (−α(B))

= α(A) + (−α(A)) + α(B) + (−α(B)) = O

which shows that −α(A+B) = (−α(A)) + (−α(B)).

(2) α(tA) + t((−α)(A)) = α(tA) + t(−α(A)) = t(α(A)) + t(−α(A))
= t(α(A) + (−α(A))) = t(O) = O,

which shows that (−α)(tA) = −(α(tA)) = t((−α)(A)).
(D) (1) By property (A)(2) of Definition VEC.34,

α(O) = α(O ·A) = O · α(A) = O.

(2) α(A) + α(−A) = α(A+ (−A)) = α(O) = O,

so α(−A) = −α(A). ⊓⊔

Exercise VEC.9 Proof. Prove Theorem VEC.35(E). We key the various

parts of this proof to the properties listed in Definition VEC.12. Let α, β,

and γ be linear mappings on V, and let t and s be any real numbers.

(A) By Exercise VEC.8(A), α+ β and tα are linear mappings. Let A and

B be any members of V.

(1) (α + β)(A) = α(A) + β(A) = β(A) + α(A) = (β + α)(A)

so α+ β = β + α.

(2) (α + (β + γ))(A) = α(A) + (β + γ)(A) = α(A) + (β(A) + γ(A))

= (α(A) + β(A)) + γ(A) = (α+ β)(A) + γ(A)

= ((α + β) + γ)(A)

so (α+ β) + γ = α+ (β + γ).
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(3) O as defined in Definition VEC.34(B) is a linear mapping by

Exercise VEC.6(B). Then (α + O)(A) = α(A) + O(A) = α(A) + O = α(A)

so α + O = α. If β is a linear mapping such that α + β = α, then for every

A ∈ V, α(A) + β(A) = α(A) so that β(A) = O and thus β = O.

(4) −α as defined in Definition VEC.34(C) is a linear mapping by

Exercise VEC.6(C). Then

(α+ (−α))(A) = α(A) + (−α)(A) = α(A) + (−α(A)) = O = O(A)

so that α + (−α) = O. If there is a linear mapping β such that α + β = O,

then O = (α+ β)(A) = α(A) + β(A) so that β(A) = −α(A) for every A and

hence β = −α.
(B) (1) (t(sα))(A)) = t((sα)(A)) = t(s(α(A))) = (ts)α(A) = (tsα)(A),

so that t(sα) = (ts)α.

(2) (1α)(A) = 1(α(A)) = α(A) so 1α = α.

(C) (1) (t(α+ β))(A) = t(α(A) + β(A)) = t(α(A)) + t(β(A))

= (tα)(A) + (tβ)(A) = (tα) + (tβ))(A)

so that t(α+ β) = tα+ tβ.

(2)(t+ s)α(A) = t(α(A)) + s(α(A))) = (tα)(A) + (sα)(A)

so that (t+ s)α = tα+ sα. ⊓⊔

Exercise VEC.10 Proof. In this argument we will refer to the numbers

a11, a22, a12, a21 as the “entries.”

(Case 1) If 3 entries are 0 but a22 or a12 is nonzero, let x1 = 1 and x2 = 0;

and the result a11x1 + a12x2 = 0 and a21x1 + a22x2 = 0 will follow.

(Case 2) If 3 entries are 0 but a11 or a21 is nonzero, let x1 = 0 and x2 = 1;

then a11x1 + a12x2 = 0 and a21x1 + a22x2 = 0.

(Case 3) If 2 entries are 0 but a11 and a12 are nonzero, let x1 = a12 and

x2 = −a11; then a11x1 + a12x2 = 0 and a21x1 + a22x2 = 0.

(Case 4) If 2 entries are 0 but a21 and a22 are nonzero, let x1 = a22 and

x2 = −a21; then a11x1 + a12x2 = 0 and a21x1 + a22x2 = 0.

(Case 5) If 2 entries are 0 but a11 and a21 are nonzero, let x1 = 0 and

x2 = 1; then a11x1 + a12x2 = 0 and a21x1 + a22x2 = 0.

(Case 6) If 2 entries are 0 but a12 and a22 are nonzero, let x1 = 1 and

x2 = 0; then a11x1 + a12x2 = 0 and a21x1 + a22x2 = 0.

(Case 7) If 2 entries are 0 but a11 and a22 are nonzero, then either a12 or

a21 is zero, and this reduces to Case 1 or 2.

(Case 8) If 2 entries are 0 but a12 and a21 are nonzero, then either a11 or

a22 is zero, and this reduces to Case 1 or 2.
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(Case 9) If a single entry is zero and all others are non-zero, then by

a11a22 − a12a21 = 0 one other entry must be zero, and this reduces to one of

the Cases 3 through 8. ⊓⊔

Exercise VEC.11 Proof. Let α be the linear mapping on R2 such that

α(1, 0) = (0, 1) and α(0, 1) = (1, 0); and let β be the linear mapping on R2

such that β(1, 0) = (1, 1) and β(0, 1) = (1,−1).
In the form of the mapping given in Definition VEC.37, for α, a11 = 0,

a12 = 1, a21 = 1 and a22 = 0, so that the determinant is 0 ·0−1 ·1 = −1 6= 0.

For β (using bs in place of as), b11 = 1, b12 = 1, b21 = 1 and b22 = −1, so
that the determinant is 1 · (−1) − 1 · 1 = −2 6= 0. Thus both α and β are

bijections by Theorem VEC.41.

Then β(α(1, 0)) = β(0, 1)) = (1,−1), and β(α(0, 1)) = β(1, 0)) = (1, 1),

but α(β(1, 0)) = α(1, 1)) = (1, 1), and α(β(0, 1)) = α(1,−1) = (−1, 1) so

that α ◦ β 6= β ◦ α. ⊓⊔

Exercise VEC.12 Proof. By Definition VEC.20 s = x2−q2
x1−q1 . Hence if s > 0,

then x1 − q1 and x2 − q2 are both positive or both negative. Hence q1 < x1

and q2 < x2 or q1 > x1 and q2 > x2. If s < 0, then x2 − q2 is negative and

x1− q1 is positive, or x2− q2 is positive and x1− q1 is negative so that either

x1 < q1 and x2 > q2 or x1 > q1 and x2 < q2. ⊓⊔

Exercise VEC.13 Proof. Let the slope of L be s and the slope ofM be t.

(I) If L ⊥ M, let Q = (q1, q2) be their point of intersection, and let N
be the vertical line through (q1 + 1, q2). Then the point of intersection of L
and N is S = (q1 + 1, q2 + s) and the point of intersection of M and N is

T = (q1 + 1, q2 + t).

(II) Conversely, if st = −1, then s and t are of opposite parity (i.e. one is

positive and the other is negative), and s 6= t. By Theorem VEC.20 L andM
are not parallel, so must intersect at some point Q = (q1, q2). Let N be the

vertical line through (q1 + 1, q2). Neither L norM is vertical so there must

be a point of intersection of N with each of them. The point of intersection

of L and N is S = (q1 + 1, q2 + s) and the point of intersection ofM and N
is T = (q1 + 1, q2 + t), as before.

(III) The third form of the Pythagorean Theorem (Theorem VEC.26.5)

says that ∠SQT is right iff ‖S − T ‖2 = ‖S −Q‖2 + ‖T −Q‖2.
By Theorem VEC.27,

‖S − T ‖ =
√
(q1 + 1− q1 − 1)2 + (q2 + s− q2 − t)2 =

√
(s− t)2 = |s− t|,
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‖S −Q‖ =
√
(q1 + 1− q1)2 + (q2 + s− q2)2 =

√
12 + s2 =

√
1 + s2, and

‖T −Q‖ =
√
(q1 + 1− q1)2 + (q2 + t− q2)2 =

√
12 + t2 =

√
1 + t2 = 1.

Hence ‖S − T ‖2 = ‖S −Q‖2 + ‖T −Q‖2 iff |s− t|2 = 1 + s2 + (1 + t2) iff

s− t2 = s2 − 2st+ t2 = 1 + s2 + 1 + t2 iff s2 − 2st+ t2 = 1 + s2 + 1 + t2 iff

−2st = 2 iff st = −1. ⊓⊔

Exercise VEC.14 Proof. For reference, the equation of the line is ax1 +

bx2 + c = 0.

(I) If b = 0, then L = {(x1, x2) | x1 = −c
a
}. It thus contains the point

(−c
a
, 0). By Theorem VEC.16 L is parallel to L2 and by Definition VEC.18

it is a vertical line.

(II) If b 6= 0, then the point (0, −c
b
) is on L, since a · 0 + b(−c

b
) + c = 0.

(1, −a−c
b

) is a point on the line since a·1+b(−a−c
b

)+c = 0. Thus by Definition

VEC.20 the slope of L is
−a−c

b
− −c

b

1− 0
= −a

b
,

so that L is the line through (0, −c
b
) with slope −a

b
. ⊓⊔

Exercise VEC.15 Proof. For reference, L = {(x1, x2) | ax1 + bx2 + c = 0}
andM = {(x1, x2) | bx1 − ax2 + c = 0}.

(Case 1: a = 0.) Then L = {(x1, x2) | x2 = −c
b
} andM = {(x1, x2) | x1 =

−c
b
}. By Theorem VEC.16(C), L ‖ L1 and M ‖ L2. By Definition VEC.18,

L is horizontal andM is vertical, and by Remark VEC.18.1(B) L ⊥M.

(Case 2: b = 0.) In this case L = {(x1, x2) | x1 = −c
a
} andM = {(x1, x2) |

x2 = c
a
}. By Theorem VEC.16(C), L ‖ L2 and M ‖ L1. By Definition

VEC.18, L is vertical and M is horizontal, and by Remark VEC.18.1(B)

L ⊥M.

(Case 3: a 6= 0 and b 6= 0.) By Exercise VEC.14(II), the slope of L is −a
b
.

Replacing, in the argument of Exercise VEC.14(II), a with b and b with −a,
we see that the slope ofM is b

a
. Thus, the product of the two slopes is −1,

and by Exercise VEC.13, L ⊥M. ⊓⊔

Exercise VEC.16 Proof. Let S and T be the collineations of R × R such

that for all members of (x, y) of R × R, S(x, y) =

[
2x
y
2

]
and T (x, y) =

[
x
2
y
2

]
.

Since

∣∣∣∣∣
2− 1 0

0 1
2 − 1

∣∣∣∣∣ 6= 0 and

∣∣∣∣∣
1
2 − 1 0

0 1
2 − 1

∣∣∣∣∣ 6= 0, by Theorem VEC.51 S and
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T each have only the fixed point

[
0

0

]
, whereas (T ◦ S)

[
x

y

]
=

[
x
y
4

]
, every

member

[
x

0

]
of
{[x

0

]
| x ∈ R

}
is a fixed point of T ◦ S. Moreover, T ◦ S 6= ı,

so that the product T ◦ S is neither the identity nor a collineation with only[
0

0

]
as a fixed point. Hence the set is not closed under composition, and is

not a group. ⊓⊔

Exercise VEC.17 Proof. Let r and t be real numbers different from 0 and

S and T be the collineations of R× R such that for all

[
x

y

]
∈ R× R,

S
([x
y

])
=

[
x+ ry

y

]
and T

([x
y

])
=

[
x

y + tx

]
.

Then (T ◦ S)
([x
y

])
=

[
x+ ry

tx+ (1 + tr)y

]
. Note that every member of the

horizontal axis {(x, 0) | x ∈ R} is a fixed point of S and every member

of the vertical axis {(0, y) | y ∈ R} is a fixed point of T . However, since∣∣∣∣∣
0 r

t 1 + tr

∣∣∣∣∣ 6= 0, by Theorem VEC.51, T ◦ S has only the fixed point

[
0

0

]
. ⊓⊔



Chapter 2

The Field of Complex Numbers (CX)

Dependencies: Euclidean Geometry and its Subgeometries (Specht); Chap-

ter 1 of this supplement

Acronym: CX

New terms defined: product of points on the plane, complex number, purely

imaginary, real (complex numbers); real and imaginary parts, modulus, abso-

lute value, complex conjugate (of a complex number)

In this chapter, C will be the plane P which, in the previous chapter

(acronym VEC) was made into a vector space.

The only product defined in a general vector space is the product of a real

number and a vector, that is, the scalar product. Products of vectors are not

defined.1 However, the plane (the archetypical two-dimensional vector space)

is quite special among vector spaces, because a coherent and useful notion of

product can be constructed on it, and this product makes it into a field—the

field of complex numbers.

Multiplication operations have been defined on n-tuples of real numbers

in the cases where n = 4 (quaternions) and n = 8 (octonians), in addition

to ordinary vector space addition on these spaces. But these systems are not

fields, as in them multiplication is not commutative. Attempts have been

made to define a multiplication operation on n-tuples of real numbers for

n ≥ 3, so that the field properties hold. There are algebraic theorems which

show that such attempts cannot succeed. (cf John L. Kelley, Algebra: A Mod-

ern Introduction, D. Van Nostrand, 1965 [2]).

1 Except in the vector space R where the vector space and the field are the same.

41
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This chapter is dependent on all of Specht, and includes references such as

“Theorem ROT.15” which refer to items in that work. The note Citations

and references at the end of the Preface to this Supplement explains the

conventions we use for such citations, and an abbreviated Table of Contents

(with acronyms) for Specht is included for the reader’s guidance.

References in this chapter to items labeled VEC or CX are to this Supple-

ment; all other references are to Specht.

2.1 Definitions and theorems for complex numbers

We now define the product of two points in C and show that with this

definition, together with vector space addition, C is a field. We will use the

symbol “·” for this new product. With one notable exception, if A and B

are two points of the plane C which are collinear with the origin O, their

product A ⊙ B as members of the line
←→
OA will not be the same as their

product according to our new definition. Indeed, the two products are wildly

different—the product A · B will in general not even belong to
←→
OA. The ex-

ception is the case where
←→
OA = L1, where the two products agree. The new

product “·” will be an extension to the whole plane of the product ⊙ on L1.

If we have occasion to discuss the ordered field multiplication of points on a

single line (other than L1), we may use the notation ⊙.

Definition CX.1 In this definition and the rest of the chapter, C will de-

note the Euclidean/LUB plane with originO, L1 and L2 will be perpendicular

lines in C such that L1 ∩L2 = {O}, which have been built into ordered fields

(using the machinery of Specht Chapter 14) with U1 and U2, respectively, as

their units, where
px qy

OU1
∼=

px qy

OU2.

Addition of points in C is defined as in Definition VEC.1 and scalar product

as in Definition VEC.6, so that C is a vector space under the operation +

and scalar product. The norm ‖A‖ of a point A is as in Definition VEC.26.1,

and every point A = aU1 + bU2 ∈ C is identified with the point (a, b) ∈ R2

using the vector space isomorphism λ, as in Definition VEC.14.

(A) Define the mapping ρA as follows:
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(i) If A ∈ C \ ←−→OU1 then ρA is the unique rotation of C about O

such that ρA(
px →
OU1) =

px→
OA. The existence and uniqueness of this rotation is

guaranteed by Specht Ch.10 Theorem ROT.15.

(ii) If A ∈ qy →
OU1, then ρA = ı (the identity).

(iii) If A ∈
qy →
OU ′1, where U

′
1 O U1, then ρA = RO, where RO is the

point reflection about O (cf Definition ROT.1(B), etc.).

(B) Define the mapping δA as follows:

(i) If A ∈ C\ qy →
OU1 then δA is the unique dilation of C with fixed point

O such that δA(U1) = ρA
−1(A).

This is equivalent to δA(ρA(U1)) = A, for by Specht Ch.13 Theorem

DLN.7(E),

δA(ρA(U1)) = ρA(δA(U1)) = ρA(ρA
−1(A)) = A.

A dilation cannot have two fixed points, so if ρA
−1(A) = U1 (i.e. A = ρA(U1)),

define δA = ı.

(ii) If A ∈ qy →
OU1, then δA is the unique dilation of C with fixed point O

such that δA(U1) = A. (A dilation cannot have two fixed points, so if A = U1,

define δA = ı.)

The existence and uniqueness of these dilations is guaranteed by Theorem

DLN.7.

(C) Define the product A ·B of A and B as follows:

(i) If A = O or B = O (or A = O = B), then A · B = O.

(ii) If A and B are both members of C\{O}, then A ·B = δA(ρA(B)).

The operation · on C is called multiplication.

(D) The points of the set C, which has now been equipped with the oper-

ations + and · , are called complex numbers.

Remark CX.2 (A) Suppose A ∈
qy →
OU ′1, where U

′
1 O U1. By Definition

CX.1(A)(iii), ρA = RO and δA(U1) = ρA
−1(A) = RO(A), because R−1O =

RO (cf Corollary ROT.6).

(B) Applying Definition CX.1(C) to the line L1 =
←−→
OU1 confirms that this

definition agrees with ⊙ from Specht Ch.14 Definition OF.1. For if A ∈ qy →
OU1

then ρA = ı and δA(ρA(U1)) = δA(ı(U1)) = A so that δA ◦ ρA is the dilation

δA of Definition OF.1(B). If A ∈
qy →
OU ′1 then ρA = RO and by part (A) of this

remark, δA(U1) = RO(A) so that

(δA ◦ ρA)(U1) = δA(ρA(U1)) = δA(RO(A)) = RO(RO(A)) = A

which agrees with the dilation δA as defined in Definition OF.1(B).

Therefore the present definition of · is an extension to the whole plane of

the notion of product in Definition OF.1(D).
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(C) Upon reflection, it will be seen that Definition CX.1 is the formaliza-

tion in this context of the usual definition for products of complex numbers.

Applying the rotation ρA to the point B is the same as “adding the angles

of A and B”; applying the dilation δA “multiplies the modulii” of the points

A and B, where the modulus of a complex number A is the length of the

segment
px qy

OA, or the distance from O to A, as defined in Definition OF.16.

That is to say, applying δA to ρA(B) “stretches” or “shrinks” ρA(B) by

the same ratio as δA “stretches” or “shrinks” U1 to get A.

The case where A ∈
qy →
OU ′1 where U ′1 O U1 can be a bit tricky to visualize.

The rotation ρA = RO maps the point B to −B, and then the dilation δA

stretches that point in the same way that it stretches U1 to −A ∈ qy →
OU1.

Theorem CX.3 For any points A and B in C \ {O}
(A) (δA ◦ ρA)(U1) = A,

(B) A · B = δA(ρA(B)) = (δA ◦ ρA ◦ δB ◦ ρB)(U1), and

(C) δA·B = δA ◦ δB and ρA·B = ρA ◦ ρB .

Proof. (A) (I) If A ∈ qy →
OU1, then ρA = ı, ρA(U1) = U1, and

δA(ρA(U1)) = δA(U1) = A.

(II) IfA ∈ C\qy →OU1, then by Specht Ch.13 Theorem DLN7(E) δA(ρA(U1)) =

ρA(δA(U1)) and by Definition CX.1(B)(i) this is ρA(ρ
−1
A (A)) = A. Note that

if A ∈
qy →
OU ′1, where U

′
1 O U1, this last calculation becomes RO(RO(A)) = A.

(B) By Definition CX.1(C) and part (A) applied to B, we have

A ·B = δA(ρA(B)) = δA(ρA(δB(ρB(U1)))) = (δA ◦ ρA ◦ δB ◦ ρB)(U1).

(C) In this part of the proof, when we say a mapping is a rotation* we

mean that it is either a rotation about O or the identity ı; when we say a

mapping is a dilation* we mean that it is either a dilation with fixed point

O or the identity ı.

By Theorem DLN.20, the union of the set of all rotations about O and

the set of all dilations with fixed point O, together with their compositions

and the identity map ı comprises an abelian group under composition. Thus

by Theorem DLN.20 and part (B) above, for any A and B in C \ {O},
A ·B = (δA ◦ ρA ◦ δB ◦ ρB)(U1) = (δ ◦ ρ)(U1)

where ρ is a rotation* and δ is a dilation*.

By Specht Ch.3 Theorem CAP.18,
←−−−−→
O(A ·B) is a fixed line for δ−1, so either

ρ(U1) ∈
qy →
O(A ·B) or ρ(U1) ∈

qy →
O(−A ·B). If the latter is true, define δ′ so that

for every point X ∈ C, δ′(X) = −δ(X), and ρ′ so that for every point X ∈ C,

ρ′(X) = −ρ(X); then ρ′(U1) ∈
qy →
O(A ·B). Then
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(δ′ ◦ ρ′)(U1) = δ′(−ρ(U1)) = −δ′(ρ(U1))

= −(−δ(ρ(U1))) = δ(ρ(U1)) = A · B.

Hence in either case, there exists a dilation* δ and a rotation* ρ such that

(δ ◦ρ)(U1) = A ·B, ρ(U1) ∈
qy →
O(A · B), and δ ◦ρ = (δA ◦δB)◦ (ρA ◦ρB). Both δ

and δA ◦ δB are dilations* and both ρ and ρA ◦ρB are rotations*. Both ρ(U1)

and (ρA ◦ ρB)(U1) are in
qy →
O(A · B) and

px qy

Oρ(U1) ∼=
px qy

OU1
∼=

px qy

O(ρA ◦ ρB(U1)) so

by Property R.4 of Specht Ch.8 Definition NEUT.2, ρ(U1) = (ρA ◦ ρB)(U1)

and thus ρ = ρA◦ρB. ρ is therefore the rotation* that maps
qy →
OU1 to

qy →
O(A ·B),

that is, ρ = ρA ◦ ρB = ρA·B.

Then δ is the dilation* that maps ρ(U1) to A ·B and hence is the dilation*

that maps U1 to ρ−1(A · B); by Theorem CAP.24 there is only one such di-

lation* and hence δ = δA ◦ δB = δA·B. ⊓⊔

Theorem CX.4 C \ {O} is an Abelian group under the operation “·”,
where U1 is the identity and for every A ∈ C \ {O} the inverse of A is the

point δ−1A (ρ−1A (U1)).

Proof. Let G be the union of the set of all rotations C about O, the set of all

dilations of C with fixed point O, the set of all compositions of mappings in

these two sets, and {ı}.
By Theorem DLN.20 G is an Abelian group under the composition of

mappings. The proof that C \ {O} is an Abelian group under the operation ·
consists of a series of calculations using Definition CX.1 and Theorem CX.3,

and is left to the reader as Exercise CX.1. ⊓⊔

Theorem CX.5 Let ϕ be a collineation of the Euclidean/LUB plane C

such that ϕ(0) = 0 and let S and T be members of C. Then ϕ(S + T ) =

ϕ(S) + ϕ(T ).

Proof. (Case 1: S = O.) By Definition CX.1 each side of the above equality

is equal to ϕ(T ).

(Case 2: S 6= O.) τS is the translation of C such that τS(0) = S. Then by

Theorem CAP.13 ϕ◦ τS ◦ϕ−1 is a translation of C. Since (ϕ◦ τS ◦ϕ−1)(O) =
ϕ(S), ϕ ◦ τS ◦ ϕ−1 = τϕ(S) and so ϕ ◦ τS = τϕ(S) ◦ ϕ and thus (ϕ ◦ τS)(T ) =
(τϕ(S) ◦ϕ)(T ), i.e., ϕ(τS(T )) = τϕ(S)(ϕ(T )), or ϕ(S + T ) = ϕ(S) +ϕ(T ). ⊓⊔

Theorem CX.6 (Distributive Property) Let A, B, and C be members

of C. Then A · (B + C) = (A ·B) + (A · C).
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Proof. Define ϕ = δA ◦ ρA as defined in Definition CX.1(A) and (B). Then ϕ

is a collineation with ϕ(O) = O, since both δA and ρA are collineations with

fixed point O.

(Case 1: A = O.) By Definitions VEC.1 and CX.1 A·(B+C) = ϕA(B+C).

By Theorem CX.5

ϕA(B + C) = ϕA(B) + ϕA(C) = A ·B +A · C.
(Case 2: A 6= O.) Then A · (B + C) = ϕA(B + C). By Theorem CX.5

ϕA(B + C) = ϕA(B) + ϕA(C) = A ·B +A · C. ⊓⊔

Theorem CX.7 The Euclidean/LUB plane C under the operations of

addition and multiplication is a field.

Proof. This is a synthesis of Theorems VEC.3, CX.4, and CX.6. ⊓⊔

Note that C is not an ordered field.

Theorem CX.8 Let C be the complex plane, and (as in our overall as-

sumptions) let L1 be a line in C with origin O which has been built into an

ordered field with unit U1, the multiplicative identity for C. Let t be any real

number, and let δt be as in Definition CX.13.2, that is, for all points A ∈ L1,

δt(A) = tA.

(A) For all points A ∈ C, δt(A) = tA (not just for points A ∈ L1, as in

Definition CX.13.2).

(B) If U is a point of C \ {L1} such that
px qy

OU1
∼=

px qy

OU , then for all real

numbers t 6= 0,
px qy

OtU1
∼=

px qy

OtU .

(C) Let A be any point in C \ {O}, and suppose the line L =
←→
OA is built

into an ordered field with origin O and unit U . Then δt(A) = tA = tU1 ·A.
(D) In particular, for any A ∈ L2, δt(A) = tA = tU1 · A.

Proof. (A) This is Specht Ch.18 Theorem REAL.37.

(B) Let ρ be the rotation of C such that ρ(U1) ∈
qy→
OU , so that ρ maps

←−→
OU1

to
←→
OU and ρ−1 maps

←→
OU to

←−→
OU1.

Since ρ is an isometry,
px qy

OU ∼=
px qy

OU1
∼=

px qy

Oρ(U1) and by Property R.4 of Specht

Ch.8 Definition NEUT.2, ρ(U1) = U , that is, U1 = ρ−1(U). By Theorem

DLN.17 and Theorem NEUT.15,
px qy

O(δt(U)) = δt(
px qy

OU ) ∼= δt(
px qy

OU1) =
px qy

O(δt(U1)).

(C) It isn’t possible to directly use Theorem REAL.25 to show that tU1 ·
A = t(U1 · A) = tA, because that theorem applies only to the product of
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points in a line L through O, whilst U1 and A are points in different lines

through the origin.

Let ρ be as defined in the proof of part (B). Then let A′ = ρ−1(A), so that

ρ(A′) = A.

By Definition CX.1, the complex number product tU1 ·A = δtU1(ρtU1(A))

by Definition CX.1(C)

(Case 1: t > 0.) tU1 ∈
qy →
OU1 so that by Definition CX.1(A) ρtU1 = ı and

hence

tU1 · A= δtU1(ρtU1(A)) = δtU1(A) = δtU1(ρ(A
′))

= ρ(δtU1(A
′)) commutativity (Theorem DLN.7(E))

= ρ(tU1 ⊙A′) by Definition OF.1(D) (both A′ and tU1 ∈ L1)

= ρ(tU1 · A′) · and ⊙ are the same on L1

= ρ(t(U1 ·A′)) by Theorem REAL.25 (both A′ and tU1 ∈ L1)

= ρ(tA′) by identity of U1

= ρ(δt(A
′)) δt as in Definition REAL.38

= δt(ρ(A
′)) commutativity (Theorem DLN.7(E))

= δt(A) by definition

= tA Theorem REAL.37 applies δt to all points.

(Case 2: t < 0.) −t = (−1)t, so by Case 1, ((−1)t)U1 · A = ((−1)t)A.
The left-hand side of this equality is ((−1)(tU1) ·A = (−1)(tU1 · A) by The-

orems REAL.23 and REAL.25. The right-hand side is (−1)(tA) by Theorem

REAL.25, so we have (−1)(tU1 · A) = (−1)(tA); multiplying both sides by

−1 and using Theorem REAL.25 and arithmetic, we have 1(tU1 ·A) = 1(tA)

which is tU1 · A = tA by Theorem VEC.7(E).

(D) This is part (A) where L = L∈. ⊓⊔

Remark CX.9 Theorem CX.8 shows that the comparative scales for

scalar multiplication in L1 and another line through the origin are the same

if the segments from O to their respective units are congruent. In particular

this is true for L2. Moreover, scalar multiplication tA agrees with complex

number multiplication tU1 · A.

Theorem CX.9 If A and B are distinct members of C \ ←−→OU1, then

△OU1B is similar to △OA(B ·A).

Proof. By Definition CX.1 and the fact that a rotation is an isometry,

∠U1OB ∼= ∠AO(B · A) (cf Theorem NEUT.15). By Theorem DLN.14,

dilations preserve angles so that ∠OU1B ∼= ∠OA(B · A). By Definition
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SIM.7, [
px qy

OU1 ][
px qy

OA ] = [
px qy

OA ] so that [
px qy

OA ] = [
px qy

OA ]©÷ [
px qy

OU1 ]; also [
px qy

OA ][
px qy

OB ] =

[
px qy

O(A ·B) ] so that [
px qy

OA ] = [
px qy

O(A ·B) ]©÷ [
px qy

OB ]. Therefore the ratios of corre-

sponding edges of △OU1B ∼ △OA(B ·A) are the same. By Theorem SIM.18

△OU1B ∼ △OA(B ·A). ⊓⊔

2.2 Computation with complex numbers

In this section, C is the complex plane, which is equipped with origin O

and operations + and · . L1 and L2 are perpendicular lines on P intersect-

ing at O, which are built into ordered fields with units U1 and U2 for L1

and L2, respectively. We assume that U2 is chosen so that
px qy

OU2
∼=

px qy

OU1. By

Theorem CX.4 U1 is the multiplicative identity for C. By Theorem VEC.8

every complex number Z can be written as Z = xU1+yU2 where x and y are

uniquely determined real numbers. + will denote addition, and · will denote
multiplication of two complex numbers.

Definition CX.10 (A) If Z = xU1 + yU2 is any complex number, x is

said to be the real part of Z, and y is the imaginary part of Z.

(B) A complex number Z is said to be real iff Z ∈ L1 and hence Z = xU1;

it is (purely) imaginary iff Z ∈ L2 and hence Z = yU2.

Theorem CX.11

(A) If x and y are any real numbers, then xU1 + yU2 = O iff x = y = 0.

(B) For all real numbers x and y, xU1 · yU1 = (xy)U1.

(C) For all real numbers x and y, xU2 · yU2 = (xy)(U2 · U2).

(D) For all real numbers x and y, xU1 · yU2 = yU2 · xU1 = (xy)U2.

(E) U2 · U2 = −U1.

(F) 0U1 = 0U2 = O.

Proof. (A) This is Theorem VEC.8(B).

(B) Since · is the same as ⊙ on L1, this follows from two applications of

Theorem REAL.23 and one of Theorem REAL.25 as follows:

xU1 · yU1 = xU1 ⊙ yU1 = x(U1 ⊙ yU1) = x(yU1 ⊙ U1)

= x(y(U1 ⊙ U1)) = (xy)(U1 ⊙ U1) = (xy)U1.

(C) By Theorem CX.8, xU2 = xU1 ·U2 and yU2 = yU1 · U2. Then by part

(C) and commutativity,
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xU2 · yU2 = xU1 · U2 · yU1 · U2 = xU1 · yU1 · U2 · U2

= (xy)U1 · U2 · U2 = (xy)(U2 · U2),

using Theorem CX.8 once again.

(D) By Theorem CX.8, yU2 = yU1 · U2. Using part (B),

xU1 · yU2 = xU1 · yU1 · U2 = (xy)U1 · U2 = (xy)U2.

(E) By Definition CX.1, since ρU2 is the rotation that maps U1 to U2,

δU2 = ı. By Theorem ROT.15(A), ρU2 = RM ◦ RL1 , whereM is the line of

symmetry of ∠U1OU2 (and also of its vertical angle ∠(−U1)O(−U2)). Then

RL1(U2) ∈
qy →
O(−U2) and RM(−U2) ∈

qy →
O(−U1). Hence

U2 · U2 = ρU2(U2) = RM(RL1(U2)) ∈
qy →
O(−U1).

The mapping ρU2 , and hence also the mapping ρU2 ◦ ρU2 is an isometry

so
px qy

O(U2 · U2) =
px qy

O(ρU2 (ρU2(U1))) ∼=
px qy

OU1. Also RO(U1) = −U1, so that
px qy

OU1
∼=

px qy

O(−U1) and
px qy

O(U2 · U2) ∼=
px qy

O(−U1). By Property R.4 of Definition

NEUT.2, U2 · U2 = −U1.

(F) Immediate from Definition REAL.19(A)(1). ⊓⊔

Remark/Definition CX.12 (A) With the rules in Theorem CX.11 just

above, together with the rules for addition and the distributive law which were

developed earlier in the chapter, we have everything we need to do complex

number arithmetic. At this point we abandon the use of capital letters A,

B, X , and the like for complex numbers; henceforth we will use lower case

letters. We will usually reserve the later letters of the alphabet (z and w in

particular) for non-real complex numbers and use the earlier letters for real

numbers.

(B) We abandon O as our designation of the origin, in favor of the number

zero (0).

(C) We will use 1 for U1, the unit in L1, which is the multiplicative identity

for C. This gives us the freedom to write xU1 · yU1 as simply xy.

(D) We will write i in place of U2. Be sure not to confuse the symbol i

with the symbol ı for the identity.

Thus, instead of writing a complex number as Z = xU1 + yU2, we will

write z = x + yi. It is also quite legitimate to write a complex number

Z = xU1 + yU2 as the ordered pair (x, y).

Theorem CX.13 (Restatement of Theorem CX.12) Using the no-

tation just introduced, the statement that every complex number Z can be

written as Z = xU1 + yU2 where x and y are uniquely determined real num-
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bers becomes “every complex number z can be written as z = x+ yi where x

and y are uniquely determined real numbers”.

(A) If x and y are any real numbers, then x+ yi = 0 iff x = y = 0.

(B) For all real numbers x and y, xy = xy !!2

(C) For all real numbers x and y, (xi)(yi) = (xy)i2.

(D) For all real numbers x and y, x(yi) = (xy)i.

(E) ii = i2 = −1.
(F) 0i = 0.

Theorem CX.14 (Computation involving complex numbers.) Let

a, b, c, and d be real numbers, so that a+ bi and c+ di are complex numbers.

Then

(A) (a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

(B) (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.

(C) (a+ bi)(a− bi) = a2 + b2.

(D) If c+ di 6= 0, then a+bi
c+di

= ac+bd
c2+d2 + −ad+bc

c2+d2 i.

Proof. We use the various rules of Theorem CX.13 as well as the field prop-

erties of C.

(A) Follows immediately from commutativity of addition.

(B) (a+ bi)(c+ di) = ac+ bdi2 + adi+ bci = (ac− bd) + (ad+ bc)i.

(C) (a+ bi)(a− bi) = a2 − b2i2 = a2 + b2.

(D) a+bi
c+di

= (a+bi)(c−di)
(c+di)(c−di) =

ac−bdi2−adi+bci
c2+d2 = ac+bd

c2+d2 + −ad+bc
c2+d2 i. ⊓⊔

Definition CX.15 (A) The modulus or absolute value of a complex

number z = a+ bi is its norm ‖z‖, which is written in the context of complex

numbers, as |z|.
(B) If z = a+ bi is any complex number, z̄ = a− bi is its complex con-

jugate.

Remark CX.16 (A) Recalling Definition VEC.6, if z = a+bi is a complex

number and t is a real number, the scalar product tz = ta+ tbi.

(B) By Theorem VEC.27(A), for any complex number z = a + bi, |z| =√
a2 + b2.

(C) For any complex number z = a+ bi,

zz̄ = (a+ bi)(a− bi) = a2 + abi− bai− b2i2 = a2 − b2(−1) = a+b2 = |z|2.
2 Notation can obscure what is really going on, but in this case it’s ok, since we have

proved already that xU1 · yU1 = (xy)U1.
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(D) a+ bi = 0 + 0i iff |a+ bi| = 0. For if |a+ bi| = a2 + b2 = 0 then since

both a2 ≥ 0 and b2 ≥ 0, both must be zero. Here Specht Ch.14 Theorem

OF.10(C) is used twice.

(E) Notice that we have two uses of the symbol |z|; if z is a real number,

Definition OF.13(B) applies. In this case |z| = z if z > 0 and |z| = −z if

z < 0. If z is a non-real complex number, Definition CX.15(A) applies. In

either case, |z| is the length of the segment
px qy

0z, that is to say, the distance

from 0 to z. The two definitions agree if z is a real number.

Some authors strongly prefer the terms magnitude or modulus rather

than “absolute value” for complex numbers since the common method of

finding the absolute value (as defined in Definition OF.13) of a real number

doesn’t work for complex numbers. This avoids the confusion possible when

the same symbol is used for two different definitions. However, the term ab-

solute value has become entrenched.

Theorem CX.17 Let a, b, c, and d be real numbers. Then

|(a+ bi)(c+ di)| = |a+ bi||c+ di|.
That is, the absolute value of the product of two complex numbers is the

product of their absolute values.

Proof. |(a+ bi)(c+ di)| = |(ac− bd) + (ad+ bc)i|
=
√
(ac− bd)2 + (ad+ bc)2

=
√
a2c2 − 2acbd+ b2d2 + a2d2 + 2adbc+ b2c2

=
√
a2c2 + a2d2 + b2c2 + b2d2

=
√
a2(c2 + d2) + b2(c2 + d2)

=
√
(a2 + b2)(c2 + d2)

=
√
a2 + b2

√
c2 + d2 = |a+ bi||c+ di|. ⊓⊔

Corollary CX.18 Let a, b, c, and d be real numbers, then (a+bi)(c+di) =

0+0i iff at least one of the complex numbers a+bi or c+di is the zero complex

number 0 + 0i.

Proof. The “if” part is immediate by definition, so we prove the converse. If

|a + bi||c + di| = 0, by Exercise CX.3 either |a + bi| = 0 or |c + di| = 0 (or

both). It is valid to use Theorem OF.10 since we are using only properties of

real numbers here. By Remark CX.16(D), either a = b = 0 or c = d = 0, or

both. ⊓⊔
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2.3 Exercises for complex numbers

Exercise CX.1* Complete the computations necessary to prove Theo-

rem CX.4.

Exercise CX.2* LetX be any nonzero complex number and let Y be any

member of
←→
OX , then there exists a unique real number t such that Y = tX

(cf Definition CX.7).

Exercise CX.3* Let A and B be complex numbers. A⊙B = O iff A = O

or B = O (or both A and B are equal to zero).

Exercise CX.4 Following the lead of the last sentence in Remark CX.14,

rewrite the conclusions of Theorem CX.15, using the notation (x, y) in place

of x+ yi.

2.4 Selected answers for complex numbers

Exercise CX.1 Proof. Let A, B, and C be any members of C \ {O}. By
Definition CX.1, A ·B ∈ C \ {O}, so this set is closed under the operation.

(I) Associativity.

A · (B · C)= (A · (δB ◦ ρB ◦ δC ◦ ρC)(U1)) by Theorem CX.3(B)

= δA ◦ ρA((δB ◦ ρB ◦ δC ◦ ρC)(U1)) Definition CX.1(C)

= (δA ◦ ρA) ◦ (δB ◦ ρB ◦ δC ◦ ρC)(U1)

= (δA ◦ ρA ◦ δB ◦ ρB) ◦ (δC ◦ ρC)(U1) associativity of bijections

= (δA ◦ δB ◦ ρA ◦ ρB) ◦ (δC ◦ ρC)(U1) Theorem DLN.7(E)

= (δA·B ◦ ρA·B) ◦ (δC ◦ ρC)(U1) Theorem CX.3(C)

= (δA·B ◦ ρA·B)((δC ◦ ρC)(U1))

= (A ·B) · C Definition CX.1(C)

(II) Identity. By Definition CX.1, A · U1 = δA ◦ ρA(U1) = A, so that U1 is

the multiplicative identity.

(III) Commutativity. By Definition CX.1, and Theorem DLN.22 (commu-

tativity of G)

A · B = δA ◦ ρA(δB ◦ ρB(U1)) = (δA ◦ ρA ◦ δB ◦ ρB)(U1)

= (δB ◦ ρB ◦ δA ◦ ρA◦)(U1) = δB ◦ ρB(δA ◦ ρA ◦ (U1) = B ·A.
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(IV) Inverses. Let A−1 = δ−1A (ρ−1A (U1)). Then by Theorem DLN.20(A)

(commutativity of G)

A · A−1 = δA ◦ ρA((δ−1A ◦ ρ−1A )(U1))

= (δA ◦ δ−1A ◦ ρA ◦ ρ−1A )(U1) = ı ◦ ı(U1) = U1. ⊓⊔

Exercise CX.2 Proof. This is Corollary REAL.35.1. ⊓⊔

Exercise CX.3 Proof. The proof of Exercise OF.10(H) is valid here since

that proof uses only field properties and does not involve any properties of

the relation <. ⊓⊔





Chapter 3

Arc Length (ARC)

Dependencies: Euclidean Geometry and its Subgeometries (Specht)

Acronym:ARC

New terms defined: arc, closed arc, rectifiable arc, arc length, summation,

function of bounded variation, total variation

This chapter defines rectifiable arcs, arc length, and functions of bounded

variation. The following Chapter 4 defines the circular functions sin and cos

and develops their properties, starting from an antiderivative of the function

f(x) = 2
1+x2 . Chapter 5 defines angle measure in terms of the length of arc

of a unit circle, and proves several interesting results using this definition.

To understand these chapters the reader needs some background in cal-

culus and analysis: we assume familiarity with limits, ǫ − δ limit proofs,

continuity and uniform continuity of functions, the mean value theorem, as

well as Riemann sums and integrals.

Here we will be working with R2, the Cartesian coordinate plane. In Specht

Ch.21 Theorem LC.44 we summarized a proof that all the axioms in that work

hold for R2. Therefore, in the present chapter and the two that follow, we are

free to use all the theorems and definitions from Specht.

For an explanation of our conventions for citations of items in Specht, we

refer the reader to the note Citations and references at the end of the

Preface to this Supplement, and to the abbreviated Table of Contents (with

acronyms) included there.

In this chapter references to items labeled ARC will be to this Supplement;

all other references are to Specht.

55
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On notation: If a and b are real numbers, we will denote
px qy

ab by [a, b],
qy px

ab by ]a, b[,
px px

ab by [a, b[, and
qy qy

ab by ]a, b]. If f is a function defined on real

numbers, we may denote the set {f(x) | x ∈ [a, b]} by f [a, b] instead of the

more formally correct symbol f([a, b]). Ifm and n are integers and m < n, we

use the symbol [m;n] to denote the set {k | k is an integer and m ≤ k ≤ n}.

3.1 Definitions and theorems for arc length

Definition ARC.1 (I) A subset C of R2 is an arc iff a and b are real

numbers such that a ≤ b, and there exists a mapping f of
px qy

ab = [a, b] into R2

such that

(a) C = f [a, b],

(b) f is one-to-one,

(c) f is continuous on [a, b], and

(d) f−1 is continuous on f [a, b].

A mapping with these properties is a homeomorphism. If a = b, the arc is

the trivial arc, consisting of a single point. It is understood that an arc does

not intersect itself.

A subset C of R2 is a closed arc iff a and b are real numbers such that

a < b, and there exists a mapping f of
px qy

ab = [a, b] into R2 such that (a)

C = f [a, b], (b) the restriction of f to [a, b[ is one-to-one, (c) f is continuous

on [a, b], and (d) f−1 is continuous on f [a, b[, and (e) f(a) = f(b). A closed

arc intersects itself only at its endpoints.

If C and f are as defined above, we will say that C is an arc generated

by the function f or an arc generated by the function f over [a, b],

or a closed arc generated by the function f over [a, b].

If f [a, b] is a closed arc generated by the function f over [a, b], and if

a < x < b, then both f [a, x] and f [x, b] are arcs (not closed).

If we need a symbol for an arc without reference to the function which

generates it, we will generally use the the symbol C rather than A, since C
suggests the word curve, the name popularly given to what we have defined

as arc.

(II) A partition of [a, b] is a finite subset P [a, b] = {a = x0, x1, ..., xn = b}
of [a, b] such that

(A) n ≥ 1, so that P [a, b] contains at least the two elements a and b, and

(B) a = x0 < x1 < ... < xn = b, that is, for every k ∈ [1;n], tk−1 < tk.
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We will find it convenient at times to summarize the definition of partition

by writing

P [a, b] = {a = x0 < x1 < ... < xn = b}.
A partition P [a, b] containing only the two elements a and b will be referred to

as the trivial partition. Within a given argument, if it is clear what interval

is being partitioned, we may write P [a, b] simply as P . Note that this use

of the word “partition” is related to, but not the same as its use in Specht

Chapter 1, Section 1.4.

(III) If P1[a, b] and P2[a, b] are partitions of [a, b], then P2[a, b] is a refine-

ment of P2[a, b] iff P1[a, b] is a proper subset of P2[a, b].

(IV) Let f be a function with values in R or R2, defined on the interval

[a, b], and let P be a partition of [a, b]. The summation of f over the

partition P is

SP (f) =
n∑

k=1

|f(tk)− f(tk−1)|.
If it is desired to emphasize the domain of f we may write the sum as

SP[a,b](f) =
n∑

k=1

|f(tk)− f(tk−1)|.
For a visualization see Figure 3.1.

SP(f) is the sum of these lengths

f [a, b]

a = t0 t1 t2 t3 t4 t5 t6 = b

f(t0)

f(t1)

f(t2)

f(t3)

f(t4)
f(t5)

f(t6)

Fig. 3.1 Showing construction of the summation of f over the partition

P = {a = t0 < t1 < ... < t6 = b}

(V) Let P [a, b] = {a = t0 < t1 < ... < tn = b} be a partition of [a, b]. The

gauge of P [a, b] is the number

max{tk − tk−1 | k ∈ [1;n]} = max{|tk − tk−1| | k ∈ [1;n]}.
(VI) The arc (or closed arc) f [a, b], as well as the mapping f , is said to be

rectifiable iff there exists a positive number h such that for every partition

P [a, b] of [a, b], SP(f) =
n∑

k=1

|f(tk)− f(tk−1)| < h.

(VII) If the arc (or closed arc) f [a, b] is rectifiable, then its arc length,

or simply its length, is
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L(f [a, b]) = lub{SP(f) | P is a partition of [a, b]}.

Remark ARC.2 (A) The arc length L(f [a, b]) of a rectifiable arc f [a, b]

in R2 is always defined because the set of all sums SP (f), where P is a

partition of [a, b], is a set of real numbers which is bounded above, and such

sets always have a least upper bound.

(B) If a = b, (f [a, b] is the trivial arc) the only possible sum SP (f) is

|f(a) − f(b)| = 0 so L(f [a, b]) = 0. If a 6= b then since f is one-to-one,

|f(a)− f(b)| 6= 0 is a sum SP(f), and since the arc length is the least upper

bound of all such sums, L(f [a, b]) > 0.

(C) In Definition ARC.1(I), the definition of an arc (not closed) does not

need to declare that the inverse of f is continuous; this is a consequence of a

theorem from general topology which states that any one-to-one continuous

function defined on a compact domain has a continuous inverse.

Theorem ARC.3 Let f [a, b] be an arc generated by the function f over

[a, b]. If P2 and P1 are partitions of [a, b], and P2 is a refinement of P1, then

SP1(f) ≤ SP2(f).

Proof. By Definition ARC.1(III), P1 ⊆ P2 and P1 6= P2. Then there exists a

natural number m and a sequence

P1 = Q1 ⊆ Q2 ⊆ ... ⊆ Qm = P2

of partitions of [a, b] such that for every k with 1 < k ≤ m, there exists a real

number t such that

Qk \ Qk−1 = {t},
where t is a singleton, both xp−1 and xp belong to Qk−1, and xp−1 < t < xp.

That is to say, each of the partitions Qk contains one more point than its

predecessor Qk−1.

Thus, it suffices to show that if P [a, b] = {a = x0 < x1 < ... < xn = b}
is a partition of [a, b] and t is a real number such that xk−1 < t < xk, the

partition Q[a, b] = P [a, b] ∪ {t} satisfies
SP (f) ≤ SQ(f).

This follows immediately from

|f(xk−1)− f(xk)| ≤ |f(xk−1)− f(t)|+ |f(t)− f(xk)|,
which is true by the triangle inequality for R2. ⊓⊔
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If C is a closed arc, for SP(f) 6= 0 it is necessary for P to contain at least

three points. Theorem ARC.3, however, is true in the case of a closed arc.

Theorem ARC.4 Suppose that a and b are distinct real numbers, where

a < b, and that f [a, b] is an arc (or closed arc) generated by the function f

over [a, b].

(A) If [d, e] is a proper subsegment of [a, b], that is, d < e and both d and

e are members of [a, b], but [a, b] 6= [d, e], then if f [a, b] is rectifiable, f [d, e]

is rectifiable.

(B) If c is a real number such that a < c < b,

L(f [a, b]) = L(f [a, c]) + L(f [c, b]).

Proof. (A) Let P [d, e] = {d = x0 < x1 < ... < xn = e} be a partition of [d, e].

Then Q[a, b] = P [d, e] ∪ {a, b} is a partition of [a, b];

(Case 1:) if a 6= d and b 6= e then

Q[a, b] = {a < d = x0 < x1 < ... < xn = e < b};
(Case 2:) if a = d then Q[a, b] = {a = d = x0 < x1 < ... < xn = e < b};
(Case 3:) if b = e then Q[a, b] = {a < d = x0 < x1 < ... < xn = e = b};

Since f [a, b] is rectifiable, there exists a number h > 0 such that for every

partition R[a, b] of [a, b], SR(f) < h; thus, in particular, SQ(f) < h.

In Case 1, this means that (noting that f(x0) = f(d) and f(xn) = f(e))

h > SQ(f) =
n∑

k=1

|f(tk)− f(tk−1)|+ |f(x0)− f(a)|+ |f(b)− f(xn)|

≥
n∑

k=1

|f(tk)− f(tk−1)| = SP(f),
so that SP(f) < h. Since P was initially chosen to be an arbitrary partition

of [d, e], this means that f [d, e] is rectifiable.

Likewise, in Case 2,

h > SQ(f) =
n∑

k=1

|f(tk)− f(tk−1)|+ |f(b)− f(xn)| ≥ SP(f),
and in Case 3,

h > SQ(f) =
n∑

k=1

|f(tk)− f(tk−1)|+ |f(x0)− f(a)| ≥ SP(f),
so that in either case, f [d, e] is rectifiable.

(B) (I) Let f1 and f2 be the restrictions of f to [a, c] and [c, b], respectively.

By part (A) the arcs f1[a, c] and f2[c, b] are rectifiable, and

L(f1[a, c]) = lub{SQ(f1) | Q is a partition of [a, c]}, and
L(f2[c, b]) = lub{SQ(f2) | Q is a partition of [c, b]}.
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Let P be any partition of [a, b]; then P ∪ {c} is a partition of [a, b]; define

P1 = (P ∪ {c}) ∩ [a, c] and P2 = (P ∪ {c}) ∩ [c, b]; then P1 is a partition of

[a, c] and P1 is a partition of [c, b].

Then, for any partition P of [a, b], and using Theorem ARC.3,

SP(f) ≤ S(P∪{c})(f) = SP1(f1) + SP2(f2) ≤ L(f [a, c]) + L(f [c, b]).

so that

L(f [a, b]) = lub{SP(f) | P is a partition of [a, b]}
≤ L(f1[a, c]) + L(f2[c, b]).

(II) Conversely, let ǫ be any positive real number. By definition of L(f1[a, c])

and L(f2[c, b]) there exist partitions P1 of [a, c] and P2 of [c, b] such that

SP1(f1) > L(f1[a, c])− ǫ
2 , and SP2(f2) > L(f2[c, b])− ǫ

2 .

Let P = P1 ∪ P2; P is a partition of [a, b] and

SP (f) = SP1(f1) + SP2(f2) > L(f1[a, c])− ǫ
2 + L(f2[c, b])− ǫ

2

= L(f1[a, c]) + L(f2[c, b])− ǫ.
Therefore if Q is any refinement of P , using Theorem ARC.3,

SQ(f) ≥ SP(f) > L(f1[a, c]) + L(f2[c, b])− ǫ.
Since we chose ǫ arbitrarily, this means that

L(f [a, b]) = lub{SP(f) | P is a partition of [a, b]}
≥ L(f1[a, c]) + L(f2[c, b]).

(III) That L(f [a, b]) = L(f1[a, c]) + L(f2[c, b]) follows immediately from

parts (I) and (II) above. ⊓⊔

Definition ARC.5 Let a and b be distinct real numbers and let ϕ be

a mapping of [a, b] =
px qy

ab into R. ϕ is of bounded variation on [a, b] iff

there exists a positive number h such that for every partition P [a, b] of [a, b],
SP[a,b](ϕ) < h. (Here, SP[a,b](ϕ) is as defined in Definition ARC.1(IV).)

If ϕ is of bounded variation on [a, b], then the total variation of ϕ on

[a, b] is

V(ϕ[a,b]) = lub{SP[a,b](ϕ) | P [a, b] is a partition of [a, b]}.
Let t be any member of ]a, b] =

qy qy

ab. Then V(ϕ[a,t]) is the total variation of ϕ

on [a, t] =
px qy

at.

Remark ARC.6 Our definition here of the total variation is the same as

that in Definition ARC.1(VII) for arc length, except that now we are dealing

with a real-valued function, rather than a function with values in R2.

The symbol V(ϕ[a, b]) for the total variation of the function ϕ over the

segment [a, b] is completely analogous to the symbol L(f [a, b]) for the arc

length of an arc f [a, b]. The symbol SP(ϕ) means the same thing in both
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contexts.

Theorem ARC.7 Suppose that a and b are distinct real numbers, where

a < b, and that ϕ is a mapping of [a, b] into R. Let [d, e] be a proper sub-

segment of [a, b], that is, d < e and both d and e are members of [a, b], but

[a, b] 6= [d, e]. Then

(A) if ϕ is of bounded variation on [a, b], it is also of bounded variation on

[d, e]; and

(B) if c is a real number such that a < c < b,

V(ϕ[a, b]) = V(ϕ[a, c]) + V(ϕ[c, b]).

We may express this last expression by saying that V(ϕ[a, t]) is an additive

function of t.

Proof. With the substitution where appropriate of V(ϕ[a, b]) for L(f [a, b]),

the proof of Theorem ARC.4 is valid word-for-word for Theorem ARC.7. ⊓⊔

Theorem ARC.8 Let a and b be real numbers such that a < b and let ϕ

be a mapping of [a, b] =
px qy

ab into R which is of bounded variation on [a, b]. If

ψ is the mapping such that for every member x of [a, b], ψ(x) = V(ϕ[a, x]),

then

(A) ψ is nondecreasing on [a, b], and

(B) If ϕ is continuous on [a, b], then ψ is continuous on [a, b].

Proof. (A) If s and t are members of [a, b] such that s < t, then ψ(t) =

V(ϕ[a, t]) and ψ(s) = V(ϕ[a, s]). By Theorem ARC.7(B),

V(ϕ[a, t]) = V(ϕ[a, s]) + V(ϕ[s, t]),

so that, rearranging,

ψ(t) − ψ(s) = V(ϕ[a, t])− V(ϕ[a, s]) = V(ϕ[s, t]) ≥ 0,

and thus ψ(s) ≤ ψ(t).
(B) We assume there exists a member x of [a, b] such that ψ is not con-

tinuous at x and show that this assumption leads to a contradiction. Since

ψ is nondecreasing the only discontinuity can be a jump discontinuity; either

(Case 1) the limit from the right is greater than ψ(x) or (Case 2) the limit

from the left is less than ψ(x).

(Case 1:) There exists a number d > 0 such that (limit from the right)

lim
t→x

ψ(t)− ψ(x) = d, where t ∈]x, b] = qy qy

xb.

(I) We begin our proof by making the following observations labeled (a),

(b), and (c):
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From part (A), ψ(t) = V(ϕ[a, t]) is an increasing function of t, and it is

additive by Theorem ARC.7(B). Thus for all t > x,

V(ϕ[a, t]) = V(ϕ[a, x]) + V(ϕ[x, t]).

so that

V(ϕ[a, t])− V(ϕ[a, x]) = V(ϕ[x, t]) ≥ d.
Since lim

t→x
V(ϕ[x, t]) = d, there exists a number t0 > x such that for all t with

x < t ≤ t0,
d ≤ V(ϕ[x, t]) < 6d

5 . (a)

Also, since ϕ is continuous, the number t0 may also be chosen so that for all

t with x < t ≤ t0,
|ϕ(t)− ϕ(t0)| < d

5 . (b)

For every partition P = P [x, t] of [x, t], where x < t ≤ t0, and applying (a)

SP[x,t](ϕ) < V(ϕ[x, t]) < 6d
5 . (c)

(II) By the definition of least upper bound, we can choose P0 = {x = x1 <

x1 < x2 < ... < xn = t0} to be a partition of [x, t0] such that

SP0(ϕ) > V(ϕ[x, t0])− d
5 .

Then

SP0(ϕ) = |ϕ(x1)− ϕ(x0)|+
n∑

k=2

|ϕ(xk)− ϕ(xk−1)|

< d
5 +

n∑
k=2

|ϕ(xk)− ϕ(xk−1)|,
or, rearranging and using (I)(a) above,

n∑
k=2

|ϕ(tk)− ϕ(tk−1)| > SP0(ϕ) − d
5 > V(ϕ[x, t0])− d

5 − d
5 > d− 2d

5 = 3d
5 .

(III) Now let P1 = {x = y0 < y1 < y2 < ... < ym = x1} be a partition of

[x0, x1] = [x, x1]; since V(ϕ[x, x1]) ≥ d, we can choose P1 so that

SP1(ϕ) > V(ϕ[x, x1])− d
5 ≥ d− d

5 = 4d
5 .

Let Q = P0 ∪ P1; then Q is a partition of [x, t] and by (II),

SQ(ϕ) = SP1(ϕ) +
n∑

k=2

|ϕ(xk)− ϕ(xk−1)|

> 4d
5 + 3d

5 = 7d
5

But by (I)(c), SQ(ϕ) < 6d
5 , so we have a contradiction.

(Case 2:) We follow the proof of Case 1. There exists a number d > 0 such

that (limit from the left) ψ(x) − lim
t→x

ψ(t) = d, where t ∈ [a, x]. We leave the

rest of the proof to the reader as Exercise ARC.1. ⊓⊔

Remark ARC.9 (A) A real-valued function defined on a set E of real

numbers is said to be uniformly continuous iff for any real number ǫ > 0,

there exists a real number δ > 0 such that for all x and y in E , if |x− y| < δ,

then |f(x)− f(y)| < ǫ.
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(B) A real-valued function defined on a set E of real numbers is said to

be bounded iff there exists a real number b > 0, such that for every x ∈ E ,
|f(x)| < b.

(C) It is well known from calculus that if a real-valued function f defined

on a closed interval [a, b] is continuous, it is uniformly continuous; from this

it is easy to see that it is also bounded; for if ǫ and δ are as in (A), let n be

any integer such that n |b−a|
δ

; then for any x ∈ [a, b], |x− a| < n(δ) and there

exists a subset {a = t0 < t1 < t2 < ... < tn−1 < tn = x} such that for all

k ∈ [1;n], |tk − tk−1| < δ, and hence for all k ∈ [1;n], |f(tk) − f(tk−1)| < ǫ,

so that

|f(a)− f(x)| ≤
n∑

k=1

|f(tk)− f(tk−1)| < nǫ.

Then let b = |f(a)|+nǫ; for all x ∈ [a, b], |f(x)| ≤ b, so that f is bounded on

[a, b].

Theorem ARC.10 Let f be a continuous function defined on the closed

interval [a, b] having values in R or R2. By Remark ARC.9, f is uniformly

continuous on [a, b].

For each integer j > 0 let {Pj} be a partition of [a, b] and let gj be the

gauge of the partition Pj. Suppose that lim
j→∞

gj = 0 and lim
gj→0

SPj
(f) exists

and is equal to some number L. Since for all j, SPj
(f) > 0, L > 0.

(A) Then for every partition P of [a, b],

SP(f) ≤ lim
gj→0

SPj
(f) = L.

(B) The least upper bound

lub{SP(f) | P is a partition of [a, b]}.
exists, and is equal to L.

Proof. (A) Suppose the contrary is true, that for some partition P = {a =

x0 < x1 < x < 2 < ... < xn = b} of [a, b],
SP(f) > L.

Let d = SP(f) − L, that is, SP(f) = L+ d Since f is uniformly continuous,

there exists a real number δ > 0 such that for all x and y in [a, b], if |x−y| < δ,

then |f(x)− f(y)| < d
3n . Let j0 be so large that for all j ≥ j0,

(1) gj < min{xk − xk−1 | k ∈ {[1, n]};
(2) gj < δ; and

(3) |SPj
− L| < d

3 , so that SPj
< L+ d

3 .

Let j ≥ j0; for each k ∈ [1;n], define Yk = Pj∩]xk−1, xk[= {y0 < y1 <

y2 < ... < ymk
} by (1) above, this set is nonempty, and Yk is a partition of

[y0
(k), ymk

(k)]. Then
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mk∑
p=1
|f(yp(k))− f(yp−1(k))|+ |f(y0(k))− f(xk−1)|+ |f(xk)− f(ymk

(k))|

= SYk
(f) + |f(y0(k))− f(xk−1)|+ |f(xk)− f(ymk

(k))|
≥ |f(xk)− f(xk−1)|; (*)

this last inequality uses the fact that {xk−1, y0(k), y1(k), y2(k), ..., ymk

(k), xk}
is a refinement of the trivial partition {xk−1, xk} of [xk−1, xk]. Here it is

possible, but not necessary, for xk−1 = y0
(k) or ymk

(k) = xk.

Now all the terms |f(yp(k))−f(yp−1(k))| (which belong to the summations
mk∑
p=1
|f(yp(k)) − f(yp−1(k))| over all partitions Yk) are also terms in the sum-

mation SPj
(f); therefore the sum of all these terms is less or equal to SPj

(f).

It follows that

SPj
(f) ≥

n∑
k=1

SYk
(f),

and using (*) above,

SPj
(f) +

n∑
k=1

(
|f(y0(k))− f(xk−1)|+ |f(xk)− f(ymk

(k))|
)

≥
n∑

k=1

SYk
(f) +

n∑
k=1

(
|f(y0(k))− f(xk−1)|+ |f(xk)− f(ymk

(k))|
)

≥
n∑

k=1

|f(xk)− f(xk−1)| = SP (f).

Finally, since |y0(k) − xk−1| < δ and |xk − ymk

(k)| < δ,

|f(y0(k))− f(xk−1)| < d
3n and |f(xk)− f(ymk

(k))| < d
3n ,

so that
n∑

k=1

(
|f(y0(k))− f(xk−1(k))|+ |f(xk)− f(ymk

(k))|
)
< 2d

3

and

SPj
(f) + 2d

3 > SP(f), or SPj
(f) > SP(f)− 2d

3 .

Recall from the beginning of the proof that SP (f) = L+ d, so that

SPj
(f) > L+ d− 2d

3 = L+ d
3 .

But from condition (3) above,

SPj
(f) < L+ d

3 ,

a contradiction. It follows that for every partition P of [a, b], SP(f) ≤ L.
(B) By part (A), L is an upper bound for

{SP(f) | P is a partition of [a, b]}.
By definition of limit, for every ǫ > 0, there exists a partition Pj such that

L − SPj
(f) < ǫ. Therefore the least upper bound is greater or equal to L,

hence equal to L. ⊓⊔

Theorem ARC.11 (Integral form for arc length) Let a and b be real

numbers such that a < b and let α and β be continuous real valued functions
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defined on [a, b] =
px qy

ab, such that the function f(t) = (α(t), β(t)) mapping [a, b]

to a subset C of R2 is continuous. Assume further that the derivatives α′ and

β′ exist and are continuous on [a, b], and that for every member t of [a, b],(
α′(t)

)2
+
(
β′(t)

)2
> 0. Then

(A) f [a, b] is a rectifiable arc (or closed arc), and

(B) for every member x of [a, b],

L(f [a, x]) =

x∫

a

√(
α′(u)

)2
+
(
β′(u)

)2
du.

Proof. For each natural number j, let Pj[a, x] be a partition of [a, x] such

that for each j, Pj+1[a, x] is a refinement of Pj[a, x], and lim
j→∞

gj = 0, where

gj is the gauge of Pj [a, x]. For an arbitrary j, let Pj [a, x] = {t0 < t1 < t2 <

... < tn}. Then SPj
(f) is

n∑
k=1

|f(tk)− f(tk−1)| =
n∑

k=1

√(
α(tk)− α(tk−1)

)2
+
(
β(tk)− β(tk−1)

)2
.

By the mean-value theorem for derivatives, for each k ∈ [1;n] there exist

numbers sk and uk of ]tk−1, tk[ such that α(tk)−α(tk−1) = (tk− tk−1)α′(sk)
and β(tk)− β(tk−1) = (tk − tk−1)β′(uk). Then

SPj
(f) =

n∑
k=1

|f(tk)− f(tk−1)|

≤
n∑

k=1

√
(α′(sk))2 + (β′(sk))2(tk − tk−1)

+
n∑

k=1

√
|β′(uk))2 − (β′(sk)2|(tk − tk−1) (*).

Since β′ is continuous on [a, b], it is bounded on [a, b]. Thus there exists a

positive number h such that for every t belonging to [a, b], |β′(t)| ≤ h
2(b−a) .

Since β′ is uniformly continuous on [a, b], for every positive number ǫ there

exists a positive number δ such that for all numbers s and t belonging to [a, b],

if |s− t| < δ, then |β′(s)− β′(t)| < ǫ2

2(b−a)h .

Thus if we choose the partition Pj [a, x] = {t0 < t1 < t2 < ... < tn} so that

gj = max{(tk − tk−1) | k ∈ [1;n]} < δ,
n∑

k=1

√
|(β′(uk))2 − (β′(sk))|2(tk − tk−1)

=
n∑

k=1

√
|β′(uk) + β′(sk)|

√
|β′(uk)− β′(sk)|(tk − tk−1).

For all k,
n∑

k=1

√
|β′(uk) + β′(sk)| ≤

n∑
k=1

√
|β′(uk)|+ |β′(sk)|

≤
√
|β′(uk)|+

√
|β′(sk)| < 2

√
|β′(t)| ≤ 2

√
h

2(b−a) .

Also, for all k,
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√
|β′(uk)− β′(sk)| <

√
ǫ2

2(b−a)h
so that

n∑
k=1

√
|(β′(uk))2 − (β′(sk))|2(tk − tk−1)

< 2
√

h
2(b−a) ·

√
ǫ2

2(b−a)h
n∑

k=1

(tk − tk−1)

=
√

ǫ2

(b−a)
n∑

k=1

(tk − tk−1) = ǫ
(b−a) (b − a) = ǫ.

Therefore

lim
gj→0

n∑
k=1

√
|(β′(uk))2 − (β′(sk))2|(tk − tk−1) = 0,

where taking the limit lim
gj→0

means the same thing as taking the limit lim
j→∞

through the sequence Pj [a, x] of partitions of [a, x].

By definition of the integral (from calculus), and by the argument just

above, the limit of the right-hand side of (*) is
x∫

a

√(
α′(u)

)2
+
(
β′(u)

)2
du+ 0.

For each j > 1, Pj+1[a, x] is a refinement of Pj [a, x], so the sequence SPj
(f)

(the left-hand side of (*)) is non-decreasing (with j), and has an upper bound

since the right-hand side of (*) has a limit. Therefore the limit lim
gj→0

SPj
(f)

exists; by Theorem ARC.10, this is

L(f [a, x]) = lub{SP(f) | P is a partition of [a, x]},
completing the proof. ⊓⊔

Theorem ARC.12 (Arc length is a bicontinuous bijection) Let a

and b be real numbers such that a < b; let α and β be continuous real-valued

functions defined on [a, b], such that f = (α, β) is a one-to-one continuous

function of [a, b] into R2 (and thus a homeomorphism); assume also that the

arc f [a, b] is rectifiable.

Let ϕ be the mapping defined on [a, b] such that ϕ(a) = 0 and for every

t ∈]a, b], ϕ(t) = L(f [a, b]). Then

(A) ϕ is increasing, one-to-one, and continuous on [a, b];

(B) ϕ−1 exists, is increasing, and is continuous on
px qy

ϕ(a)ϕ(b); and

(C) the mapping ϕ ◦ f−1 is a one-to-one mapping of f([a, b]) = C into R;

that is, if ϕ(s) = ϕ(t) then f(s) = f(t).

Proof. (A) Let s and t be members of [a, b] such that s < t.

(Case 1: a = s < t ≤ b.) Let P [a, t] be a partition of [a, t]. Since f is

one-to-one, every term of SP[a,t](f) is positive (as opposed to non-negative).

Therefore L(f [a, t]) is positive and so ϕ(a) = 0 < ϕ(t).
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(Case 2: a < s.) Let P [s, t] be a partition of [s, t]. Since every term of

SP[s,t](f)) is positive, L(f [s, t]) is positive. By Theorem ARC.4, L(f [a, t]) =

L(f [a, s]) + L(f [s, t]), ϕ(t) = ϕ(s) + L(f [s, t]), so ϕ(s) < ϕ(t). Thus ϕ is

increasing, and is one-to-one.

To show continuity of ϕ, let s and t be members of [a, b] such that s < t, let

n be a natural number, and let P [a, b] = {a = x0 < x1 < x2 < ... < xn = b}
be a partition of [a, b]. Then

n∑
k=1

|f(xk)− f(xk−1)| ≤
n∑

k=1

|α(xk)−α(xk−1)|+
n∑

k=1

|β(xk)−β(xk−1)|
≤ V(α[s, t]) + V(β[s, t]).

Since P [a, b] is an arbitrary partition of [a, b],

L(f [a, t]) ≤ V(α[s,t]) + V(β[s,t]).

Let ǫ be any positive number. By Remark ARC.9(C) there exists a positive

number δ such that for all members s and t of [a, b] for which 0 ≤ s < t ≤ b

and t − s < δ, L(f [s, t]) < ǫ. Since L(f [s, t]) = ϕ(t) − ϕ(s), this means that

ϕ is continuous on [a, b].

(B) By Exercise ARC.3 ϕ−1 is increasing and continuous on
px qy

ϕ(a)ϕ(b).

(C) Since f and ϕ are one-to-one, so are f−1 and ϕ ◦ f−1. ⊓⊔

3.2 Exercises for arc length

Exercise ARC.1* Complete the proof of Theorem ARC.8(B), Case 2.

Exercise ARC.2* Let a and b be distinct real numbers, α and β be

mappings of [a, b] into R and f = (α, β), then:

(A) f is continuous on [a, b] iff each of α or β is continuous on [a, b].

(B) f is rectifiable iff each of α and β is of bounded variation on [a, b].

Exercise ARC.3* Let a and b be real numbers such that a < b. If ϕ is a

mapping of [a, b] into R which is increasing and is continuous on [a, b], then:

(I) ϕ−1 exists.

(II) ϕ−1 is increasing on [ϕ(a), ϕ(b)].

(III) ϕ−1 is continuous on [ϕ(a), ϕ(b)].

Exercise ARC.4* Let ϕ be a mapping of R into R which is increasing

and continuous on R, then:

(I) ϕ−1 exists.

(II) ϕ−1 is increasing on R.

(III) ϕ−1 is continuous on R.
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3.3 Selected answers for arc length

Exercise ARC.1 Proof. We follow the proof of Case 1 of Theorem

ARC.8(B). There exists a number d > 0 such that (limit from the left)

ψ(x) − lim
t→x

ψ(t) = d, where t ∈ [a, x].

(I) ψ(t) = V(ϕ[a, t]) is an increasing function of t, and is additive. For all

t < x,

V(ϕ[a, x]) = V(ϕ[a, t]) + V(ϕ[t, x]).

so that

V(ϕ[a, x]) − V(ϕ[a, t]) = V(ϕ[t, x]) ≥ d.
Since lim

t→x
V(ϕ[x, t]) = d, there exists a number t0 < x such that for all t with

x > t ≥ t0,
d ≤ V(ϕ[t, x]) < 6d

5 . (a)

Also, since ϕ is continuous, the number t0 may also be chosen so that for all

t with x > t ≥ t0,
|ϕ(x)− ϕ(t)| < d

5 . (b)

For every partition P = P [t, x] of [t, x], where x > t ≥ t0, and applying (a)

SP[t,x](ϕ) < V(ϕ[t, x]) < 6d
5 . (c)

(II) By the definition of least upper bound, we can choose P0 = {t0 =

x1 < x1 < x2 < ... < xn = x} to be a partition of [t0, x] such that

SP0(ϕ) > V(ϕ[0, xn])− d
5 .

Then by (I)(b) above,

SP0(ϕ) =
n−1∑
k=1

|ϕ(xk)− ϕ(xk−1)|+ |ϕ(xn)− ϕ(xn−1)|

<
n−1∑
k=1

|ϕ(xk)− ϕ(xk−1)|+ d
5 ,

or, rearranging and using (I)(a) above,
n−1∑
k=1

|ϕ(xk)− ϕ(xk−1)| > SP0(ϕ) − d
5 > V(ϕ[x, t0])− d

5 − d
5 > d− 2d

5 = 3d
5 .

(III) Now let P1 = {xn−1 = y0 < y1 < y2 < ... < ym = x} be a partition

of [xn−1, xn] = [xn−1, x]; since V(ϕ[xn−1, x]) ≥ d, we can choose P1 so that

SP1(ϕ) > V(ϕ[xn−1, x])− d
5 ≥ d− d

5 = 4d
5 .

Let Q = P0 ∪ P1; then Q is a partition of [t, x] and by (II),

SQ(ϕ) =
n−1∑
k=1

|ϕ(xk)− ϕ(xk−1)|+ SP1(ϕ) >
3d
5 + 4d

5 = 7d
5

But by (I)(c), SQ(ϕ) < 6d
5 , so we have a contradiction. ⊓⊔
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Exercise ARC.2 Proof. (A) If α and β are each continuous on [a, b], then

for every member s of [a, b] and for every positive number ǫ, there exists

a positive number δ such that for every member t of [a, b] \ {s}, if |t −
s| < δ, then |α(t) − α(s)| ≤ ǫ

2 and |β(t) − β(s)| < ǫ
2 . Thus |f(s) − f(t)| =√(

α(t)− α(s)
)2

+
(
β(t)− β(s)

)2
≤ |α(t)−α(s)|+|β(t)−β(s)| < ǫ

2+
ǫ
2 = ǫ.

Hence if α and β are continuous on [a, b], then f is continuous on [a, b].

Conversely, if f is continuous on [a, b], then for every member s of [a, b]

and for every positive number ǫ, there exists a positive number ǫ, such that

for every member t of [a, b] \ {s}, if |t − s| < δ, then f(t) − f(s)| < ǫ.

Hence |α(t)− α(s)| ≤
√(

α(t)− α(s)
)2

+
(
β(t) − β(s)

)2
= |f(t)− f(s)| < ǫ

and |β(t) − β(s)| ≤
√(

α(t)− α(s)
)2

+
(
β(t)− β(s)

)2
= |f(t) − f(s)| < ǫ.

Therefore α is continuous on [a, b] and β is continuous on [a, b].

(B) (I) If each of α or β is of bounded variation on [a, b], then there

exists an h > 0 such that for every partition P [a, b] = {a = x0 <

x1 < x2 < ... < xn = b} of [a, b],
n∑

k=1

|α(tk) − α(tk−1)| < h
2 and

n∑
k=1

|β(tk)−β(tk−1)| < h
2 . Since for each member k of [1;n], |f(tk)−f(tk−1)| =

√(
α(tk)− α(tk−1)

)2
+
(
β(tk)− β(tk−1)

)2
≤ |α(tk) − α(tk−1)| + |β(tk) −

β(tk−1)|, so
n∑

k=1

|f(tk)− f(tk−1)| < h. Thus f is rectifiable on [a, b].

(II) Conversely, if f is rectifiable on [a, b], then there exists an h > 0

such that for every partition P [s, t] = {a = x0 < x1 < x2 < ... < xn =

b},
n∑

k=1

|f(tk) − f(tk−1)| < h. Since for every member k of [1;n], |α(tk) −

α(tk−1)| ≤
√
(α(tk)− α(tk−1))2 + (β(tk)− β(tk−1))2 = |f(tk)−f(tk−1)| < h

and |β(tk)−β(tk−1)| ≤ |f(tk)−f(tk−1)| < h, so both α and β are of bounded

variation on [a, b]. ⊓⊔

Exercise ARC.3 Proof. (I) We prove that for every member u of [a, b]

there exists a unique number s of [a, b] such that ϕ(s) = u. Assume that

there exist distinct members s and t of [a, b] such that ϕ(s) = ϕ(t) = u. We

choose the notation so that s < t. Since ϕ is increasing on [a, b], ϕ(s) < ϕ(t),

a contradiction.

(II) Let u and v be members of ϕ[a, b] such that u < v. By part (I) there

exist distinct and unique members s and t of [a, b] such that ϕ(s) = u and
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ϕ(t) = v. If t ≤ s, then v ≤ u, contrary to the given fact that u < v. Hence

s < t, that is ϕ−1(u) < ϕ−1(v).

(III) Let u and v be members of ϕ[a, b] such that ϕ(a) ≤ u < v ≤ ϕ(b).

By part (I) there exist unique members s and t of [a, b] such that ϕ(s) = u

and ϕ(t) = v. We prove that ϕ ]s, t[ = ]u, v[ = ]ϕ(s), ϕ(t)[ .

(A) If q is any member of ]s, t[, then s < q < t so ϕ(s) < ϕ(q) < ϕ(t). Thus

ϕ(q) ∈ ]ϕ(s), ϕ(t)[ = ]u, v[ . Since q is any member of ]s, t[, ϕ ]s, t[⊆ ]u, v[ .

Conversely, if w is any member of ]u, v[, then by the continuity of ϕ and the

intermediate value theorem there exists a unique member q of ]s, t[ such that

ϕ(q) = w. Since w is any member of ]u, v[ , ]u, v[⊆ ]ϕ(s), ϕ(t)[ , and therefore

]u, v[ = ]ϕ(s), ϕ(t)[ , and ϕ−1 ]ϕ(s), ϕ(t)[ = ]s, t[ .

(B) We now prove that ϕ−1 is continuous on [ϕ(a), ϕ(b)].

(Case 1: ϕ−1 is continuous at ϕ(a).) Let ǫ > 0, and let s ∈ ]a, b[ (so that

ϕ(s) ∈ ]ϕ(a), ϕ(b)[ ) be a number such that |s− a| < ǫ. Let δ = |ϕ(a)−ϕ(s)|;
then for every u ∈ ]ϕ(a), ϕ(b)[ such that |ϕ(a) − u| < δ, u ∈ ]ϕ(a), ϕ(s)[ , so
ϕ−1(u) ∈ ]a, s[ , and hence |a − ϕ−1(u)| < ǫ. Therefore ϕ−1 is continuous at

ϕ(a).

(Case 2: ϕ−1 is continuous at ϕ(b).) The proof is similar to that for Case

1 with obvious substitutions of b for a.

(Case 3: ϕ−1 is continuous at every point u ∈ ]ϕ(a), ϕ(b)[ .) Since u ∈
]ϕ(a), ϕ(b)[ , ϕ−1(u) ∈ ]a, b[ . Let ǫ > 0. Let s and t be points of ]a, b[ such

that a < s < ϕ−1(u) < t < b and |s − ϕ−1(u)| < ǫ and |t − ϕ−1(u)| < ǫ.

Then ϕ(a) < ϕ(s) < u < ϕ(t) < ϕ(b). Let δ = min{|ϕ(s) − u|, |ϕ(t) − u|}.
Then if |x − u| < δ, ϕ(s) < x < ϕ(t); so s < ϕ−1(x) < t, and hence

|ϕ−1(x)− ϕ−1(u)| < ǫ. Therefore ϕ−1 is continuous at u. ⊓⊔

Exercise ARC.4 Proof. The proofs of parts (I) and (II) are word-for-word

identical to those for Exercise ARC.3, with R substituted for [a, b].

(III) Let u and v be members of R such that u < v. By part (I) there exist

unique members s and t of R such that ϕ(s) = u and ϕ(t) = v. The proof

that that ϕ ]s, t[ = ]u, v[ = ]ϕ(s), ϕ(t)[ is exactly as in part (III) of Exercise

ARC.3.

The proof that ϕ−1 is continuous on R is almost exactly the same as in

Case 3 of part (III)(B) of Exercise ARC.3, with R substituted for ]a, b[ . ⊓⊔



Chapter 4

The Real Functions Cosine and Sine

(CS)

Dependencies: Euclidean Geometry and its Subgeometries (Specht); Chap-

ter 3 of this supplement

Acronym: CS

New terms defined: sine and cosine functions, periodic function, unit cir-

cle, circumference, the function cis

In this chapter we define the circular functions sin and cos using a function

q(x) which is the inverse of the function

g(x) =

x∫

0

2

1 + x2
dt.

This function q(x) turns out to be the restriction of tan(x2 ) to the interval

]− π, π[.1
This chapter depends on the previous chapter; as in that chapter, we as-

sume familiarity with calculus and are free to use any theorems and definitions

from Specht. References such as “Theorem ROT.15” cite items from Specht,

and references to items with acronyms ARC and CS are to the present Sup-

plement. Again, we refer the reader to the note Citations and references

at the end of the Preface to this Supplement, and to the abbreviated Table

of Contents for Specht included there.

On notation: although sin, cos, and tan are functions, where no ambiguity

arises we will use traditional shorthand, writing sinx for sin(x), cosx for

cos(x), and tanx for tan(x). We will also write sin2 x for (sinx)2 = (sin(x))2

and, when q is a function, q2(x) for (q(x))2. We will use the notation f ′ to

denote the derivative of a function f .

1 This definition of the circular functions sin and cos appears to have originated with

Edward Specht, the first author of Euclidean Geometry and its Subgeometries.

71
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4.1 Basic properties of cosine and sine; periodicity

Definition CS.1 (A) For each real number x, define f(x) =
2

1 + x2
.

(B) For each real number x define g(x) =

x∫

0

f(t) dt.

(C) Define g(1) = k.

0 1 2 3 4 5
x−1−2−3−4−5

1
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f(x)
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h

−h
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1

2

3

y

g(x)

Fig. 4.1 Graphs of f(x) = 2
1+x2 (top) and g(x)=

x∫

0

f(t) dt (bottom) for Definition CS.1.
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Theorem CS.2 (A) The graph of g is symmetric with respect to the origin

O = (0, 0) and so is an odd function (meaning that for all x, g(−x) = −g(x)).
(B) g is an increasing and continuous function on R.

(C) The limit lim
x→+∞

g(x) exists, and is equal to a number h ≤ 4. Also the

limit lim
x→−∞

g(x) exists and equals −h.
(D) 1 < g(1) = k < 2 and also g(1) = k < h.

Proof. See Figure 4.1 above. (A) is obvious from calculus.

(B) If x1 < x2, then

g(x2)− g(x1) =
x2∫

0

f(t) dt−
x1∫

0

f(t) dt =

x2∫

x1

f(t) dt > 0.

Thus g is increasing. To see that it is continuous, note that for all x, 0 <

f(x) ≤ 2; for any ǫ > 0, define δ = ǫ
2 ; then for any x ≥ 0 and y ≥ 0, if

|y − x| < 2,

|g(x)− g(y)| = |
x∫

0

f(t) dt−
y∫

0

f(t) dt| = |
y∫

x

f(t) dt| < 2|x− y| = ǫ.

(C) For x ≥ 0 define F (x) =

{
2 if 0 ≤ x ≤ 1
2/x2 if x > 1

}
. Then for 0 ≤ x ≤ 1,

f(x) < 2; for 1 < x, f(x) < 1/x2. Therefore, for all x ≥ 0, f(x) ≤ F (x), and

g(x) =

x∫

0

f(t) dt <

x∫

0

F (t) dt = 2 +

x∫

1

2t−2 dt

= 2 + 2(−1)(x−1 − 1−1) = 2− 2/x+ 2 = 4− 2/x < 4.

Since g(x) is an increasing function and bounded above by 4, the limit h =

lim
x→+∞

g(x) exists and is less than or equal to 4.

As we observed in part (A), the graph of g is symmetric with respect to

(0, 0), so lim
x→−∞

g(x) = −h.
(D) First note that f(0) = 2, f(12 ) =

8
5 , and f(1) = 1. Then if 0 ≤ t ≤ 1

2 ,
8
5 ≤ f(t) ≤ 2, and if 1

2 ≤ t ≤ 1, 1 ≤ f(t) ≤ 8
5 . Then

8
5 (

1
2 ) =

4
5 ≤

1
2∫

0

f(t) dt ≤ 2(12 ) = 1 and 1(12 ) =
1
2 ≤

1∫

1
2

f(t) dt ≤ 8
5 (

1
2 ) =

4
5 ,

so that 4
5 + 1

2 = 13
10 ≤

1∫

0

f(t) dt =

1
2∫

0

f(t) dt+

1∫

1
2

f(t) dt ≤ 1 + 4
5 = 9

5 .

This shows that 1 < 13
10 ≤ g(1) = k ≤ 9

5 < 2; we have already seen that g

is an increasing function, so 1 ≤ g(1) = k < h. ⊓⊔
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Definition CS.3 Since g is an increasing and continuous function map-

ping R into ] − h,+h[⊆ R, by Exercise ARC.4, g has an inverse function

which is also continuous and increasing on R. We denote the inverse function

of g by q. The graph of q (shown below in Figure 4.2) is the reflection over

the line L = {(x1, x2) | x1 = x2} of the graph of g.

0 1

y

x2 3−1−2−3

1

2

3

4

−1

−2

−3

−4

−5

5

h k k h

−1

1

= q(x)
g−1(x)

cosx sinx

x

y

Fig. 4.2 The graphs of q(x) = g−1(x), sinx, and cos x for Definition CS.3 and Heuristic

Remark CS.4.



4.1 Basic properties of cosine and sine; periodicity 75

Heuristic Remark CS.4 At this stage we refer to the usual intuitive de-

velopment of trigonometry, not to use as part of our development, but to give

some guidance as to what definitions might be fruitful. From trigonometry,

we have

tan x
2 =

sin x
2

cos x
2
=

2 sin x
2 cos x

2

2 cos2 x
2

= sin x
1+cosx .

This becomes
sin x

1+cosx = sin2 x
sin x(1+cosx) =

1−cos2 x
sin x(1+cosx) =

(1−cosx)(1+cosx)
sin x(1+cosx) = 1−cosx

sin x
.

Solving the two equations tan x
2 = sin x

1+cosx and tan x
2 = 1−cosx

sin x
for cosx and

sinx in terms of tan x
2 we get cosx =

1−tan2 x
2

1+tan2 x
2
and sinx =

2 tan x
2

1+tan2 x
2
. We use

the last two equations to define sin and cos.

Definition/Remark CS.5

Define





cosx =
1− q2(x)
1 + q2(x)

sinx =
2q(x)

1 + q2(x)





for − h < x < h. We would also like to define

these functions at x = −h and x = h, but the definition above won’t work at

these points because q(−h) and q(h) are undefined. So using the definitions

of sin and cos on ]−h, h[, we evaluate their limits at −h and h and use them

to complete the definitions.

lim
x→h

cosx = lim
x→h

1
q2(x)

−1
1

q2(x)
+1

= −1 so we define cosh = −1.

lim
x→−h

cosx = lim
x→−h

1
q2(x)

−1
1

q2(x)
+1

= −1 so we define cos(−h) = −1.

lim
x→h

sinx = lim
x→h

2
q(x)
1

q2(x)
+1

= 0 so we define sinh = 0.

lim
x→−h

sinx = lim
x→−h

2
q(x)
1

q2(x)
+1

= 0 so we define sin(−h) = 0.

This completes the definitions of sin and cos on [−h, h]. Their graphs are

shown in the lower figure on the facing page.

Theorem CS.6 For every x ∈ [−h, h]
(A) sin and cos are continuous at x,

(B) cos2 x+ sin2 x = 1,

(C) | cosx| ≤ 1 and | sin(x)| ≤ 1,

(D) cos 0 = 1, sin 0 = 0, cos k = cos(−k) = 0, sin k = 1 and sin(−k) = −1,
where k is the number whose existence is guaranteed by Theorem CS.2(D),

such that k > 0 and q(k) = 1, and
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(E) cosx > 0 for −k < x < k and cosx < 0 for −h ≤ x < −k and

k < x ≤ h; sinx > 0 for 0 < x < h and sinx < 0 for −h < x < 0.

(F) cos is an increasing function on [−h, 0[ and a decreasing function on

[0, h[.

Proof. (A) sin and cos are continuous at h and −h by Definition/Remark

CS.5; they are continuous at all other points because q is a continuous func-

tion and the denominator 1 + q2(x) is never zero.

By Definition/Remark CS.5 both (B) and (C) are true for x = −h and

x = h. So we may assume that −h < x < h.

(B) cos2 x+ sin2 x =
(

1−q2(x)
1+q2(x)

)2
+
(

2q(x)
1+q2(x)

)2

= 1−2q2(x)+q4+4q2(x)
(1+q2(x))2 = (1+q2(x))2

(1+q2(x))2 = 1.

(C) If | cosx| > 1, then cos2 x > 1; if | sinx| > 1, then sin2 x > 1; in either

case cos2 x+ sin2 x would be greater than 1, contradicting part (1).

(D) The results all follow from the definitions of the functions sin and

cos in Definition/Remark CS.5. cos 0 = 1 and sin 0 = 0 because q(0) = 0;

cos k = cos(−k) = 0, sin k = 1 and sin(−k) = −1 because q(k) = 1 and

q(−k) = −1.
(E) Recall that q is a one-to-one increasing function. In Definition/Remark

CS.4, the numerator of the expression for cosx is 1− q2(x), and the denomi-

nator is always positive. For −k < x < k, |q(x)| < 1 so that 1−q2(x) > 0. For

−h < x < −k q(x) < −1 so that 1 − q2(x) < 0; and for k < x < h, q(x) > 1

so that 1− q2(x) < 0. Finally, cos(−h) = cos(h) = −1 by Definition/Remark

CS.4.

The numerator of the expression for sinx is 2q(x) and the denominator is

always positive; for 0 < x < h, q(x) > 0; for −h < x < 0, q(x) < 0.

(F) As in (E), we use the fact that q is one-to-one and increasing. As x

increases from −h to −k to 0, cosx = 1−q2(x)
1+q2(x) increases from −1 to 0 to 1;

as x increases from 0 to k to h, cosx = 1−q2(x)
1+q2(x) decreases from 1 to 0 to −1. ⊓⊔

Theorem CS.7 If −h < x < h, the derivative q′ of q exists at x and

q′(x) = 1+q2(x)
2 .

Proof. For every real number x, g(x) =

x∫

0

2

1 + t2
dt. By the Fundamental

Theorem of Calculus, g′(x) = 2
1+x2 . Since q is the inverse of g, and using the

quotient rule for derivatives, q′(x) = 1
g′(q(x)) =

1+q2(x)
2 . ⊓⊔



4.1 Basic properties of cosine and sine; periodicity 77

Theorem CS.8 If −h < x < h, cos′ x = − sinx and sin′ x = cosx.

Proof. (I) Since cosx = 1−q2(x)
1+q2(x)) ,

cos′ x = (1+q2(x))(−2q(x)q′(x))−(1−q2(x))2q(x)q′(x)
(1+q2(x))2

= [−2q(x)(1+q2(x))−(1−q2(x))2q(x)]q′(x)
(1+q2(x))2

= [−2q(x)−2q3(x)−2q(x)+2q3(x)]q′(x)
(1+q2(x))2 =

(
−4q(x)

(1+q2(x))2

)
q′(x).

Using Theorem CS.7,

cos′ x =
(
−4q(x)

(1+q2(x))2

)(
1+q2(x)

2

)
= −2q(x)

1+q2(x) = − sinx.

(II) Since sinx = 2q(x)
1+q2(x) ,

sin′ x = (1+q2(x))2q′(x)−(2q(x))2q(x)q′(x)
(1+q2(x))2 = (1+q2(x)−2q2(x))2q′(x)

(1+q2(x))2

=
( 1−q2(x)
(1+q2(x))2

)
(2q′(x)) =

( 1−q2(x)
(1+q2(x))2

)
·2 ·
(1+q2(x)

2

)
= 1−q2(x)

1+q2(x) = cosx. ⊓⊔

Theorem CS.9 In this theorem we confine our attention to the segment

[−h, h] because so far we have defined cos and sin only on that segment.

(I) cos has a maximum of 1 at 0, and a minimum of −1 at −h and at h.

These are relative and absolute maxima (minima).

(II) sin has a maximum of 1 at k, and a minimum of −1 at −k. These are

relative and absolute maxima (minima).

Proof. In this proof we will use the results of Theorem CS.6 and Theorem

CS.8 without further reference.

(I) Since cos′ x = − sinx and − sinx is positive for −k < x < 0, is negative

for 0 < x < h, and is 0 at x = 0, 0 is a relative maximum of cos. We know

that cos(0) = 1, and since for all x, cosx ≤ 1, this is an absolute maximum.

Since − sinx is positive for −h < x < 0 and is negative for 0 < x < h, cos

has an absolute minimum of −1 at both h and −h.
(II) Exercise CS.1. ⊓⊔

Definition CS.10 (A) Let p be a positive real number. A real valued

function f is periodic of period p iff for every real number t, and every

integer n, f(t+ np) = f(t).

(B) In Definition/Remark CS.5 we defined cos and sin on the interval

[−h, h]. We now extend this definition by periodicity so that cos and sin are

defined on R.

For each t ∈ R, there exists a unique integer n and a unique number

x ∈ ]− h, h] such that t = x+ 2hn. Define cos t = cosx and sin t = sinx.
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Theorem CS.11 For every real number t, cos(−t) = cos t and sin(−t) =
− sin t.

Proof. (Case 1: −h < t < h.) By Definition/Remark CS.5, cos(−t) =
1−q2(−t)
1+q2(−t) = 1−((−q(t))2

1+(−q(t))2 = 1−(q(t))2
1+(q(t))2 = cos t and sin(−t) = 2q(−t)

1+(q2(−t)) =
−2q(t)
1+q2(t) = − sin t.

(Case 2: |t| = h.) By Definition/Remark CS.5, cosh = cos(−h) = −1.
Moreover, sin(−h) = sinh = 0.

(Case 3:) If t is any real number, then by Definition CS.10 there exists

an integer n such that t = s + 2hn, where −h < s < h. So, cos(−t) =

cos(−s − 2hn) = cos(−s) = cos s and cos t = cos(s + 2hn) = cos s, so

cos(−t) = cos t. Moreover, sin(−t) = sin(= s − 2hn) = sin(−s) = − sin s =

− sin(s+ 2hn) = − sin t. ⊓⊔

Theorem CS.12 The functions cos and sin defined on R in Definition

CS.10 are

(A) continuous, and

(B) periodic of period 2h.

Proof. (A) Since by definition, cos(−h) = cosh = −1, and sin(−h) = sinh =

0, and both functions are continuous on [−h, h], they are continuous on R.

(B) In this proof, let f be either cos or sin. Let t be any real number and

n any integer, and let x = t+2hn. There exist integers m1 and m2 such that

y1 = t + 2hm1 ∈ ] − h, h], and y2 = x + 2hm2 ∈ ] − h, h]; substituting the

expression for x just above, we have y2 = x + 2hm2 = t + 2hn + 2hm2 =

t+ 2h(n+m2) ∈ ]− h, h].
The difference y2 − y2 = 2h(n +m2 −m1) is an integral multiple of 2h,

and since both y1 and y2 belong to ]− h, h], y1 = y2.

y1 = t+ 2hm1 = x+ 2hm2.

By Definition CS.10,

f(y1) = f(t+ 2hm1) = f(t) and f(y1) = f(x+ 2hm2) = f(x),

so that f(t) = f(x); thus f is periodic of period 2h. ⊓⊔

4.2 Cosine, sine, and the unit circle

Definition CS.13 (A) Let r be any real number greater than 0; define

C((0, 0); r) to be the set {(x1, x2) | x21 + x22 = r2}; this set is the circle with
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center (0, 0) and radius r. We will have special interest in C((0, 0); 1) =
{(x1, x2) | x21 + x22 = 1}, which is called the unit circle.

(B) The inside of a circle C(O; r) is the set {X | dis(X,O) < r}, denoted
ins C(O; r); the enclosure of C(O; r) is the set {X | dis(X,O) ≤ r}, denoted
enc C(O; r). If L is a line and O ∈ L, the set L∩ enc C(O; r) is a diameter of

the circle; if C(O; r) ∩ L = {X,Y }, then the number dis(X,Y ) is called the

diameter of C(O; r); clearly, the diameter of C(O; r) is equal to 2r.

(C) The circumference of a circle is its arc length. The number π is

defined to be the ratio of the circumference of a circle to its diameter. Since

the diameter of the unit circle is 2, its circumference is 2π.

Theorem CS.14 (A) The unit circle C((0, 0); 1) with center (0, 0) and

radius 1 is the set

E = {(cos t, sin t) | −h ≤ t ≤ h}.
(B) The unit circle is also equal to

{(cos t, sin t) | −h < t ≤ h} = {(cos t, sin t) | −h ≤ t < h}
= {(cos t, sin t) | 0 ≤ t ≤ 2h} = {(cos t, sin t) | 0 ≤ t < 2h}

= {(cos t, sin t) | −2h < t ≤ 0}.

Proof. (A) (I) By Definition/Remark CS.5 and Theorem CS.6(B), for all

t ∈ ]−h, h], cos2 t+sin2 t = 1, so every member of E is a member of C((0, 0); 1).
(II) To prove that every member of C((0, 0); 1) is a member of E =

{(cos t, sin t) | −h ≤ t ≤ h} we consider eight cases.

(Case 1: x1 = 1 and x2 = 0.) Let t = 0; then x1 = cos 0 = 1 and

x2 = sin 0 = 0.

(Case 2: x1 = −1 and x2 = 0.) Let t = h or t = −h; then x1 = cosh = −1
and x2 = sinh = 0.

(Case 3: x1 = 0 and x2 = 1.) Let t = k; then x1 = cos k = 0 and

x2 = sin k = 1.

(Case 4: x1 = 0 and x2 = −1.) Let t = −k; then x1 = cos(−k) = 0 and

x2 = sin(−k) = −1.
(Case 5: 0 < x1 < 1 and 0 < x2 < 1.) Since cos 0 = 1 and cos k = 0, by

the Intermediate Value Theorem of calculus there exists a number t ∈ ]0, k[
such that cos t = x1.

The function sin is continuous, sin 0 = 0, sin k = 1, and 0 < t < 1, so that

0 < sin t < 1. By definition of the unit circle, x1
2 + x2

2 = 1; by Theorem

CS.6(B) cos2 t+ sin2 t = 1; since cos t = x1, cos
2 t+ sin2 t = x1

2 + sin2 t = 1

so that sin2 t = x2
2; hence sin t = x2.
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(Case 6: 0 < x1 < 1 and −1 < x2 < 0.) By the Intermediate Value

Theorem there exists a number t ∈ ]− k, 0[ such that cos t = x1. Since sin t ∈
]−1, 0[ and cos2 t+sin2 t = 1, by reasoning similar to that in Case 5, sin t = x2.

(Case 7: −1 < x1 < 0 and 0 < x2 < 1.) By the Intermediate Value

Theorem there exists a number t ∈ ]k, h[ such that cos t = x1. Since sin t ∈
]0, 1[ and cos2 t+sin2 t = 1, by reasoning similar to that in Case 5, sin t = x2.

(Case 8: −1 < x1 < 0 and −1 < x2 < 0.) By the Intermediate Value

Theorem there exists a number t ∈ ] − h,−k[ such that cos t = x1. Since

sin t ∈ ]− 1, 0[ and cos2 t+ sin2 t = 1, by reasoning similar to that in Case 5,

sin t = x2.

(B) In part (A), the end point (cosh, sinh) = (cos(−h), sin(−h)) is in-

cluded twice; thus either of the next two formulations is correct, since they

merely omit this redundancy. The other formulations are true since cos and

sin are periodic of period 2h. ⊓⊔

Theorem CS.15 (A) The arc length of the unit circle is 2h, where h is

the positive real number defined in Theorem CS.2(C).

(B) Let h = lim
x→+∞

g(x), as defined in Theorem CS.2(C); then h = π.

We will show that k = π
2 in Theorem CS.25.

Proof. (A) Since the unit circle is the set {(cos t, sin t) | 0 ≤ t ≤ 2h}, by
Theorem ARC.11 its arc length is
2h∫

0

√
(cos′ t)2 + (sin′ t)2 dt =

2h∫

0

√
(− sin t)2 + (cos t)2 dt =

2h∫

0

1 dt = 2h.

(B) By part (A), the arc length of the unit circle is 2h; by Definition

CS.13(C), this is 2π. ⊓⊔

Definition CS.16 Define cis to be the function mapping R into R2,

whose value at each t is cis t = (cos t, sin t).

Remark CS.17 (A) From Definition CS.16, cis 0 = (1, 0), cis k = (0, 1),

and cis π = (−1, 0). The notation cis is intended to suggest the complex

number cos t + i sin t. The reader should bear in mind that cis t refers to a

point of the plane, specifically, a point of the unit circle, not to a number, as

with cos t and sin t.

(B) We will often use the symbol cis([a, b]) to mean {cis(x) | x ∈ [a, b] },
and cis([a, b[) to mean {cis(x) | x ∈ [a, b[ }. Again, as always, when we use
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the notation [a, b] or [a, b[ to describe an interval of numbers, it is specifically

understood that a < b.

(C) On a circle, each pair of distinct points S = cis s and T = cis t defines

two arcs, and we need to specify which one we are talking about. We do this

by specifying the interval upon which cis is defined. If s < t, we describe the

arc traversed in the positive direction from s to t by cis[s, t].

The complementary arc defined by cis s and cis t (the one that “goes

around the other way,” containing the point cis 0) is the set {cisu | u 6∈ ]s, t[ }.
If s 6= 0, this arc cannot be written as the image under cis of an interval which

is a subset of [0, 2π[ . It could be written as cis[t− 2π, s] or cis[t, s+ 2π].

(D) In the development up through Theorem CS.9,the domain of definition

of sin and cos was the interval [−h, h] = [π, π]. With Definition CS.10(B), we

extended this definition to the whole real line; so now it does not really make

any difference what interval of length 2π we use as a “primary” domain of

definition. In Theorem CS.14(B) we made it “official” that any of the intervals

[−π, π] , ]−π, π] , [−π, π[ , [0, 2π] , [0, 2π[ , or ]−2π, 0] will do for this purpose,
as cis maps any of these intervals onto the unit circle.

(E) Bearing in mind that where both end-points are included, the function

cis is not one-to-one, the unit circle may be referred to in any of the following

ways: cis[−π, π], cis ]−π, π], cis[−π, π[ , cis[0, 2π], cis ]0, 2π], cis[0, 2π[ ; or, for
that matter, as cis[a, a + 2π], cis ]a, a + 2π], cis[a, a + 2π[ ; or cis[a − 2π, a],

cis ]a− 2π, a] cis[a− 2π, a[ , where a can be any real number.

Theorem CS.18 The mapping cis on the interval [0, 2π[, or on any in-

terval [a, a + 2π[ or ]a, a + 2π], is continuous and one-to-one onto the unit

circle; it is one-to-one on any interval [a, b] where 0 < b− a < 2π.

Proof. Since both cos and sin are continuous, cis is continuous.

We show that cis is one-to-one on the interval [−π, π[. By Theorem

CS.6(F), cos is an increasing function on [−π, 0[ and a decreasing function

on [0, π[, hence is one-to-one on both intervals. Thus if t > s and cis t = cis s,

not both t and s can be in [−π, 0[ and not both can be in [0, π[. Therefore

t ∈ [0, π[ and s ∈ [−π, 0[. Then by Theorem CS.6(E), sin t ≥ 0 and sin s < 0,

so that cis t 6= cis s, a contradiction.

If x ∈ [−π, 0[ , then cis(x+2π) = cis x so the values taken by cis on [0, 2π[

are exactly those taken on [−π, π[. Hence if there are two points in [0, 2π[

where cis takes the same value, there must be two points in [−π, π[ where cis
takes the same value, which we have shown to be impossible. Therefore cis
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is one-to-one on [0, 2π[, and by periodicity cis is one-to-one on any interval

[a, a+ 2π[ or ]a, a+ 2π].

Finally, by Theorem CS.6(B), cis maps [0, 2π[ into the unit circle; and by

Theorem CS.14 cis maps [0, 2π[ onto the unit circle. ⊓⊔

Theorem CS.19 Let ϕ be the mapping of [0, 2π] into R such that for

every member t of [0, 2π], ϕ(t) = L(cis[0, t]), the length of the arc of the unit

circle from cis 0 = (1, 0) to cis t. Then ϕ(0) = 0, and

(A) for every number t ∈ [0, 2π], ϕ(t) = t;

(B) if s and t are real numbers such that 0 ≤ s < t ≤ 2π, then the arc

length L(cis[s, t]) is t− s; and
(C) the arc length L(cis[0, k]) of the unit circle from (1, 0) = cis 0 to (0, 1) =

cis k is k and the arc length L(cis[k, π]) from (0, 1) = cis k to (−1, 0) = cish

is π − k.

Proof. Note that for all numbers s, (cos′ s)2+(sin′ s)2 = (sin s)2+(cos s)2 = 1.

(A) By Theorem ARC.11, for every member t of ]0, 2π],

ϕ(t) =

t∫

0

(
(cos′ s)2 + (sin′ s)2

)
ds =

t∫

0

1 ds = t.

(B) Since cis[s, t] is the image under cis u of [s, t], we may apply Theorem

ARC.11, and the arc length L(cis[s, t]) is
t∫

s

√(
cos′ u

)2
+
(
sin′ u

)2
du =

t∫

s

du = t− s.

(C) This follows immediately from part (B). ⊓⊔

4.3 Sides of a line intersecting a circle

Remark CS.20 In the proofs of future theorems it will be important

to be able to tell what points are on what sides of lines. In the next series

of results, we will show explicitly that a line through two arbitrary points

A = cis a and B = cis b on a unit circle (and this could easily be extended

to any circle) divides it into two arcs as described in Chapter 3 Definition

ARC.1, each of them being the image under the (continuous) mapping cis of

an interval of real numbers.

These results will also show that, speaking informally, cis preserves “sense”

on the unit circle; that is, if a < b, then rotating A = cis a to B = cis b is
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a rotation in the “positive direction”; or, moving t from a toward b moves

cis t from A toward B. The problem with these statements is that the terms

“sense,” “positive direction,” and “toward” are not well defined mathemati-

cal terms. In more formal language mathematical language, the idea can be

expressed as follows: let a < b < a + π, so that the points A = cis a and

B = cis b form an angle ∠AOB; then whenever t ∈ ]a, b[, cis t belongs to the

inside of this angle; more to the point, cis t lies on the B = cis b-side of
←→
OA.

Of course, all this is intuitively obvious, inasmuch as the mapping cis is

continuous. But it does seem to require proof.

To start things off right, we should point out something else that many

will consider quite obvious: a line can intersect a circle in at most two points,

and a line contains a point on the inside of a circle iff it intersects the circle in

two points. Moreover, if a line intersects a circle C(O; r) in two points A and

B, the line of symmetry of ∠AOB intersects the line
←→
AB at a point which is

inside the circle. The proof of this is Exercise CS.13.

As an aid to keeping things straight, we strongly advise the reader to con-

struct copious figures while reading the following proofs.

Theorem CS.21 Let A = cis a, B = cis b, and C = cis c be points on the

unit circle C(O; 1) such that 0 < b − a < 2π. Then if a < c < b, every point

T = cis t where a < t < b belongs to the C-side of
←→
AB.

Proof. (A) Let x = lub {t | cis[c, t[⊆ C-side of
←→
AB}. If cisx = B then

cis[c, b[⊆ C-side of
←→
AB. If cisx 6= B, cisx 6∈ ←→AB so it is either in the C-side

or the side opposite the C-side of
←→
AB. Thus there exists a number ǫ such

that for all Z ∈ ←→AB, | cis x − Z| > ǫ. By continuity of cis, there exists δ > 0

such that if |x− w| < δ, then | cisx− cisw| < ǫ.

(Case 1:) If cis x ∈ C-side ←→AB, then because x = lub {t | cis[c, t[⊆ C-side

of
←→
AB} there exists a w such that |w − x| < δ and cisw is in the side of

←→
AB

opposite the C-side.

(Case 2:) If cisx 6∈ C-side←→AB, then it must belong to the side opposite C,

and there exists a w such that |w − x| < δ and cisw ∈ C-side of
←→
AB.

In either case cis x and cisw are on opposite sides of
←→
AB, so by Theorem

PSH.11 there exists a point Z ∈ ←→AB such that cisx Z cisw, and ǫ < | cis x−
Z| < | cisx − cisw| < ǫ, a contradiction. Therefore all the points cis t where

t ∈ [c, b[ belong to the C-side of
←→
AB.

(B) Let x = glb {t | cis ]t, c]} ⊆ C-side of
←→
AB. If cisx = A then cis ]x, c] ⊆

C-side of
←→
AB. If cis x 6= A, cis x 6∈ ←→AB so it is either in the C-side or in the
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side opposite the C-side of
←→
AB. Thus there exists a number ǫ such that for

all Z ∈ ←→AB, | cisx−Z| > ǫ. By continuity of cis, there exists δ > 0 such that

if |x− w| < δ, then | cis x− cisw| < ǫ.

Substituting x = glb {t | cis ]t, c]} for x = lub {t | cis[c, t[}, the balance of

the proof for (B) is almost word-for-word as in part (A). Therefore all the

points cis t where t ∈ ]a, c] belong to the C-side of
←→
AB, and it follows that

every point of cis ]a, b[ is on the C-side. ⊓⊔

Theorem CS.22 Let A = cis a and B = cis b be any points on the unit

circle C(O; 1).
(A) Either

(I) A O B and the notation may be chosen (and the points possibly

renamed) so that b = a+ π, or

(II) A O B is false and the notation may be chosen (and the points

possibly renamed) so that b− a < π.

(B) In either case (I) or (II), the points A and B define two arcs on the

unit circle, cis[a, b] and cis[b, a+ 2π]; and

(1) all the points of cis ]a, b[ are on the same side of
←→
AB;

(2) all the points of cis ]b, a+ 2π[ are on the same side of
←→
AB; and

(3) every point of cis ]a, b[ is on the opposite side of
←→
AB from every

point of cis ]b, a+ 2π[.

(C) In case (II), if b−a < π then cis ]a, b[⊆ ins∠AOB, and cis ]b, a+2π[⊆
out∠AOB;

O

A

B

cis[a, b]

cis[b, a+ 2π]
←−
AB
−→

Fig. 4.3 A line divides a circle into two arcs.

Proof. See Figure 4.3. (Case I: A O B) We can choose a and b (possibly

renaming the points) so that b = a + π and therefore a < b. In this case,

∠AOB is not defined. One of the arcs between A and B is cis[a, b]. Also,

A = cis(a + 2π) so that b < a + 2π, and one of the arcs between A and B

is cis[b, a + 2π]. Let L be the perpendicular bisector of
px qy

AB, C be the point
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of intersection of L with cis ]a, b[ , and let C′ be the point of intersection of

L with cis ]b, a+ 2π[ . These points are on opposite sides of the line
←→
AB, and

by Theorem CS.21, every point of cis ]a, b[ is on the C-side, and every point

of cis ]b, a+ 2π[ is on the C′-side of
←→
AB. This proves (B)(1), (2) and (3) for

Case (I).

(Case II: A O B is false.) Initially choose a and b so that both 0 ≤ a < 2π,

0 ≤ b < 2π and a < b. If b − a < π we leave the notation “as is”; if

b − a > π, then a − b < −π. Let a′ = b and b′ = a + 2π, so that cis a′ and

cis b′ are the original points A and B, which have now been renamed. Then

b′ − a′ = a+ 2π − b = a− b+ 2π < −π + 2π = π. Either way we have found

numbers a and b such that cis a and cis b are the given points A and B, a < b

and b − a < π. Moreover, b < a+ π < a+ 2π and cis a = cis(a+ 2π).

This proves part (A) of the theorem, and shows that one of the arcs defined

by A and B is cis[a, b], and the other is cis[b, a+ 2π]. The first of these arcs

subtends the angle ∠AOB.

Let A′ and B′ be points on the unit circle such that A′ O A and B′ O B,

so that A′ = cis(a + π) and B′ = cis(b + π). Apply Theorem CS.21 to the

sides of
←−→
AA′ and

←−→
BB′. If a < t < b, then a < t < b < a + π so by Theorem

CS.21, T = cis t is on the B-side of
←−→
AA′; also since b − π < a < t < b,

T is on the A-side of
←−→
BB′; by Definition PSH.36 T ∈ ins∠AOB, so that

cis ]a, b[⊆ ins∠AOB, proving the first assertion of part(C).

If b < t < a + 2π then either b < t < b + π or b + π ≤ t < a + 2π. Note

that b < a+ π < b+ π and the points A′ = cis(a+ π) and A are on opposite

sides of
←−→
BB′; also a+ π < b+ π < a+2π and the points B′ = cis(b+ π) and

B are on opposite sides of
←−→
AA′.

If b < t < b+π, by Theorem CS.21 cis t ∈ A′ = cis(a+π)-side of
←−→
BB′ which

is the side of
←−→
BB′ opposite A, hence cis t ∈ out∠AOB. If b+ π ≤ t < a+2π,

by Theorem CS.21 cis t ∈ B′ = cis(b+π)-side of
←−→
AA′ which is the side of

←−→
AA′

opposite B, hence cis t ∈ out∠AOB; thus cis ]b, a+2π[⊆ out∠AOB, proving

the second assertion of (C). By Theorem PSH.41, ins∠AOB ∩ out∠AOB =

∅, so that cis ]a, b[∩ cis ]b, a+ 2π[ = ∅.
Applying Theorem CS.21 to the sides of

←→
AB, we find that all the points of

cis ]a, b[ are on the same side of
←→
AB, and all the points of cis ]b, a+ 2π[ are

on the same side of
←→
AB.

Every point of C(O; 1) \ {A,B} is a member of either cis ]a, b[ or cis ]b, a+

2π[ , and therefore to one of the sides of
←→
AB. Let

←−→
CC′ be the line of symmetry

of ∠AOB, where both C and C′ are points on the circle. By Exercise CS.13
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←−→
CC′ intersects

←→
AB at a point D such that dis(O,D) < 1, so that C D C′,

and hence C and C′ are on opposite sides of
←→
AB.

Choose the notation so that C ∈ cis ]a, b[ , so that cis ]a, b[⊆ C-side of←→
AB. Since C′ belongs to the side opposite C, C′ 6∈ cis ]a, b[ , and since

cis ]a, b[∪ cis ]b, a + 2π[ = C(O; 1) \ {A,B}, C′ ∈ cis ]b, a + 2π[ , and hence

cis ]b, a + 2π[⊆ C′-side of
←→
AB. Then every point of cis ]a, b[ is on the same

side of
←→
AB, and every point of cis ]b, a + 2π[ is on the opposite side. This

proves parts (B)(1),(2) and (3) for case (II). ⊓⊔

4.4 Isometry preserves arc length; k = π

2
; summary

Lemma CS.23 (Preservation of arc length) Let ϕ be an isometry of

the plane such that ϕ(O) = O′; then ϕ preserves distance and maps the unit

circle C(O; 1) onto the unit circle C(O′; 1). Let s and t be real numbers such

that s < t and t − s < 2π, so that cis[s, t] is an arc on C(O; 1) whose end

points are cis s and cis t.

(A) The set ϕ(cis[s, t]) is an arc on the unit circle C(O′; 1) with end points

ϕ(cis s) and ϕ(cis t), and ϕ maps cis[s, t] one-to-one onto ϕ(cis[s, t]).

(B) The arc length L(ϕ(cis[s, t])) of ϕ(cis[s, t]) equals the arc length

L(cis[s, t]) of cis[s, t].

Proof. (A) Let f = ϕ ◦ cis. Specht Ch.21 Theorem LC.25.1 shows that

isometries preserve distance. Since ϕ(O) = O′ this implies that the points

f(s) = ϕ(cis s) belong to the unit circle C(O′; 1). It also implies that ϕ is

continuous, and therefore f = ϕ ◦ cis is continuous. By Theorem CS.18 cis

is one-to-one on [s, t] and since ϕ is an isometry, it is one-to-one, so that

f is one-to-one on [s, t], and its restriction to that interval has an inverse.

Therefore f = ϕ ◦ cis is a continuous one-to-one mapping of [s, t] into the

unit circle C(O′; 1).
Thus s and t define not only the arc cis[s, t], but also the image ϕ(cis[s, t]) =

f [s, t], which is an arc of the unit circle C(O′; 1).
Moreover, cis u ∈ cis[s, t] iff u ∈ [s, t] iff f(u) ∈ ϕ(cis[s, t]) so that the

mapping ϕ maps cis[s, t] one-to-one onto ϕ(cis[s, t]). This completes the proof

of (A).

(B) Let P = {s− t = t0 < t1 < t2 < ... < tn = 0} be a partition of [s, t].

Since ϕ preserves distance, for each j ∈ {1, 2, ..., n},
| cis tj − cis tj−1| = |ϕ(cis tj)− ϕ(cis tj−1)| = |f(tj)− f(tj−1)|.
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The length of the arc ϕ(cis[s, t]) is the least upper bound of all summations

SP(f) =
n∑

j=1

|f(tj)− f(tj−1)|
which are exactly the same as the summations

SP(cis) =
n∑

j=1

| cis(tj)− cis(tj−1)|

which define the length of the arc cis[s, t]. Therefore its arc length is the same

as that of its image under ϕ. ⊓⊔

Remark CS.24 (A) In the next theorem we remedy a deficiency of our

development so far. In Theorem CS.2(C) we established the number h (which

has turned out to be π) as the limit lim
x→∞

g(x). In part (D) of the same

theorem we showed that the number k = g(1) (that is, that number k for

which q(k) = 1) is between 1 and 2 and is less than h. In Theorem CS.6(D)

we showed that cos k = 0 and in Theorem CS.9 we showed that sin k = 0, so

that cis k = (0, 1). It’s “obvious” from the picture that the arc length from

cis 0 to cis k is half that from cis 0 to cis π; but this hasn’t been proved. We

have not established the relation between k and h.

If it had been simple to calculate numerically the integral of f(t) from 0

to 1, and from 0 to “infinity,” we might have established this relation ere

this, but since the standard method of calculation of these integrals involves

the arctan function, which presupposes the definition of tan which in turn

presupposes the definitions of sin and cos, and these functions are what we

are trying to define, such an argument would be circular. In parts (C) and

(D) of the next theorem, we prove that indeed, k = h/2 = π/2.

Theorem CS.25 The arc length L(cis[0, k]) = L(cis[k, π]) so that π−k =

k and therefore k = π
2 .

Proof. For all numbers s, (cos′ s)2 + (sin′ s)2 = (sin s)2 + (cos s)2 = 1. Also

by Theorem CS.19(B), if s and t are real numbers such that 0 ≤ s < t ≤ 2π,

then the arc length L(cis[s, t]) is t− s.
Let L =

←−−−−−→
(0, 0)(0, 1), and let RL be the mirror mapping (reflection) defined

on R2 in Specht Ch.21 Definition LB.16 and further developed in Remark

LC.22 and subsequently. Then RL maps each point cis t = (cos t, sin t), where

t ∈ [0, k], to the point (− cos t, sin t) = (cos t̄, sin t̄) = cis t̄ where t̄ ∈ [k, π].

Moreover, RL(cis 0) = cisπ; and because cis k ∈ L, RL(cis k) = cis k. Then

RL(cis[0, k]) = (cis[π, k]) = (cis[k, π]).

Taking arc lengths and applying Lemma CS.23, we have
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L(cis[k, π]) = L(RL(cis[0, k])) = L(cis[0, k]),

so that L(cis[k, π]) = L(cis[0, k]). Then by Theorem CS.19(B), the left-hand

side is π − k, and the right-hand side is k, so that k = π − k and k = π
2 . ⊓⊔

−3π/2 −π −π/2 0 π/2 π 3π/2

1

−1

cosx sinx

x

y

Fig. 4.4 Graphs of sinx and cos x for reference.

Theorem CS.26 (Summary) (A) cos and sin are continuous functions,

periodic of period 2π, mapping R onto [−1, 1]; for every t ∈ R, cos t = cos(−t)
and sin t = − sin(−t).

(B) For every integer n,

cos π
2 = cos(π2 + πn) = 0,

cos 0 = cos 2πn = 1, and

cosπ = cos(−π) = cos(π + 2πn) = −1.
(C) For every integer n,

sin 0 = sinπn = 0,

sin π
2 = sin(π2 + 2πn) = 1, and

sin(−π
2 ) = sin(−π

2 + 2πn) = −1.
(D) cis t = (cos t, sin t) is a continuous function, periodic of period 2π,

mapping [0, 2π[ onto the unit circle C((0, 0); 1). The restriction of cis to any

interval [s, t] where |t− s| < 2π is one-to-one.

Proof. See Figure 4.4. In Definition CS.2(C) and (D) we defined real numbers

h = lim
x→+∞

g(x) and k = g(1); in Theorem CS.15(B) we showed that h = π

and in Theorem CS.25 that k = π
2 . In this proof we will use these facts freely

without further reference.

(A) By Theorem CS.12, cos and sin are continuous and periodic of period

2π; by Theorem CS.9 both cos and sin take on both values 1 and −1 and
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by the Intermediate Value Theorem for continuous functions, they both map

onto [−1, 1]; by Theorem CS.11, cos t = cos(−t) and sin t = − sin(−t).
(B) By Theorem CS.6(D), cos π

2 = cos(−π
2 ) = 0; by periodicity, for all

integers n, cos(π2 + πn) = 0. By Theorem CS.9, cos 0 = 1 and cosπ =

cos(−π) = −1; by periodicity, for all integers n, cos 2πn = 1 and cos(π +

2πn) = −1.
(C) By Theorem CS.6(D) and Definition/Remark CS.5, sin 0 = sinπ =

sin(−π) = 0; by periodicity, for all integers n, sin(π + πn) = 0. By Theorem

CS.9, sin π
2 = 1 and sin−π

2 = −1; by periodicity, for all integers n, sin π
2 =

sin(π2 + 2πn) = 1; and sin(−π
2 ) = sin(−π

2 + 2πn) = −1.
(D) This is Theorem CS.18. ⊓⊔

Corollary CS.27 Let u and v be any real numbers; then there exists a

number t ∈ [0, 2π[ and a real number r ≥ 0 such that u = r cos t and v =

r sin t, that is, (u, v) = r cis t.

Proof. By Theorem CS.26(D), cis maps [0, 2π] onto the unit circle. Let û =
u√

u2+v2
and v̂ = v√

u2+v2
. Then û2 + v̂2 = 1 and since cis maps onto the unit

circle, there exists a number t ∈ [0, 2π[ such that û = cos t and v̂ sin t; let

r =
√
u2 + v2; then u = r cos t and v = r sin t. ⊓⊔

4.5 Rotations; sum and difference formulas

It is intuitive to think of rotations as rigid motions about a center. In

Chapter 10 of Specht, where we studied rotations, the closest we came to

showing this was in Theorem ROT.22. In that theorem we showed that if

α is a rotation about O, the angle ∠AO(α(A)) is congruent to every other

angle ∠BO(α(B)).

On the coordinate plane R2 we can show that a rotation, as defined in

Definition ROT.1, is indeed a rigid motion. We do this by showing that a

rotation that takes cis 0 into cis s also takes cis(t−s) into cis(t−s+s) = cis t.

In the following, reflections are as in Chapter 21 of Specht, Definition

LB.16; by Theorem LC.25 these preserve distance. Thus any reflection over

a line through the center O of a unit circle maps the unit circle onto itself.
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Theorem CS.28 (A rotation is a rigid motion) Let s and t be distinct

real numbers, 0 < s < t < 2π, and t − s < π. There exists a unique rotation

ρ of R2 about O = (0, 0) such that

(A) ρ(cis[0, t− s]) = cis[s, t], ρ(cis 0) = cis s, ρ(cis(t− s)) = cis t, and

(B) the arclength L(cis[0, t− s]) = L(cis[s, t]) = t− s.

Proof. By Theorem ROT.15, there exist unique rotations ρ and α about O

such that ρ(cis 0) = cis s and α(cis 0) = cis(t− s). By Theorem ROT.21,

ρ(cis(t− s)) = ρ(α(cis 0)) = α(ρ(cis 0)) = α(cis s)

so that by Lemma CS.23, ρ(cis[0, t − s]) is the arc on the unit circle with

endpoints cis s and α(cis s), and the arclength L(ρ(cis[0, t−s])) = L(cis[0, t−
s]); by Theorem CS.19(B), this length is t− s.

The end points of cis[s, t] are cis s and cis t, and L(cis[s, t]) = t− s; thus if
we can show that α(cis s) and cis t are on the same side of the line

←−−→
O cis s, it

will follow from Theorem ARC.12 that ρ(cis(t−s)) = α(cis s) = cis t, proving

the theorem.

First we dispose of the case where α is the point reflection RO (and see

Figure 4.5); in this case cis(t − s) = α(cis 0) = cisπ and t − s = π. The line←−−−→
O(cis s) intersects the unit circle at the point cis(s+π) = cis(s+t−s) = cis t.

Therefore, since ρ is an isometry and a belineation, by Theorem NEUT.15,←−−−−−−−−−−−−−−−→
(ρ(cis(t− s)))(ρ(cis 0)) = ρ(

←−−−−−−−−−−→
(cis(t− s))(cis 0)) = ρ(

←−−−→
O(cis 0))

=
←−−−−−−−−→
ρ(O)(ρ(cis 0)) =

←−−−→
O(cis s) =

←−−−−−−→
(cis t)(cis s).

By assumption, ρ(cis 0) = cis s, so that ρ(cis(t − s)) = cis t, and ρ(cis[0, t −
s]) = cis[s, t]. Moreover, the arclengths of cis[0, t− s] and ρ(cis[0, t− s]) are
both π.

O cis 0cis(t− s) = α(cis 0)

cis t = α(cis s) = ρ(cis(t− s))

cis s = ρ(cis 0)

α

α

ρ

ρ

Fig. 4.5 The case where α is a point reflection.

Now suppose that α is not the point reflection. By Exercise ROT.4(D), if

X and Y are any points on the unit circle, α(X) ∈ Y -side of
←→
OX iff α(Y )

is in the side of
←→
OY opposite X . We apply this to the present situation by

making the following assignments: let X = cis 0, Y = cis s, so that α(X) =
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α(cis 0) = cis(t− s) and α(Y ) = α(cis s) = ρ(cis(t− s)). Then there are two

cases (I) and (II) as follows:

(Case I: α(cis 0) = cis(t−s) ∈ cis s-side of
←−−−→
O(cis 0) and α(cis s) is in the side

of
←−−−→
O(cis s) opposite cis 0.) See Figure 4.6. Note that s < π; for if s > π, since

cis(t−s) is in the cis s-side of
←−−−→
O(cis 0), then t−s > π so that t = s+t−s > 2π

contradicting our assumption that t < 2π.

Therefore s < π and t − s < π, 0 < s < t = t − s + s < π + s, and

π + s < 2π < 2π + s. By Theorem CS.22, cis 0 = cis 2π is on the opposite

side of
←−−−→
O(cis s) from cis t; from our assumption for Case (I), α(cis s) is on the

side of
←−−−→
O(cis s) opposite cis 0, so that cis t and α(cis s) are on the same side

of
←−−−→
O(cis s).

O cis 0

cis(t− s) = α(cis 0)

cis s = ρ(cis 0)

cis t = α(cis s) = ρ(cis(t− s))

αα

ρ

ρ

Fig. 4.6 Illustrating Case I.

(Case II: α(cis 0) = cis(t − s) is in the side of
←−−−→
O(cis 0) opposite cis s and

α(cis s) ∈ cis 0-side of
←−−−→
O(cis s).) The reader may wish to construct figures

illustrating the two subcases.

(Subcase a: 0 < t − s < π and π < s < 2π.) Then s < 2π < s + π and

s < t = s+ t− s < s+ π. By Theorem CS.22, cis t and cis 0 = cis 2π are on

the same side of
←−−−→
O(cis s).

(Subcase b: 0 < s < π and π < t − s < 2π.) Then t = t − s + s > π + s

and t < 2π so that s < t < s+2π. Also, s < 2π < s+2π so that by Theorem

CS.22, cis t and cis 0 = cis 2π are on the same side of
←−−−→
O(cis s).

In either subcase, cis t ∈ cis 0-side of
←−−−→
O(cis s); by assumption in Case (II),

α(cis s) is also in this side, so α(cis s) and cis t are on the same side of
←−−−→
O(cis s).

Thus in all cases ρ(cis(t− s)) = α(cis s) = cis t, proving part (A); part (B)

follows immediately from Lemma CS.23.

See also Figure 4.7 and the following remark. ⊓⊔

Remark CS.28.1 To discern the inner structure and action of the ro-

tation ρ in Theorem CS.28, let L =
←−−−→
O(cis 0) (the “horizontal axis”) and

let M be the line of symmetry of the angle ∠(cis 0)O(cis s). Then define
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cis(s− t)

cis(t− s)

O
cis 0

cis s

M

L

RM RL

cis t = ρ(cis(t− s))
= RM(RL(t− s))

Fig. 4.7 For Theorem CS.28 and Remark CS.28.1, showing action of rotation ρ.

ρ = RM ◦ RL. This is the rotation guaranteed by Theorem ROT.15, which

maps cis[0, t− s] to cis[t, s]. Refer also to Figure 4.7.

RL maps cis[0, t− s] to the arc cis[s− t, 0], and then RM maps this arc to

cis[t, s], carrying each point of cis[s− t, 0] along a line parallel to
←−−−−−−→
(cis 0)(cis s).

If cis x is a point of cis[s− t, 0], then←−−−−−−−−−−−→(cis x)(RM(cisx)) is a fixed line for RM,

and all such lines are parallel.

Corollary CS.29 Let E be an arc of the unit circle having length less

than π. Then there exist numbers s and t and a rotation ρ about O such that

0 ≤ s < 2π, 0 ≤ t < 2π, ρ(cis[0, t− s]) = E, and ρ(cis 0) and ρ(cis(t− s)) are
endpoints of E.

Proof. Suppose the endpoints of E are the points cis u and cis v where 0 ≤
u < 2π and 0 ≤ v < 2π; we may choose the notation so that 0 ≤ u < v < 2π.

If v < u + π < 2π, the arc can be written as cis[u, v] and the result follows

from Theorem CS.28 by letting t = v and s = u.

σ

cis v

cisu

E
RO

ROcis t

cis s

cis(t− s)

O cis 0

Fig. 4.8 Showing mapping of cis[0, t− s] to E.

Suppose, on the other hand, that the arc is “split” by the point cis 0, as

in Figure 4.8. That is, 0 ≤ u < π and v > u + π, so that the point cisu lies

on one side of L =
←−−−→
O(1, 0) and cis v lies on the other side, and cis v is on the

same side of the line
←−−−→
O(cis u) as cisO. Then there are no points s and t in

[0, 2π[ with t > s such that E = cis[s, t]. We can, however, represent the arc
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as E = cis[v, u + 2π], so its arc length is u + 2π − v. In this case we cannot

directly apply Theorem CS.28, since u+ 2π 6∈ [0, 2π[ .

Let RO be the point reflection, which is a rotation about O. (cf Definition

ROT.1) Then cis v O RO(cis v) and cisu O RO(cis u). Let s = v − π and

t = u + π; then RO(cis v) = cis s and RO(cis u) = cis t, so that RO(E) =

cis[s, t], where 0 ≤ t < 2π and 0 ≤ s < 2π.

Now t − s = u + π − (v − π) = u − v + 2π < 2π since u − v < 0; since

u − v < −π, t − s < π. By Theorem CS.28, there exists a rotation σ about

O such that σ(cis[0, t − s]) = cis[s, t], σ(cis 0) = cis s, and σ(cis(t − s)) =

cis t. Define ρ = RO ◦ σ, which by Theorem ROT.17, is a rotation. Then

ρ(cis 0) = RO(σ(cis 0)) = RO(cis s) = cis v, ρ(cis t−s) = RO(σ(cis(t−s))) =
RO(cis t) = cisu, and ρ(cis[0, t−s]) = RO(σ(cis[0, t−s])) = RO(cis[s, t]) = E .
Here we have used the fact that RO is its own inverse. ⊓⊔

Corollary CS.30 Let cis[s, t] and cis[u, v] be arcs of the unit circle

C(O; 1), and that π > t − s = v − u > 0, so that the lengths of both arcs

are the same; then there exists a rotation ρ of the unit circle such that

ρ(cis[s, t]) = cis[u, v].

Proof. . By Corollary CS.29 there exist rotations σ and µ such that cis[s, t] =

σ(cis[0, t − s]) and cis[u, v] = µ(cis[0, v − u]) = µ(cis[0, t − s]). Define

ρ = µ ◦ σ−1, which is a rotation by Theorem ROT.17. Then ρ(cis[s, t]) =

µ(σ−1(cis[s, t]) = µ(cis[0, t− s]) = cis[u, v]. ⊓⊔

Theorem CS.31 If s and t are distinct real numbers 0 ≤ s < 2π and

0 ≤ t < 2π then cos(t− s) = cos t cos s+ sin t sin s.

Proof. (Case 1: t > s.) By Theorem CS.28, there exists a rotation such that

ρ(cis 0) = cis s and ρ(cis(t−s)) = cis t. Since ρ is an isometry, thus preserving

distance,

dis(cis 0, cis(t− s)) = dis(cis s, cis t).

Using the definition of distance and equating the squares of both sides of

this, we have

(cos 0− cos(t− s))2 + (sin 0− sin(t− s))2
= (1 − cos(t− s))2 + (sin(t− s))2

= (cos s− cos t)2 + (sin s− sin t)2

which reduces to

1− 2 cos(t− s) + cos2(t− s) + sin2(t− s)
= cos2 s+ sin2 s+ cos2 t+ sin2 t− 2 cos s cos t− 2 sin s sin t,
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that is,

1− 2 cos(t− s) + 1 = 1 + 1− 2 cos s cos t− 2 sin s sin t.

Hence cos(t− s) = cos s cos t+ sin s sin t.

(Case 2: t < s.) The proof is Exercise CS.2. ⊓⊔

Theorem CS.32 (Composite argument formulae for cosine and

sine.) For all real numbers s and t:

(I) cos(s− t) = cos s cos t+ sin s sin t.

(II) sin(s− t) = sin s cos t− cos s sin t.

(III) cos(s+ t) = cos s cos t− sin s sin t.

(IV) sin(s+ t) = sin s cos t+ cos s sin t.

Proof. (I) (Case 1: s = t 6= 0.) cos(s− t) = cos 0 = 1, and

cos s cos t+ sin s sin t = cos2 s+ sin2 s = 1.

(Case 2: s = 0.) Then cos(t−s) = cos t, and cos s cos t+sin s sin t = cos t+0.

(Case 3: t = 0.) Then cos(t− s) = cos−s = cos s, and

cos s cos t+ sin s sin t = cos s+ 0.

(Case 4: 0 < t < 2π and 0 < s < 2π and s 6= t.) The proof is Theorem

CS.24.

(Case 5: s and t are real numbers such that s 6= t.) Then by periodicity

(cf Definition CS.10) there exist integers j and k and real numbers u and v

such that 0 < u < 2π, 0 < v < 2π, u 6= v and s = 2jπ + u and t = 2kπ + v.

By Theorem CS.31

cos(s− t) = cos(u− v) = cosu cos v + sinu sin v

= cos(2jπ + u) cos(2kπ + v) + sin(2jπ + u) sin(2kπ + v)

= cos s cos t+ sin s sin t.

(II) For every real number u, cos(π2 −u) = cos(π2 ) cosu+sin(π2 ) sinu; also,

for every real number v, sin(π2 −v) = cos v; if we let u = π
2 −v then v = π

2 −u
so that for every real number u, sinu = cos v = cos(π2 −u). Hence for all real

numbers s and t,

sin(s− t) = cos(π2 − (s− t)) = cos((π2 − s) + t)

= cos(π2 − s) cos t− sin(π2 − s) sin t = sin s cos t− cos s sin t.

(III) Exercise CS.2.

(IV) By part (II), for all real numbers s and t, sin(s+ t) = sin(s− (−t)) =
sin s cos t− cos s sin(−t) = sin s cos t+ cos s sin t. ⊓⊔

Theorem CS.33 (Traditional angle definition of sin and cos) As-

sume that:
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(1) t is a real number such that 0 ≤ t < 2π;

(2) ϕ is the mapping, applied to C((0, 0); r), whose existence is established

by Theorem ARC.12;

(3) Q is the point cis t;

(4) P = (x1, x2) is a member of
qy→
OQ \{Q}; and

(5) r > 0, and r2 = x21 + x22.

Then cos t = x1

r
and sin t = x2

r
.

Proof. (Case 1: t = 0.) cos 0 = 1
1 = 1. sin 0 = 0

1 = 0.

(Case 2: 0 < t < π
2 .) Let R = ftpr(Q,

←→
OU) and S = ftpr(P,

←→
OU ). Then

△OPQ ∼ △OSP . Hence cos(t) = x1

r
and sin t = x2

r
.

(Case 3: t = π
2 .) Exercise CS.3.

(Case 4: π
2 < t < 3π

2 .) Exercise CS.4.

(Case 5: t = 3π
2 .) Exercise CS.5.

(Case 6: 3π
2 < t < 2π.) Exercise CS.6. ⊓⊔

Remark CS.34 The next two theorems give analytic form to rotations we

studied in Theorems CS.28 and CS.29. In particular, Theorem CS.36 shows

that the line of symmetry of the angle ∠(cis 0)O(cis s), referred to early in the

proof of Theorem CS.28, is in fact
←−−−−→
O(cis s

2 ), as we might reasonably expect.

Theorem CS.35 Let s be a real number such that 0 ≤ s < π, and let

M =
←−−−→
O(cis s) be the line from the origin through the point cis s (which belongs

to the unit circle C(O; 1)). Let RM be the mapping (Φ) defined over M in

Definition LB.16. Then for every point (x1, x2) of the plane R2,

RM(x1, x2) =

(
(cos 2s)x1 + (sin 2s)x2

(sin 2s)x1 − (cos 2s)x2

)
.

Proof. The equation of the line M is ax1 + bx2 + c = 0 where a = sin s,

b = − cos s, and c = 0, as can be verified by substituting x1 = cos s and

x2 = sin s into (sin s)x1 − (cos s)x2. From Defnition LB.16, for any point

(x1, x2) ∈ R2,

RM(x1, x2) =

(
(b2−a2)x1−2abx2−2ac

a2+b2

−2abx1+(a2−b2)x2−2bc
a2+b2

)
;

since a2 + b2 = cos2 s+ sin2 s = 1 and c = 0, this becomes

RL(x1, x2) =
(

(b2 − a2)x1 − 2abx2

−2abx1 + (a2 − b2)x2

)

=

(
(cos2 s− sin2 s)x1 + 2(sin s cos s)x2

2(sin s cos s)x1 + (sin2 s− cos2 s)x2

)
.
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By Theorem CS.32(III), cos 2s = cos2 s− sin2 s, and by Theorem CS.32(IV),

sin 2s = 2 sin s cos s, so that the last expression becomes

RM(x1, x2) =

(
(cos 2s)x1 + (sin 2s)x2

(sin 2s)x1 − (cos 2s)x2

)
. ⊓⊔

Theorem CS.36 Let s be a real number such that 0 ≤ s < 2π, and

let M =
←−−−−→
O(cis s

2 ) be the line from the origin through the point cis s
2 =

(cos s
2 , sin

s
2 ), which point belongs to the unit circle C((0, 0); 1). Let L =

←−−−−−→
(0, 0)(1, 0). Let RM and RL be the reflections (Φ) defined in Definition LB.16

over the lines M and L respectively, and let ρ = RM ◦ RL. By Definition

ROT.1, ρ is a rotation.

(A) For every point (x1, x2) ∈ R2,

ρ(x1, x2) = RM(RL(x1, x2) =
(
(cos s)x1 − (sin s)x2

(sin s)x1 + (cos s)x2

)
.

(B) ρ is the unique rotation of R2 about O = (0, 0) such that ρ(1, 0) =

ρ(cis 0) = (cos s, sin s) = cis s.

(C) The lineM is the line of symmetry of ∠(cis 0)O(cis s).

Proof. (A) RL(x1, x2) = (x1,−x2) and by Theorem CS.28,

ρ(x1, x2) = RM(RL(x1, x2)) = RM(x1,−x2)

=

(
(cos 2( s2 ))x1 + (sin 2( s2 ))(−x2)
(sin 2( s2 ))x1 − (cos 2( s2 ))(−x2)

)
=

(
(cos s)x1 − (sin s)x2

(sin s)x1 + (cos s)x2

)
.

(B) ρ(1, 0) = ρ(cis 0) =

(
(cos s) · 1− (sin s) · 0
(sin s) · 1 + (cos s) · 0

)
= (cos s, sin s) = cis s;

and by Theorem ROT.15(A), there can be only one rotation ρ about O such

that ρ(cis 0) = cis s.

(C) M is the line of symmetry of ∠(cis 0)O(cis s) because by part (B),

RM maps cis 0 to cis s and O is a fixed point for RM. ⊓⊔

4.6 Translations of R
2.

Remark CS.37 (A) Recall from Specht Ch.3 Definition CAP.6 that a

translation is a collineation α of the plane which has no fixed point, and such

that for every line L either α(L) ‖ L or α(L) = L.
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Theorem CS.38 A mapping α of R2 into itself is a translation iff for

some point (p1, p2) 6= (0, 0) of R2, and every point (x1, x2) ∈ R2, α(x1, x2) =

(x1 + p1, x2 + p2).

Proof. (A) Suppose that there exists a point (p1, p2) such that for every point

(x1, x2) ∈ R2,

α(x1, x2) = (y1, y2) = (x1 + p1, x2 + p2).

Let L be a line having the equation ax1+bx2+c = 0, and let d = c−ap1−bp2.
Then (x1, x2) ∈ L iff

ay1 + by2 + d = ax1 + ap1 + bx2 + bp2 + c− ap1 − bp2
= (ax1 + bx2 + c) + 0 = 0

which is true iff ay1 + by2 + d = 0, that is to say, α(x1, x2) = (y1, y2) is a

member of the line ax1 + bx2 + d = 0. This is true iff the line L is either

parallel to, or equal to α(L). Therefore α is a a translation.

(B) Conversely, suppose α is a translation. Then for every line L with

equation ax1 + bx2 + c = 0, α(L) is a line parallel or equal to L, that is, for
some d, α(L) has equation ay1 + by2 + d = 0.

If c = d then α(L) = L and we may let p1 = p2 = 0.

If c 6= d, then either a 6= 0 or b 6= 0 (or both). If a 6= 0, let p1 = −d+c−b
a

and p2 = 1. Then (x1, x2) ∈ L iff ax1 + bx2 + c = 0 which is true iff

ay1 + by2 + d = a(x1 +
−d+c−b

a
) + b(x2 + 1) + d

= ax1 + bx2 − d+ c− b+ b+ d = ax1 + bx2 + c = 0.

Thus (x1, x2) is on the line ax1 + bx2 + c = 0 iff α(x1, x2) = (y1, y2) =

(x1 + p1, x2 + p2) is on the line ay1 + by2 + d = 0.

The case where b 6= 0 we leave to the reader as Exercise CS.7. ⊓⊔

Theorem CS.39 Let
px→
AB be a closed ray on R2, and let α be a translation;

then α(
px→
AB) is the ray

px →
α(A)α(B).

Proof. By Specht Ch.21 Definition LA.1(3D),
px→
AB = {A+ t(B −A) | t ≥ 0}.

By Theorem CS.38, there exists a point P such that for all X , α(X) = X+P .

Then Y ∈ α(px→AB) iff for some X ∈ px→
AB,

Y = α(X) = X + P = A+ P + t((B + P )− (A+ P ))

= α(X) + t(α(B) − α(A))
which is true iff Y ∈

px →
α(A)α(B). ⊓⊔

Remark CS.40 (A) Since an angle is the union of two non-opposite rays,

(cf Specht Ch.5 Definition PSH.29), if α is a translation and if ∠BAC is an

angle with corner A, then α(∠BAC) = ∠α(B)α(A)α(C).
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(B) We have seen in Specht Ch.12 Theorem ISM.4(B) that if L1 and L2 are
parallel lines in a Euclidean plane, the mapping RL2 ◦ RL1 is a translation.

The next theorem proves this for R2, using direct computation.

Theorem CS.41 Let L1 and L2 be parallel lines on R2. Then RL2 ◦RL1

is a translation.

Proof. By Theorem LB.13 there exist real numbers a, b, c1 and c2 such that

c1 6= c2,

L1 = {(x1, x2) | (x1, x2) ∈ R2 and ax1 + bx2 + c1 = 0} and
L2 = {(x1, x2) | (x1, x2) ∈ R2 and ax1 + bx2 + c2 = 0}.

Let (x1, x2) be any member of R2; by Definition LB.16,(
y1

y2

)
= RL1

(
x1

x2

)
=

(
b2−a2

a2+b2
x1 − 2ab

a2+b2
x2 − 2ac1

a2+b2

−2ab
a2+b2

x1 +
a2−b2
a2+b2

x2 − 2bc1
a2+b2

)
.

so that

RL2

(
RL1

(
x1

x2

))
=




b2−a2

a2+b2

(
b2−a2

a2+b2
x1 − 2ab

a2+b2
x2 − 2ac1

a2+b2

)

− 2ab
a2+b2

(
−2ab
a2+b2

x1 +
a2−b2
a2+b2

x2 − 2bc1
a2+b2

)
− 2ac2

a2+b2

−2ab
a2+b2

(
b2−a2

a2+b2
x1 − 2ab

a2+b2
x2 − 2ac1

a2+b2

)

+a2−b2
a2+b2

(
−2ab
a2+b2

x1 +
a2−b2
a2+b2

x2 − 2bc1
a2+b2

)
− 2bc2

a2+b2




=




((
b2−a2

a2+b2

)2
+
(
−2ab
a2+b2

)2)
x1

+
((

b2−a2

a2+b2

)(
−2ab
a2+b2

)
+
(
−2ab
a2+b2

)(
a2−b2
a2+b2

))
x2

+
(

b2−a2

a2+b2

)(
−2ac1
a2+b2

)
+
(
−2ab
a2+b2

)(
−2bc1
a2+b2

)
− 2ac2

a2+b2

((
−2ab
a2+b2

)(
b2−a2

a2+b2

)
+
(

a2−b2
a2+b2

)(
− 2ab

a2+b2

))
x1

+
((
−2ab
a2+b2

)(
−2ab
a2+b2

)
+ (a2−b2)2

(a2+b2)2

)
x2

+
(
−2ab
a2+b2

)(
−2ac1
a2+b2

)
+
(

a2−b2
a2+b2

)(
−2bc1
a2+b2

)
− 2bc2

a2+b2




.

The coefficients of x1 and x2 (in order of appearance in the matrix just above)

reduce to((
b2−a2

a2+b2

)2
+
(
−2ab
a2+b2

)2)
= 1,

((
b2−a2

a2+b2

)(
−2ab
a2+b2

)
+
(
−2ab
a2+b2

)(
a2−b2
a2+b2

))
= 0,

((
−2ab
a2+b2

)(
b2−a2

a2+b2

)
+
(

a2−b2
a2+b2

)(
− 2ab

a2+b2

))
= 0, and

((
−2ab
a2+b2

)(
−2ab
a2+b2

)
+ (a2−b2)2

(a2+b2)2

)
= 1.
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The constant terms reduce as follows:
(

b2−a2

a2+b2

)(
−2ac1
a2+b2

)
+
(
−2ab
a2+b2

)(
−2bc1
a2+b2

)
− 2ac2

a2+b2

=
(

(b2−a2)(−2ac1)+(4ab2c1)
(a2+b2)2

)
− 2ac2

a2+b2
=
(

2ac1(a
2−b2+2b2)

(a2+b2)2

)
− 2ac2

a2+b2

=
(

2ac1(a
2+b2)

(a2+b2)2

)
− 2ac2

a2+b2
=
(

2ac1
a2+b2

)
− 2ac2

a2+b2
=
(

2a(c1−c2)
a2+b2

)
.

(
−2ab
a2+b2

)(
−2ac1
a2+b2

)
+ (a2−b2)(−2bc1)

(a2+b2)2 − 2bc2
a2+b2

=
(

(4a2bc1)+(b2−a2)(2bc1)
(a2+b2)2

)
− 2bc2

a2+b2
=
(

(a2+b2)(2bc1)
(a2+b2)2

)
− 2bc2

a2+b2

=
(

2bc1
(a2+b2)

)
− 2bc2

a2+b2
=
(

2b(c1−c2)
a2+b2

)

so that RL2(RL1(x1, x2)) = (x1 + k1, x2 + k2) where k1 = 2a(c1−c2)
a2+b2

and

k2 = 2b(c1−c2)
a2+b2

.

At least one of a or b is non-zero, so that a2+b2 ≥ 0; and c1 6= c2; therefore

at least one of k1 or k2 is non-zero. Thus the mapping RL1 ◦ RL1 is not the

identity, and therefore by Theorem CS.38 is a translation . ⊓⊔

4.7 Exercises for cosine and sine

Exercise CS.1 Prove part II of Theorem CS.9.

Exercise CS.2* Prove Case 2 of Theorem CS.32.

Exercise CS.3 Prove Case 3 of Theorem CS.33.

Exercise CS.4 Prove Case 4 of Theorem CS.33.

Exercise CS.5 Prove Case 5 of Theorem CS.33.

Exercise CS.6 Prove Case 6 of Theorem CS.33.

Exercise CS.7* Complete the proof of Theorem CS.38(B), the case

where b 6= 0.

Exercise CS.8* Let L =
←−−−−−−−−−−→
(0, 0)(cos s, sin s); for each each (x1, x2) ∈ R2

define

α(x1, x2) = x1 cos 2s+ x2 sin 2s,

β(x1, x2) = x1 sin 2s+ x2 cos 2s, and

RL(x1, x2) = (α(x1, x2), β(x1, x2)).

Prove that for every (x1, x2) ∈ R2 \ L, (α(x1, x2) + x1
2

,
β(x1, x2) + x2

2
) is a

point on the line
←−−−−−−−−−−→
(0, 0)(cos s, sin s).
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Exercise CS.9 Let a and b be real numbers such that (a, b) 6= (0, 0); for

each (x1, x2) ∈ R2, define

ρ(x1, x2) =
(

ax1√
a2+b2

− bx2√
a2+b2

, bx1√
a2+b2

+ ax2√
a2+b2

)
;

then ρ is a rotation about (0, 0).

Exercise CS.10* According to Theorem ISM.5 for any point A ∈ R2

there is a translation τA such that τA(O) = A. Definition VEC.1 uses this

fact to define addition on a Euclidean plane such as R2.

Let τA be a translation of R2, where A = (a1, a2) 6= (0, 0) is some point of

that plane. Show that τA has an inverse τ−A which is a translation.

Exercise CS.11* Show that a translation of R2 preserves distance, i.e.

if A = (a1, a2) is a member of R2 \ {(0, 0)} and τA is the translation such

that for every member (x1, x2) of R2, τA(x1, x2) = (x1 + a1, x2 + a2), then

for any two members (x1, x2) and (y1, y2) of R
2,

dis(τA(x1, x2), τA(y1, y2)) = dis((x1, x2), (y1, y2)).

Exercise CS.12* If cis t = (cos t, sin t) is a point on the unit circle C(O; 1)
where O = (0, 0), then

cis(t+ π) = − cis t = (− cos t,− sin t)

and (cis t) O (cis(t+ π)).

Exercise CS.13* Let C(O; r) be a circle in R2 with radius r and center

O = (0, 0). Then (A) no line intersects the circle C(O; r) in more than two

points; and (B) a line containing intersects C(O; r) in two points iff it it

contains a point X such that dis(X,O) < r. Moreover, if a line intersects

the circle C(O; r) in two points A and B, the line of symmetry of ∠AOB

intersects the line
←→
AB at a point C such that disOC < r.

4.8 Selected answers for exercises cosine and sine

Exercise CS.2 Proof. From Case 1 and the fact that cos is an even function,

cos(t− s) = cos(s− t) = cos t cos s+ sin t sin s

= cos s cos t+ sin s sin t.
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Exercise CS.7 Proof. If b 6= 0, let p1 = 1 and p2 = −d+c−a
b

; then for all

(x1, x2) ∈ L,
α(x1, x2) = (y1, y2) = (x1 + 1, x2 +

−d+c−a
b

)

and

ay1 + by2 + d = a(x1 + 1) + b(x2 +
−d+c−a

b
) + d

= ax1 + bx2 + a− d+ c− a+ d = ax1 + bx2 + c = 0,

so every (x1, x2) in the line ax1+bx2+c = 0 maps to a point (x1+p1, x2+p2)

in the line ay1 + by2 + d = 0.

This completes the converse argument. ⊓⊔

Exercise CS.8 Proof.

sin s
(
x1 cos 2s+x2 sin 2s+x1

2

)
− cos s

(
x1 sin 2s+x2 cos 2s+x2

2

)

= cos 2s sin s−sin 2s cos s
2 x1 +

sin s sin 2s−cos 2s cos s
2 x2 +

x1 sin s−x2 cos s
2

= sin s
2 x1 +

− cos s
2 x2 = 0. ⊓⊔

Exercise CS.10 Proof. If A = (a1, a2), then −A = (−a1,−a2); For every
member (x1, x2) of R2, τA(x1, x2) = (x1 + a1, x2 + a2), and τA

−1(x1, x2) =

τ−A(x1, x2) = (x1−a1, x2−a2). Thus τ−A(τA(x1, x2)) = ((x1+a1)−a1, (x2+
a2)− a2) = (x1, x2). ⊓⊔

Exercise CS.11 Proof.

dis(τA(x1, x2), (y1, y2)) = dis((x1 + a1, x2 + a2), (y1 + a1, y2 + a2))

=
√
((x1 + a1)− (y1 + a1))2 + ((x2 + a2)− (y2 + a2))2

=
√
(x1 − y1)2 + (x2 − y2)2

= dis((x1, x2), (y1, y2)). ⊓⊔

Exercise CS.12 Proof. By Theorem CS.32,

cos(t+ π) = cos t cos(π) + sin t sin(π)

= cos t(−1) + sin t · 0 = − cos t

and

sin(t+ π) = sin t cos(π) − cos t sin(π)

= sin t(−1)− cos t · 0 = − sin t. ⊓⊔
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Exercise CS.13 Proof. If X = (x1, x2) is any point on a line L, then
by Remark LB.2(C) there exists a point Y = (y1, y2) such that Z ∈ L iff

Z = X+ tY for some real number t. Thus, a point Z = X+ tY ∈ L is a point

of C(O; r) iff (x1+ty1, x2+ty2) ∈ C(O; r), that is, (x1+ty1)2+(x2+ty2)
2 = r2.

Expanding, we have

x21 + t2y21 + t(2x1y1) + x22 + t2y22 + t(2x2y2) = r2,

and rearranging,

x21 + x22 + t2(y21 + y22) + t(2(x1y1 + x2y2)) = r2,

or

(x21 + x22 − r2) + t(2(x1y1 + x2y2)) + t2(y21 + y22) = 0.

This is a quadratic in t and by the quadratic formula, it has at most two

solutions. This proves part (A).

To show part (B), assume that dis(X,O) < r, that is, x21 + x22 < r2. Then

we may state the above equation as a+ tb+ t2c = 0 where a = x21 + x22 − r2,
b = 2(x1y1 + x2y2), and c = y21 + y22 . By the quadratic formula, this has two

solutions iff the discriminant b2 − 4ac > 0. That is,

(2(x1y1 + x2y2))
2 − 4(x21 + x22 − r2)(y21 + y22) > 0.

Then (2(x1y1 + x2y2))
2 > 0; (y21 + y22) > 0, and x21 + x22 − r2 < 0 so that the

discriminant is greater than 0, and there are two solutions; hence the line L
intersects the circle at two points.

Conversely, if L intersects the circle at two points A = (a1, a2) and B =

(b1, b2), letM be the line of symmetry of the angle ∠AOB. Then let C be the

point of intersection ofM and L; C ∈ ins∠AOB and L is a fixed line forRM,

so the two lines are perpendicular. It follows from the Pythagorean Theorem

(Theorem VEC.26.5 or Specht Ch.15 Theorem SIM.23.1) that dis(C,O) < 1.

⊓⊔



Chapter 5

Angle Measure (AM)

Dependencies: Euclidean Geometry and its Subgeometries (Specht); Chap-

ters 3 and 4 of this supplement

Acronym: AM

New terms defined: (radian) measure of an angle

We now develop the concept of angle measure, using the ideas of arc length

as developed in Chapter 3 and sin and cos as developed in Chapter 4 of this

Supplement. Again, in this chapter, we work in R2. Since it is shown in

Chapter 21 of Specht that all the axioms of that development hold for R3

and R2, here we may use all the theorems from that book.

In chapters 3 and 4 we considered arcs on a unit circle having arc lengths

up to (but not including) 2π. In this chapter we will shift our focus to arcs

(on the unit circle) having length less than π, that is, which subtend angles,

the definition of which (Specht Ch.5 Definition PSH.29) specifically excludes

“straight angles” or anything “greater.” There are no “270 degree angles”

here. Note that when we write ∠AOB = ∠COD we mean set equality; there

is no implication that
px→
OA =

px→
OC or

px→
OA =

px→
OD.

References in this chapter to items labeled VEC, ARC, CS, and AM are

to this Supplement; all other references, such as “Theorem PSH.41” are to

Specht. Again, we refer the reader to the note Citations and references at

the end of the Preface to this Supplement, and to the abbreviated Table of

Contents (with acronyms) included there.
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5.1 Definitions and theorems for angle measure

Definition/Remark AM.1 (A) LetO = (0, 0) be a point ofR2, and let r

be a positive real number. In Definition CS.13 we defined C((0, 0); r) = C(O; r)
to be the circle with center O = (0, 0) and radius r, and defined its inside,

enclosure, and diameter. We also designated C(O; 1) as the unit circle.

(B) Let C and D be points of R2 such that C, D, and O are noncollinear,

so that the rays
px→
OC and

px→
OD form ∠COD. Let r > 0 be a real number, and

let A and B be points on
qy→
OC and

qy→
OD, respectively, such that dis(O,A) =

dis(O,B) = r, so that {A} = C(O; r)∩ qy→
OC , and {B} = C(O; r)∩ qy→

OD, so that

∠AOB = ∠COD.

Define ÂB to be C(O; r) ∩ enc∠AOB. ÂB is called an arc of the circle

C(O; r), and is said to subtend the angle ∠AOB, which is a central angle

of C(O; r). Here enc∠AOB means the enclosure of ∠AOB, that is, the union

of ∠AOB and its inside ins∠AOB (cf Definition PSH.36).

(C) According to the definition of ÂB just above, if F is a point of ÂB,

which is neither A nor B, then ÂB is a subset of
←→
OA ∪ F -side of

←→
OA, and

also of
←→
OB ∪ F -side of

←→
OB (cf Theorem CS.22).

By the definition of angle (Specht Ch.5 Definition PSH.29),
←→
OA 6= ←→OB,

that is, the rays
px→
OA and

px→
OB are not opposite. This definition does not

allow for arcs which contain both endpoints of any diameter of the circle. In

particular, on the unit circle, it does not allow arcs with length greater or

equal to π.

(D) Let ∠COD be any angle, and let A and B be points on
qy→
OC and

qy→
OD,

respectively, such that dis(O,A) = dis(O,B) = 1, so that both A and B are

points of the unit circle C(O; 1). Define the (radian) angle measure of

∠COD = ∠AOB (denoted meas∠AOB) to be the arc length L(ÂB) of ÂB.

Theorem AM.2 Let A and B be distinct points on the circle C(O; r),
where r > 0, for which it is false that A O B. Then ÂB is an arc as defined

in Chapter 3, Definition ARC.1.

Proof. Let A′ and B′ respectively be the points of intersection of the unit

circle with
←→
OA and

←→
OB. By Theorem CS.22 the notation may be chosen (and

the points possibly renamed) so that A = rA′ = r cis a and B = rB′ = r cis b,

b > a, and b− a < π. From part (C) of that theorem, r cis ]a, b[⊆ ins∠AOB

and r cis ]b, a+ 2π[⊆ out∠AOB. From Theorem PSH.41(B),

C(O; r) \ {A,B} = (ins∠AOB ∩ C(O; r)) ∪ (out∠AOB ∩ C(O; r)).
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Since r cis maps [a, a+ 2π[ one-to-one onto C(O; r), it is also true that

C(O; r) \ {A,B} = r cis ]a, b[∪ r cis ]b, a+ 2π[

By elementary set theory, r cis ]a, b[ = ins∠AOB ∩ C(O; r) and hence

r cis[a, b] = enc∠AOB ∩ C(O; r);
therefore every arc ÂB is an arc cis[a, b] as previously defined. ⊓⊔

Theorem AM.3 Let O and O′ be distinct points on R2, r a positive real

number, and let T be a translation of R2 such that T (O) = O′. Let A and B

be distinct points on the circle C(O; r) and let C and D be distinct points on

the circle C(O′; r), so that ÂB is an arc on C(O; r) and Â′B′ is an arc on

C(O′; r). Then ÂB ∼= Â′B′ iff ̂T (A)T (B) ∼= Â′B′.

Proof. If ̂T (A)T (B) ∼= Â′B′ there exists an isometry ϕ such that

ϕ( ̂T (A)T (B)) = Â′B′;

then

(ϕ ◦ T )(ÂB)) = ϕ( ̂T (A)T (B)) = Â′B′,

so ÂB ∼= Â′B′.

Conversely, if ÂB ∼= Â′B′, there exists an isometry ψ such that ψ(ÂB) =

Â′B′; then T ◦ ψ−1(Â′B′) = ̂T (A)T (B) so that ̂T (A)T (B) ∼= Â′B′. ⊓⊔

Take note: for simplicity, several of the following theorems are stated and

proved for the unit circle C(O; 1); it is easy to extend them as needed to the

circle C(O; r) where r > 0.

Theorem AM.4 Let ÂB and ĈD be arcs on the unit circle C(O; 1). Sup-
pose there exists an isometry ϕ such that ϕ(ĈD) = ÂB, ϕ(C) = A and

ϕ(D) = B; then O is a fixed point for ϕ, and ϕ(∠COD) = ∠AOB.

Proof. Since all the points A, B, C, and D are on the unit circle with center

O, the distance from each to O is 1. Suppose that O is not a fixed point for

ϕ, and let O′ = ϕ(O) 6= O.

Let L be the right-angle bisector of the segment
px qy

AB =
px qy

ϕ(C)ϕ(D), and let

{P} = px qy

AB ∩L; then L is the line of symmetry of ∠AOB. Because ϕ preserves

distance, A and B are also on the unit circle centered at O′, and L is also

the line of symmetry of ∠AO′B. Therefore L =
←−−−→
Oϕ(O).

Let Q be the point of intersection of ÂB and L. Since ϕ maps the arc ĈD

into the unit circle C(O′; 1) and onto the arc ÂB, Q ∈ ÂB ⊆ C(O′; 1), and
dis(Q,O′) = 1.
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Case 1: If O′ is on the O-side of Q, then O′ = O, because there is only one

point on L on each side of Q which is a distance 1 from Q.

Case 2: If O Q O′; by the Pythagorean Theorem (Theorem SIM.23),

dis(P,O) < 1 and dis(P,O′) < 1; since dis(Q,O) = 1, O P Q. Since O Q O′

it follows from Theorem PSH.8(A) that P Q O′; therefore, from dis(P,O′) <

1, we have dis(Q,O′) < 1; but dis(Q,O′) = 1 because Q ∈ C(O′; 1). This is a
contradiction. ⊓⊔

Theorem AM.5 Let O be a point on R2, and let A, B, C, and D be

points on the unit circle C(O; 1) such that A 6= B, C 6= D, and ÂB and ĈD

are arcs on this circle.

(1) If ϕ is an isometry on R2; then ϕ(ÂB) = ĈD iff ϕ(∠AOB) = ∠COD.

That is to say, ÂB ∼= ĈD iff ∠AOB ∼= ∠COD.

(2) If ρ is a rotation of the plane; then ρ(ÂB) = ĈD iff ρ(∠AOB) =

∠COD.

(3) The following statements are equivalent:

(a) ÂB and ĈD have the same arc length; that is, L(ÂB) = L(ĈD);

(b) there exists an isometry on R2 such that ϕ(ÂB) = ĈD; and

(c) there exists a rotation ρ such that ρ(ÂB) = ĈD.

Proof. (1) If ϕ is an isometry such that ϕ(ÂB) = ĈD, then either ϕ(A) = C

and ϕ(B) = D, or ϕ(A) = D and ϕ(B) = C. By Theorem AM.4, ϕ(O) = O,

so that either ϕ(A) ∈ qy→
OC and ϕ(B) ∈ qy→

OD or ϕ(A) ∈ qy→
OD and ϕ(B) ∈ qy→

OC;

in either case, ϕ(∠AOB) = ∠COD.

Conversely, if ϕ is an isometry and ϕ(∠AOB) = ∠COD, by Theo-

rem NEUT.15(11) ϕ(ins∠AOB) = ins∠COD, so that ϕ(enc∠AOB) =

enc∠COD. Also ϕ preserves distance so that it maps the unit circle onto

itself. It follows that ϕ(enc∠AOB) ∩ C(O; 1) = enc∠COD ∩ C(O; 1), that is
to say, ϕ(ÂB) = ĈD.

(2) If ρ is a rotation, it is an isometry; then if ρ(ÂB) = ĈD, by part (1)

ρ(O) = O and ρ(∠AOB) = ∠COD. Conversely, if ρ is a rotation such that

ρ(∠AOB) = ∠COD, by part (1) ρ(ÂB = ĈD.

(3) We shall prove (a)⇒(c)⇒(b)⇒(a).

(a)⇒(c): If L(ÂB) = L(ĈD), then by Corollary CS.30, there exists a

rotation ρ such that ρ(ÂB) = ĈD.

(c)⇒(b): If ρ is a rotation then it is an isometry.
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(b)⇒(a): If ϕ is an isometry such that ϕ(ÂB) = ĈD, by Theorem AM.4,

ϕ(O) = O; by Lemma CS.23(B), it follows that L(ÂB) = L(ĈD). ⊓⊔

Theorem AM.6 Let A, B, O, A′, B′, and O′ be points on R2 such

that A, B, and O are noncollinear and A′, B′, and O′ are noncollinear; then

∠AOB ∼= ∠A′O′B′ iff meas∠AOB = meas∠A′O′B′.

Proof. We may choose these points so that dis(O,A) = dis(O,B) = 1 and

dis(O′, A′) = dis(O′, B′) = 1. Then by Definition AM.1, meas∠AOB =

meas∠A′O′B′ iff the arc lengths L(ÂB) and L(Â′B′) are the same.

Suppose ∠AOB ∼= ∠A′O′B′; let ϕ be the isometry such that ϕ(∠AOB) =

∠A′0′B′; then by Specht Ch.8 Theorem NEUT.15(11), ϕ(ins∠AOB) =

ins∠A′0′B′. Since ϕ preserves distance, ϕ(C(O; 1)) = C(O′; 1). Since ϕ is

one-to-one, and using elementary set theory,

ϕ(ÂB) = ϕ(ins∠AOB ∩ C(0; 1)) = ϕ(ins∠AOB) ∩ ϕ(C(0; 1))
= ins∠A′O′B′ ∩ C(0′; 1) = Â′B′.

Then by Lemma CS.23, L(ÂB) = L(Â′B′), that is, the angles have the same

measure.

Conversely, suppose that L(ÂB) = L(Â′B′), Let T be the translation of

R2 such that T (O) = O′. Then T is an isometry, and preserves distance,

so that T (C(O; 1)) = C(O′; 1). By Lemma CS.23, ̂T (A)T (B) is an arc on

C(O′; 1) which has the same arc length as ÂB. Because L(Â′B′) = L(ÂB) =

L( ̂T (A)T (B)), by Theorem AM.5(3) there exists an isometry ψ such that

ψ( ̂T (A)T (B)) = Â′B′; then ψ ◦ϕ is an isometry mapping ÂB onto Â′B′. ⊓⊔

Theorem AM.7 (A) Let A, O, and B be noncollinear points on R2 and

let C be a member of ins∠AOB, then

meas∠AOC +meas∠BOC = meas∠AOB.

(B) Let A, O, and B be points such that A O B and let C be a point off

of
←→
AB, then meas∠AOC +meas∠BOC = π.

Proof. Without loss of generality we can assume that all points A, B, and C

are on the unit circle C(O; 1) with center O and radius 1.

(A) Since by Theorem AM.2, ÂB is the image under the mapping cis of

some interval [a, b] where A = cis a and B = cis b, for some c with a < c < b,

C = cis c. Then by Theorem ARC.4,

meas∠AOC +meas∠BOC = L(ÂC) + L(ĈB) = L(ÂB) = meas∠AOB.

(B) Suppose that A = cis a; then B = cis(a+π) = cis(a−π). Then C = cis c

where either a < c < a+π or a > c > a−π. If a < c < a+π (a > c > a−π), let



108 5 Angle Measure (AM)

E = {A,B}∪ (C(O; 1)∩C-side of←→AB). Then E = cis[a, a+π](= cis[a, a−π]),
and E = ÂC ∪ ĈB. By Theorem ARC.4,

L(E) = L(ÂC) + L(ĈB) = meas∠AOC +meas∠COB;

By Theorem CS.19(B), L(E) = π. ⊓⊔

Theorem AM.8 (Sum of measures of angles of a triangle is π.) Let

A, B, and C be noncollinear points on R2, then meas∠ABC+meas∠BCA+

meas∠CAB = π.

Proof. Let L = par(B,
←→
CA) be the line parallel to

←→
CA) which contains B. (cf

Axiom PS) Let D and E be points of L such that D is on the A side of
←→
BC, E

is on the C side of
←→
AB, and D B E. By Theorem EUC.11 ∠ABD ∼= ∠BAC

and ∠EBC ∼= ∠ACB. By Theorem AM.6 meas∠ABD = meas∠BAC

and meas∠EBC = meas∠ACB. By Theorem AM.7(A) meas∠EBC +

meas∠ABC = meas∠EBA. Putting all this together and using Theorem

AM.7(B),

meas∠ACB +meas∠ABC +meas∠BAC

= meas∠EBC +meas∠ABC +meas∠ABD

= meas∠EBA+meas∠ABD = π. ⊓⊔

Corollary AM.9 Let A, B, and C be noncollinear points on R2, and

let D be a point such that C A D; then meas∠ABC + meas∠BCA =

meas∠BAD.

Proof. Let E be a point such that E ∈ par(A,
←→
BC) and E and B are on

the same side of
←→
AC. By Theorem EUC.11 ∠ABC ∼= ∠BAE and ∠BCA ∼=

∠EAD. By Theorem AM.6 meas∠ABC = meas∠BAE and meas∠ACB =

meas∠DAE. By Theorem AM.7 meas∠BAE+meas∠DAE = meas∠BAD.

Therefore meas∠ABC +meas∠ACB = meas∠BAD. ⊓⊔

We can restate Corollary AM.9 thusly: The sum of the measures of any

two angles of a triangle is equal to the measure of an exterior angle at the

other corner of the triangle.

Theorem AM.10 Let r be a positive real number and let C(O; r) be the

circle with center O and radius r on R2. Let A, B, and C be noncollinear

points on C(O; r) such that C O A; then meas∠ACB = meas∠OBC =
1
2 meas∠AOB.
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Proof. Since dis(O,B) = dis(O,C) = r,
px qy

OB ∼=
px qy

OC. By Theorem NEUT.40

(Pons Asinorum) ∠OBC ∼= ∠OCB. By Theorem AM.6 meas∠OBC =

meas∠OCB. By Theorems AM.6 and AM.9 meas∠AOB = meas∠OBC +

meas∠OCB = 2meas∠ACB. Therefore meas∠ACB = meas∠OBC =
1
2 meas∠AOB. ⊓⊔

Corollary AM.11 Let r be a positive real number and let C(O; r) be the

circle with center O and radius r on R2. Let A, B, and C be noncollinear

points on C(O; r) such that C O A and A, B, and C are noncollinear, then

meas∠ACB = π
2 .

Proof. By Theorem AM.10,

meas∠OBC = 1
2 meas∠AOB and meas∠OBA = 1

2 meas∠BOC.

Then by Theorem AM.7(B), meas∠AOB + meas∠BOC = π, so that

meas∠ABC = meas∠OBC +meas∠OBA = π
2 . ⊓⊔

Theorem AM.12 Let r be a positive real number and let C(O; r) be

the circle on R2; let A, B, and C be noncollinear points on C(O; r), then

meas∠BAC = 1
2 meas∠BOC.

Proof. (Case 1: A O C.) This is Theorem AM.10.

In the next two cases, let D be the point of intersection of
qy→
AO and C(O; r).

(Case 2: O ∈ ins∠BAC.) By Theorem AM.7

meas∠BAC = meas∠BAD +meas∠CAD.

By Theorem AM.10,

meas∠CAD = 1
2 meas∠COD and meas∠BAD = 1

2 meas∠BOD.

By Theorem AM.7 meas∠BOD +meas∠COD = meas∠BOC. Therefore
1
2 meas∠BOC = 1

2 meas∠BOD + 1
2 meas∠COD

= meas∠BAD +meas∠CAD = meas∠BAC.

(Case 3: O ∈ out∠BAC.) By Theorem AM.7(A)

meas∠BAC +meas∠CAD = meas∠BAD

and

meas∠BOC +meas∠COD = meas∠BOD.

Therefore,

meas∠BAC = meas∠BAD −meas∠CAD

and

meas∠BOC = meas∠BOD −meas∠COD.

By Case 1 (that is, Theorem AM.10),
1
2 meas∠COD = meas∠CAD and 1

2 meas∠BOD = meas∠BAD.
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Then
1
2 meas∠BOC = 1

2 meas∠BOD − 1
2 meas∠COD

= meas∠BAD −meas∠CAD = meas∠BAC. ⊓⊔

Theorem AM.13 (Geometric proof of square roots) Given a seg-

ment with length H, another segment can be constructed having length
√
H.

A
O D

B

C

E

Fig. 5.1 For Theorem AM.13.

Proof. Refer to Figure 5.1. Let O be any point on R2 and let C(O; H+1
2 )

be the circle on R2 with center O and radius H+1
2 . Let A and B be points

on this circle such that A O B, and let D be the point on
qy→
AO such that

dis(A,D) = H and dis(D,B) = 1 (if H = 1 then D = O). Let M be the

line through D which is perpendicular to
←→
AB. Since dis(D,O) < H+1

2 , by

Exercise CS.13 the lineM intersects C(O; H+1
2 ) at two points C and E. By

Theorem AM.8

meas∠CAD +meas∠ACD +meas∠ADC = π.

By Exercise AM.1, meas∠ADC = π
2 so that

meas∠CAD +meas∠ACD = π
2 .

By similar reasoning, meas∠BCD +meas∠CBD = π
2 .

By Corollary AM.11, meas∠ACB = π
2 ; again by Theorem AM.8

meas∠ABC +meas∠ACB +meas∠BAC = π,

so that meas∠ABC +meas∠BAC = π
2 .

Since △ABC and △ADC have ∠BAC in common,

meas∠ACD = meas∠CBD.

Since △ABC and △CBD have ∠ABC in common,

meas∠BAC = meas∠BCD.
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By Specht Ch.15 Theorem SIM.18 △ACD ∼ △CBD. Moreover
[
px qy

CD ]

[
px qy

AD ]
=

[
px qy

BD ]

[
px qy

CD ]
, i.e., [

px qy

CD ]2 = [
px qy

AD ]⊙[px qy

DB ]. Hence (dis(C,D))2 = dis(A,D)·dis(D,B).

Since dis(D,B) = 1, dis(C,D) =
√
dis(A,D). ⊓⊔

Remark AM.14 In algebra the ordered extension field SF of the rational

numbers such that every positive (real) number belonging to it has a square

root is called the surd field. It is the “smallest” ordered subfield of real

numbers such that every positive number belonging to it has a square root

belonging to it.

Theorem AM.13 shows that the underlying field in coordinate space must

contain square roots in order to carry out the full development of this book

in coordinate space.

That is, given a segment
px qy

AD having length H , from Theorem AM.13 there

exists a segment
px qy

CD having length
√
H . Definition VEC.26.1 in Chapter 1

defines the length of this segment to be the real number c such that
px qy

OcU =
px qy

OX , where
px qy

CD ∼=
px qy

OS and the length of U is 1. This is impossible unless

there is a real number
√
H .

5.2 Exercises for angle measure

Exercise AM.1* The radian measure of a right angle is π
2 .

5.3 Selected answers for angle measure

Exercise AM.1 Proof. By Definition NEUT.41(C) an angle ∠BAC is right

iff it is congruent to a supplement of itself. Let ∠DAE be a supplement of

∠BAC, so that ∠DAE ∼= ∠BAC. By Theorem AM.7(B), meas∠DAE +

meas∠BAC = π. By Theorem AM.6 meas∠DAE = meas∠BAC, therefore

meas∠DAE = meas∠BAC = π
2 . ⊓⊔





Chapter 6

The Jordan Curve Theorem for

Polygons

Dependencies: Chapters 1, 4, 5, and 6 from Euclidean Geometry and its

Subgeometries (Specht)

Acronyms: JCT, PLGN, SEP, CNV, CNT

New terms defined: polygon, inside, outside, enclosure, exclosure, side;

polygonal path, subpath, j-corner, j-edge, adjacent edges, adjacent corners,

endpoints, simple; polygonally connected, admissible ray, admissible angle,

entering, exiting; parity, even, odd; separates the plane; support, supporting

line, basic line, extremal point, normal point, bounded (set); regular corner,

irregular corner

This chapter is dependent only on Pasch geometry and ordering, as devel-

oped in Chapters 5 and 6 of Specht ; it does not depend on, or refer to other

chapters in this Supplement. In it, “plane” will mean “Pasch plane.”

Items referenced by acronyms JCT, PLGN, SEP, CNV, or CNT (for in-

stance “Lemma PLGN.3”) will be internal references to this chapter. Other

items (as, for instance “Theorem PSH.6”) will be from chapters in Specht

according to the following table, which is a subset of the abbreviated Table

of Contents for Specht at the end of the Preface of this Supplement.

Acronym Chapter Title Page

I 1 Preliminaries and Incidence Geometry 1

IB 4 Incidence and Betweenness 63

PSH 5 Pasch Geometry 79

ORD 6 Ordering a line in a Pasch Plane 139

The Jordan Curve Theorem says that the complement of a simple, closed

curve is the union of two connected sets, one of them (the interior) being

113
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bounded, the other (the exterior) unbounded; the curve is the boundary of

both the interior and the exterior, and any path from the interior to the

exterior must intersect this boundary.

This is quite intuitively obvious; indeed, Professor F. E. Ulrich used to

introduce it in his Complex Analysis course at Rice by saying “Every cow

knows this theorem; she knows that if she’s in the pasture and wants to get

out, she has to cross the fence.”

Camille Jordan (1838–1922) was the first to give a proof in the continuous

case, which was published in his book Cours d’analyse de l’École Polytech-

nique [1]; but his proof was considered by many mathematicians to be faulty.

Moreover, Jordan assumed the validity of the theorem for the case of a simple

closed polygonal path.

It is this polygonal case that we prove in this chapter. Some say this case

is quite easy to prove, but we have not sought a minimal path to it; we will,

rather, embark on a rather leisurely exploration of the properties of polygons

which will eventuate in Jordan’s theorem, which we now state more precisely.

Theorem JCT.1 (Jordan Curve Theorem (JCT) for a simple

polygon) If G is a simple polygon in the Pasch plane P, then
(A) P = G ∪ insG ∪ outG, where G, insG, and outG are pairwise disjoint

sets;

(B) if P ∈ insG and Q ∈ outG, then qy px

PQ∩G 6= ∅;
(C) G and insG are bounded sets, and outG is unbounded; and

(D) insG and outG are polygonally connected sets.

Here we have violated our usual practice and used terms before they are

defined, relying on your intuition for the meanings of several words. We have

not defined the terms simple polygon or polygonal connectedness (to be de-

fined in Definition PLGN.5), let alone inside (insG) and outside (outG) of a
polygon G (to be defined in Definition SEP.3). The terms bounded and un-

bounded sets are defined in Definition CNV.21.

Remark JCT.2 (Alternatives for reading the chapter) Conclusions

(A) and (B) of Theorem JCT.1 are Theorem SEP.12; together they define

what we mean by saying that the curve (or polygon) “is the boundary of

both the interior and the exterior” of the plane: the boundary is what the

cow has to cross to get out of the pasture.
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Conclusion (C) is Theorem CNV.22; and conclusion (D) is Theorem

CNT.3. This provides several alternatives for reading the chapter, or part

of it.

The development leading to conclusion (C) includes Theorems SEP.13

through SEP.15, and the development leading to conclusion (D) includes at

least Theorems CNV.22 through CNV.29. The acronyms do not correspond

to the part of the JCT theorem being proved.

The reader who wishes to pursue the proof in the more general continuous

case might well begin with G. T. Whyburn, Analytic Topology, AMS Collo-

quium Publications, Chapter VI, (Reprint) [4].

6.1 Segments and rays (PLGN)

This section develops basic facts about the intersections of a ray and an ar-

bitrary collection of segments in the plane. In order to have the most general

possible applicaton we use the notation CDS to denote a “generic” segment

with endpoints C and D. Thus, CDS will denote either
px qy

CD,
px px

CD,
qy qy

CD, or
qy px

CD. In the case that C = D, either CDS =
px qy

CD = {C} = {D} or CDS = ∅.
(Note that Specht Ch.4 Definition IB.3, where segments are defined, does not

accommodate the case where both endpoints are the same and the segment

is a single point, whereas here we may wish sometimes to regard that case as

a “degenerate” segment.)

Lemma PLGN.1 (Intersections of a segment and a ray) Let UV S

be any segment in the Pasch plane P, with U 6= V , and let A and B be

two distinct points of the plane, where A /∈ UV S. Then exactly one of the

following is true:

(0)
px→
AB ∩UV S = ∅,

(1)
px→
AB ∩UV S = {W} where U W V ,

(2)
px→
AB ∩UV S = {W} where W = U or W = V , or

(3)
px→
AB ∩UV S = UV S and A,B,U , and V are collinear.

Proof. See Figure 6.1. If
px→
AB ∩UV S 6= ∅, either the intersection is a single

point or is not. If it is the single point {W}, either W = U , W = V or

U W V . (Alternatives (1) and (2) in the statement of the Lemma)
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A

W B

U

V

(1) Intersecting at one
point, not an endpoint

A

W = V
B

U

(2) Intersecting at one
point, an endpoint

A

B
V

U

(3) Intersecting at more
than one point

Fig. 6.1 Showing possibilities for intersection of a ray and a segment.

If the intersection contains more than one point, by Axiom I.1 the line←→
AB is the same as the line

←→
UV so that A,B,U , and V must be collinear. If

UV S is not a subset of
px→
AB, let X be a point of UV S that is not a member

of
px→
AB; then X A B. Let Y ∈ px→

AB ∩UV S , so that X A Y . Both X and Y

belong to UV S and therefore A ∈ UV S , a contradiction to our hypothesis.

Thus UV S ⊆ px→
AB and (3) is established. ⊓⊔

Corollary PLGN.1.1 (A) If A,B,U , and V are collinear points, either

(0) or (3) holds.

(B) Conclusion (2) implies that either U or V ∈ UV S, and is impossible

if UV S =
qy px

UV .

Corollary PLGN.1.2 If A,B, and U are distinct points of the plane and

UV S =
px qy

UU , then conclusion (1) is impossible, and (2) and (3) are equivalent.

In what follows, we adopt the following conventions: if K and L are two

subsets of a set ordered by < and A is a point of the set, then

(1) K < L means that for every K ∈ K and every L ∈ L, K < L;

(2) A < L means {A} < L, that is, for every L ∈ L, A < L; and

(3) L < A means L < {A}, that is, for every L ∈ L, L < A.

Lemma PLGN.2 (Order of disjoint collinear segments) Let
px qy

PQ be

a segment in the plane which is ordered by an order relation < according to

Definition ORD.1 (as a subset of a line L). Let A,B,C, and D be distinct

points on
px qy

PQ.

(A) If A /∈ CDS , and there exists a point Y ∈ CDS such that A < Y ,

then for every Z ∈ CDS, A < Z, that is, A < CDS .

(B) If A /∈ CDS, and there exists a point Y ∈ CDS such that A > Y , then

for every Z ∈ CDS , A > Z, that is, A > CDS.
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(C) If ABS ∩ CDS = ∅, and there exists a point X ∈ ABS and a point

Y ∈ CDS such that X < Y , then for every W ∈ ABS and Z ∈ CDS,

W < Z, that is, ABS < CDS.

Proof. (A) Let Z be any point of CDS ; either Y ≤ Z or Z < Y . In the first

case, A < Y ≤ Z so A < Z. In the second case, if Z ≤ A,Z 6= A because

A /∈ CDS , so the only possibility is Z < A < Y ; but then A ∈ px qy

ZY ⊆ CDS ,

so the only possibility is Z < A < Y ; but then A ∈ px qy

ZY ⊆ CDS which

is impossible by hypothesis. A similar proof (with the inequalities reversed)

shows part (B).

(C) Since X < Y and X /∈ CDS , by part (A), X < Z for every Z ∈ CDS .

Let Z be any member of CDS ; since Z /∈ ABS and Z > X , for every

W ∈ ABS , Z > W by part (B). Since Z is arbitrary, ABS < CDS . ⊓⊔

Lemma PLGN.3 Let P and Q be any distinct points on the plane; let <

be the ordering on
←→
PQ given by Specht Ch.6 Definition ORD.1 with P < Q,

and let E be any finite subset of
px→
PQ. Then

(1) there exists a minimum (least, first) point C and a maximum (greatest,

last) point D for E (see also Remark PLGN.5.1),

(2) E ⊆ px qy

CD, and

(3) if H is any segment and E ⊆ H ⊆ ←→PQ, then
px qy

CD ⊆ H (
px qy

CD is the

smallest segment containing E).

Proof. Conclusion (1) is immediate from Theorem ORD.10; (2) follows (Def-

inition ORD.8) because for all X ∈ E , X ≥ C and X ≤ D. To show (3)

suppose E ⊆ H, and there is a point X ∈ px qy

CD such that X /∈ H. Then
C ≤ X ≤ D. H is a segment containing E so either H < X or H > X . If

H < X , E < X and in particular D < X which contradicts X ≤ D. A similar

proof gives a contradiction if H > X . ⊓⊔

Theorem PLGN.4 Let E =
⋃n

k=1 Ek, where each Ek is a closed segment

(possibly a single point) in the Pasch plane P. Let P and Q be points on the

Pasch plane P where P 6∈ E.
(A) If

←→
PQ is ordered so that P < Q and

qy→
PQ∩E 6= ∅, there exists a first

point C ∈ qy→
PQ such that C ∈ E, and a last point D ∈ qy→

PQ such that D ∈ E.
Moreover,

qy→
PQ∩E ⊆ px qy

CD.

(B) There exists a point A ∈ qy→
PQ such that

px qy

PA∩E = ∅.
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Proof. (A) The intersection of every closed segment with
px→
PQ is a closed

segment or the empty set. By elementary set theory, E∩qy→
PQ =

⋃n
k=1(Ek∩

qy→
PQ)

and each set Fk = Ek ∩
qy→
PQ is also a closed segment which is a subset of

qy→
PQ.

Each segment Fk has endpoints Ck and Dk, where Ck ≤ Dk (again allow-

ing the possibility that Ck = Dk, so that for each k, Fk =
px qy

CkDk). Let G be

the set of all end points Ck and Dk. Using Lemma PLGN.3(1), choose C and

D to be the first and last points, respectively, of G.
Let X be any point of

⋃n
k=1 Fk; then for some k, X ∈ Fk, so that C ≤

Ck ≤ X ≤ Dk ≤ D. Therefore C is the first point of
qy→
PQ such that C ∈⋃n

k=1 Fk = E ∩ qy→
PQ, D is the last such point, and E ∩ qy→

PQ ⊆ px qy

CD.

(B) If
qy→
PQ∩E = ∅ then let A be any point of

qy→
PQ, and

px qy

PA∩E = ∅. If
qy→
PQ∩E 6= ∅, order ←→PQ so that P < Q, and apply part (A) to get C, the

first point of intersection of
qy→
PQ and E . Let A be any point of

qy→
PQ such that

P A C; then
px qy

PA∩E = ∅. ⊓⊔

6.2 Polygons, polygonal paths, and rays (PLGN)

In the following theorems we will need some basic terminology about mod-

ular integers. We say that an integer a is divisible by an integer b iff there

exists an integer c such that a = bc, that is, b divides a without a remainder.

Let m be a natural number, and let a and b be integers. We say that a is

congruent to b mod m (and write a ≡ b (mod m)) iff a− b is divisible by

m, which is called the modulus.

For any natural number m, the relation a ≡ b (mod m) is an equivalence

relation (cf Section 1.4). The equivalence class of any integer a is the set of

all integers of the form km+ a, where k is any integer and m is the modulus.

In modular numbering, two integers which differ by a multiple of the mod-

ulus are identified, as they belong to the same equivalence class (mod m).

Telling time on an ordinary 12 hour clock is a good example of a use of mod-

ular numbers. There is a 48 hour difference between 10 AM on 11 May and

10 AM on 13 May, but the clock indicates the same at both times because

the number of hours between these two times is a multiple of 12.

In this section we will arbitrarily choose some corner of a polygon1 as

the “first” one, and label it as X1. As the polygon is traversed in some

1 Here we are being very informal, as we have not yet defined the term polygon.
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predetermined direction, each corner encountered in the traversal is named

successively X2, X3, and so on, until the first corner is again reached. X1 is

then given a second name, Xm+1, where m is the number of corners of the

polygon (the modulus of the numbering system). Additional traversals in the

same direction will re-nameX1 as X1+2m, X1+3m, . . . and so on. The polygon

can also be traversed in the opposite direction, with successive corners being

labeled X0, X−1, X−2, and so on, until the first corner is reached, and is

named X1−m; another traversal in the same direction will name this point

X1−2m, and so on. Thus the first corner will end up having infinitely many

names, . . . , X1−3m, X1−2m, X1−m, X1, X1+m, X1+2m, X1+3m, . . . , each of

which differs from another by a multiple of m. We formalize these ideas in

the following definitions and proofs.

It is not our purpose to create a general theory of polygons, so in the next

definition we define only simple polygons. We will sometimes use the word

“polygon” alone, but it will always mean “simple polygon.”

Definition PLGN.5 Let X be a mapping from the set Z of integers

into a Pasch plane P (that is, X : Z → P). Then X pairs each integer

i = . . . ,−m, . . . ,−3,−2,−1, 0, 1, 2, 3, . . . , , n, . . . with a point Xi of P (here,

instead of the usual notation X(i) for the value of X at the integer i, we

write Xi). X is a labeling function, and is necessarily many-to-one, as it

pairs many integers with the same point on the plane.

(A) Polygons: Let n ≥ 3, and suppose that for all integers i and j,

Xi = Xj iff i ≡ j(mod n). The set G =
⋃n

k=1

px qy

XkXk+1 is a simple polygon

(notation: 〈X1, . . . , Xn〉) iff both

(1) for all integers j,
px qy

XjXj+1 ∩
px qy

Xj+1Xj+2 = {Xj+1} and
Xj, Xj+1, and Xj+2 are noncollinear, and

(2) for all integers j and k such that j 6≡ k(mod n), j 6≡ k + 1(mod n),

and j 6≡ k − 1(mod n),
px qy

XjXj+1 ∩
px qy

XkXk+1 = ∅.

For every integer j, the point Xj is called the j-corner and the segment
px qy

XjXj+1 is called the j-edge.

Two integers i and j are adjacent iff i = j + 1 or j = i+ 1.

Two corners Xi and Xj of a polygon with n edges are adjacent iff either

i ≡ j + 1(mod n) or j ≡ i + 1(mod n).
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The i-edge
px qy

XiXi+1 and the j-edge
px qy

XjXj+1 of a polygon are adjacent iff

either i ≡ j + 1(mod n) or j ≡ i+ 1(mod n).

Note that any quadrilateral as defined by Specht Ch.5 Definition PSH.31

is a simple polygon, since opposite edges do not intersect, and any triangle as

defined by Definition IB.7 is a simple polygon (vacuously, since condition (2)

of Definition PLGN.5(A) is true for a triangle because its hypothesis is false).

(B)Polygonal paths: In this part of the definition, we do not use modular

numbering. Let P be the Pasch plane and X be a mapping from the set

[1;m + 1] of integers into P such that for all integers i and j ∈ [1;m + 1],

Xi = Xj iff i = j.

(1) Let m ≥ 3; the set J =
⋃m

k=1

px qy

XkXk+1 (notation: 〈〈X1, . . . , Xm+1〉〉)
is a polygonal path (with endpoints X1 and Xm+1) iff for all integers

j ∈ [1;m− 1],
px qy

XjXj+1 ∩
px qy

Xj+1Xj+2 = {Xj+1} and
Xj, Xj+1, and Xj+2 are noncollinear.

In this case we may say that J is a polygonal path joining, or connecting

X1 and Xm+1.

For any k ∈ [1;m+ 1], Xk is the k-corner ; for any k ∈ [1;m],
px qy

XkXk+1 is

the k-edge; and X1, Xm+1 are the endpoints of 〈〈X1, . . . , Xm+1〉〉.
(2) Let J be a polygonal path; then I is a subpath of J iff I is a polygonal

path and I ⊆ J . This means that every point of I is also a point of J .
(3) A polygonal path 〈〈X1, . . . , Xm+1〉〉 is said to be simple iff for all

members j and k of [1;m], if j + 1 < k, then
px qy

XjXj+1 ∩
px qy

XkXk+1 = ∅.
(4) A subset E of the plane P is polygonally connected iff for every pair

{A, B} of distinct points in E there exists a polygonal path J with endpoints

A and B such that J ⊆ E .

Remark PLGN.5.1 In this chapter we shall frequently be dealing with

a ray
px→
AB which intersects a set such as a polygon at a finite number of points.

In such cases we will frequently speak of the first or last intersection of the

ray with the other set. In such cases it will be understood that we are assum-

ing an order relation < to exist on the ray with A < B, and that the first

and last points of intersection are those guaranteed by Lemma PLGN.3(1).

Remark PLGN.6 (A) The edges of a polygonal path intersect at the

common endpoints of edges with adjacent indices, and if the path is simple,



6.2 Polygons, polygonal paths, and rays (PLGN) 121

adjacent edges will intersect only at their endpoints (for if two adjacent edges

intersect at two points, their lines will be the same and there will be three

successive collinear corners). If the path is not simple there will be pairs of

non-adjacent edges intersecting, possibly at endpoints and possibly at other

points.

(B) Any subpath of a simple polygonal path J is also simple.

(C) Let G = 〈X1, . . . , Xn〉 be a polygon and let A and B be distinct

points of G where A ∈ px qy

XiXi+1 and B ∈ px qy

XjXj+1 where i ≤ j. Then

〈〈A,Xi+1, . . . , Xj , B〉〉 is a polygonal path connecting A and B. Thus every

polygon is polygonally connected.

(D) If E and F are polygonally connected subsets of the plane and E ∩F 6=
∅, then E ∪ F is polygonally connected.

(E) Every convex set is polygonally connected.

(F) If G = 〈X1, . . . , Xn〉 and F are simple polygons and F ⊆ G, then
F = G.

Assertions (A) through (E) do not need extensive proof. We prove assertion

(F).

(i) First we need to prove that if F ⊆ G, every edge
px qy

AB of F is a subset of

some edge of G. Since px qy

AB contains infinitely many points, and there are only

finitely many edges of G, some edge
px qy

CD of G contains at least two points

of
px qy

AB. Then
px qy

AB ⊆ ←→CD, and
px qy

AB ∩ px qy

CD is a segment. If
px qy

AB 6⊆ px qy

CD, then

A C B D or A C D B or C A D B.

We will prove the result for either of the first two cases; the proof in

the last case is similar. There exists exactly one other edge
px qy

CC′ of G which

intersects
px qy

CD at the point C, and C′ cannot be collinear with C and D, so

that
qy qy

CC′ ∩←→CD = ∅. Let G′ denote the union of all edges of G other than
px qy

CD and
px qy

CC′. Then C /∈ G′. If the ray
qy→
CA has empty intersection with G′

then A /∈ G′ and, because A 6∈ px qy

CD, A /∈ G; this contradicts our assumption

that F ⊆ G. Otherwise,
qy→
CA has a first point P of intersection with G′ (by

Theorem PLGN.4) and either A P C D or P A C D. Choose Y so that

both A Y C and P Y C. Then Y 6∈ G′; Y 6∈ px qy

CD so Y 6∈ G which is a

contradiction because Y ∈ px qy

AB ⊆ G. Hence px qy

AB ⊆ px qy

CD.

(ii) If two edges of F intersect at some point, then the two edges of G that

contain them must also intersect at the same point. Thus, every corner of F
is a corner of G, and since this is true, the endpoints of any edge of F are

corners of G and every edge of F is an edge of G.
(iii) It follows that the set of all edges belonging to both F and G is non-

empty. If G has an edge
px qy

XiXi+1 that is not an edge of F , let j be the smallest
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integer such that j > i and
px qy

XjXj+1 is an edge of both F and G. Now there

must be a second edge
px qy

AXj of F intersecting
px qy

XjXj+1 at Xj, but this second

edge must be an edge of G which must therefore be
px qy

Xj−1Xj . Then
px qy

Xj−1Xj

is an edge of both F and G, contradicting our choice of j. ⊓⊔

Theorem PLGN.7 (Simplification of a polygonal path) Let M =

〈〈X1, . . . , Xm+1〉〉 be any polygonal path joining X1 and Xm+1. Then there

exists a simple subpathM′ joining X1 and Xm+1.

Proof. We first define an ordering of M. If P and Q are distinct points of

M, P < Q if and only if either

(a) P ∈ px qy

XiXi+1 and Q ∈ px qy

XjXj+1 and i < j (where
px qy

XiXi+1 and
px qy

XjXj+1

are edges ofM), or

(b) P and Q belong to the same edge
px qy

XiXi+1 ofM and either

Xi P Q Xi+1,

X =P Q Xi+1,

Xi P Q = Xi+1, or

Xi = P and Xi+1 = Q

(that is, the edge
px qy

XiXi+1 has the ordering of ORD.1 where Xi < Xi+1).

From Definition PLGN.5(B)(3) we see that the polygonal path M =

〈〈X1, . . . , Xm+1〉〉 is not simple iff for some members j and k of [1;m],

j + 1 < k and
px qy

XjXj+1 ∩
px qy

XkXk+1 6= ∅. Clearly this intersection will be a

closed segment
px qy

AB, which may be degenerate, that is, a single point. Define

a loop point to be an end point of a segment so defined. There are only

finitely many such segments because the set of edges if finite, hence only

finitely many loop points.

If A is a loop point ofM, there exists a sub-path 〈〈A = Y1, . . . , Yr+1 = A〉〉
ofM, called a loop, which joins A back to a. A loop is a polygon, but is not

necessarily simple. There are only finitely many such loops since there are

only finitely many edges inM.

Let A1 be the first loop point, and let B1 be the last point (in the ordering

< ofM) such that B1 = A1. Then there exists a polygonal path N1 = 〈〈A1 =

Y1, . . . , Yr+1 = B1 = A1〉〉 which is a subpath ofM, where at least Y2, . . . , Yr

are successive corners ofM.

Let M1 = (M \ N1) ∪ {A1}. M1 is a subpath of M connecting X1 to

Xm+1 in which all loops connecting A1 to A1 have been eliminated. If M1

is simple, the proof is complete. If not, the argument may be repeated as



6.2 Polygons, polygonal paths, and rays (PLGN) 123

needed to arrive at the conclusion by induction. ⊓⊔

Definition PLGN.8 Let G be a simple polygon 〈X1, . . . , Xn〉 and A and

B be two distinct points of the plane with A /∈ G. Then px→
AB is an admissible

ray (for G) if it contains no corner of G. An angle ∠BAC in the plane is an

admissible angle if both
px→
AB and

px→
AC are admissible rays.

Remark PLGN.9 Let G be a simple polygon.

(A) The categories of “admissible” and “non-admissible” are applied only

to rays
px→
AB and angles ∠BAC where A /∈ G. Where there is only one polygon

G in view, it will be convenient to speak of an admissible ray or angle without

naming the polygon. In contexts of more than one polygon, we may find rays

that are admissible for one polygon but not for another.

(B) If
px→
AB is an admissible ray, no intersection of

px→
AB with an edge of G

satisfies either condition (2) or (3) of Lemma PLGN.1, because these imply

that
px→
AB contains a corner. Thus every edge of G either is disjoint from

px→
AB

(condition (0) of Lemma PLGN.1) or intersects
px→
AB at exactly one point, as

in condition (1) of this lemma. Since G has a finite number of edges,
px→
AB ∩G

contains at most a finite number of points of G.
(C) Let A be any point of the plane. There are finitely many rays

qy→
AX that

contain a corner of G and infinitely many that do not. Thus every point A 6∈ G
always has both admissible and non-admissible rays

px→
AB, and the number of

non-admissible rays is no greater than the number of corners of G.
(D) The following fact will make the statement of some theorems slightly

more compact. If A is any point and E is a subset of the plane, there exists a

point B such that
qy px

AB ∩E = ∅ iff there exists a point C such that
qy qy

AC ∩E = ∅
(for if

qy px

AB ∩E = ∅ we may choose C ∈ qy px

AB).

Remark PLGN.10 A main purpose of this and the next section (SEP)

is to define the “inside” and “outside” of an arbitrary simple polygon G. It
will be shown that either all the admissible rays from a point A not on G have

an odd number of points of intersection with G (in which case we will define

the parity of A to be odd), or they all have an even number of intersections

(in which case the parity of A will be even). In the first case we will say that

A is inside G, and in the second case it will be outside. This makes it possible

to use a single “test” ray to determine whether A is inside or outside the

polygon. What makes this work is that all intersections of an admissible ray

with edges of a polygon are genuine crossings of the polygon.
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This project could have been carried out by considering arbitrary rays

emanating from the point A, not just admissible ones. That is, test rays might

include corners of G. This approach would add some complexity because it

would necessitate deciding which intersections (including those cases where

the ray contains a whole edge) are legitimate crossings of G and should be

counted. Intuitively, it is not hard to see that moving the ray over a little (cf

Theorem PLGN.13) so as to avoid containing any corners will not affect the

parity.

The main complexity in our approach of using only admissible rays arises

from the unfortunate possibility that the most convenient ray for testing the

parity of a point A might not be admissible. Lemma PLGN.11 through The-

orem PLGN.13 are technical arguments which are useful in situations where

the obvious test ray is not admissible, and an alternate test ray must be con-

structed.

Lemma PLGN.11 Let G be a simple polygon, and let A be any point of

the plane.

(A) If A 6∈ G and X 6= A is arbitrarily chosen, then there exists a point

Z ∈ qy→
AX such that

px qy

AZ ∩G = ∅.
(B) if A ∈ G and if X is chosen so that

qy→
AX contains no corner of G, then

there exists a point Z ∈ qy→
AX such that

qy qy

AZ ∩G = ∅.

G

A

A

X

X

Z

Z

In either case shown, there is a point Z ∈
qy →
AX

such that
qy qy

AZ ∩G = ∅

A /∈ G
qy →
AX contains

no corner of G

Fig. 6.2 For Lemma PLGN.11.

Proof. See Figure 6.2. (A) This is Theorem PLGN.4(B).

(B) Assume that A is a member of the edge
px qy

PQ ⊆ G; we consider two

cases:

(a) If P A Q, then A /∈ G \ qy px

PQ. Then we may apply Theorem PLGN.4 to
px→
AX and the union of all the edges of G other than

px qy

PQ, that is, G \ qy px

PQ, and
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find that there exists a point Z such that
qy qy

AZ ∩G\qy px

PQ = ∅. Since qy→
AX contains

no corner of G, X /∈ ←→PQ, and hence
px→
AX ∩ px qy

PQ = {A} so qy qy

AZ ∩ qy px

PQ = ∅, and
the conclusion follows by elementary set theory.

(b) If A = P , let
px qy

RP be the edge of G intersecting
px qy

PQ at P ; then
px→
AX ∩ px qy

RP =
px→
AX ∩ px qy

PQ = {P}.
Applying Theorem PLGN.4 to G \ (qy qy

RP ∪ qy px

PQ) we conclude that there exists

a point Z such that
qy qy

AZ ∩(G \ (qy qy

RP ∪ qy px

PQ)) = ∅.
But

qy qy

AZ ∩(qy qy

RP ∪ qy px

PQ) = ∅, since qy→
AX contains no corner of G, and the conclu-

sion follows. A similar proof holds if A = Q. ⊓⊔

Theorem PLGN.12 Let E be an edge of a simple polygon G; let A, B,

and C be noncollinear points of the plane, and suppose that no corner of G
belongs to ins△ABC or to

qy px

AC. If E intersects
qy px

AC in a singleton, then E
intersects

qy qy

AB or
qy px

BC, but not both, and this intersection is a singleton.

Proof. Suppose that R ∈ E ∩ qy px

AC and L is the line containing E . Then

L ∩ qy qy

AC = {R}. By Theorem PSH.6 and the Postulate of Pasch, either (a)
qy px

BC ∩L 6= ∅, (b) qy px

AB ∩L 6= ∅, or (c) B ∈ L.
In case (a) there is some point T such that L ∩ qy px

BC = {T }. If E ∩ qy px

BC =

∅, then there exists a corner S of G with R S T . Since R ∈ qy→
AC and

T ∈ ins∠BAC, it follows that S ∈ ins∠BAC. Also, since T ∈ qy px

BC,

S ∈ ins∠ACB, so that S ∈ ins△ABC, a contradiction to the assumption

that ins△ABC contains no corner of G. Therefore E intersects
qy px

BC at T ; by

Specht Ch.1 Exercise I.1, the intersection is a singleton since L 6= qy px

BC.

In cases (b) and (c) similar arguments show that E intersects
qy px

AB or {B}
respectively, and the intersection is a singleton. ⊓⊔

Corollary PLGN.12.1 Let E be an edge of a simple polygon G; let A,
B, and C be noncollinear points of the plane, and suppose that no corner

of G belongs to ins△ABC or to
qy px

AC. If
qy px

AC intersects E but is not a subset

of E, then E intersects
qy qy

AB or
qy px

BC, but not both, and this intersection is a

singleton.

Proof. Let R be a point of intersection of E and
qy px

AC. If there are two points

of intersection then by Exercise I.1 the line containing E is the same as
←→
AC,

so that E ⊆ ←→AC. By Specht Ch.4 Definition IB.3 A R C.

By assumption,
qy px

AC 6⊆ E . Thus there exists a point X ∈ qy px

AC such that

X 6∈ E . Let E1 and E2 be the endpoints of E (which is a closed segment).
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Neither E1 or E2 is a member of
qy px

AC, for by hypothesis no corner of G can

belong to this set. Since R is a member of
qy px

AC, neither R = E1 nor R = E2.

Hence E1 R E2. Since X 6∈ E , either X E1 R E2 or E1 R E2 X . In the

first case, since both X and R are members of
qy px

AC, E1 ∈
qy px

AC which contra-

dicts our assumption that
qy px

AC contains no corner of G. In the second case,

E2 ∈
qy px

AC which also yields a contradiction. It follows that there is only one

point of intersection of
qy px

AC and E , so that Theorem PLGN.12 applies, and

the result follows. ⊓⊔

The following theorem allows the comparison of the number of intersec-

tions (with a simple polygon) of two specific admissible rays from two points,

based on the intersections of the segment connecting them. It gives meaning

to the idea of “moving a ray over a little” in order to get an admissible ray,

and provides a basic tool needed to define the parity of a ray, and hence of a

point.

Theorem PLGN.13 (Fudge theorem) Let G be a simple polygon, and

let A 6∈ G and B be distinct points of the plane, and let P be a point not in←→
AB. Then by Remark PLGN.9(C), there exists a point Q ∈ the P side of

←→
AB

such that
qy→
BQ contains no corner of G.

Whenever this is true, there exists a point D ∈ qy→
BQ such that the following

are all true:

(A)
qy qy

BD∩G = ∅,
(B) the ray

px→
AD, and indeed, every ray

px→
AX with X ∈ qy qy

BD, is admissible,

and no corner of G belongs to ins∠DAB ∪ px→
AD, or to ins△DAB ∪ px qy

AD, its

subset;

(C) every edge E of G that intersects
qy px

AD does so in a singleton, and also

intersects
qy qy

AB.

A

B

D

C

Q

G
} These rays contain

no corners of G

Fig. 6.3 For Theorem PLGN.13.
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Proof. See Figure 6.3. By Lemma PLGN.11(A), there exists a point Z ∈ qy→
BQ

such that
px qy

BZ ∩G = ∅. The set of all corners of G on the P -side of
←→
AB is

finite (again by Remark PLGN.9(C)). Therefore the set C = {Y ∈ qy→
BQ | qy→

AY

contains a corner of G} is a finite set and may be ordered by Definition

ORD.1 with B < Q. By Theorem ORD.10 we may choose C as the least

point belonging to C; choose D < min{C,Z}. Then qy qy

BD ⊆ qy qy

BZ, which we

have already seen to be disjoint from G, proving (A).

By our choice of D, neither
px→
AD nor any ray

px→
AY where Y ∈ qy px

BD can

contain a corner of G. For any point W ∈ ins∠DAB, by Theorem PSH.29

(Crossbar),
qy →
AW ∩ qy px

BD 6= ∅, so qy →
AW cannot contain a corner of G. Therefore,

ins∠DAB ∪ px→
AD cannot contain a corner of G, proving conclusion (B).

If some edge E of G were to intersect
qy px

AD in more than one point, it would

be collinear with A and D, and
qy→
AD would contain at least one endpoint of E

(a corner of G) which is impossible by definition of D; thus all the hypotheses

of Theorem PLGN.12 are satisfied, and E intersects
qy qy

AB, proving (C). ⊓⊔

Theorem PLGN.14 Let
px qy

UV be a segment in the plane, and let A, B,

and C be noncollinear points of the plane where A /∈ px qy

UV and neither U nor

V belongs to either ray of ∠BAC. Let < be an ordering of
px qy

UV defined by

ORD.1 with U < V . Then exactly one of the following holds:

(1)
px qy

UV has empty intersection with ∠BAC, in which case both U and V

belong to ins∠BAC or both belong to out∠BAC;

(2)
px qy

UV has a single point P of intersection with ∠BAC, in which case
px px

UP ⊆ ins∠BAC and
qy qy

PV ⊆ out∠BAC, or
px px

UP ⊆ out∠BAC and
qy qy

PV ⊆ ins∠BAC; or

(3)
px qy

UV has exactly two points P and Q of intersection with ∠BAC, in

which case both U and V belong to out∠BAC and
qy px

PQ ⊆ ins∠BAC. In this

case if R is some point of
qy px

PQ,
qy qy

PR and
px px

RQ are both subsets of ins∠BAC,

while
px px

UP and
qy qy

QV are both subsets of out∠BAC.

Proof. First note that
px qy

UV cannot intersect the angle ∠BAC in more than

two points, because then it would intersect one of the rays in two points and

that ray would contain either U or V . This shows that these alternatives are

the only possibilities.

(1) If U and V are on “opposite” sides of ∠BAC (that is, one is inside and

the other outside), Theorem PSH.44 says that
px qy

UV must intersect the angle;

thus, if there is no intersection, the two end points must both be inside or

both be outside.
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(2) From Theorem PSH.44(B), U and V have to be on “opposite sides”

of ∠BAC; if U ∈ ins∠BAC and X ∈ px px

UP , by part (1) X also belongs to

ins∠BAC so
px px

UP ⊆ ins∠BAC; the remaining assertions follow by similar

arguments.

(3) See Figure 6.4. If there are exactly two points of intersection P and

Q, they must lie on different rays of the angle (otherwise there would be

more than two points of intersection). From Theorem PSH.37 the segment
qy px

PQ ⊆ ins∠BAC; let R be a point with P R Q; then apply part (2) to the

segments
px qy

UR and
px qy

RV separately. ⊓⊔

A B

C

P

Q

R

These segments are
subsets of ins 6 BAC

Subset of out 6 BAC

Subset of out 6 BAC

Fig. 6.4 For Theorem PLGN.17 Alternative (3).

6.3 Separation (SEP)

In this section we begin to show that a simple polygon separates the plane

into two regions. To signal this development we change our acronym to SEP.

Theorem SEP.1 Let G =
⋃n

j=1

px qy

XjXj+1 be a simple polygon on a Pasch

plane; let A 6∈ G and let ∠BAC be an admissible angle for G. Then the

number of intersections of ∠BAC and G is even.

Proof. We start by constructing another set of segments
px qy

YiYi+1 whose union

is G.
For each segment

px qy

XjXj+1 which has two points P and Q of intersec-

tion with ∠BAC (as in case (3)), we may choose the notation so that

Xj P Q Xj+1. By Theorem PLGN.14 there exists a point Rj such that

P Rj Q, so that Xj P Rj Q Xj+1. Then
px qy

XjRj ∩∠BAC = {P} and
px qy

RjXj+1 ∩∠BAC = {Q}.
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Let E be the union of the set of points Rj so defined and the set of corners

Xj ; E is a finite subset of G. We rename the points of E by an inductive

process as follows:

(1) Let Y1 = X1; if the segment
px qy

Y1Y2 does not intersect ∠BAC, or if

it intersects ∠BAC in exactly one point, define Y2 = X2. If
px qy

X1X2 ∩∠BAC
contains two points P andQ, define Y2 = R1 (as defined above), and Y3 = X2.

(2) Suppose that for some k ≤ n, Xk has been renamed as Yi. If
px qy

XkXk+1

is disjoint from ∠BAC, or if it intersects ∠BAC in exactly one point, define

Yi+1 = Xk+1. If
px qy

XkXk+1 ∩∠BAC contains two points P and Q, define Yi+1 =

Rk and Yi+2 = Xk+1; then both the resulting segments intersect ∠BAC in

exactly one point.

Continue this renaming process until for some m > 1, Xn+1 = X1 has

been renamed Ym+1. Since Y1 = X1, Ym+1 = Y1. Then G =
⋃m

i=1

px qy

YiYi+1, and

each interval
px qy

YiYi+1 intersects ∠BAC in at most one point. Also, for each

i ∈ [1;m] define Yi+m = Yi, so that each point Yi has two labels. The reason

for making this second label will become apparent shortly.

We say a segment
px qy

YiYi+1 is a passing segment iff it does not intersect

∠BAC. By Theorem PLGN.14(1), both end points of a passing segment are

on the same side of ∠BAC—either both are in ins∠BAC or both are in

out∠BAC.

If a segment
px qy

YiYi+1 is not a passing segment, it intersects ∠BAC in ex-

actly one point. We shall call such a segment a crossing segment. If
px qy

YiYi+1

is a crossing segment, by Theorem PLGN.14(2) either Yi ∈ out∠BAC and

Yi+1 ∈ ins∠BAC, in which case we will call it an entering segment, or

Yi ∈ ins∠BAC and Yi+1 ∈ out∠BAC, in which case we call it an exit-

ing segment. Thus, every segment
px qy

YiYi+1 is either a passing or a crossing

segment, and crossing segments come in two flavors, entering or exiting.

Now let
px qy

YiYi+1 (where i ∈ [1;m]) be a crossing segment. If there is no

other crossing segment
px qy

YkYk+1, all other segments are passing, and both

Yi and Yi+1 are on the same side of ∠BAC, a contradiction to Theorem

PLGN.14(2). Therefore there exists at least one crossing segment
px qy

YkYk+1

where k ≤ m such that k 6= i. Either i < k or k < i; in the latter case,

k +m > i; in either case there exists an integer j ∈ [1; 2m] such that i < j

and
px qy

YjYj+1 is a crossing segment. Let j be the smallest integer such that

i < j ≤ 2m and
px qy

YjYj+1 is crossing.

Informally, one may think of
px qy

YjYj+1 as the first crossing segment encoun-

tered in a traversal from
px qy

YiYi+1 in the direction of increasing indices.
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If
px qy

YiYi+1 is exiting, Yi+1 ∈ out∠BAC; if there are passing segments
px qy

YkYk+1 with i < k < j, both Yk and Yk+1 are in out∠BAC, so that

Yj ∈ out∠BAC and
px qy

YjYj+1 must be an entering segment. By similar rea-

soning, if
px qy

YiYi+1 is entering, Yi+1 ∈ ins∠BAC, so that Yj ∈ ins∠BAC, and
px qy

YjYj+1 must be exiting.

Thus, as the polygon is traversed in the direction of increasing indices of

Yj , each crossing segment is entering (exiting) iff both the next prior and next

succeeding crossing segment are exiting (entering). Therefore the number of

exiting segments is the same as the number of entering segments, and the

total number of intersections of G with ∠BAC is even. ⊓⊔

We have “buried” the definitions of passing, crossing, entering, and exiting

segments in the above proof because these notions are not used elsewhere in

the development.

Definition SEP.2 Let G be a simple polygon and A a point not on G.
(A) Let

px→
AB be an admissible ray for G; if px→

AB ∩G contains an even number

of members, the ray has even parity (relative to G). If it has an odd number

of elements, the ray has odd parity. A ray that does not intersect G has

even parity, because 0 is an even number.

(B) A point A has odd (even) parity with respect to G iff all admissible

rays with endpoint A have odd (even) parity with respect to G.
(C) The inside of G (notation: insG) is the set of points not on G which

have odd parity with respect to G. The outside of G (notation: outG) is the
set of points not on G which have even parity with respect to G.

(D) The enclosure of G (notation: encG) is the union of G and insG, or
G ∪ insG.

(E) The exclosure of G (notation: excG) is the union of G and outG, or
G ∪ outG.

(F) The inside or the outside of G is called a side of G. If Q is any point

not on G, that is, Q ∈ P \ G, then the side of G to which Q belongs is called

the Q-side of G. The inside and the outside of G are opposite sides of G.

The next theorem (which is really a corollary of Theorem SEP.1) shows

that every point A 6∈ G has a parity according to Definition SEP.2(B) above.

It also shows that to determine the parity of a point, it is only necessary to

determine the parity of a single ray starting from that point. Such a ray, used
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to determine parity for A, may be referred to as a test ray for A.

Theorem SEP.3 Let G be a simple polygon on a Pasch plane, and let

A 6∈ G; then the parity of any admissible ray
px→
AB is the same as the parity of

any other admissible ray
px→
AC.

Proof. If the number of intersections of one ray of ∠BAC with G is even

while the number of intersections of the other ray with G is odd, the total

number of intersections with ∠BAC would be odd, contradicting Theorem

SEP.1. Therefore the number of intersections of
qy→
AB with G is even (or odd)

iff the number of intersections of
qy→
AC with G is even (or odd). ⊓⊔

The following theorem will be invoked freely without reference in the proofs

that follow.

Theorem SEP.4 Let G be a simple polygon and let A and B be points

not on G.
(A) If the segment

px qy

AB contains no points of G then the parity of A equals

the parity of B.

(B) If
px qy

AB ∩G = {R} is a singleton, and R is not a corner of G, then the

parities of A and B are different.

(C) If
px qy

AB ∩G = {R} is a singleton, and R = Xi is a corner of G, then A

and B have the same parity if and only if
px qy

AB ∩ ins∠X i−1XiXi+1 = ∅.
(D) Suppose

px qy

AB ∩G = {R} is a singleton. If A ∈ insG (outG) then
px px

AR ⊆
insG (outG) and similarly for B.

Proof. (A) (Case I) If
px→
AB is admissible, the number of intersections it has

with G is the same as the number of intersections of the ray
px→
AB \ px px

AB so the

parities of A and B are the same. A similar proof holds if
px→
BA is admissible.

(Case II) See Figure 6.5 for a visualization. If neither
px→
AB nor

px→
BA is ad-

missible, let P be a point not on
←→
AB such that

px→
BP is admissible. Then by

Theorem PLGN.13 there exists a point D ∈ px→
BP such that

px→
AD is admissible,

qy qy

BD∩G = ∅, and every edge E of G that intersects
qy px

AD must also intersect
qy qy

AB; but there are no edges intersecting
qy qy

AB, so there are no edges of G that

intersect
qy px

AD, and it follows that
px qy

AD ∩G = ∅. By Case I, A and D have the

same parity, and D and B have the same parity.
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A

B

D
G

If neither
px →
AB or

px →
BA is admissible;

construct admissible rays
px →
AD and

px →
BD so that

neither
px qy

AD or
px qy

BD contain points of G

Then by Case I, A, B, and D have the same parity.

Fig. 6.5 For Theorem SEP.4 (A) Case II.

(B) Let E be the edge of G containing R. If the line containing E were the

same as
←→
AB, then since A and B do not belong to G, px qy

AB would contain an

endpoint of E , and the intersection would not be a singleton. Thus E 6⊆ ←→AB.

(Case I) If
px→
AB is admissible then it has one more intersection with G than

does
px→
AB \ px px

AB, so that the parities of A and B are different. A similar proof

holds if
px→
BA is admissible.

A

B

D

S

G
E

P

T

R

If neither
[

AB
−→

or
[

BA
−→

is admissible, construct admissible rays
[

AD
−→

and
[

BD
−→

=
[

BP
−→

so that
[

AD
]

intersects only the

edge E and
[

BD
]

contains no points of G. Then A and D

have different parities, while B and D have the same parity.

Fig. 6.6 For Theorem SEP.4(B) Case II.

(Case II) See Figure 6.6. If neither
px→
AB nor

px→
BA is admissible, pick S to be

an endpoint of the edge E containing R. Note that S /∈ ←→AB.

Let P ∈ qy px

RS be such that
px→
BP is admissible. Then by Theorem PLGN.13

choose D ∈ qy qy

BP so that
qy qy

BD∩G = ∅, the ray
px→
AD is admissible, and every
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edge E ′ that intersects qy px

AD also intersects
qy qy

AB. Since there are no edges other

than E which intersect
px qy

AB, no edge other than E can intersect
qy px

AD.

Claim: E intersects
qy px

AD. Note that by Theorem PSH.37, D ∈ ins∠BAP ,

so that by the Crossbar Theorem PSH.39,
qy→
AD intersects

qy px

RP at some point

T ∈ E . Now R ∈ A-side of
←→
BP , and hence by Theorem IB.14,

qy→
PR ⊆ A-side

of
←→
BP , so T is also on the A-side of

←→
BP and T ∈ qy px

AD. This proves the claim.

Therefore exactly one edge, namely E , intersects qy px

AD, and since
px→
AD is

admissible, by case I the parities of A and D are different. Since
px qy

BD∩G = ∅,
by part (A) the parities of B and D are the same; hence the parities of A

and B are different.

(C) For this case we leave the construction of figures to the reader. Sup-

pose that there is a point Q ∈ px qy

AB ∩ ins∠X i−1XiXi+1. Then
qy →
XiQ is a sub-

set of the Xi−1-side of
←−−−→
XiXi+1 and of the Xi+1-side of

←−−−→
XiXi−1 and hence

qy →
XiQ ⊆ ins∠X i−1XiXi+1. Either A or B belongs to

qy →
XiQ and without loss of

generality we may assume A ∈ ins∠X i−1XiXi+1. Then A, Xi and Xi+1 are

not collinear and Xi+1 /∈
←→
AB.

Choose P ∈ qy px

XiXi+1 so that
px→
BP is admissible. By Theorem PLGN.13

there exists a point D ∈ qy qy

BP such that
px qy

BD∩G = ∅, px→
AD is admissible, and

every edge that intersects
qy px

AD also must intersect
qy qy

AB.

By Theorem PSH.37, D ∈ ins∠BAP , so that by the Crossbar Theorem

PSH.39,
qy→
AD intersects

qy px

XiP at some point T , and Xi T P Xi+1, so that T

is not a corner of G. The only edges of G that intersect
px qy

AB are
px qy

Xi−1Xi and
px qy

XiXi+1;
px px

Xi−1Xi is on the side of
←→
AB opposite to D; therefore

px qy

XiXi+1 is the

only edge intersecting
qy px

AD.

Since
px→
AD is admissible, by part (B) A and D have different parities. By

part (A) B and D have the same parity since
px qy

BD∩G = ∅. Thus A and

B have different parities. By the contrapositive, if A and B have the same

parity,
px qy

AB ∩ ins∠X i−1XiXi+1 = ∅.
Conversely, assume that

px qy

AB ∩ ins∠X i−1XiXi+1 = ∅. If X i−1 and Xi+1

are on opposite sides of
←→
AB, then

px qy

X i−1Xi+1 intersects
←→
AB at a single point

C by Axiom PSA, and C ∈ ins∠X i−1XiXi+1 by Theorem PSH.37. This

contradicts our initial assumption, and Xi−1 and Xi+1 must be on the same

side of
←→
AB.

Let H be the side of
←→
AB opposite X i−1 and Xi+1, and let P ∈ H be such

that
qy→
BP is admissible. By Theorem PLGN.13 there exists a point D ∈ qy→

BP

such that
qy qy

BD∩G = ∅ and every edge of G intersecting
qy px

AD also intersects
qy qy

AB.
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By part (A) the parities of B and D are the same. There are two edges

of G intersecting
qy qy

AB at Xi, but both of these are disjoint from H. Hence no

edge of G intersects
qy px

AD and by part (A) the parities of A and D are the

same, so the parities of A and B are the same.

(D)
px px

AR and
px px

BR contain no points of G, so the result follows immediately

from part (A). ⊓⊔

Corollary SEP.4.1 Let G be a simple polygon and let A and B be distinct

points not on G. Then if the parities of A and B are different,
px qy

AB ∩G 6= ∅.

Proof. Contrapositive of Theorem SEP.4(A). ⊓⊔

Corollary SEP.4.2 Let G be a simple polygon and let A and B be distinct

points not on G. Then if the parities of A and B are the same,
px qy

AB ∩G is either

a singleton which is a corner of G or is not a singleton. (The intersection

could be empty, or it could contain two points, or a whole segment.)

Proof. Contrapositive of Theorem SEP.4(B). ⊓⊔

Remark SEP.5 Let G be a simple polygon or a polygonal path.

(A) Let A and B be distinct points not on G. Then if
px qy

AB ∩G = {P} is

a singleton which is a corner of G, it is possible for
px px

AP and
px px

BP to both be

subsets of the inside, or both subsets of the outside of G.
(B) Let A, B, and C be any points with A C B. Then

px qy

AB ∩G = {C} if
and only if C ∈ G and

px px

AC ∩G = ∅ and px px

BC ∩G = ∅.

Theorem SEP.6 Let C and D be distinct points, with C ∈ px qy

XiXi+1, an

edge of a simple polygon G. If either
(1) C is not a corner of G and D /∈ ←−−−→XiXi+1, or

(2) C = Xi, a corner of G, and D /∈ ∠X i−1XiXi+1,

then there exists a point E ∈ px qy

CD such that E 6= C and
px qy

EC ∩G = {C}.

Proof. (1) If
qy qy

CD∩←−−−→XiXi+1 = ∅, let E = D. Otherwise apply Theorem

PLGN.4 to the ray
px→
CD with C < D; let F be the first intersection of

px→
CD

and G \ qy px

XiXi+1, and let E < min{F,D}. Then px qy

EC ∩G = {C}.
(2) The proof is the same except that we choose F to be the first intersec-

tion of
px→
CD and G \ (qy qy

X i−1Xi ∪
px px

XiXi+1). ⊓⊔
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Theorem SEP.7 Let C be any point on the edge
px qy

XiXi+1 of a simple

polygon G, and let L be a line through C. If either

(1) C is not a corner of G and L is different from
←−−−→
XiXi+1, or

(2) C = Xi, a corner of G (endpoint of
px qy

XiXi+1), and L contains at least

one point of ins∠X i−1XiXi+1;

then there exist points E1 and E2 ∈ L such that

(a) E1 C E2,

(b)
px qy

E1E2 ∩G = {C},
(c)

px px

E1C ⊆ insG, and
(d)

px px

E2C ⊆ outG.

G
E1

E2

C

E1 E2
C

Every point C of a polygon G is the end point of two segments
px px

E1C and
px px

E2C lying respectively in insG and outG

Fig. 6.7 For Theorem SEP.7.

Proof. See Figure 6.7. (1) If
px qy

XiXi+1 ∩L contains more than one point, then←−−−→
XiXi+1 = L by Axiom I.1; therefore

px qy

XiXi+1 ∩L = {C}, a singleton. Let

P and Q be points of L such that P C Q. Then since P and Q are not

in
←−−−→
XiXi+1 by Theorem SEP.6(1) there exist points E1 and E2 such that

C E1 P , C E2 Q,
px qy

E1C ∩G = {C} and px qy

E2C ∩G = {C}. This shows conclu-
sions (a) and (b).

Theorem SEP.4(A) says that every point in
qy qy

CE1 has the same parity, and

likewise for
qy qy

CE2. By Theorem SEP.4(B) the parity of E1 is different from the

parity of E2, so that with appropriate re-labeling, E1 ∈ insG and conclusions

(c) and (d) follow.

(2) The proof is similar to that for part (1). Let P be a point on L belong-

ing to ins∠X i−1XiXi+1 and let Q C P . Then Q is on the side of
←−−−→
XiXi+1

opposite Xi−1 and Q ∈ out∠X i−1XiXi+1 by Theorem PSH.41(C). Since

neither P nor Q is on ∠X i−1XiXi+1 we may apply Theorem SEP.6(2) to

show conclusions (a) and (b).
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As before, every point in
qy qy

E1C has the same parity, and likewise for
qy qy

E2C.

By SEP.4(C) the parity of E1 is different from the parity of E2, so that with

appropriate re-labeling, E1 ∈ insG and conclusions (c) and (d) follow. ⊓⊔

Corollary SEP.7.1 For any point C of a simple polygon G, points E1

and E2 can be chosen so that conclusions (a) through (d) of Theorem SEP.7

are satisfied and the line
←−−→
E1E2 contains no corner of the polygon G, other

than the point C in the case that C is a corner of G.

Proof. Suppose C ∈ px qy

XiXi+1, an edge of G. Infinitely many lines
←→
CP may

be generated where P ∈ ins∠X i−1XiXi+1, and since there are only finitely

many corners, we may choose P so that
←→
CP contains no corner other than

possibly C. Then let L =
←→
CP , and apply Theorem SEP.7. ⊓⊔

Corollary SEP.7.2 For any simple polygon G, both insG 6= ∅ and

outG 6= ∅.

Theorem SEP.8 Suppose S is a nonempty subset of the Pasch plane P,
and T1 and T2 are subsets of P such that P = T1 ∪ T2 ∪ S and T1, T2, and S
are pairwise disjoint. Then the following are equivalent statements:

(a) For every M1 ∈ T1 and every M2 ∈ T2,
qy px

M1M2 ∩S 6= ∅.
(b) For every M1 ∈ T1 and every M2 ∈ T2, every simple polygonal path

〈〈M1, X2, . . . , Xm,M2〉〉 connecting M1 and M2 intersects S.

Proof. Assume (a) is true. Let N1 ∈ T1, N2 ∈ T2, and suppose further that

〈〈N1, X2, . . . , Xm, N2〉〉 is any simple polygonal path connecting N1 and N2.

For convenience rename these corners by letting Y1 = N1, Yi = Xi for all

i ∈ [2;m], and Ym+1 = N2.

If some corner Y2, . . . , Ym ∈ S then the path intersects S. If none of the

corners Y2, . . . , Ym ∈ S then all the corners belong either to T1 or T2. Since
N1 ∈ T1 and N2 ∈ T2, the set of all corners belonging to T1 and the set

of all corners belonging to T2 are both non-empty. Let Yi be that corner

belonging to T2 having the smallest index. Then Yi 6= N1, i ≥ 2, and Yi−1 ∈
T1. Since Yi−1 ∈ T1 and Yi ∈ T2, by assumption

px qy

Yi−1Yi ∩S 6= ∅, so that

〈〈N1, X2, . . . , Xm, N2〉〉 intersects S.
The converse is obvious since the segment

px qy

M1M2 is a simple polygonal

path joining M1 and M2. ⊓⊔
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Remark SEP.9 The statement “for anyM1 ∈ T1 and anyM2 ∈ T2, some

polygonal path 〈〈M1, X2, . . . , Xm,M2〉〉 connecting M1 and M2 intersects S”
is not equivalent to the equivalent statements (a) and (b) in Theorem SEP.8.

A counterexample is shown in Figure 6.8.

T1

T2

S

For any M1 ∈ T1 and any M2 ∈ T2 there is a polygonal path

connecting M1 and M2 that intersects S,

but not every such path does so.

Fig. 6.8 For Remark SEP.9.

Definition SEP.10 A nonempty subset S of the Pasch plane P sepa-

rates P into two subsets T1 and T2 if and only if

(1) P = T1 ∪ T2 ∪ S,
(2) T1 and T2 and S are pairwise disjoint, and

(3) for all M1 ∈ T1 and M2 ∈ T2,
qy px

M1M2 ∩S 6= ∅.
Informally, we may say that S separates the plane into two parts T1

and T2, or more briefly, S separates the plane.

Remark SEP.11 By Theorem SEP.8, S separates the plane into the two

parts T1 and T2 iff conditions (1) and (2) (of SEP.8) hold and every simple

polygonal path joining two points M1 ∈ T1 and M2 ∈ T2 intersects S.

Theorem SEP.12 (Proof of Theorem JCT.1, parts (A) and (B))

A simple polygon G separates the plane P into two parts, insG and outG.

Proof. By Definition SEP.3(C) insG and outG are disjoint sets, both of which

are disjoint from G, and P = insG ∪ outG ∪ G, thus satisfying conditions (1)

and (2) of Definition SEP.10. Let M1 ∈ insG and M2 ∈ outG. Then M1 and

M2 have different parities, and hence
px qy

M1M2 must intersect G, by Corollary

SEP.4,1, so that condition (3) follows. ⊓⊔

Theorem SEP.13 (A) If E is a polygonally connected set and G is a

simple polygon such that E ∩ G = ∅, then either E ⊆ insG or E ⊆ outG. In
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other words, all points of E have the same parity relative to G. Notice that

this is a generalization of Theorem SEP.4(A).

(B) If E is a convex set and G is a simple polygon such that E ∩ G = ∅,
then either E ⊆ insG or E ⊆ outG.

(C) If F and G are simple polygons and F ∩ G = ∅, then F ⊆ insG or

F ⊆ outG.
(D) If F and G are simple polygons and F ∩ insG 6= ∅ and F ∩ outG 6= ∅,

then F ∩ G 6= ∅.

Proof. (A) Let P andQ be two points of E which are connected by a polygonal

path 〈〈P = X1, X2, . . . , Xm, Xm+1 = Q〉〉 ⊆ E . Then by Theorem SEP.4(A),

P = X1 has the same parity as X2, and a simple induction argument shows

that P has the same parity as Q.

(B) Immediate from part (A) since every convex set is polygonally con-

nected.

(C) Immediate from part (A) and Remark PLGN.6(C).

(D) Since F is polygonally connected, there is a polygonal path in F
connecting a point of insG with a point of outG, and this polygonal path

must contain a point of G by Theorem SEP.12. ⊓⊔

Theorem SEP.14 If F and G are simple polygons and F∩G = ∅, exactly
one of the following holds:

(1) G ⊆ insF and F ⊆ outG, in which case

excF = F ∪ outF is a proper subset of outG, and
encG = G ∪ insG is a proper subset of insF ; or

(2) F ⊆ insG and G ⊆ outF , in which case

excG = G ∪ outG is a proper subset of outF , and
encF = F ∪ insF is a proper subset of insG; or

(3) G ⊆ outF and F ⊆ outG, in which case

encG = G ∪ insG is a proper subset of outF and

encF = F ∪ insF is a proper subset of outG.
The remaining logical possibility, (4) G ⊆ insF and F ⊆ insG, is impos-

sible.

Proof. By Theorem SEP.13(C) each of F and G must be a subset of either

the inside or the outside of the other. The alternatives (1) through (4) above

are the only logical possibilities. Figure 6.9 below illustrates the proof that

alternative (4) is impossible.
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P
Q

R S
A

F

G

Fig. 6.9 For proof that alternate (4) is impossible.

Proof that (4) is impossible. Suppose that G ⊆ insF and F ⊆ insG.
Let P ∈ insG, and let A be a point such that

←→
PA contains no corner of F

or G. Order
px→
PA by Definition ORD.1 with P < A. By Definition SEP.3

px→
PA

has a non-empty intersection with G and by Theorem PLGN.4(A) there is a

last intersection Q of G with
px→
PA. Since G ⊆ insF , Q ∈ insF so that the ray

px→
PA \ px px

PQ intersects F and there is a last intersection R of F with
px→
PA \ px px

PQ,

and Q 6= R since Q ∈ insF , and R ∈ F , whence Q < R.

Since R ∈ F ⊆ insG, the ray px→
PA \ px px

PR intersects G at some point S. S 6= R

since R ∈ insG and S ∈ G whence Q < R < S. This contradicts the fact that

Q is the last intersection of
px→
PA with G, so that alternative (4) is impossible.

To visualize the other alternatives, see Figure 6.10 below.

F

G

G

F

F

G

Alternative (1)
G ⊆ insF and F ⊆ outG

Alternative (2)
F ⊆ insG and G ⊆ outF

Alternative (3)
G ⊆ outF and F ⊆ outG

Fig. 6.10 For Theorem SEP.14, alternatives (1), (2), and (3).

If alternative (1) is true: We assume that G ⊆ insF and F ⊆ outG.
(a) First we show that outF ⊆ outG. Let M be any point of outF and

let H be any other point such that
px →
MH contains no corner of F or G.

Note that M /∈ G since M ∈ outF , which is disjoint from insF ⊇ G.
Suppose now

px →
MH does not intersect F . If px →

MH should intersect G at M ′,

then the point M ′ ∈ insF and M ∈ outF , so by Theorem SEP.12 there is a
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point of F belonging to
px qy

MM ′ ⊆ px →
MH which is impossible. Hence

px →
MH ∩G = ∅,

the parity of M (relative to G) is even and M ∈ outG.
Now suppose that

px →
MH intersects F . Order

px →
MH by Definition ORD.1 with

M < H . By Theorem PLGN.4(A) there exists a first point N of intersection

of
px →
MH with F , and since F ⊆ outG, N ∈ outG. Now qy px

MN ∩F = ∅ so that
qy px

MN ⊆ outF (by Theorem SEP.4(A)), and
qy px

MN ∩G = ∅ because G ⊆ insF .
Since neitherM nor N belongs to G, and N ∈ outG, it follows from SEP.4(A)

that M ∈ outG. Therefore outF ⊆ outG and since F ⊆ outG, F ∪ outF ⊆
outG.

P
Q

R
S

A

F

G

Fig. 6.11 For Theorem SEP.14, alternative (1) parts (b) and (c).

(b) See Figure 6.11. We prove next that insG ⊆ insF . Let P be any point

of insG and let A be any other point such that
←→
PA contains no corner of F or

G. We know that
px→
PA must intersect G, and ordering

px→
PA with P < A, there

exists a first point Q of intersection of G and
px→
PA.

px qy

PQ contains no point of G other than Q, so
px px

PQ ⊆ insG (SEP.4) which is

disjoint from F ⊆ outG. Q ∈ insF because G ⊆ insF , so Q /∈ F , hence px qy

PQ

contains no point of F . Since Q ∈ G ⊆ insF , it follows from SEP.4(A) that

P ∈ insF . This proves that insG ⊆ insF , and since G ⊆ insF it follows that

G ∪ insG ⊆ insF .
(c) Finally, we show the inclusions G∪ insG ⊆ insF and F ∪outF ⊆ outG

are proper. Continue the construction of the immediately previous paragraphs

(illustrated by the figure) as follows: let R be the last point of intersection

of G and
px→
PA, so that R ∈ G ⊆ insF , and by Theorem PLGN.4 (since the

parity of R relative to F is odd) there exists a first point S of intersection of

F and the ray
px→
PA \ px px

PR.

Since
qy px

RS ∩F =
qy px

RS ∩G = ∅, all points of the segment
qy px

RS have the same

parity with respect to F as does R (by SEP.4), which belongs to G ⊆ insF ,
so

qy px

RS ⊆ insF . Also the ray
px→
PQ \ px px

PR is disjoint from G so that
qy px

RS ⊆ outG.
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This shows that there are points of insF which are not in insG, and also

that there are points of outG that are not points of outF . This completes

the proof of (1).

If alternative (2) is true: The proof is the same as that for (1) with F
and G interchanged.

If alternative (3) is true: We assume that G ⊆ outF and F ⊆ outG.
First we prove that insG ⊆ outF . Let P be any point of insG, and let A

be any point such that
px→
PA does not contain a corner of F or G. P ∈ insG so

that every ray from P must intersect G at least once. Order
px→
PA with P < A,

and let Q be the first point and R the last point of intersection of
px→
PA with

G.
(a) If the ray

px→
PA \ px px

PR intersects F let S be the first point of intersection

of
px→
PA \ px px

PR with F , otherwise (b) let S be any point of
px→
PA \ px px

PR. Then
qy px

PQ

contains no point of G other than Q so that
px px

PQ ⊆ insG and hence contains no

point of F since F ⊆ outG. Now Q ∈ G ⊆ outF , so P ∈ outF by Theorem

SEP.4(A). Therefore insG ⊆ outF .
Finally we show that insG ⊆ outF is a proper inclusion. The construction

is similar to that shown in the figure for part (1) above, the only difference

being that now F does not “enclose” G. In this construction, the segment
qy px

RS contains no point of G since R is the last point of G, and no point of

F since S is the first point of F with R < S. By Theorem SEP.4(A), since

R ∈ G ⊆ outF , qy px

RS ⊆ outF ; similarly since S ∈ outG, qy px

RS ⊆ outG. Thus
points of

qy px

RS are in outF but not in G ∪ insG, and hence the inclusion

G ∪ insG ⊆ outF is proper.

By exactly the same argument, with the roles of F and G interchanged,

F ∪ insF ⊆ outG is also a proper inclusion. ⊓⊔

Theorem SEP.15 If F and G are simple polygons and F∩G is a segment
px qy

CD, then both F\px qy

CD and G\px qy

CD are polygonally connected sets. By Theorem

SEP.13

(A) either G \ px qy

CD ⊆ insF or G \ px qy

CD ⊆ outF , and
(B) either F \ px qy

CD ⊆ insG or F \ px qy

CD ⊆ outG.
Thus there are four mutually exclusive logical possibilities as follows:

(1) G \ px qy

CD ⊆ insF and F \ px qy

CD ⊆ outG, in which case

outF is a proper subset of outG, and
insG is a proper subset of insF ; or

(2) F \ px qy

CD ⊆ insG and G \ px qy

CD ⊆ outF , in which case

outG is a proper subset of outF , and
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insF is a proper subset of insG; or
(3) G \ px qy

CD ⊆ outF and F \ px qy

CD ⊆ outG, in which case

insG is a proper subset of outF , and
insF is a proper subset of outG.

The remaining logical possibility (4) G \ px qy

CD ⊆ insF and F \ px qy

CD ⊆ insG,
is impossible.

C

D

C

D

C

D

F

G

G

F

F

G

Alternative (1)

G \
px qy

CD ⊆ insF and

F \
px qy

CD ⊆ outG

Alternative (2)

F \
px qy

CD ⊆ insG and

G \
px qy

CD ⊆ outF

Alternative (3)

F \
px qy

CD ⊆ outG and

G \
px qy

CD ⊆ outF

Fig. 6.12 For Theorem SEP.15.

Proof. See Figure 6.12 above. Most parts of the proof are essentially the

same as the corresponding parts of the proof of Theorem SEP.14, with the

following exceptions:

(a) Since F and G are not disjoint, we cannot prove the same set of in-

clusions as in SEP.14, e.g. G ∪ insG is a proper subset of insF—we can only

show that insG is a proper subset of insF , etc.
(b) When constructing a ray

px→
PA, say from a point P ∈ insG, we must

choose A so that
px→
PA is disjoint from

px qy

CD and intersections of the ray with

either F or G will belong to F \ px qy

CD or to G \ px qy

CD. We formalize this idea as

follows.

Lemma Let C, D, P , and A be points such that P /∈ ←→CD. If the point

A ∈ out∠CPD, then

(1)
px→
PA∩ px qy

CD = ∅;
(2) if G is a simple polygon and

px qy

CD ⊆ G, px→
PA∩G ⊆ G \ px qy

CD; and

(3) a point X of
px→
PA /∈ G if and only if X /∈ G \ px qy

CD.

Proof. (1) By Theorem PSH.41(C) either A belongs to the side of
←→
PD op-

posite C or to the side of
←→
PC opposite D, and by Theorem IB.14

qy→
PA will

be on the same side and hence
qy→
PA ⊆ out∠CPD. Therefore no point of

px→
PA

belongs to
px qy

CD, since
qy px

CD ⊆ ins∠CPD by Theorem PSH.37.
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Conclusions (2) and (3) are obvious consequences of conclusion (1). ⊓⊔
We now return to the proof of Theorem SEP.15.

Proof that alternative (4) is impossible. We repeat the proof that

alternative (4) of Theorem SEP.14 is impossible, altering that proof by choos-

ing the point A to lie in out∠CPD. Then by the Lemma, all the intersections

of the ray
px→
PA with F and G lie in the sets F \ px qy

CD and G \ px qy

CD respectively,

so that the proof from SEP.14 suffices.

If alternative (1) is true: G \ px qy

CD ⊆ insF and F \ px qy

CD ⊆ outG.
(a) First we show that outF ⊆ outG. LetM be any point of outF and let

H be any point with H 6=M with H ∈ out∠CMD, such that
px →
MH contains

no corner of F or G.
Note that M /∈ G ⊆ insF since M ∈ outF , which is disjoint from insF ⊇

G. If px →
MH does not intersect F the proof is identical to the proof in SEP.14.

If
px →
MH intersects F , we order px →

MH by Definition ORD.1 with M < H . By

Theorem PLGN.4(A) there exists a first point N of intersection of
px →
MH with

F , and since N /∈ px qy

CD by the Lemma, and F \ px qy

CD ⊆ outG, N ∈ outG.
Now

qy px

MN ∩F = ∅ so that
qy px

MN ⊆ outF (by Theorem SEP.4(A)), and
qy px

MN ∩G = ∅ because G \ px qy

CD ⊆ insF and
px →
MH ∩ px qy

CD = ∅. Since neither M

nor N belongs to G, and N ∈ outG, it follows from Theorem SEP.4(A) that

M ∈ outG. Therefore outF ⊆ outG.

C

D

P

A

Q = R

S

F

G

Fig. 6.13 For the construction for part (1)(b) of Theorem SEP.15.

(b) Next we prove that insG ⊆ insF . (See Figure 6.13 above for an illus-

tration of this case.) Let P be any point of insG \←→CD and let A be any other

point where A ∈ out∠CPD (so that
px→
PA∩ px qy

CD = ∅ by the Lemma) and
←→
PA

contains no corner of F or G. Ordering
px→
PA with P < A, there exists a first
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point Q of intersection of G and
px→
PA. Q /∈ px qy

CD and since G \ px qy

CD ⊆ insF ,
Q ∈ insF . Now the segment

px px

PQ contains no point of G so
px px

PQ ⊆ insG
(SEP.4) which is disjoint from F \ px qy

CD because F \ px qy

CD ⊆ outG, and hence
px px

PQ contains no point of F . It follows from SEP.4(A) that P ∈ insF , proving
that insG ⊆ insF .

(c) Finally, we show that the inclusions outF ⊆ outG, and insG ⊆ insF
are proper. Continue the construction of the previous paragraphs (illustrated

by Figure 6.13) as follows: let R be the last point of intersection of G and
px→
PA,

and since R /∈ px qy

CD and thus R ∈ G \ px qy

CD ⊆ insF , by Theorem PLGN.4(A)

there exists a first point S of intersection of F \ px qy

CD and the ray
px→
PA \ px px

PR.

Since
qy px

RS ∩F =
qy px

RS ∩G = ∅, all points of the segment
qy px

RS have the same

parity with respect to F as does R (by SEP.4), which belongs to G \ px qy

CD ⊆
insF , so qy px

RS ⊆ insF . Also the ray
px→
PA \ px px

PR is disjoint from G so that
qy px

RS ⊆
outG. This shows that there are points of insF which are not in insG, and
also that there are points of outG that are not points of outF . This completes

the proof of part (1).

If alternative (2) is true: Interchange G and F in the proof for alter-

native (1).

If alternative (3) is true: The proof is left to the reader as Exercise

SEP.1. ⊓⊔

6.4 Rotundity and convexity (CNV)

Theorem CNV.1 Let L be a line and G a simple polygon in the Pasch

plane P. Let C be the set of all corners of G that do not belong to L (G∩L may

or may not be empty). Then for either side H of L, the following statements

are equivalent:

(1) C ⊆ H,
(2) G \ L ⊆ H, that is, every edge of G is a subset of L ∪H, and
(3) insG ⊆ H.

Proof. (1)⇒(2) If C ⊆ H, let E be any edge of G. If both endpoints of E are

members of C, then E ⊆ H. If both ends of E belong to L, then E ⊆ L. All
other edges are of the form

px qy

PQ where P ∈ L and Q ∈ C. By Theorem IB.14,
qy→
PQ ⊆ H so that for every edge E , E ⊆ L ∪H.

(2)⇒(1) If G \ L ⊆ H, then C ⊆ G \ L, so C ⊆ H.
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(2)⇒(3) Suppose G \ L ⊆ H. Let K be the side of L opposite H, and
suppose P ∈ insG. Now P could belong to L, H, or K. If P ∈ L, let Q be

any point of K such that
qy→
PQ is admissible, and

qy→
PQ must intersect G at some

point R /∈ L. But qy→
PQ ⊆ K by Theorem IB.14, so R ∈ K which contradicts

the assumption that G \ L ⊆ H.
If p ∈ K, let P ′ be a point of L such that

qy →
P ′P ⊆ K and

qy →
P ′P is admissible.

Then since P ∈ insG, the ray
qy →
P ′P \

qy px

P ′P must intersect G at some point R;

this ray is also a subset of K, so R ∈ K, again a contradiction to G \ L ⊆ H.
Therefore, no point of insG can be in L or K, and insG ⊆ H.

(3)⇒(2) Suppose insG ⊆ H, and let K be the side of L opposite H. Let
P ∈ G \L and suppose P /∈ H, so that P ∈ K. Then P belongs to some edge

E =
px qy

XiXi+1 of G. If P ∈ qy px

XiXi+1 choose Q /∈ ←−−−→XiXi+1. If P is an endpoint

of E , say P = Xi choose Q ∈ ins∠X i−1XiXi+1. In either case, by Theorem

SEP.7, the lineM =
←→
PQ contains a point E such that

qy qy

PE ⊆ insG.
P /∈ L so if

qy→
PE ∩L 6= ∅, there is only one point F in the intersection.

Choose C so that P C E and P C F . If
qy→
PE ∩L = ∅ let C = E. Then

C ∈ insG and C ∈ K because
px qy

PC ∩L = ∅, a contradiction to the assumption

that insG ⊆ H. ⊓⊔

Definition CNV.2 Let G be a simple polygon in the Pasch plane P .
(A) A line L is a supporting line of G, or supports G if and only if

G ∩L 6= ∅ and insG is contained in a halfplane with edge L (that is, insG lies

entirely within one side of L).
(B) A segment

px qy

PQ where P and Q are corners of G, is said to support G
iff the line

←→
PQ is a supporting line of G. If px qy

PQ is an edge of G then we say

that it is a supporting edge of G. If G is a quadrilateral, a diagonal may or

may not support G.
(C) A polygon E is rotund iff for every line L containing an edge of E ,

the corners of E not on L are on the same side of L. This is an extension of

Definition PSH.31, which applies to quadrilaterals.

Theorem CNV.3 (A) A line L is a supporting line of a simple polygon

G if and only if G ∩ L 6= ∅ and all the corners of G not lying on L belong to

the same side of L.
(B) A simple polygon G is rotund if and only if every edge supports G.
(C) An edge

px qy

PQ supports a simple polygon G if and only if all the corners

of G other than P and Q belong to the same side of
←→
PQ.
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(D) For any simple polygon G = 〈X1, . . . , Xn〉, the following statements

are equivalent:

(1) G is rotund,

(2) for each integer j ∈ [1;n], all the corners Xk where Xk 6= Xj and

Xk 6= Xj+1 belong to the same side Hj of
←−−−−→
XjXj+1, and G \

px qy

XjXj+1 ⊆ Hj,

(3) for each integer j ∈ [1;n], insG is a subset of one side of
←−−−−→
XjXj+1,

and

(4) for every integer j the corners different from Xj−1, Xj, and Xj+1

belong to ins∠Xj−1XjXj+1. (Note: if j = 1 then j − 1 = 0 ≡ n(modn) so

that Xj−1 = Xn, and if j = n then j + 1 ≡ 1(modn) so that Xj+1 = X1.)

(E) Every triangle is rotund.

Xj−1

Xj

Xj+1

Xj+2

G

L

The polygon G is not rotund since Xj−1

and Xj+2 are on opposite sides of L

and L is not supporting.

Fig. 6.14 For Theorem CNV.3(A).

Proof. See Figure 6.14. (A) is immediate from Definition CNV.2(A) and The-

orem CNV.1. (B) follows immediately from Definition CNV.3(C) and part

(A) just above. (C) follows immediately from Definition CNV.2(B) and part

(A) just above.

In part (D), statement (2) is a restatement of Definition CNV.3(C), (the

last part follows immediately from Theorem CNV.1) and this is equivalent to

statement (3) by Theorem CNV.1. To prove (4) is equivalent to (1), suppose

G is rotund and let Q be any corner of G different from Xj−1, Xj , and Xj+1,

where j ∈ [1;n]. Then by part (D)(2) above, Q and Xj+1 are on the same side

of
←−−−−→
Xj−1Xj and Q and Xj−1 are on the same side of

←−−−−→
XjXj+1. By Definition

PSH.36, Q ∈ ins∠Xj−1XjXj+1.

Conversely, let j ∈ [1;n] and let Q be any corner of G other than Xj−1,

Xj , and Xj+1, so that Q ∈ ins∠Xj−1XjXj+1. Then by Definition PSH.36, Q

and Xj−1 are on the same side of
←−−−−→
XjXj+1; therefore all corners other than Xj
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and Xj+1 are on the same side of
←−−−−→
XjXj+1 and since j was chosen arbitrarily,

G is rotund by part (D)(2) above.

(E) Let A, B, and C be noncollinear points on the plane. Since C is the

only corner of △ABC not on
←→
AB, B is the only corner of △ABC not on

←→
AC

and A is the only corner of △ABC not on
←→
BC, condition (D)(2) above is

vacuously satisfied and △ABC is rotund. ⊓⊔

Theorem CNV.4 Let G = 〈X1, . . . , Xn〉 be a rotund polygon, and for

each i ∈ [1;n] let Hi be the side of
←−−−→
XiXi+1 containing all corners other than

Xi and Xi+1. Then

(A) for every point P ∈ ⋂n
i=1Hi, every ray

px→
PQ intersects G in exactly one

point (so that the parity of P is odd);

(B) insG =
⋂n

i=1Hi, and is convex; and

(C) for every j ∈ [1;n], insG ⊆ ins∠Xj−1XjXj+1.

(If j = 1, Xj−1 = Xn; if j = n then Xj+1 = X1.)

Proof. (A) Let P ∈ ⋂n
i=1Hi and suppose

px→
PQ∩G contains two points A and

B. If these are on the same edge of G, then by Axiom I.1, P , Q, A, and B

are collinear which is impossible since P belongs to a side of
←→
AB.

Now suppose A is the first of two points of intersection A and B (
px→
PQ is

ordered with P < Q), and that A ∈ px qy

XjXj+1 and B ∈ px qy

XkXk+1, where k 6= j.

Now P ∈ Hj , and the ray
px→
PA intersects

←−−−−→
XjXj+1 in only one point, so that

the ray
px→
PA \ px qy

PA ⊆ Kj , the side of
←−−−−→
XjXj+1 opposite Hj . Therefore B ∈ Kj .

But by Theorem CNV.1, G ⊆ ←−−−−→XjXj+1 ∪ Hj which is disjoint from Kj so we

have a contradiction. Note that in this part of the proof it does not matter

if A or B is a corner of G.
(B) By Theorem CNV.1, insG ⊆ Hj for every i ∈ [1;n], and therefore

insG ⊆ ⋂n
i=1Hi. Conversely, by part (A), every point of

⋂n
i=1Hi has odd

parity and
⋂n

i=1Hi ⊆ insG. Since each Hi is a convex set (Corollary to

Theorem PSH.7) and the intersection of any collection of convex sets is convex

(Exercise IB.15), insG is convex.

(C) insG =
⋂n

i=1Hi ⊆ Hj−1 ∩Hj = ins∠Xj−1XjXj+1. ⊓⊔

Corollary CNV.4.1 If G is a rotund polygon and P ∈ insG, then every

ray from P intersects G in a singleton Q. Furthermore,
px px

PQ ⊆ insG and
px→
PQ \ px qy

PQ ⊆ outG.

Proof. From parts (A) and (B) every ray from P (admissible or not) inter-

sects G only once, at a point Q, and if P X Q,
px →
XQ intersects G only once so
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that
px px

PQ ⊆ insG. For any X , if P Q X then
px→
PQ \ px px

PX is a ray originating

from X which has no intersection with G and hence X ∈ outG. ⊓⊔

Corollary CNV.4.2 Let G be a rotund polygon and let P ∈ insG and

Q ∈ outG. Then G intersects
px qy

PQ at exactly one point.

Proof. By Corollary CNV.4.1,
px→
PQ intersects G at a single point A, and by

Corollary SEP.4.1,
px qy

PQ must intersect G, and since A is the only possible

point of intersection, A ∈ px qy

PQ. ⊓⊔

Corollary CNV.4.3 If G is a triangle, then the definitions of insG in

PSH.36 and in SEP.3 have the same meaning.

Proof. Theorem CNV.3(E) says that a triangle is rotund; part (B) above

states that if G is rotund, insG =
⋂n

i=1Hi. The left hand side is the defini-

tion of inside as in Definition SEP.3, using parity; the right hand side is the

definition of inside as in PSH.36. ⊓⊔

Theorem CNV.5 (Generalization of Theorem PSH.50)

Let G = 〈X1, . . . , Xn〉 be a rotund polygon and L a line. If G ∩ L 6= ∅, then
(A) L ∩ encG is either a single point or a segment, and

(B) L ∩ G is exactly one of the following:

(1) a single point S, in which case

(a) S is a corner Xj of G,
(b) L ∩ insG = ∅ and L ∩ ins∠Xj−1XjXj+1 = ∅

(if j = 1, Xj−1 = Xn; if j = n then Xj+1 = X1),

(c) the sets G \ {Xj},
qy →
XjXj−1,

qy →
XjXj+1, insG and

ins∠Xj−1XjXj+1 are all subsets of the Xj−1-side

(= Xj+1-side) of L;
(2) exactly two points P and Q, in which case

(a) no edge of G contains both P and Q,

(b) L ∩ insG =
qy px

PQ 6= ∅,
L ∩ outG = {X |X P Q}∪ {X |P Q X},

(c) L =
←→
PQ

= {X |X P Q} ∪ {P} ∪ qy px

PQ∪{Q} ∪ {X |P Q X}
= L \ px qy

PQ∪{P} ∪ qy px

PQ∪{Q};
(3) more than two points, in which case

(a) L ∩ insG = ∅, and
(b) L contains an edge E of G.
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Proof. (A) Follows immediately from (B). The following Lemma will facili-

tate the rest of the proof.

Lemma Let G = 〈X1, . . . , Xn〉 be a rotund polygon and L a line.

(A) If L∩G contains two points P and Q and
qy px

PQ∩G = ∅, then qy px

PQ ⊆ insG;
and

(B) if L∩ insG 6= ∅, then there exist exactly two points P and Q such that

L ∩ G = {P,Q} and qy px

PQ∩G = ∅.

Proof. (A) Let j be any member of [1;n], and denote by Hj the side of

L containing all corners of G that are not on L. P and Q cannot both be

members of
px qy

XjXj+1 for then
qy px

PQ∩G =
qy px

PQ would not be empty. Therefore

either P or Q fails to belong to
px qy

XjXj+1.

Let O ∈ qy px

PQ and suppose that P /∈ px qy

XjXj+1; by Theorem CNV.3(D)(2)

P ∈ Hj , and
px px

OP contains no point of G so that O ∈ Hj by Definition IB.11.

A similar proof holds if Q /∈ px qy

XjXj+1. Thus O ∈
⋂n

i=1Hi = insG by Theorem

CNV.4(B).

Conversely, if R ∈ L ∩ insG, then by Theorem CNV.4(A) every ray from

R intersects G at exactly one point. Let X and Y be such that X R Y ; then
px →
RX intersects G at exactly one point P and

px→
RY intersects G at exactly one

point Q, L ∩ G = {P,Q} and qy px

PQ∩G = ∅. ⊓⊔

G G G

L L

LP

Q

Alternative (1) Alternative (2) Alternative (3)

Fig. 6.15 For Theorem CNV.5(B).

(B) Clearly exactly one of the alternatives (1), (2), or (3) holds. See Figure

6.15.

(1) (a) Suppose L∩ G = {S} and S is not a corner of G. Then pick points

A and B on L such that A S B. Then
px qy

AB ∩G is a singleton and by Theorem

SEP.4(B) the parities of A and B are different so one of them, say B, belongs

to insG. Then chooseX so that A S B X . By Theorem CNV.4(A),
px →
BX, and
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hence L must intersect G at some point C. This contradicts the assumption

that L ∩ G = {S}, and therefore S must be a corner Xj of G.
(b) By the Lemma, part (2), if L ∩ insG 6= ∅ then there are exactly two

points in the intersection L ∩ G, contradicting the assumption that L ∩ G =

{S}. Hence L ∩ insG = ∅.
If L contains a point B of ins∠Xj−1XjXj+1, choose A so that A Xj B.

Since L∩G is a singleton, so is
px qy

AB ∩G, and by Theorem SEP.4(C), A and B

have different parities, so one of them belongs to insG. Suppose B ∈ L∩insG,
and let X be such that A Xj B X . The ray

px →
BX must intersect G at some

point C (by CNV.4), so there are two points in L∩ G, a contradiction. Thus

L ∩ ins∠Xj−1XjXj+1 = ∅.
This fact furnishes an alternative proof that L ∩ insG = ∅, since insG ⊆

ins∠Xj−1XjXj+1 (CNV.4(C)).

(c) Suppose Xj−1 and Xj+1 are on different sides of L. Then by Axiom

PSA,
qy px

Xj−1Xj+1 intersects L at some point P , and by Theorem PSH.37

P ∈ ins∠Xj−1XjXj+1, in contradiction to (b). Thus both Xj−1 and Xj+1

belong to the same side of L, which we will call H. By Theorem IB.14,
qy →
XjXj−1 ⊆ H and

qy →
XjXj+1 ⊆ H.

If Q ∈ ins∠Xj−1XjXj+1, then
qy →
XjQ intersects

qy px

Xj−1Xj+1 at some point

R by the Crossbar Theorem PSH.39
px qy

QR ⊆ qy →
XjQ ⊆ Q-side of L and hence

px qy

QR does not intersect L, and px qy

Xj−1Xj+1 is also disjoint from L, since Xj−1
is on the same side of L as Xj+1. Therefore all the points (in particular Q)

of
px qy

QR∪ px qy

Xj−1Xj+1 are on the same side, which must be H.
Finally, by CNV.4(C), insG ⊆ ins∠Xj−1XjXj+1 ⊆ H, and by Theorem

CNV.1, G \ {Xj} ⊆ H, completing the proof of this part.

(2) (a) If a single edge E of G contains two points of L, then E ⊆ L
and E contains more than two points of L which contradicts the hypothesis.

Therefore, P and Q cannot be on the same edge.

(b) If L ∩ G = {P,Q}, then qy px

PQ∩L = ∅ and by the Lemma,
qy px

PQ ⊆ insG.
By Corollary CNV.4.1, both {X |X P Q} and {X |P Q X} are subsets of

outG, which proves (b); the assertions of (c) follow easily.

(3) (a) If L ∩ insG 6= ∅, then by the Lemma (2) there exist exactly two

points P and Q such that L ∩ G = {P,Q} and qy px

PQ∩G = ∅. This contradicts
the assumption that there are more than two points of intersection.

(b) First order L by Definition ORD.1. If L does not contain any edge of

G, then the intersection of L with every edge is a single point, and the set

of all such intersections, being a finite set, has a least element P . Let Q be

the second (next) element of the intersection. Then
qy px

PQ∩G = ∅, and by the
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Lemma, part (A),
qy px

PQ ⊆ insG, which is impossible by part (a). ⊓⊔

In order to make the statements and proofs of the following Lemma as

clear as possible, we will state each part separately with its proof and any

illustrations.

Lemma CNV.6(A) A quadrilateral is not rotund if and only if exactly

one of its corners belongs to the inside of the triangle whose corners are the

other three corners of the quadrilateral.

Proof. (A) Lemma CNV.6(A) is a repetition of Theorem PSH.53, (q.v.).

There are four possibilities ((i)–(iv))listed at the end of the proof of The-

orem PSH.53, for the quadrilateral 〈A,B,C,D〉 to be non-rotund. One of

these figures illustrates alternative (i), and we reproduce again here as Fig-

ure 6.16 for the reader’s convenience. It is quite easy to construct figures of

the other possibilities, and in each case it will be seen that there are two

supporting edges and two edges that are not supporting. ⊓⊔

A

B

D

C

Fig. 6.16 For one case of Lemma CNV.6(A) (see also Theorem PSH.53).

Lemma CNV.6(B) If G is a quadrilateral with three supporting edges,

then G is rotund.

Proof. (B) If G = 〈A,B,C,D〉 is not rotund, then by part (A) exactly two

edges are not supporting edges. ⊓⊔

Lemma CNV.6(C) For every quadrilateral F = 〈A,B,C,D〉, px qy

AC and
px qy

BD are its diagonals. Then

(1) each side of a line containing a non-supporting diagonal must contain

a corner of F ;
(2) F is not rotund iff exactly one of its diagonals supports F ;
(3) every quadrilateral has at least one non-supporting diagonal, and is

rotund iff neither diagonal supports F ;
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(4) (a)
px qy

AC is the common edge of △ABC and △ADC; if it is non-

supporting,
qy px

AC, ins△ABC, and ins△ADC are all subsets of insF , and
(b)

px qy

BD is the common edge of △BAD and △BCD; if it is non-supporting,
qy px

BD, ins△BAD, ins△BAD, and ins△BCD are all subsets of insF .

Proof. (C) Result (1) follows directly from Definition CNV.2(C).

(2) This is essentially a re-statement of Lemma CNV.6(A). To say that

the corner A, for instance, of F belongs to the inside of the triangle △BCD
is the same as saying that both A and C are on the same side of

←→
BD, that

is,
←→
BD is a supporting line containing the diagonal

px qy

BD.

(3) If F is not rotund, it has exactly one supporting diagonal by part (2);

the other is non-supporting. If F is rotund, then by Theorem PSH.54 the

diagonals
px qy

AC and
px qy

BD intersect. If the intersection were a corner, then three

corners would be collinear which would violate the definition of quadrilateral.

Therefore by Definition IB.11, B and D are on opposite sides of
←→
AC and A

and C are on opposite sides of
←→
BD. Hence neither diagonal is supporting.

(4) Suppose a diagonal, say
px qy

AC is not supporting, so that the corners B

and D are on opposite sides of
←→
AC. Then if X ∈ qy px

AC, let Y ∈ qy px

BC; the ray
qy →
XY ⊆ B-side of

←→
AC, so cannot intersect either

qy qy

AD or
qy qy

CD, which are on the

D-side of
←→
AC, and cannot intersect

px qy

AB which is a subset of the side of
←→
XY

opposite C. Therefore Y is the only point of intersection of
qy →
XY with F , and

since Y contains no corner of F , qy →
XY is admissible, and the parity of X is

odd.

If P ∈ ins△ABC, let Q ∈ qy px

AC be a point such that
px→
PQ contains no

corner of F . The segment
qy px

PQ contains no point of △ABC, and since it lies

entirely on the B-side of
←→
AC, it is disjoint from

px qy

AD and
px qy

CD, and hence from

F . The ray
px→
PQ contains the ray

px→
PQ \ px px

PQ which contains an odd number

of points of F , since Q ∈ insF . Hence P has odd parity, and belongs to

insF . A similar argument for △ADC shows that both ins△ABC ⊆ insF
and ins△ADC ⊆ insF .

A similar argument holds if the diagonal
px qy

BD is not supporting. ⊓⊔

Lemma CNV.6(D) Let G be a simple polygon, and let A, B, C, and D

be noncollinear points where F = 〈A,B,C,D〉 is a quadrilateral such that

(1)
qy px

AD ∩G =
qy px

BC ∩G = ∅,
(2) ins〈A,B,C,D〉 contains no corner of G, and
(3)

qy px

CD contains no corner of G.
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Then every edge E of G that intersects
qy px

CD at a single point must also intersect
px qy

AB, and the intersection is a singleton.

Proof. (D) By Lemma CNV.6(C)(3), at least one of
px qy

AC or
px qy

BD is a diag-

onal that supports F . Without loss of generality we may assume that
px qy

AC

does not support F . By Lemma CNV.6(C)(4),
px qy

AC forms the common edge

of the two triangles △ABC and △ADC, qy px

AC ⊆ insF , ins△ABC ⊆ insF
and ins△ADC ⊆ insF . Therefore there are no corners of G in ins△ABC,
ins△ADC, or qy px

AC.

Suppose the edge E (of G) intersects qy px

CD at a point P and no other point.

Applying Lemma PLGN.12 to △ADC, we find that E must intersect the di-

agonal
px px

AC in a single point; if that point is A, we are done; if the intersection

is a point of
qy px

AC then we can apply the same theorem to the triangle △ABC,
concluding that E intersects

qy qy

AB (and hence
px qy

AB), again in a singleton. ⊓⊔

Lemma CNV.6(E) If a quadrilateral G = 〈A,B,Q, P 〉 is such that P

and Q are on the same side of
←→
AB (that is,

px qy

AB is a supporting edge), then

there exist points C and D such that D ∈ px qy

AP , C ∈ px qy

BQ, and 〈A,B,C,D〉 is
rotund.

Proof. (E) If G is rotund the result follows immediately by choosing C =

Q and D = P . If G is not rotund, from Lemma CNV.6(A) there are two

possibilities where P and Q are on the same side of
←→
AB:

(i) In alternative (i) (illustrated by Figure 6.17 overleaf),
←→
AP intersects

px qy

BQ at R between B and Q; take C to be any point between R and B and

take D = P . P and Q are on the same side of
←→
AB and by Theorem CNV.1,

so are all points of G \ px qy

AB, including D and C. A and D (= P ) are on the

same side of
←→
BC(=

←→
BQ). Since C ∈ qy px

RB and D ∈ qy px

RA, by Theorem PSH.4←→
CD does not intersect

px qy

AB and hence A and B are on the same side of
←→
CD

by Definition IB.11. Finally, since R D A, A and D are on the same side of←→
BC =

←→
RB, and 〈A,B,C,D〉 is rotund.

(ii) In alternative (ii),
←→
BQ intersects

px qy

AP at S between A and P ; take D

to be any point between S and A and take C = Q. By a similar argument

〈A,B,C,D〉 is rotund. We leave the construction of a figure illustrating al-

ternative (ii) to the reader. ⊓⊔

Lemma CNV.6(F) If a quadrilateral 〈A,B,C,D〉 is rotund, J is a point

between A and D, and K is a point between B and C, then 〈A,B,K, J〉 is
rotund.



154 6 The Jordan Curve Theorem for Polygons

Q

P = D
A

B

R

C

A and B are on opposite sides of
←→
QP

B and Q are on opposite sides of
←→
AP

D ∈ ins△ABQ

Q and P are on the same side of
←→
AB

A and P are on the same side of
←→
BQ

Fig. 6.17 For Lemma CNV.6(E) alternative (i).

Proof. (F) By Theorem CNV.1 both J and K (which belong to G \ px qy

AB) are

on the same side of
←→
AB; both K and B (which belong to G \ px qy

AD) are on the

same side of
←→
AD (=

←→
AJ); and both A and J (which belong to G \ px qy

BC) are

on the same side of
←→
BC (=

←→
BK). Then by Lemma CNV.6(B), G is rotund,

since it has three supporting edges. ⊓⊔

Lemma CNV.6(G) If G = 〈A,B,C,D〉 is a rotund quadrilateral and E
is a nonempty finite set of points which contains no point of

px qy

AB, then there

exist points R and S such that A R D, B S C, and enc〈A,B, S,R〉∩E = ∅
(and by Lemma CNV.6(F) 〈A,B, S,R〉 is rotund).

A

R

P

D

B

S

Q

C

T

E

Fig. 6.18 For proof of Lemma CNV.6(G).

Proof. (G) See Figure 6.18. Let C = {X |A X D and
qy px

XB ∩E 6= ∅}. C is a

finite set which does not contain A, so by Theorem ORD.10 we may let P ′

be the first point of C (where A < D), and let P be any point with A P P ′.

If Y ∈ enc△ABP ∩ E , then either Y ∈ px qy

BP or Y ∈ ins∠ABP in which case
px→
BY intersects

qy px

AP at some point Z, by the Crossbar Theorem PLGN.39, so

that either P or Z is a point of C, a contradiction to the definition of P ′.
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Thus enc△ABP contains no point of E . Similarly we may find Q ∈ qy px

BC such

that enc△ABQ contains no point of E .
Now Q ∈ ins∠BAD and B ∈ px qy

AB and P ∈ px qy

AD so by the Crossbar

Theorem PSH.39,
qy→
AQ∩ qy px

BP 6= ∅ and the intersection is a point {T }. A similar

construction can be done for P ∈ ins∠ABC, the ray
qy→
BP , and the segment

qy px

BP , and the point of intersection is again {T } since distinct lines can intersect

in only one point.

Pick S with B S Q. Then by Theorem PSH.37 S ∈ ins∠BTQ, that is,

S ∈ qy →
PBQ∩ qy →

AQB (see Definition PSH.36).
qy→
ST intersects both

qy px

AQ and
qy px

BP

at the point T and contains points on the other side of both, hence any point

X with X T S belongs to
qy →
PBA∩ qy →

AQP = ins∠PTA. Again by the Crossbar

Theorem,
qy→
ST intersects

qy px

AP at a point R with A R P .

Then 〈A,B, S,R〉 is a quadrilateral where

enc〈A,B, S, T 〉 ⊆ enc△ABP ∪ enc△ABQ,

both of which are disjoint from E . By Lemma CNV.6(F) 〈A,B, S,R〉 is ro-

tund. ⊓⊔

Lemma CNV.6(H) If

(1)
px qy

MN is an edge of a simple polygon F ,
(2) A is a point such that M A N ,

(3) P and Q are points on the same side of
←−→
MN , and

(4)
px qy

AP ∩F =
px qy

AQ∩F = {A},
then P and Q have the same parity with respect to F (either both P and Q

belong to insF or both belong to outF).

F

M

A

N

P

D
Q

Here both P and Q belong to insF

Fig. 6.19 For proof of Lemma CNV.6(H).

Proof. (H) See Figure 6.19. If P , Q, and A are collinear, the result is imme-

diate from Theorem SEP.4(A). Otherwise, P /∈ ←→AQ and since P is a point
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such that
qy qy

AP ∩F = ∅, the points Q, A, and P satisfy the hypotheses of

Theorem PLGN.13. Thus there exists a point D ∈ qy qy

AP such that no corner

of F is in either ins△AQD or
qy px

QD, and every edge that intersects
qy px

QD must

also intersect
qy qy

QA. But there is only one edge intersecting
qy qy

QA, that is
px qy

MN ,

and it does not intersect
qy px

QD since both D and Q are on the same side of←−→
MN . Since neither D nor Q ∈ F , px qy

QD∩F = ∅, and 〈〈P,D,Q〉〉 is a polygonal

path connecting P and Q which does not intersect F . Hence by Theorem

SEP.13(A), P and Q have the same parity. ⊓⊔

Lemma CNV.6(I) Suppose
px qy

XjXj+1 is an edge of a simple polygon F ,
A and B are distinct members of

px qy

XjXj+1, P and Q are points on the same

side of
←−−−−→
XjXj+1,

px qy

PA∩F = {A}, px qy

QB ∩F = {B}, and one of the following

hypotheses holds:

(1) Xj A B Xj+1,

(2) A = Xj , B 6= Xj+1, and Xj−1 ∈ out∠PAB,

(3) A 6= Xj , B = Xj+1, and Xj+2 ∈ out∠QBA, or

(4) A = Xj , B = Xj+1, Xj−1 ∈ out∠PAB and Xj+2 ∈ out∠QBA.

Then P and Q have the same parity with respect to F (either both P and Q

belong to insF or both belong to outF).

Proof. (I) For cases (i)–(iii), the first three figures given as Figure 6.20 are

drawn as if hypothesis (1) above holds—the points A and B are not end

points; however, they can serve to illustrate hypotheses (2)–(4), where A or

B is an end point (we have to draw the figures some way). For case (iv),

Figure 6.21 illustrates hypothesis (1), and Figure 6.22 illustrates hypotheses

(2), (3), and (4).

Xj

Xj+1

A
B

Q
P

R

Case (i)

Xj

Xj+1

A
B

Q
P

Case (ii)

Xj

Xj+1

A
B

Q

P
Q′

Case (iii)

Fig. 6.20 For proof of Lemma CNV.6(I), cases (i)–(iii).

(Case i) If
px qy

AP ∩ px qy

BQ 6= ∅, let {R} = px qy

AP ∩ px qy

BQ. Then
px qy

AR∪ px qy

RB is a polyg-

onal path connecting P and Q which is disjoint from F and by Theorem

SEP.13(A), P and Q have the same parity with respect to F .
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(Case ii) If either A Q P or B P Q, then by Theorem SEP.4(A) P and Q

have the same parity since
px qy

PQ is a subset of either
px qy

PA or
px qy

QB and therefore
px qy

PQ∩F = ∅.
(Case iii) If {A,P,Q} is collinear and A P Q then choose Q′ so that

B Q′ Q, and in this case both {A,P,Q′} and {B,Q′, P} are noncollinear.

Similarly if {B,Q, P} is collinear and B Q P choose P ′ so that A P ′ P , so

that both {A,P ′, Q} and {B,Q, P ′} are noncollinear. The following argument

applied to either 〈A,B,Q′, P 〉 or 〈A,B,Q, P ′〉 as the case may be will show

that P and Q′, or P ′ and Q′, and thus P and Q have the same parity.

(Case iv) Suppose {A,P,Q} and {B,Q, P} are noncollinear, and that
px qy

AP

is disjoint from
px qy

BQ. Since P and Q are on the same side of
←−−−−→
XjXj+1 =←→

AB,
px qy

PQ∩ px qy

AB = ∅ and condition (2) of Definition PSH.31 is satisfied. The

triples {A,B, P} and {Q,A,B} are noncollinear, so that 〈A,B, P,Q〉 is a

quadrilateral, but not necessarily rotund (see Figure 6.21).

Xj

Xj+1

A

B

Case (iv): the dots suggest the set H of ,

all corners of F other than Xj and Xj+1

Fig. 6.21 For Lemma CNV.6(I), hypothesis (1), case (iv).

By Lemma CNV.6(E) above, we can find C ∈ qy px

BQ and D ∈ qy px

AP such that

〈A,B,C,D〉 is rotund. Now let H be the set of all corners of F other than

Xj and Xj+1. By Lemma CNV.6(G) above we may find points F ∈ qy px

AD and

E ∈ qy px

BC such that if G = 〈A,B,E, F 〉, then insG ∪ G = encG contains no

corners of F other than possibly A or B (which would be the case if A or B

were the same as Xj or Xj+1). Thus
px qy

FE contains no corner of F , is a subset

of encG and does not contain either Xj or Xj+1.

Since both
qy px

AF and
qy px

BE are disjoint from F we may apply Lemma

CNV.6(D) to conclude that every edge which intersects
qy px

FE in only one point

must also intersect
px qy

AB. But no edge of F contains two points of
qy px

FE, for if
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this segment contained two points of an edge, that edge would be a subset

of it (since neither E nor F ∈ F) and
qy px

FE would contain a corner of F , a
contradiction. Thus all edges intersecting

px qy

FE must also intersect
px qy

AB, so that
px qy

Xj−1Xj ,
px qy

XjXj+1, and
px qy

Xj+1Xj+2 are the only edges that might intersect
qy px

FE.

We now show that none of these are possible.

A = Xj

Xj+1

Xj−1

B

P Q

Hypothesis (2)

Xj

B = Xj+1

Xj+2

A

P Q

Hypothesis (3)

A = Xj

B = Xj+1Xj−1

Xj+2

P Q

Hypothesis (4)

Fig. 6.22 For Lemma CNV.6(I), hypotheses (2)–(4), case (iv).

(a)
px qy

XjXj+1 cannot intersect
qy px

FE since both F and E are on the same side

of
←→
AB =

←−−−−→
XjXj+1.

(b) Neither can the edge
px qy

Xj−1Xj intersect
qy px

FE: if hypotheses (1) or (3)

hold, A 6= Xj , so that if
px qy

Xj−1Xj intersects
qy px

FE (which is in the side of
←→
AP

opposite Xj),
px qy

Xj−1Xj would contain points on both sides of
←→
AP and hence

would intersect
←→
AP by Axiom PSA, and because this last intersection would

be on the Xj-side of
←→
FE and also on the F -side of

←→
AB, it would belong to

qy px

AP , contradicting
qy px

AP ∩F = ∅.
If hypotheses (2) or (4) hold, Xj−1 ∈ out∠PAB = out∠PXjB, so that

px qy

Xj−1Xj ⊆ out∠PXjB, whereas
qy px

FE ⊆ ins∠PAB (as it lies on the B-side of←→
AP and on the P -side of

←→
AB), so that

px qy

Xj−1Xj cannot intersect
qy px

FE.

(c) An argument similar to (b) shows that the edge
px qy

Xj+1Xj+2 cannot in-

tersect
qy px

FE. Hence
qy px

FE ∩F = ∅, and therefore 〈〈P, F,E,Q〉〉 is a polygonal

path joining P and Q, which does not intersect F , so by Theorem SEP.13(A),

P and Q have the same parity. ⊓⊔

Theorem CNV.7 Let F = 〈X1, . . . , Xn〉 be a simple polygon. Then

insF is convex iff F is rotund iff encF is convex.

Proof. (A) From Theorem CNV.4(B), if F is rotund, then insF is convex.

We show the converse, that if insF is convex, F is rotund. See Figure 6.23.

Suppose F is not rotund. Then by Theorem CNV.3(D)(3) for some integer

j ∈ [1;n] there are points of insF on both sides of
←−−−−→
XjXj+1. Let X be a

point such that Xj X Xj+1. Then by Theorem SEP.7(A) there is a point

E /∈ ←−−−−→XjXj+1 such that
px px

EX ⊆ insF .
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Let P ∈ insF be on the side of
←−−−−→
XjXj+1 opposite E. Without loss of

generality we assume P is on the Xj-side of
←→
EX . Then

px→
PE intersects

←−−−−→
XjXj+1

at a point Z where P Z E. If Z ∈ px qy

XjXj+1 then
px qy

PE is a segment joining P

and E which also contains a point of F , a contradiction to the assumption

that insF is convex.

If Z /∈ px qy

XjXj+1, Z Xj Xj+1, since P is on the Xj-side of
←→
EX. Then since

Xj ∈
qy px

ZX, and both
qy px

ZX and
qy px

EX are subsets of ins∠EPX , by the Crossbar

Theorem the ray
px →
PXj intersects

qy px

EX at some pointW which belongs to insF .
Thus

px qy

PW is a segment joining P and W which contains a point Xj of F ,
contradicting the assumption that insF is convex. We have shown that insF
is convex iff F is rotund.

P

XXj Xj+1

Z

W

E

The case in (A) where
px→

PE

intersects
←−−−−→

XjXj+1 outside
px qy

XjXj+1

Fig. 6.23 For proof of Theorem CNV.7(A).

(B) Now we show that insF is convex iff encF is convex. Suppose insF
is convex; by Lemma CNV.6(A) F is rotund. If P and Q ∈ encF , either

(i) both P and Q ∈ insF ,
(ii) both P and Q ∈ F ,
(iii) Q ∈ insF and P ∈ F , or
(iv) P ∈ insF and Q ∈ F .

In case (i)
px qy

PQ ⊆ insF ⊆ encF by assumption; in case (ii), if P and Q

belong to the same edge of F then
px qy

PQ is a subset of that edge and hence

of F and hence of encF ; if P and Q belong to different edges, by Theorem

CNV.5(2)
qy px

PQ ⊆ insF and hence
px qy

PQ ⊆ encF .
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In case (iii), since
←→
PQ∩ insF 6= ∅, ←→PQ intersects F in exactly two points,

P and some point R, and Q ∈ qy px

PR by Theorem CNV.5. Thus
px qy

PQ ⊆ px qy

PR ⊆
encF . Similarly for case (iv).

To prove the converse, assume encF is convex, and let P and Q be any

two points of insF . Then px qy

PQ ⊆ encF because encF is convex.

Now suppose
px qy

PQ is not a subset of insF ; then every point of
qy px

PQ that does

not belong to insF belongs to F . Let A be the first point (where P < Q)

such that A ∈ qy px

PQ∩F . Then A is a corner and there exists at least one edge
px qy

AB which is not a subset of
←→
PQ.

Let D′ be the first point of
px→
PB ∩F (where P < B) and let D be such that

P D D′ B. Then since P ∈ insF , D ∈ insF by theorem SEP.4(A). Note

that both
qy px

PB and
qy px

AB are subsets of ins∠PQB. Then D ∈ ins∠PQB so by

the Crossbar Theorem, there exists a point X such that
px→
QD∩ qy px

AB = {X}.
By Theorem SEP.7 there exists a point E on

←→
QD such that

px px

EX ⊆ outF .
Thus we have a segment (

px qy

DQ) connecting two points D and Q of insF which

contains points of outF so that
px qy

DQ 6⊆ encF , contradicting the convexity of

encF . See Figure 6.24. ⊓⊔

P Q

B

D
X

A

P , Q and D all belong to insF but there are

points of
qy px

QD that belong to outF

E may be either place

Fig. 6.24 For Theorem CNV.7, contradicting the convexity of encF

Theorem CNV.8 (A) Let F be a simple polygon, L a supporting line

of F , and let H be the half-plane with edge L such that insF ⊆ H. Then
encF ⊆ H ∪ L.

(B) Let F = 〈X1, . . . , Xn〉 be a simple polygon and let L be a line. Then

L ∩ insF 6= ∅ iff there exist corners of F on opposite sides of L.
(C) Let F be a simple polygon and L be a line. L is a supporting line of

F if and only if F ∩ L 6= ∅ and L ∩ insF = ∅.

Proof. (A) By Theorem CNV.1(2), every edge of F is a subset of L ∪H.
(B) Assume that L ∩ insF 6= ∅. Then L must intersect F , for otherwise

L ⊆ outF which is a contradiction to L ∩ insF 6= ∅. If all the corners not

in L are on one of its sides H, then insF ⊆ H by Theorem CNV.1 which
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contradicts L∩ insF 6= ∅. Therefore at least one corner must be on each side

of L.
Conversely, assume that Xj and Xk are corners of F on opposite sides

of L, and choose the notation so that 1 ≤ j < k ≤ n (if necessary re-index

the corners). Let r be the greatest integer less than k such that Xr is on the

Xj-side of L, and let s be the least integer greater than r such that Xs is on

the Xk-side of L.
Then for all i with r < i < s, Xi ∈ L. Then s ≤ r + 3 because otherwise

there would be three adjacent collinear corners of F which is impossible. Thus

one of three possibilities holds:

(1) s = r + 1, in which case Xr is on the opposite side of L from Xs and
qy px

XrXs ∩L 6= ∅ by Axiom PSA, and the intersection is a singleton P since

L 6=←−−→XrXs. Then by Theorem SEP.7 there is a point of insF on L.
(2) s = r + 2, in which case Xs−1 = Xr+1 ∈ L. Xr, Xr+1, and Xs are

noncollinear because F is a polygon. Let A and B be points on L with

A Xr+1 B. Then one of the points A or B is on the Xr-side of
←−−−−→
Xr+1Xs

and also on the xs-side of
←−−−−→
XrXr+1 and thus belongs to ins∠XrXr+1Xs. By

Theorem SEP.7 L ∩ insF 6= ∅.

C Q

Xr+1

Xr

P Xr+2

Xs

L

E

D

Fig. 6.25 For proof of Theorem CNV.8(B) alternative (3).

(3) s = r + 3, in which case Xr+1 and Xr+2 both belong to L, while Xr

and Xs are on opposite sides of L. Pick a point P with Xr+1 P Xr+2; by

Theorem SEP.7 there exists E /∈ L with
qy qy

PE ⊆ insF . See Figure 6.25.

Now E is either on the Xs-side or on the Xr-side of L. Without loss of

generality we may assume the former; pick a point C ∈ L to be the first

intersection of the ray
px →
Xr+2Xr+1 \

px qy

Xr+2Xr+1 with F , and let Q be such that

C Q Xr+1.

Since
qy qy

PE contains no point of F by Theorem PLGN.13 there is also a

point D ∈ qy px

PE such that every edge E that intersects
qy px

QD also intersects
qy qy

QP ;

but the only edges that intersect
qy qy

QP are (a)
px qy

Xr+1Xr+2 ⊆ L which cannot

intersect
qy px

QD because D is on a side of L, and (b)
px qy

XrXr+1 which cannot

intersect
qy px

QD because it is on the opposite side of L from D. Thus
px qy

QD does
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not intersect any edge of F and by Theorem SEP.4 Q and D have the same

parity. Since D ∈ insF , Q ∈ insF , hence L ∩ insF 6= ∅.
(C) If L is a supporting line, by Definition CNV.2(A) F ∩ L 6= ∅ and

insF is entirely on one side of L, and so disjoint from L. Conversely, suppose
F ∩L 6= ∅ and L∩ insF = ∅. By part (B), if L∩ insF = ∅ then all the corners

not on L are on the same side H, so that by Theorem CNV.1, insF ⊆ H and

L is a supporting line. ⊓⊔

Theorem CNV.9 Let F be a simple polygon and L be a supporting line

of F . If there exist distinct corners A and B of F such that A ∈ L, B ∈ L,
and

px qy

AB is not an edge of F , then encF and insF are both nonconvex.

Proof. If every point between A and B belonged to F , then px qy

AB would be

an edge of F . Therefore some point C with A C B fails to belong to F , and
since insF ∩ L = ∅ (Definition CNV.2(A)) C ∈ outF . Therefore encF is

nonconvex and by Theorem CNV.7 insF is nonconvex. ⊓⊔

Corollary CNV.9.1 Let F be a simple polygon and L be a supporting

line of F . If insF (or encF) is convex, then for any distinct corners A and

B of F such that A ∈ L and B ∈ L, px qy

AB is an edge of F .

Proof. The corollary is the contrapositive of Theorem CNV.9. ⊓⊔

Definition CNV.10 Let E be any nonempty subset of the Pasch plane.

The convex hull of E (notation: cohE) is the set T such that T is convex,

E ⊆ T , and if H is any convex set containing E , then T ⊆ H.

Theorem CNV.11 (A) If E ⊆ F are nonempty subsets of a plane, then

cohE ⊆ cohF .
(B) If E is any nonempty subset of a plane, then E is convex iff coh E ⊆ E

iff cohE = E.
(C) If E is any nonempty subset of a plane, coh(cohE) = coh E.
(D) If F is a simple polygon, then insF ⊆ cohF , encF ⊆ cohF , and

coh(encF) = cohF .
(E) If F is a simple polygon, then F is rotund iff insF is convex iff cohF =

encF .

Proof. (A) cohF is a convex set containing E so coh E ⊆ cohF .
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(B) If E is convex then coh E ⊆ E , since E is a convex set containing E .
Conversely, if cohE ⊆ E , we know already that E ⊆ coh E , so cohE = E and

E is convex.

(C) cohE is convex, so by part (B) coh(cohE) = cohE .
(D) Let P ∈ insF , and let A and B be two points such that A P B and←→

AB contains no corner of F ; then both
px→
PA and

px→
PB intersect F at points

C and D respectively, since the parity of P is odd, and P ∈ px qy

CD ⊆ cohF
because cohF is convex. Since F ⊆ cohF it follows that encF ⊆ cohF , and
from (A) and (C) coh(encF) ⊆ coh(cohF) = cohF .

(E) If insF is convex, then encF is convex by Theorem CNV.7, so

encF = cohF by part (B). If cohF = encF then encF is convex so that by

Theorem CNV.7 insF is convex. ⊓⊔

Theorem CNV.12 Let F be a simple polygon, A be any member of

insF , P a corner of F , and H a given halfplane with edge
←→
AP . Then there

exists a corner Q of F belonging to H such that no corner of F belongs to

ins∠PAQ.

Proof. Since the line
←→
AP has non-empty intersection with insF , by Theorem

CNV.8(B) there is a cornerR of F with R ∈ H (because there must be corners

on both sides of
←→
AP ). If there is no corner of F belonging to ins∠PAR take

Q = R and we are done.

On the other hand, if there is a corner of F belonging to ins∠PAR, then

the set D = {X |X is a corner of F and X ∈ ins∠PAR} is non-empty. De-

fine an ordering < on D as follows: if S and T ∈ D, S < T if and only

if S ∈ ins∠PAT . Let Q be the minimal element of D with respect to this

ordering. Then no corner of F belongs to ins∠PAQ. ⊓⊔

Corollary CNV.12.1 Let F be a simple polygon, Q be any member of

insF , and let P be any corner of F . Then there exists a corner Q of F such

that no corner of F belongs to ins∠PAQ.

Proof. Let H be either halfplane with edge
←→
AP . ⊓⊔

Theorem CNV.13 Let F be a simple polygon, D the set of all segments

both of whose endpoints are corners of F , E the union of all segments in D,
and let A be an arbitrary point of insF .

(A) Let P and Q be corners of F such that no corner of F belongs to

ins∠PAQ, B be any member of ins∠PAQ, and let C be the last intersection
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of E and
px→
AB. Then the line

←→
EF containing the member

px qy

EF of D which

intersects
px→
AB at C is a supporting line of F .

(B) Let L be a supporting line of F which contains at least two distinct

corners of F . Then there exist distinct corners P and Q of F such that no

corner of F belongs to ins∠PAQ, and if B is any member of ins∠PAQ, then

the last intersection of the set E and
px→
AB is on L.

B

C

A

P = E

Q = F

F

Fig. 6.26 For Theorem CNV.13(A),(B); the dotted lines are the lines of D which are not

edges of F .

Proof. See Figure 6.26. (A) It suffices to show that there is no corner of F
on the side of

←→
EF opposite the A-side. If there were such a corner R, then

since R is not on
←→
AB either E and R would be on the same side of

←→
AB or F

and R would be on the same side of
←→
AB. Furthermore,

qy qy

FR and
qy qy

ER would

be on the side of
←→
EF opposite the A-side. Hence

px→
AB would intersect exactly

one member of {qy qy

FR,
qy qy

ER} at M such that A C M . This would contradict

the fact that C is the last point of intersection of E and
px→
AB.

(B) Let the given corners on L be J and K. If we let P = J , then by

Theorem CNV.12 there is a corner Q on the K-side of
←→
AP such that there

are no corners of F in ins∠PAQ. If
px→
AQ intersects L in a point M , then

P M K or M = K because if P K M , then K ∈ ins∠PAQ which contra-

dicts the definition of Q. From this it follows that if B ∈ ins∠PAQ, then
px→
AB intersects L at N such that P N M K (possibly M = K). Let C be

the last intersection of
px→
AB with E . Now C cannot be on the A-side of L

because
px qy

PK ⊆ L and
px→
AB intersects L, and C cannot be on the side of L

opposite the A-side because then there would be corners of F on that side of

L, contradicting the definition of a supporting line. Hence C ∈ L. ⊓⊔
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Definition CNV.14 Let F be a simple polygon. A supporting line L of

F is basic if and only if L contains at least two corners of F .

Remark CNV.15 (A) By Theorem CNV.13(A) every polygon has at

least one basic supporting line.

(B) Let L be a basic supporting line of the simple polygon F . The set C
of corners of F belonging to L is finite, and may be ordered by Definition

ORD.1. Hence there exist two (distinct) corners, P and Q, of F on L such

that all other corners of F on L are between P and Q.

Definition CNV.16 The corners P and Q of the above remark are the

extremal corners of F with respect to the basic supporting line L.
Thus all the corners (other than extremal corners) of F lying on a basic

supporting line L are between the extremal corners.

Theorem CNV.17 If F is a simple polygon, L is a basic supporting line

of F , and V is an extremal corner of F with respect to L, then V belongs to

exactly one other basic supporting lineM of F , and V is an extremal corner

of F with respect toM.

B

F

A

C

D = V

U

W

L

M

E

Fig. 6.27 For proof of Theorem CNV.17(1).

Proof. See Figure 6.27. (I: Existence ofM) Let U be any corner of F on L
different from V and let A be any member of insF . By Theorem CNV.12

there exists a corner W of F such that U and W are on opposite sides of
←→
AV

and there is no corner of F which belongs to ins∠V AW .
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Let B be any member of ins∠V AW , D be the set of segments joining

corners of F , E be the union of the members of D, C be the last intersection

of E with
px→
AB; and let

px qy

DE be the member of D such that D C E.

Suppose the notation has been chosen so that E is the endpoint of
px qy

DE on

theW -side of
←→
AB. Therefore D lies on the V -side of

←→
AB and D /∈ ins∠V AW .

If D 6= V , there are three possibilities:

(i) D ∈ L ∩ U -side of
←→
V A ⊆ A-side of

←→
V E;

(ii) D ∈ A-side of L ∩ U -side of
←→
V A ⊆ A-side of

←→
V E; or

(iii) V D A.

In any of these cases,
qy→
ED ⊆ A-side of

←→
V E so C would lie between A

and the intersection of
px qy

V E with
px→
AB, contradicting the definition of C. Thus

D = V . By Theorem CNV.13(A)
←→
V E = M is a supporting line of F and

since V ∈ M it is a basic supporting line different from L.
(II: V is an extremal corner) Since no corner of F belongs to H, V is an

extremal corner of F with respect toM.

(III: Uniqueness of M) All of the corners of F not on L or on M lie in

ins∠UV E. If N were a line containing V and some other corner not on
px→
V U

or
px→
V E, that corner would belong to ins∠UV E and U and E would be on

opposite sides of N , which could not be a supporting line. ⊓⊔

Definition CNV.18 Let F be a simple polygon. A corner V of F is

normal if and only if V is an extremal corner of F with respect to some

basic supporting line of F .

Remark CNV.19 (A) By Theorem CNV.17 and Remark CNV.15(A)

every polygon has at least three normal corners and at least three basic

supporting lines.

(B) If a simple polygon G is rotund (i.e., insG is convex), then every edge

of G is contained in a basic supporting line and every corner of G is normal.

Theorem CNV.20 Let F be any simple polygon. There is a simple poly-

gon G whose corners are the normal corners of F , every edge of G is contained

in a basic supporting line of F , and every basic supporting line of F contains

an edge of G.
(A) The polygon G is rotund, and encG = cohG.
(B) There is no simple polygon different from G whose corners are the

normal corners of F .
(C) Every corner of F not on G belongs to insG, and F ⊆ encG.
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(D) cohF = encG.

Proof. by Remark CNV.15(B) every basic supporting line of F contains ex-

actly two normal corners. By Theorem CNV.17 every normal corner is con-

tained in exactly two basic supporting lines.

Choose any normal corner of F and call it X1. There are exactly two

basic supporting lines containing X1. Let L1 be either one of them and let

X2 be the other normal corner on L1. Then there is exactly one other basic

supporting line containing X2; name this line L2; L2 contains exactly one

other normal corner; name this corner X3. Continuing in this manner we

define a mapping X of some set [1;n] onto the set of all normal corners of F .
Let Lj be the basic supporting line containing the normal corners Xj and

Xj+1, Lk the basic supporting line containing the normal corners Xk and

Xk+1, and suppose
px qy

XjXj+1 and
px qy

XkXk+1 intersect at some point C such

that Xj C Xj+1 and Xk C Xk+1. Then Xk and Xk+1 are on opposite sides

of Lj , which by Theorem CNV.8 contradicts the fact that it is a supporting

line of F . Hence no such C exists. If, on the other hand, we were to have

Xj Xk Xj+1, then these three normal corners would be collinear and this is

impossible by definition of extremal point.

This shows that
⋃n

k=1

px qy

XkXk+1 is a simple polygon G. That it has the

properties claimed for it in (A) follows from the manner in which it was

constructed.

(A) Since each edge of G is contained in a basic supporting line L of F it

follows by Theorem CNV.8 that all of the corners of F except those on L lie

on the same side of L, so G is rotund. By CNV.11(E), encG = cohG.
(B) The assertion follows immediately from the more general fact that a

rotund polynomial is completely determined by its corners. We state this here

as a lemma:

Lemma Given a set of corners for a rotund polygon G = 〈X1, X2, . . . , Xn〉,
there is no simple polygon different from G having the same set of corners.

Proof. If there were a simple polygon G′ having the same set of corners as

G, there would be a corner Xj of G (with
px qy

Xj−1Xj and
px qy

XjXj+1 its adjacent

edges in G), such that one of the edges of G′ containing Xj would be
px qy

XjXk

where Xk 6= Xj+1 and Xk 6= Xj−1.

Then by Theorem CNV.3(D) Xk ∈ ins∠Xj−1XjXj+1 so Xj+1 and Xj−1
are on opposite sides of

←−−→
XjXk. Since Xj−1 and Xj+1 are both corners of G′,

there must exist a polygonal path Q = 〈〈Y1, . . . , Ym+1〉〉 where Y1 = Xj−1,
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Ym+1 = Xj+1, each of the segments
px qy

YiYi+1 is an edge of G′, and no segment

in Q is
px qy

XjXk. (There is another polygonal path joining Xj−1 and Xj+1 in

G′ which includes
px qy

XjXk).

Let p ∈ [1;m] be the greatest index such that Yp belongs to the Xj−1-side

of
←−−→
XjXk; then Yp+1 /∈ ←−−→XjXk for otherwise there would be three collinear

corners of G, which is impossible since G is rotund. Thus Yp+1 belongs to

the Xj+1-side of
←−−→
XjXk, and by Axiom PSA,

px qy

YpYp+1 ∩
←−−→
XjXk = {C} for some

point C. By Theorem CNV.7, encG is convex, so that
px qy

YpYp+1 ⊆ encG and

hence C ∈ encG, and thus C ∈ px qy

XjXk, which is impossible since G′ is simple.

Therefore no such polygon G′ as postulated above can exist. ⊓⊔

We return now to the proof of Theorem CNV.20.

(C) Let Lj be the basic supporting line containing the normal corners Xj

and Xj+1, and let Hj be the side of Lj that contains all corners of F other

than Xj and Xj+1. Then insG =
⋂n

j=1Hj contains all the corners of F that

are not on G, and encG = insG ∪ G contains all corners of F . Since encG is

convex, it contains every edge of F .
(D) Continuing from part (C): from F ⊆ encG and Theorem CNV.11(A),

cohF ⊆ coh(encG) = encG since encG is convex. Now let H be any convex

set containing F . Every corner of G is a corner of F , so encG = cohG ⊆ H
(by Definition CNV.10) and hence encG ⊆ cohF . ⊓⊔

Definition CNV.21 (A) A convex subset E of a plane is bounded if

and only if for each line L, E ∩L is contained in a segment (that is, a bounded

set) of L.
(B) A subset E of a plane is bounded if and only if there exists a bounded

convex subset of the plane containing E .

Theorem CNV.22 (Proof of Theorem JCT.1, part (C)) Let F be

a simple polygon. Then F and insF are bounded but outF is not bounded.

Proof. By Theorem CNV.20 there exists a rotund polygon G such that

cohF = encG. Since G is rotund, by Theorem CNV.5 G and encG are

bounded. By Theorem CNV.11(D) F and insF are subsets of cohF and

hence are bounded.

Let
px qy

AB be any edge of G, C be any point on the side of
←→
AB opposite the

side containing the corners of G different from A and B, and D be any point

such that A C D. By the extension property of betweenness (cf Definition
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IB.1(B.3) and Definitions IB.3 and IB.4) no segment contains
px→
CD, and hence

no segment contains outF ∩←→CD because
px→
CD ⊆ outG ⊆ outF . Thus outF

is unbounded. ⊓⊔

Remark CNV.22.1 It is quite easy to prove that any simple polygon F
is bounded. Let L be any line that intersects F ; let P ∈ L be a point which is

not on F and let Q and Q′ be points on L such that Q P Q′; first order the

line so that P < Q; by Theorem PLGN.4(A) there exists a first point C and

a last point D in
qy→
PQ∩L; similarly, we may order the line so that P < Q′,

and by the same theorem there exists a first point C′ and a last point D′ in
qy →
PQ′ ∩L. Moreover, F ∩ L ⊆

px qy

DD′, so that F is bounded.

This, however, does not prove that insF is bounded, although it seems

intuitively obvious. But then, the Jordan Curve Theorem itself is intuitively

obvious.

Theorem CNV.23 Let F = 〈X1, . . . , Xn〉 be a simple polygon.

(A) The inside insF is nonconvex if and only if there exist corners A and

B of F such that
←→
AB is a supporting line of F and every point on this line

between A and B belongs to outF .
(B) Suppose insF is nonconvex. Let A and B be the corners whose ex-

istence is assured by part (A). Re-index F (if necessary) so that Xi = A,

Xj = B, and Xi−1 is on the side of
←−−−→
XiXi+1 opposite B, where {i, j} ⊆ [1;n]

and i < j. For simplicity of notation, we will use A and B in place of Xi and

Xj, respectively.

Let

G = (
⋃i−1

k=j−n
px qy

XkXk+1) ∪
px qy

AB,

and

H = (
⋃j−1

k=i

px qy

XkXk+1) ∪
px qy

AB.

Then G and H are simple polygons,

insH ⊆ insG, insF ⊆ insG,
insH ⊆ outF , outG ⊆ outF , and
insG \ ((H \ px qy

AB) ∪ insH) ⊆ insF ,
that is to say,

insG ∩ outH ⊆ insF .
Furthermore, outF = outG ∪ insH ∪ qy px

AB.

Proof. (A) Suppose insF is nonconvex. By Theorem CNV.20 there exists a

simple polygon T such that cohF = encT and every corner of T is a corner of
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F . Since insF is not convex, by Theorem CNV.11(E) enc T = cohF 6= encF ,
so encF is a proper subset of enc T . Since every edge of T is contained in

a supporting line of F , T contains no points of insF . Hence T contains

only points of F and outF . Suppose it contains only points of F . Then by

Remark PLGN.6(F) F = T , insF = ins T , and hence insF is convex which

contradicts our original assumption, so that T must contain some points of

outF .
Let

px qy

CD be an edge of T which contains a point E in outF . Then the set

of corners of F belonging to
px qy

CE can be ordered by Definition ORD.1 with

C < D. Let A be the corner of F on
px qy

CE closest to E by this ordering.

Similarly, let B be the corner of F on
px qy

ED which is closest to E. Then

every point between A and B belongs to outF .
Conversely, if there exist corners A and B of F such that every point

between A and B belongs to outF , then encF is nonconvex and by Theorem

CNV.7 insF is nonconvex.

(B) A routine check of the definition of a simple polygon shows that G
and H satisfy the definition, inasmuch as

qy px

AB does not intersect F . It should
be noted, however, that if B lies on

←−−−→
Xi−1A, then A is not a corner of G and

px qy

Xi−1A is an edge of G. Likewise, if A lies on
←−−−→
BXj+1, then B is not a corner of

G and
px qy

AXj+1 is an edge of G. And if both these are true, neither A nor B is

a corner of G and
px qy

Xi−1Xj+1 is an edge of G. Note also that it is not possible,

given the definition of A and B, for either Xi+1 or Xj−1 to be collinear with

A and B, for that would force A = Xi+1 or B = Xj−1 or both.

Since G ∩ (H\ px qy

AB) = ∅ and H\ px qy

AB is polygonally connected, by Theorem

SEP.13(A) either H \ px qy

AB ⊆ insG or H \ px qy

AB ⊆ outG.
Now let Z be a point on the side of

←→
AB (a supporting line) opposite the

corners of F . Then qy px

AZ ∩G = ∅; then by Theorem PLGN.13 there exists a

point D ∈ qy px

AZ such that every edge of G that intersects
qy px

Xi+1D also intersects
qy qy

Xi+1A;
px qy

AXi−1 intersects
qy qy

Xi+1A but lies on the side of
←−−−→
Xi+1A opposite D, so

cannot intersect
qy px

Xi+1D; and
px qy

AB is an edge of G that intersects both
qy px

Xi+1D

and
qy qy

Xi+1A. Hence the ray
qy →
Xi+1D has only one intersection with G, and Xi+1

has odd parity. It follows that H \ px qy

AB ⊆ insG.
Then by Theorem SEP.15, case (2), we have

H \ px qy

AB ⊆ insG and G \ px qy

AB ⊆ outH,
outG is a proper subset of outH, and
insH is a proper subset of insG.

Now let P be any member of outG and let Q be any member of out∠APB

such that
px→
PQ contains no corners of F , G, or H. px→

PQ intersects G in exactly
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the points where it intersects F and H; the number of intersections with G
is even, and since outG ⊆ outH the number of intersections with H is even,

and hence the number of intersections with F is even. Thus outG ⊆ outF .
Taking complements with respect to the plane, this last relation gives us

F ∪ insF ⊆ G ∪ insG, so that insF ⊆ G ∪ insG. But G ⊆ F ∪ px qy

AB, and both

F and
px qy

AB are disjoint from insF , so that insF ∩G = ∅. Thus insF ⊆ insG.
Let R be any member of insH and S be any member of out∠ARB such

that
qy→
RS contains no corners of F , G, or H. Then qy→

RS ∩ px qy

AB = ∅ and
px→
RS

intersects G in exactly the points where it intersects F and H. The number

of intersections with H is odd, and the number of intersections with G is odd

because insH ⊆ insG, so the number of intersections with F must be even.

Hence insH ⊆ outF .
Let T be any point of insG \ ((H \ px qy

AB) ∪ insH) and U be any point

of out∠ATB such that
px→
TU contains no corners of F , G, or H. Then since

T ∈ insG, px→
TU has an odd number of intersections with G.

Since
←→
AB is a supporting line of G, insG ∩ px qy

AB = ∅ and T /∈ px qy

AB; by its

definition, T /∈ ((H \ px qy

AB) ∪ insH), so T ∈ outH, and has an even number

of intersections with H. Thus T has an odd number of intersections with F ,
T ∈ insF , and insG \ ((H \ px qy

AB) ∪ insH) ⊆ insF . This reduces to insG ∩
outH ⊆ insF since outH is the complement of (H \ px qy

AB) ∪ insH).
The final assertion follows from taking complements of the relation

insG \ ((H \ px qy

AB) ∪ insH) ⊆ insF
to get

F ∪ outF ⊆ outG ∪ insH ∪ G ∪ (H \ px qy

AB),

and since

G ∪ (H \ px qy

AB) = F ∪ qy px

AB,

this can be written

F ∪ outF ⊆ F ∪ outG ∪ insH ∪ qy px

AB.

Now

F ∩ outF = F ∩ (outG ∪ insH ∪ qy px

AB) = ∅,
so we have

outF ⊆ outG ∪ insH ∪ qy px

AB.

But

outG ⊆ outF and insH ⊆ outF ,
and by hypothesis

qy px

AB ⊆ outF ,
so that outF = outG ∪ insH ∪ qy px

AB. ⊓⊔
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Remark CNV.24 Let F = 〈X1, . . . , Xn〉 be a simple polygon. The edges
px qy

Xj−1Xj and
px qy

XjXj+1 intersect at Xj . Let M and N be points such that

M Xj Xj+1 and N Xj Xj−1, and let A ∈ ins∠NXjXj+1 Then the line←−→
AXj contains no point of ins∠Xj−1XjXj+1. Let A Xj B. Let A′ be the

first point of intersection of
qy →
XjA with F (if there is no intersection, let A′

be any point of
qy →
XjA), and let B′ the first point of intersection of

qy →
XjB with

F ,(again, if there is no intersection, let B′ be any point of
qy →
XjB). Finally, let

P and Q be such that A′ P Xj Q B′.

Then by Theorem SEP.4(C), since
px qy

PQ∩ ins∠Xj−1XjXj+1 = ∅ both P

and Q ∈ out∠Xj−1XjXj+1, and Xj−1 and Xj+1 are on the same side

of
←→
PQ (if they were on different sides, then

px qy

PQ would contain points of

ins∠Xj−1XjXj+1, a contradiction). Also, by SEP.4, P and Q have the same

parity relative to F .

Definition CNV.25 Given the setup of Remark CNV.24 above, the

corner Xj is regular iff the parity of P and Q is even, and irregular if their

parity is odd.

Xj−1

Xj

Xj+1

P
insF

Q

insF
D

outF

Fig. 6.28 For Remark CNV.26.

Remark CNV.26 (A) If a simple polygon F has an irregular corner Xj ,

then insF is nonconvex. To see this, let P and Q be points such that P Xj Q

and both P and Q ∈ insF ; let D be a member of the Xj−1-side (Xj+1-side)

of
←→
PQ be such that

px qy

PD∩ = ∅; then D ∈ insF and by Theorem PSH.6
qy px

DQ

intersects both
qy px

XjXj+1 and
qy px

Xj−1Xj . By Theorem SEP.7(A),
qy px

DQ contains

a point of outF , so that insF is not convex.

(B) By part (A), if insF is convex, F has no irregular corners. By Theo-

rem CNV.4(B), if F is rotund, insF is convex, hence every corner of a rotund

polygon is regular. See Figure 6.28.

Theorem CNV.27 Every simple polygon F has at least three regular

corners.



6.4 Rotundity and convexity (CNV) 173

Proof. By Remark CNV.19(A) it suffices to show that every normal corner

of F is a regular corner of F . Let A be a normal corner of F . By Theorem

CNV.20 there exists a simple rotund polygon G such that A is a corner of G;
let

px qy

AB and
px qy

AC be edges of G, and let D and E be the corners of F such that
px qy

AD and
px qy

AE are edges ofF . ThenD andE both belong to ∠BAC∪ins∠BAC.
Since A is a regular corner of G (G is rotund—see CNV.26(B)) there exist

points P and Q ∈ outG such that A is between P and Q,
px qy

PQ∩G = {A},
and P and Q both belong to out∠BAC. Since by Theorem PSH.41(D),

out∠BAC ⊆ out∠DAE, both P and Q belong to outF . Hence A is a regu-

lar corner of F . ⊓⊔

Theorem CNV.28 Let F be a simple polygon. Then F has an irregular

corner if and only if insF is nonconvex.

Proof. By Remark CNV.26, if F has an irregular corner, insF is not convex.

Conversely, suppose insF is nonconvex and let Xi, Xj , G and H be as in The-

orem CNV.23(B). By Theorem CNV.27 H has a regular corner Xk different

from Xi and Xj so there exist points P and Q in outH such that P Xk Q,
px qy

PQ∩F = {Xk} and P and Q are both members of out∠Xk−1XkXk+1.

Since Xk ∈ ((H \ px qy

XiXj) ⊆ insG, and P and Q can be chosen so that
px qy

PQ∩ px qy

XiXj = ∅, it follows that both P and Q belong to insG. Hence by

the last inclusion in Theorem CNV.23(B) both P and Q belong to insF and

Xk is an irregular corner of F . ⊓⊔

Theorem CNV.29 (A) Let F = 〈X1, . . . , Xn〉 be a simple polygon with

n ≥ 4. Then there exist corners A and B of F such that
qy px

AB ⊆ insF .
(B) If F = 〈X1, . . . , Xn〉 is any simple polygon with n ≥ 4, which has two

corners Xi and Xj with 1 ≤ i < j ≤ n, such that
qy px

XiXj ⊆ insF , let

G =
(⋃i−1

k=j−n
px qy

XkXk+1

)
∪ px qy

XiXj ,

and

H =
(⋃j−1

k=i

px qy

XkXk+1

)
∪ px qy

XiXj .

Then G and H are simple polygons and insG ⊆ outH, insH ⊆ outG, and
insF = insG ∪ insH∪ px qy

XiXj. Note that k may take on values k < 1 or k > n.

Proof. See Figure 6.29.
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X0 = X5

X1

X2

X3

X4

F

X0 = X5

X1

X2

X3

X4

G

X0 = X5

X1

X2

X3

X4

H

Fig. 6.29 For Theorem CNV.29, where Xi = X3 and Xj = X5.

(A) Let V be a regular corner of F and U andW be the corners of F such

that
px qy

UV and
px qy

WV are edges of F . Let E = enc〈U, V,W 〉 \ (px qy

UV ∪ px qy

WV ), and

D be the set of corners of F belonging to E .
(Case I) See Figure 6.30 below. If D = ∅, neither the inside of the triangle

〈U, V,W 〉, or qy px

UW contains a corner of F . Moreover,
px qy

UW is not a subset of

any edge of F because F has at least 4 edges. Then by Corollary PLGN.12.1,

any edge that intersects
qy px

UW must intersect either
qy px

UV ,
qy px

WV , or {V }. But
there are no edges that intersect

px qy

UV and
px qy

WV , other than themselves, and

we know they don’t intersect
qy px

UW . Therefore no edge E can intersect
qy px

UW ,

and by Theorem SEP.4(A) all points of
qy px

UW have the same parity.

U

V

WZ

D

D ∈ outF hence Z ∈ insF
and

]

UW
[

⊆ insF

Fig. 6.30 For proof of Theorem CNV.29 Case (I).

Since V is a regular corner there are points P and Q such that
px qy

PQ∩F =

{V } and both
px px

PV and
qy qy

V Q ⊆ outF . Let Z ∈ qy px

UW ; without loss of generality

we may assume that P is on the U -side of
←→
ZV and Q is on the W -side.

By Theorem PLGN.13 there exists a point D ∈ qy qy

V Q such that every edge

that intersects
qy px

ZD must also intersect
qy qy

ZV . There are two edges that do

so:
px qy

UV and
px qy

WV ;
px px

UV is a subset of the side of
←→
ZV opposite W , so

px qy

UV

cannot intersect
qy px

ZD; therefore
px px

WV is the only edge that can intersect
qy px

ZD,

and it does so in a singleton by the Crossbar Theorem PSH.39, because

W ∈ ins∠ZV Q.
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Then by Theorem SEP.4(A) and (B), the parity of Z is different from the

parity of D (which is even) and hence Z ∈ insF and
qy px

UW ⊆ insF . Let A = U

and B =W , so that
qy px

AB ⊂ insF .
(Case II) If D 6= ∅ let C = {X |V X W and

qy px

UX contains a corner of F}.
Ordering

px qy

WV with V < W choose M to be the first element of C, and let

Z ∈ qy px

UM be a corner.

Claim (a) See Figure 6.31. If E is any edge that intersects
qy px

ZV at a point

R, then E must intersect
qy qy

UV or
px px

VM .

Note that R
′
and R

′′
could lie on the U -side

of
←→
V Z rather than as shown here.

Line of E
V

U

Z

W

M

M
′

R

R
′

R
′′

Fig. 6.31 For proof of Theorem CNV.29 Case (II) Claim (a).

Note first that E cannot intersect
qy px

ZV at two points, for then
qy px

ZV would

contain a corner. By Theorem PLGN.12 E must intersect
px px

VM or
qy qy

ZM , but no

edge can intersect
qy px

VM because F is simple, so E must intersect
qy qy

ZM at some

point R′′. Let M ′ be such that V M ′ M ; then
qy px

UM ′ contains no corner and

intersects
qy px

RR′′ at some point R′, by the Crossbar Theorem. We may apply

Theorem PLGN.12 again to △UM ′V to conclude that E must intersect
qy px

UV

or
qy px

VM ′ (E cannot contain V because F is simple). This proves Claim (a).

But no edge intersects
qy px

UV or
qy px

M ′V ⊆ qy px

WV because F is simple. Therefore

no edge intersects
qy px

ZV , and all points of
qy px

ZV have the same parity.

Claim (b)
qy px

ZV ⊆ insF . See Figure 6.32 below.

Let N be a point of
qy px

ZV . Without loss of generality we may assume that

P is on the U -side of
←→
ZV and Q is on the M -side.

By Theorem PLGN.13 there exists a point D ∈ qy qy

V Q such that every edge

that intersects
qy px

ND must also intersect
qy qy

NV . There are two edges that do so:
px qy

UV and
px qy

WV ;
px px

UV is a subset of the side of
←→
ZV opposite D, so

px qy

UV cannot

intersect
qy px

ND;
px qy

WV , therefore, is the only edge that can intersect
qy px

ND, and

it does so in a singleton by the Crossbar Theorem PSH.39, because M (and

W ) belong to ins∠ZV Q.
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V

U
Z

W

M

P Q
D

N

Fig. 6.32 For proof of Theorem CNV.29 Case (II) Claim (b).

Then by Theorem SEP.4(A) and (B), the parity of N is different from

the parity of D (which is even) and hence N ∈ insF and
qy px

ZV ⊆ insF . This
proves Claim (b).

Let A = Z and B = V , so that
qy px

AB ⊆ insF .

(B) A routine check of the definition of a simple polygon shows that G and

H are simple polygons. However, as in Theorem CNV.23, either Xi or Xj or

both may fail to be corners of either G or H. If Xi fails to be a corner of G,
then it must be a corner of H and vice versa. A similar statement holds for

Xj .

Now G and H conveniently intersect in a segment
px qy

XiXj so we may apply

Theorem SEP.15 to them, and exactly one of its alternatives (1), (2), or (3)

holds.

We first show that there exist points of insH that are not in insG. Let
O ∈ qy px

XiXj , and choose a point R such that R /∈ ←−−→XiXj and
←→
OR contains

no corner of F . Since px qy

XiXj is an edge of H, by Theorem SEP.7 there exist

points P and Q such that P O Q and
px px

PO ⊆ outH and
qy qy

OQ ⊆ insH. Since
O ∈ insF , we may choose P and Q so that

px qy

PQ ⊆ insF .
Let S be a point such that S ∈ out∠XiQXj and

qy→
QS contains no corner of

F . For this ray, the number of intersections with F is the total of the number

of intersections with G and with H.
qy→
QS has an odd number of intersections with F since Q ∈ insF , an odd

number of intersections with H since Q ∈ insH, and hence an even number

of intersections with G, so that Q ∈ outG.
Therefore Q is a point of insH but not a point of insG, and insH ⊆ insG

is false. Similarly, insG ⊆ insH is false, thus ruling out alternatives (1) and

(2) of Theorem SEP.15, and alternative (3) is valid so that insG ⊆ outH and

insH ⊆ outG. See Figure 6.33.
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Xi

Xj

Q ∈ insH
R

P
O

S

Fig. 6.33 Showing insH 6⊆ insG.

We now show that insF ⊆ insG∪insH∪px qy

XiXj . IfX ∈ insF andX /∈ px qy

XiXj

and X /∈ insH, it follows that X ∈ insG.
Again, let S be a point such that S ∈ out∠XiXXj and

qy→
XS contains no

corner of F . As above, the number of intersections with F is the total of the

number of intersections with G and with H.
qy→
XS has an odd number of intersections with F since X ∈ insF ; since

X /∈ insH (and does not belong to H) it belongs to outH and has an even

number of intersections with H. Hence it has an odd number of intersections

with G, so that X ∈ insG. By a similar argument, if X ∈ insF and X /∈ qy px

XiXj

and X /∈ insG then X ∈ insH. Note also that it has now been proved that
px px

PO ⊆ insG.
Finally, we show that insF ⊇ insG ∪ insH ∪ px qy

XiXj . By alternative (3) of

SEP.15 insG ∩ insF = ∅. Let X ∈ insH and X /∈ insG and X /∈ px qy

XiXj so

that X ∈ outG. Again, let S be a point such that S ∈ out∠XiXXj and
qy→
XS

contains no corner of F . Then qy→
XS intersects H an odd number of times, G an

even number of times, so that it intersects F an odd number of times, so that

X ∈ insF . A similar argument shows that if X ∈ insG but does not belong

to
px qy

XiXj or to insH, then X ∈ insF . We already know that
qy px

XiXj ⊆ insF ,
so it follows that insF = insG ∪ insH ∪ px qy

XiXj. ⊓⊔

Definition CNV.30 Let S be a finite noncollinear set of points. (Mean-

ing, according to Definition I.0, that there is no line L such that S ⊆ L.)
A supporting line of S is a line L such that S ∩ L 6= ∅ and all points of

S not on L are on the same side of L. A basic supporting line of S is a

supporting line which has at least two members of S on it.

Theorem CNV.31 Every finite noncollinear set S has a basic supporting

line.
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Proof. Let D be the set of segments whose endpoints are members of S and

let E be the union of the members of D. Let A, P , and U be noncollinear

members of S. If any of the lines
←→
AP ,

←→
AU , or

←→
PU is a supporting line of S,

then the proposition is true. Hence, assume none of these lines is a supporting

line of S.
If (ins∠PAU)∩S = ∅, then let Q = U . If (ins∠PAU)∩S 6= ∅, then there

exists a member Q of enc∠PAU such that ins∠PAQ∩S = ∅. Let B be any

member of ins∠PAQ and let C be the last point of intersection of E and
px→
AB.

Then the line
←→
EF containing the member

px qy

EF of D which intersects
px→
AB is a

basic supporting line of S. To show this it suffices to show that no member

of S is on the side of
←→
EF opposite the A-side. If there were a member R of S

on this side, then since R is not on
←→
AB, either E and R are on the same side

of
←→
AB, or they are on opposite sides. Furthermore

qy qy

ER and
qy qy

FR are on the

side of
←→
EF opposite the A-side. Hence by the Plane Separation Axiom

px→
AB

intersects exactly one member of {qy qy

ER,
qy qy

FR} at M such that A C M . This

contradicts the fact that C is the last intersection of E and
px→
AB. ⊓⊔

Definition CNV.32 Let S be a finite noncollinear set of points and let

L be a basic supporting line of S. Using Definition ORD.1 to order the points

of L, then by Theorem ORD.10, L∩S has a maximum and a minimum point.

These points are the extremal points of S with respect to L.

Theorem CNV.33 Let S be a finite noncollinear set of points, L be a

basic supporting line of S, and V be an extremal point of S with respect to

L. Then V belongs to one and only one other basic supporting line M of S
and V is an extremal point of S with respect toM.

Proof. (Existence ofM) Let U be any point of S ∩L which is different from

V , A be any member of S not on L, and let H be the side of L opposite the

A-side.

If
←→
AV is a supporting line of S, letM =

←→
AV . Since L is a supporting line

of S, by Definition CNV.30 there is no point of S in H. Therefore V is an

extremal point of S with respect toM.

If
←→
AV is not a supporting line of S, then there exists a member W of S

such that W and U are on opposite sides of
←→
AV and no point of S belongs to

ins∠V AW . (To see this choose any member W ′ of S where W ′ and U are on

opposite sides of
←→
AV , then let C = {X |X ∈

qy px

VW ′ and
qy→
AX contains a point
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of S}. Ordering C with V < W ′ let W be the least member of C. Then there

is no point of S belonging to ins∠V AW .)

Let D be the set of segments whose endpoints are members of S and let

E be the union of the members of D. LetB be any member of ins∠V AW , C

the last intersection of E with
px→
AB, and let

px qy

DE be a member of D such that

D C E.

Choose the notation so that E is the endpoint of
px qy

DE which is on the

W -side of
←→
AB; then D is on the V -side of

←→
AB and D /∈ ins∠V AW . By the

same argument as in Theorem CNV.17, D = V . (For once, even the notation

is the same, so the arguments are letter-for-letter the same.)

As in the proof of Theorem CNV.31,M =
←→
V E is a basic supporting line

S. (This time the notation is not quite the same–substitute D for E and E

for F in the original argument, and it works.)

Since by Defnition CNV.30 no point of S belongs to H, V is an extremal

point of V with respect to S.
(Uniqueness of M) Since S is contained in enc∠UV E, if N is a line

through V and some other point of S, then S ∩ ins∠UV E is nonempty and

N is not a supporting line of S. ⊓⊔

Definition CNV.34 Let S be a finite noncollinear set of points. A point

of S is normal if and only if it is an extremal point of S with respect to a

basic supporting line of S.

Remark CNV.35 By Theorems CNV.31 and CNV.33 every finite non-

collinear set of points has at least three normal points and at least three basic

supporting lines.

Theorem CNV.36 Let S be a finite noncollinear set of points.

(A) There is a simple polygon G whose corners are the normal points of S,
every edge of G is contained in a basic supporting line of S and every basic

supporting line of S contains an edge of G.
(B) The polygon G is rotund.

(C) There is no simple polygon different from G whose corners are normal

points of S.
(D) Every member of S not on G belongs to insG, and S ⊆ encG.
(E) cohS = encG.
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Proof. A slight modification of the proof of Theorem CNV.20 is left to the

reader as Exercise CNV.1. ⊓⊔

6.5 Connectedness (CNT)

Lemma CNT.1 Suppose F is a simple polygon and J is a polygonal path

such that F ∩ J = ∅; by Theorem SEP.13(A) either J ⊆ insF or ⊆ outF .
Then if I is a closed segment

px qy

AB and J is a simple polygonal path which is

not a segment, then there exists a one-to-one mapping ϕ of I onto J such

that the image of each endpoint of I is an endpoint of J .

Proof. Using Definition PLGN.5(B) let J =
⋃m

k=1

px qy

ZkZk+1, where m is a nat-

ural number greater than 1. Using the denseness property of a segment (cf

Theorem PSH.22) we can find a set {A = W1,W2, . . . ,Wm+1 = B} ⊆ px qy

AB

such that for each k ∈ [1;m], Wk < Wk+1 (where
px qy

AB is ordered by ORD.1

with A < B). Using Theorem PSH.56, for each k ∈ [1;m], let ϕk be a

one-to-one mapping of
px qy

WkWk+1 onto
px qy

ZkZk+1 such that ϕk(Wk) = Zk and

ϕk(Wk+1) = Zk+1. Let ϕ =
⋃m

k=1 ϕk; then ϕ is a one-to-one mapping of I
onto J such that ϕ(W1) = Z1 and ϕ(Wm+1) = Zm+1. ⊓⊔

Theorem CNT.2 The outside of a rotund polygon is polygonally con-

nected.

Proof. Let F = 〈X1, . . . , Xn〉 be a rotund polygon and let A ∈ insF . For
each i ∈ [1;n− 1] define Yi recursively as follows: let Y1 and Y2 be any points

such that A X1 Y1 and A X2 Y2.

For each i ∈ [3;n − 1], if
px →
AXi ∩

←−−−−→
Yi−2Yi−1 contains some point Z, let Yi

be any point such that A Xi Yi Z, otherwise let A Xi Yi; if
px →
AXn ∩

←−→
Y1Y2

contains some point Z, let Yn be any point such that A Xn Yn Z, otherwise

let A Xn Yn.

No two rays
qy →
AXi and

qy →
AXj can intersect, for if they did, they would be

the same, and would contain both Xi 6= Xj in contradiction of Theorem

CNV.4(A), so that Yi 6= Yj if i 6= j. Also, by the construction, no three

adjacent points Yi can be collinear. Therefore G = 〈Y1, . . . , Yn〉 is a polygon.

G is a subset of outF because every edge
px qy

YiYi+1 is on the side of
←−−−→
XiXi+1,

and
px qy

YnY1 is on the side of
←−−→
XnX1 opposite A. Finally, G is simple, for if there

were integers j and k such that j ≡ k(modn), j ≡ k + 1(modn) and j ≡
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k− 1(modn) and a point D such that D ∈ px qy

YjYj+1 ∩
px qy

YkYk+1, then
px→
AD would

intersect both
px qy

XjXj+1 and
px qy

XkXk+1, contradicting Theorem CNV.4(A).

Now let P and Q be any members of outF . The Crossbar Theorem PSH.39

assures that G intersects each of
px→
AP and

px→
AQ at exactly one point R or S

respectively. If R = S let J =
px qy

PQ. Without loss of generality we may assume

there exist i ≤ j belonging to [1;n] such that R ∈ px qy

YiYi+1 and S ∈ px qy

YjYj+1. If

i = j let J =
px qy

PR∪ px qy

RS ∪ px qy

SQ. If i 6= j let

J =
px qy

PR∪ px qy

RYi+1 ∪
(⋃j−1

k=i+1

px qy

YkYk+1

)
∪ px qy

SYj ∪
px qy

QS.

Since A P R, A ∈ insF , P ∈ outF , R ∈ outF , and px→
AP has only one

intersection with F , px qy

PR ⊆ outF ; a similar argument shows
px qy

QS ⊆ outF ; all
the other segments in the construction of J are known already to be subsets

of outF , so J ⊆ outF . ⊓⊔

Theorem CNT.3 (Proof of Theorem JCT.1, part (D); the inside

and outside of a simple polygon are polygonally connected.) Given

any simple polygon F = 〈X1, . . . , Xm〉, both (A) the inside insF and (B) the

outside outF are polygonally connected.

Proof. (A) First note that the inside of a triangle is polygonally connected

since it is convex. We now show that insF is polygonally connected whenever

it is true that for every k with 3 ≤ k < m, the inside of every polygon with k

edges is polygonally connected.

This shows, by the “strong form” of mathematical induction, that the

inside of every simple polygon is polygonally connected. The italicized state-

ment is called the “induction hypothesis.”

By Theorem CNV.29(A) there exist corners A and B of F such that
qy px

AB ⊆ insF . Let G and H be the simple polygons described in Theorem

CNV.29(B). Since G and H each have fewer corners than F has, both insG
and insH are polygonally connected by the induction hypothesis.

As in the proof of CNV.29(B), let I 6= J be points such that
px qy

IJ ⊆ insF ,
px qy

IJ ∩ qy px

AB = {O}, px px

IO ⊆ insG and
px px

JO ⊆ insH. Let P 6= Q be any points of

insF . By CNV.29(B),

{P,Q} ⊆ insF = insG ∪ insH ∪ px qy

XiXj.

Then one of the following cases will hold:

(i) P and Q both belong to insG (or insH);
(ii) P ∈ insG (or insH) and A Q B;

(iii) P ∈ insG and Q ∈ insH; or
(iv) P and Q both belong to

qy px

AB.
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In case (iv)
px qy

PQ ⊆ qy px

AB ⊆ insF and
px qy

PQ is a polygonal path joining P

and Q, and in case (i) there is a polygonal path joining P and Q in insG (or

insH) (hence in insF) by the induction hypothesis.

In case (ii) there exists a polygonal path J ⊆ insG (insH) with endpoints

P and I (P and J) so that J ∪ px qy

QO∪ px qy

IO (J ∪ px qy

QO ∪ px qy

JO) is a polygonal path

contained in insF connecting P and Q.

In case (iii) there exist polygonal paths I ⊆ insG and J ⊆ insH such

that I connects P to I and J connects Q to J . Then I ∪ px qy

IJ ∪J ⊆ insF
is a polygonal path joining P and Q. It follows that insF is polygonally

connected.

(B) If insF is convex, then by Theorem CNV.7, F is rotund and by The-

orem CNT.2 outF is polygonally connected. If insF is not convex, again we

use induction on m to show that outF is polygonally connected. We initiate

the induction by noting that the outside of a triangle is polygonally con-

nected since every triangle is convex. Now assume the induction hypothesis:

for every k with 3 ≤ k < m, the outside of every polygon with k edges is

polygonally connected.

By Theorem CNV.23(A) there exist corners A and B such that
←→
AB is a

supporting line of F and every point between A and B belongs to outF .
Let G and H be the polygons defined in Theorem CNV.23(B). By Theorem

SEP.7, we may let I 6= J be points such that
px qy

IJ ⊆ insF , px qy

IJ ∩ qy px

AB = {O},
px px

IO ⊆ outG and
px px

JO ⊆ insH.
Also, from Theorem CNV.23(B) we get outF = outG ∪ insH ∪ qy px

AB. We

will refer to this without reference in the rest of the proof.

Let P 6= Q ∈ outF . We then have the following cases:

(i) P and Q both belong to outG (or insH);
(ii) P ∈ outG (or insH) and A Q B;

(iii) P ∈ outG and Q ∈ insH; or
(iv) P and Q both belong to

qy px

AB.

In case (iv)
px qy

PQ ⊆ qy px

AB ⊆ outF and
px qy

PQ joins P and Q; in case (i) there is

a polygonal path joining P and Q in outG (or insH)(hence in outF) by the

induction hypothesis.

In case (ii) there exists a polygonal path J ⊆ outG (insH) with endpoints

P and I (P and J) so that J ∪ px qy

QO∪ px qy

IO (J ∪ px qy

QO ∪ px qy

JO) is a polygonal path

contained in outF connecting P and Q.

In case (iii) there exist polygonal paths I ⊆ outG and J ⊆ insH such that

I connects P to I and J connects Q to J . Then I∪px qy

IJ ∪J ⊆ outF is a polyg-
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onal path joining P and Q. It follows that outF is polygonally connected. ⊓⊔

Corollary CNT.3.1 If F is a simple polygon, then encF and excF are

polygonally connected.

Proof. Let P and Q be any members of encF . If both P and Q ∈ insF the

proof is complete. By Theorem SEP.7, if P ∈ F and Q ∈ insF there exists

a point I ∈ insF such that
qy qy

PI ⊆ insF ; if I is a path in insF joining I and

Q,
px qy

PI ∪I is a polygonal path in encF joining P and Q. Similar arguments

show the other assertions. ⊓⊔

Theorem CNT.4 If F and G are simple polygons such that G ⊆ encF ,
then outF ⊆ outG and insG ⊆ insF . Moreover, if G ∩ insF 6= ∅, then insG
is a proper subset of insF .

Proof. Let Q ∈ outF , let A ∈ insF , let C be the last point of intersection

of F and
px→
AQ, and let P be any point such that A C P . Then P ∈ outF .

Let R be any point such that A P R. Since G ⊆ encF , G ∩ px→
PR = ∅ and

hence P ∈ outG. Since by Theorem CNT.3 outF is polygonally connected

there exists a polygonal path J ⊆ outF with endpoints P and Q. Since

G ⊆ encF , J ∩ G = ∅. Then by Theorem SEP.13(A) either J ⊆ insG or

J ⊆ outG. Since P ∈ J and P ∈ outG, J ⊆ outG. Hence Q ∈ outG and

we have shown outF ⊆ outG. Taking complements with respect to the plane

gives encG ⊆ encF .
Now suppose F ∩ insG 6= ∅. By Theorem SEP.7 there exist points C and

F such that C ∈ F ∩ insG, px qy

CF ∩F = {C} and
qy qy

CF ⊆ outF . Let G be

the first intersection of
px→
CF with G. Since C ∈ insF , px px

CG ⊆ insG. Then

∅ 6= px qy

CF ∩ px px

CG ⊆ outF ∩ insG, so there is a point of outF not in outG
contradicting outF ⊆ outG. Hence F ∩ insG = ∅ so insG ⊆ insF .

If G ∩ insF 6= ∅, and argument similar to the one just given shows that

there exists a point of outG (hence not in insG) that is in insF showing that

insG is a proper subset of insF . ⊓⊔

Theorem CNT.5 Let F and G be simple polygons in the Pasch plane

P.
(A) If G ⊆ encF , then F ⊆ excG.
(B) If G ⊆ excF , then either

(1) insF ⊆ insG, outG ⊆ outF , encF ⊆ encG, and F ⊆ encG, or
(2) insF ⊆ outG, insG ⊆ outF , encF ⊆ excG, and F ⊆ excG;
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moreover, if (1) holds and G ∩ outF 6= ∅, then both inclusions insF ⊆ insG
and outG ⊆ outF are proper.

Proof. (A) The second part of the proof of Theorem CNT.4 shows that F ∩
insG = ∅ so that F ⊆ excG = G ∪ outG.

(B) By Theorem CNT.2 insF is polygonally connected. Since G ⊆ excF ,
G∩insF = ∅, so by Theorem SEP.13(A) either insF ⊆ insG or insF ⊆ outG.

If (1) holds, and insF ⊆ insG, then excG = P \ insG ⊆ P \ insF = excF ,
so outG ⊆ excF . Suppose now that for some point C, outG ∩ F = {C}.
By Theorem SEP.7 there exists a point E such that

qy qy

CE ⊆ insF ; let D

be the first point of intersection of
qy→
CE with G; then px px

CD ⊆ outG (since

C ∈ outG) and if we pick F so that C F D and C F E,
qy px

CF ⊆ outG∩insF .
But this contradicts insF ⊆ insG. Thus outG ∩ F = ∅, and since outG ⊆
excF , outG ⊆ outF ; taking complements we have encF ⊆ encG so that in

particular, F ⊆ encG.
If (2) holds, and insF ⊆ outG, then encG = P\outG ⊆ P\ insF = excF ,

so that insG ⊆ excF . Again, if F ∩ insG 6= ∅, by similar reasoning to that

of the previous paragraph, we can find points that belong both to insG and

to insF , which contradicts insF ⊆ outG, so that F ∩ insG = ∅. Hence

insG ⊆ outF ; taking complements, encF ⊆ excG so that F ⊆ excG.
We now show the final assertion of the Theorem. Let O ∈ G∩outF , let Q′

be such that L =
←−→
OQ′ contains no corners of either F or G, and let Q′ O P ′.

Choose Q and P to be the first intersections of
qy →
OQ′ and

qy →
OP ′, respectively,

with F . Then no point of
qy px

QP belongs to F and
qy px

QP ⊆ outF , by Theorem

SEP.4.

Now by Theorem SEP.7 there exist points E and F ∈ L such that
px px

EO ⊆ insG and
px px

FO ⊆ outG. E is on either the P -side or on the Q-side

of O. In the former case, choose E′ so that P E′ O and E E′ O, so that
px px

E′O ⊆ insG ∩ outF . A similar proof is valid in the other case. Thus both

insF ⊆ insG and outG ⊆ outF are proper inclusions. ⊓⊔

Theorem CNT.6 Let F and G be simple polygons in the Pasch plane

P. If F ∩ insG 6= ∅ and F ∩ outG 6= ∅, then
(A) G ∩ insF 6= ∅,
(B) G ∩ outF 6= ∅,
(C) insF ∩ insG 6= ∅,
(D) outF ∩ outG 6= ∅,
(E) insF ∩ outG 6= ∅, and
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(F) outF ∩ insG 6= ∅.

Proof. If G were contained in encF , then by Theorem CNT.5(A), F would

be contained in excG, contradicting F ∩ insG 6= ∅. Hence G ∩ outF 6= ∅,
proving (B).

If G were contained in excF , then in Theorem CNT.5(B) alternate (2) is

ruled out, so F would be contained in encG, contradicting F ∩ outG 6= ∅.
Hence G ∩ insF 6= ∅, proving (A).

Let C ∈ F ∩ insG. By Corollary SEP.7.1 there exists a point E such that
qy px

CE ⊆ insF . Let Q be the first point of intersection of
px→
CE and G. If E is

between C and Q, then
px qy

CE ⊆ insG; if Q is between C and E let P be any

point between C and Q; then
px qy

CP ⊆ insG. In either case,
qy px

CP ⊆ insG ∩ insF ,
proving (C).

The proofs of the other cases are similar and left to the reader as Exercise

CNT.1. ⊓⊔

Theorem CNT.7 Let F and G be simple polygons. If G ⊆ encF and

F ⊆ encG, then F = G.

Proof. If G ⊆ encF and F ⊆ encG, then by Theorem CNT.5(A), F ⊆ excG
and G ⊆ excF . But then F ⊆ encG ∩ excG = G and G ⊆ encF ∩ encF = F .
⊓⊔

Theorem CNT.8 (Re-statement of the Jordan Curve Theorem

JCT.1 for simple polygons) If G is a simple polygon in the Pasch plane

P, then
(A) P = G ∪ insG ∪ outG, where G, insG, and outG are pairwise disjoint

sets;

(B) if P ∈ insG and Q ∈ outG, then qy px

PQ∩G 6= ∅;
(C) G and insG are bounded sets, and outG is unbounded; and

(D) insG and outG are polygonally connected sets.

Proof. Parts (A) and (B) follow immediately from Theorem SEP.12, part (C)

from Theorem CNV.22, and part (D) from Theorem CNT.3. ⊓⊔

There is a more extensive discussion of the Jordan Curve Theorem at the

beginning of this chapter.
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6.6 Exercises for Jordan Curve Theorem

Exercise PLGN.1* Prove part (A) of Theorem PLGN.15; that is, that

an O-ordering of a simple polygon has the trichotomy property.

Exercise SEP.1* Prove Theorem SEP.15 in the case that alternative (3)

is true.

Exercise CNV.1 Prove Theorem CNV.36 by modifying the proof of

Theorem CNV.20.

Exercise CNT.1* Complete the proof of Theorem CNT.6.

6.7 Selected answers for Jordan Curve Theorem

Exercise PLGN.1 Proof. We show that for any P and Q ∈ G \ {O},
exactly one of P < Q, P = Q, or P > Q is true (Trichotomy). In this proof

we will refer to the various parts of Definition PLGN.14 as “rule (A),” “rule

(B),” etc. We will assume that the polygon G consists of n edges
px qy

XiXi+1

where i = α + 1, ...α + n, its corners being Xα+1, ..., Xα+n = Xα, and that

O ∈ qy px

XαXα+1.

By rule (A), if both P and Q are corners of G, their ordering is the same

as the ordering of the integers {α+ 1, α+2, ..., α+ n}, for which trichotomy

holds; therefore trichotomy holds for P and Q.

If we prove trichotomy in the case where P is not a corner of G, this will
also (by interchanging P and Q) show it is true if Q is not a corner of G.
Moreover, it will suffice to prove that if P 6= Q, then exactly one of P < Q

or Q < P is true; for this implies that if neither P < Q nor Q < P , then

P = Q.

(Case 1: P 6= Q and P ∈ qy px

XiXi+1 where α < i < α+ n.) Then either

(a) Q ∈ px qy

XiXi+1,

(b) Q ∈ px qy

XjXj+1 where j 6= i and α < j < α+ n, or

(c) Q ∈ px qy

Xα+nXα+1 \{O} =
px qy

XαXα+1 \{O}.
If (a) holds, then since trichotomy holds on

px qy

XiXi+1, either P < Q or Q < P .

If (b) holds, either

(1) α < i < j < α + n, in which case Xj ≤ Q and Xi+1 ≤ Xj

and P < Xi+1 so P < Xi+1 ≤ Xj ≤ Q and by rule (D) P < Q; or
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(2) α < j < i < α + n, in which case Q ≤ Xj+1 ≤ Xi < P so

Q < P .

If (c) holds, either

(1) O Q Xα+1 or Q = Xα+1, in which case, since α < i, α+1 ≤ i
and Q ≤ Xα+1 ≤ Xi < P so by rule (D) Q < P ; or

(2) Xα+n Q O or Q = Xα+n, in which case since i < α + n,

Xi+1 ≤ Xα+n and P < Xi+1 ≤ Xα+n ≤ Q and P < Q.

(Case 2: P 6= Q and P ∈ qy px

XαXα+1 \{O}. Then either

(a) Xα+n P O or

(b) O P Xα+1.

If (a) holds, then Xα = Xα+n < P ; if Q ∈ px qy

XαXα+1 \{O} and Q 6= P then

either

(1) Xα+n Q O or Q = Xα+n in which case either P < Q or

Q < P , by rule (C); or

(2) O Q Xα+1 or Q = Xα+1 in which case Q < Xα+1 by rule

(C), and Q ≤ Xα+1 < Xα+n < P so that Q < P .

Moreover, if (a) holds, and Q ∈ px qy

XiXi+1 where α + 1 < i < α + n, then

Q ≤ Xi+1 ≤ Xα+n < P so Q < P .

If (b) holds, then P < Xα+1; if Q 6= P and Q ∈ px qy

XαXα+1 \{O} then either

(1) Xα+n Q O or Q = Xα+n so that Q ≥ Xα+n and Q ≥
Xα+n > Xα+1 > P and Q > P ; or

(2) O Q Xα+1 or Q = Xα+1 in which case either P < Q or

Q < P by rule (C).

Moreover, if (b) holds, and Q ∈ px qy

XiXi+1 where α < i < α + n, then P <

Xα+1 ≤ Xi ≤ Q so P < Q. ⊓⊔

Exercise SEP.1 Proof. If alternative (3) of Theorem SEP.15 holds, we

assume that G ⊆ outF and F ⊆ outG. We show that G ∪ insG is a proper

subset of outF .
First we prove that insG ⊆ outF . Let P be any point of insG, and let A

be any point such that
px→
PA does not contain a corner of F or G, or intersect

the segment
px qy

CD. Then by the Lemma in the proof of Theorem SEP.15,
px→
PA∩G =

px→
PA∩(G \ px qy

CD).

Since P ∈ insG every ray from P must intersect G at least once. Order
px→
PA

with P < A, and let Q be the first point and R the last point of intersection

of
px→
PA with G. If the ray

px→
PA \ px px

PR intersects F let S be the first point of

intersection of
px→
PA \ px px

PR with F , otherwise let S be any point of
px→
PA \ px px

PR.

Then
qy px

PQ contains no point of G other than Q so that by Theorem SEP.4(A),
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px px

PQ ⊆ insG and hence contains no point of F since F ⊆ outG. Now Q ∈ G ⊆
outF , so P ∈ outF by Theorem SEP.4(A), so that P ∈ outF . Therefore
insG ⊆ outF .

Finally we show that insG ⊆ outF is a proper inclusion. The segment
qy px

RS

contains no point of G \ px qy

CD since R is the last point of G \ px qy

CD, and no point

of F \ px qy

CD since S is the first point of F \ px qy

CD with R < S. By Theorem

SEP.4(A), since R ∈ G ⊆ outF , px px

RS ⊆ outF ; similarly since S ∈ outG,
qy qy

RS ⊆ outG. Thus points of qy px

RS are in outF but not in insG, and hence the

inclusion insG ⊆ outF is proper.

By the same argument, with the roles of F and G interchanged, insF ⊆
outG is also a proper inclusion. ⊓⊔

Exercise CNT.1 Proof. We prove parts (D), (E), and (F) of Theorem

CNT.6.

(D) Let C ∈ F ∩ outG. By Corollary SEP.7.1 there exists a point E such

that
qy px

CE ⊆ outF . Let Q be the first point of intersection of
px→
CE and G (or

if
px→
CE does not intersect G, let Q be any point of the ray.) If E is between

C and Q, then
px qy

CE ⊆ outG; if Q is between C and E let P be any point

between C and Q; then
px qy

CP ⊆ outG. In either case,
qy px

CP ⊆ outG ∩ outF ,
proving (D).

(E) Let C ∈ F ∩ outG. By Corollary SEP.7.1 there exists a point E such

that
qy px

CE ⊆ insF . Let Q be the first point of intersection of
px→
CE and G (or if

px→
CE does not intersect G, let Q be any point of the ray.) If E is between C and

Q, then
px qy

CE ⊆ outG; if Q is between C and E let P be any point between C

and Q; then
px qy

CP ⊆ outG. In either case,
qy px

CP ⊆ outG ∩ insF , proving (E).

(F) Let C ∈ F ∩ insG. By Corollary SEP.7.1 there exists a point E such

that
qy px

CE ⊆ outF . Let Q be the first point of intersection of
px→
CE and G; there

must be such a point because C ∈ insG. If E is between C and Q, then
px qy

CE ⊆ insG; if Q is between C and E let P be any point between C and Q;

then
px qy

CP ⊆ insG. In either case,
qy px

CP ⊆ insG ∩ outF , proving (F). ⊓⊔



Chapter 7

Property PE on a Pasch Plane with

Property LUB (LUPE)

Dependencies: Chapters 1, 4, 5, and 6 of Euclidean Geometry and its Sub-

geometries (Specht); Axiom LUB

Acronym: LUPE

This chapter might be considered something of a curiosity, or as an ad-

dendum to Chapter 6 of Specht, as the proof depends on ordering. In it we

prove Property PE on a Pasch plane on which the LUB property holds, as de-

fined in Specht Chapter 18. In that work, Property PE is proved as Theorem

NEUT.48(B), part of neutral geometry.

Other than the LUB property, we invoke only the results of Chapters 1,

4, 5, and 6 of Specht. All references in this chapter are to Specht, and there

are no references to other chapters of this Supplement. We begin by restating

the LUB and PE properties.

Property LUB: Let P be a Pasch plane, and let L be a line on P which

is equipped with an ordering < by Specht Ch.6 Definition ORD.1. If E ⊆ L is

a set that is bounded above, then the set of all upper bounds has a minimum,

called the least upper bound of E , and denoted lub(E).

Property PE: Given a Pasch plane P , a line L on P , for every point Q

belonging to P \ L, there exists a lineM through Q which is parallel to L.

The designation “Property PE” is so named to suggest “Parallel Exis-

tence.” There is no claim here of uniqueness—PE falls short of Axiom PS,

the “strong form” of the parallel axiom. But if PE is joined with PW (the

“weak form”), then we get PS. We name the single theorem in this chapter

with the acronym LUPE to suggest both LUB and PE.

189
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Theorem LUPE If P is a Pasch plane on which property LUB holds,

then property PE holds on P.

Proof. We begin with the assumption that property PE is false on P : that
is, there exists a line L on P and a point Q belonging to P \ L such that

there is no line M parallel to L containing Q. We prove the theorem by a

construction and a series of claims; the last of these will show a contradiction

with property LUB, thus showing that property PE is true.

The construction: See Figure 7.1 below. Let A and B be distinct points

of L, and order L so that A < B. By Specht Ch.5 Theorem PSH.22 there

exists a point C ∈ L such that A C B. By property B.3 of Specht Ch.4

Definition IB.1, there exists a point T such that B Q T .

Using Definition IB.11, since B Q T , T and B are on opposite sides of←→
AQ; since A C B, C and B are on the same side of

←→
AQ; therefore T and

C are on opposite sides of
←→
AQ, and by Specht Ch.5 Theorem PSH.12 there

exists a point S such that
←→
AQ∩ qy px

CT = {S}, that is,←→AQ∩←→CT = {S}. Finally,
by property B.3 of Definition IB.1, there exists a point D such that S T D,

that is, C S T D.

Since A 6= B, the lines
←→
AQ and

←→
BQ are distinct and have only the point

Q in common. The point T belongs to a side of
←→
AQ so that S, T , and Q are

noncollinear and are the corners of a triangle.

Ordering: Using the machinery of Chapter 6, order line L so that

A < C < B, and order the line
←→
CT so that C < S < T < D.

Definition of Φ: For every X ∈ L such that the line
←→
XQ intersects

px qy

ST

define Φ(X) so that {Φ(X)} = ←→XQ ∩ px qy

ST . By this definition, Φ(A) = S and

Φ(B) = T .

Claim 1:
qy px

ST ⊆ ins∠SQT , and therefore is a subset of both the

T -side of
←→
SQ and the S-side of

←→
TQ. This follows immediately from Defi-

nition PSH.36 and Theorem PSH.37.

Claim 2: If X ∈ L and X < A, the ray
qy →
QX intersects

qy px

ST , so that

Φ(X) is defined, S Φ(X) T , and S < Φ(X) < T .

See Figure 7.1. If X < A, X A C B. Since T Q B, Q and B are on the

same side of
←→
ST =

←→
CD; hence X and Q are on opposite sides of

←→
ST so by
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Q

CA B

Φ(X)

X

S

T

L

D

<
<

<

<< <

Fig. 7.1 For Claim 2 in Theorem LUPE.

Theorem PSH.12
←→
ST ∩ qy px

XQ 6= ∅. This point of intersection belongs to
←→
XQ,

and is therefore Φ(X), by definition.

Since X A C B, X is on the C-side of
←→
BT =

←→
TQ, which by C S T is the

S-side. Also, X is on the side opposite the C-side of
←→
AQ =

←→
SQ. Since C S T ,

this means X ∈ the T side of
←→
SQ. By Definition PSH.36, X ∈ ins∠SQT ; by

Theorem PSH.39 (Crossbar)
qy →
QX ∩ qy px

ST 6= ∅. As observed just above, this

point of intersection is Φ(X). Then S Φ(X) T , and S < Φ(X) < T since

S < T .

Claim 3: If X > B, by property B.3 of Definition IB.1, there

exists a point X ′ such that X Q X ′; then the ray
qy →
QX ′ intersects

qy px

ST , so that Φ(X)is defined, S Φ(X) T , and S < Φ(X) < T .

Q

CA B

X ′

Φ(X)

X

S

T

L

D

<
<

<
<

< < <

Fig. 7.2 For Claim 3 in Theorem LUPE.

See Figure 7.2. If X > B, A C B X . Then X is on the B-side (C-side)

of
←→
AQ =

←→
SQ. X is also on the side of

←→
BQ =

←→
TQ opposite the A-side (the

S-side since A S Q).

Since
←→
XQ intersects

←→
AQ =

←→
SQ at the point Q, X ′ is on the side of

←→
SQ

opposite the B-side; since B Q T this means that X ′ ∈ the T side of
←→
SQ.

Since
←→
XQ intersects

←→
BQ =

←→
TQ at the point Q, X ′ is on the S-side of

←→
TQ.
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Then by Definition PSH.36, X ′ ∈ ins∠SQT ; by Theorem PSH.39 (Cross-

bar),
qy →
QX ′ ∩ qy px

ST 6= ∅, and therefore since
qy →
QX ′ ⊆ ←→QX,

←→
QX ∩ qy px

ST 6= ∅. By
definition this point of intersection is Φ(X). Then S Φ(X) T ; since S < T ,

by Theorem ORD.6 S < Φ(X) < T .

Since Φ(A) = S and Φ(B) = T , it follows from Claims 2 and 3 that

for every X such that X ≤ A or X ≥ B, Φ(X) is defined and belongs

to
px qy

ST .

Claim 4: If A X B then
←→
XQ∩ px qy

ST = ∅, so that Φ(X) is not defined.

Q

CA B

S

T

L

D

X

X ′

<
<

<

< <

Fig. 7.3 For Claim 4 in Theorem LUPE.

See Figure 7.3. Since X ∈ qy px

AB, by Theorem PSH.37 X ∈ ins∠AQB. By

Theorem PSH.38(B)
qy →
QX ∈ ins∠AQB, and by Definition PSH.36

qy →
QX is a

subset of the A-side of
←→
BQ, and also of the B-side of

←→
AQ. Now S ∈ qy→

QA ⊆ ←→AQ,

T ∈ the T side of
←→
AQ, and

qy px

ST ⊆ ins∠SQT ⊆ the T side of
←→
AQ, so that

px qy

ST

is a subset of
←→
AQ ∪ the A side of

←→
AQ, this last being the side opposite the

B-side. It follows that
qy →
QX ∩ px qy

ST = ∅.
Let X ′ be a point such that X ′ Q X ; since

←→
QX and

←→
BQ intersect at Q,

X ′ belongs to the side of
←→
BQ opposite A, and by Theorem IB.14, this side

contains
qy →
QX ′. By reasoning similar to that just above,

px qy

ST ⊆ ←→BQ∪the A side

of
←→
BQ. Therefore

qy →
QX ′ ∩ px qy

ST = ∅.
Now

←−−→
X ′X ′ =

←→
QX =

qy →
QX ∪

qy →
QX ′ ∪{Q}. Since Q 6∈ px qy

ST it follows that←−→
XX ′ ∩ px qy

ST = ∅.

Claim 5: If X and Y are members of L and X < Y < A, then

S Φ(Y ) Φ(X) T , and S < Φ(Y ) < Φ(X) < T .
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First we note that from Claim 2,S Φ(Y ) T and S < Φ(Y ) < T , and also

S Φ(X) T and S < Φ(X) < T .

If, in the statement and proof of Claim 2, we substitute Y for A, so that

S = Φ(A) becomes Φ(Y ), we get a proof that Φ(Y ) Φ(X) T ; combining this

with S Φ(Y ) T yields the desired result.

Claim 6: If X and Y are members of L and B < X < Y , then

S Φ(Y ) Φ(X) T , and S < Φ(Y ) < Φ(X) < T .

Again we note that from Claim 3, S Φ(Y ) T and S < Φ(Y ) < T ; also

S Φ(X) T and S < Φ(X) < T .

If, in the statement and proof of Claim 3, we substitute Y for X , and

substitute X for B, so that T = Φ(B) becomes Φ(X), we get a proof that

S Φ(Y ) Φ(X); combining this with S Φ(X) T yields the desired result.

Claim 7: For every X ≤ A and every Y ≥ B, Φ(X) < Φ(Y ), so that

the set {Φ(Y ) | Y ≥ B} is the set of upper bounds for {Φ(X) | X ≤ A}.

Q

CA B

Y ′

Φ(Y )

Φ(X)

X Y

S

T

L

D

<
<

<

<< < <

Fig. 7.4 For Claim 7 in Theorem LUPE.

See Figure 7.4. If X = A and Y = B, then Φ(X) = S < T = Φ(Y ).

If X = A and Y > B then by Claim 3, Φ(X) = Φ(A) = S < Φ(Y ).

If Y = B and X < A then by Claim 2, Φ(X) < T = Φ(B) = Φ(Y ).

The only case needing more proof is where X < A and B < Y . By Claim

3, Φ(Y ) is the intersection of
←→
QY with

qy px

ST and S Φ(Y ) T ; by Claim 2, Φ(X)

is the point of intersection of
qy →
QX with

qy px

ST , and S Φ(X) T .

Since X A C B Y , the X-side of
←→
QY is also the C-side; by the construc-

tion and Claim 3, C S Φ(Y ) T , so that the C-side is also the S-side of
←→
QY ,

and this is opposite the T -side. Therefore Φ(X) ∈ the S side of
←→
QY which is

opposite the T -side.
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It follows from Theorem PSH.12 that
qy px

Φ(X)T intersects
←→
QY and since

qy px

Φ(X)T is a subset of
px qy

ST , this point of intersection is Φ(Y ). Therefore

Φ(X) Φ(Y ) T . Combining this with S Φ(X) T we have S Φ(X) Φ(Y ) T .

Since S < T , by Theorem ORD.6 Φ(X) < Φ(Y ).

Claim 8: The mapping Φ is a bijection of {X | X ≤ A or X ≥ B}
onto

px qy

ST .

By Claim 4 every point X for which Φ(X) is defined must either satisfy

X ≤ A or X ≥ B. Suppose X 6= X ′ are such points; if both X ≤ A and

X ′ ≤ A, by Claims 2 and 5 Φ(X) 6= Φ(X ′); if both X ≥ B and X ′ ≥ B,

by Claims 3 and 6 Φ(X) 6= Φ(X ′); if X ≤ A and X ′ ≥ B, by Claim 7

Φ(X) 6= Φ(X ′). Therefore Φ is a one-to-one mapping defined on {X | X ≤ A
or X ≥ B}.

Now let Z be any point of
px qy

ST ; then the line
←→
ZQ intersects L at some point,

because, by the negation of property PE, it cannot be parallel to L. By Claim

4 there can be no point X ∈ qy px

AB such that Φ(X) is defined. Therefore every

point of
px qy

ST is an image point of some X such that either X ≤ A or X ≥ B.

Claim 9: If Axiom LUB holds, the assumption that there is no

line through Q which is parallel to L yields a contradiction. By Claim

7, {Φ(Y ) | Y ≥ B} is the set of upper bounds for E = {Φ(X) | X ≤ A}. Let
U be the least upper bound for E . Since there are upper bounds for E which

belong to
px qy

ST , U ∈ px qy

ST . Moreover, U 6= S since L contains a point X < A, for

which Φ(X) > S; also U 6= T , because L contains a point Y > B for which

Φ(Y ) < T , so that Φ(Y ) is an upper bound for E .
It follows that either Φ−1(U) < A or Φ−1(U) > B.

If the former, by property B.3 of Definition IB.1 there exists a point Y

of L such that Y Φ−1(U) A, that is, Y < Φ−1(U) < A. Then by Claim 5,

Φ(Y ) > U > Φ(A) = S. But Φ(Y ) ∈ {Φ(X) | X ≤ A} so that U is not an

upper bound for this set, contradicting Axiom LUB.

If B < Φ−1(U), by property B.3 of Definition IB.1 there exists a point Y

of L such that B Φ−1(U) Y , that is, B < Φ−1(U) < Y . Then by Claim 6,

T = Φ(B) > U > Φ(Y ). But Φ(Y ) ∈ {Φ(X) | X ≥ B} and is therefore an

upper bound for {Φ(X) | X ≤ A}, and U is not the least upper bound for

this set. Again, this is a contradiction. ⊓⊔



Chapter 8

Existence of Midpoints in the Presence

of a Parallel Axiom (NEUTM)

Dependencies: Chapters 1, 4, 5, 6, 7, and 8 from Euclidean Geometry and

its Subgeometries (Specht); Axiom PW

Acronym: NEUTM

Property R.6 of Specht Ch.8 Definition NEUT.2 says that every segment

in a neutral plane has a midpoint. In this short chapter we prove this as a

theorem from the other properties (R.1 through R.5) of this definition, in the

case that one of the parallel axioms holds, either Axiom PW or PS.

If we had been able to prove this without invoking a parallel axiom, we

could have eliminated Property R.6 from Definition NEUT.2.

All references in this chapter of the Supplement are to Specht ; many of

them are to Chapter 8 (neutral geometry), but none of them cite anything

in that chapter after Theorem NEUT.48. There are no references to other

chapters of this Supplement.

For the record, we restate Definition NEUT.85 from Specht Chapter 8:

A triangle T is right iff an angle of T is right. In the first theorem below

we provide an alternate characterization of an acute angle, and prove some

preliminary lemmas, some of which duplicate theorems and exercises from

Chapter 8 of Specht.
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Theorem NEUTM.1 An angle ∠BAC is acute according to Defini-

tion NEUT.81 iff there exists a point Q such that ∠BAQ is right and

C ∈ ins∠BAQ.

Proof. If ∠BAC is acute according to Definition NEUT.81, there exist non-

collinear points E, D, and F such that ∠BAC < ∠EDF and ∠EDF is

right. By Definition NEUT.70 there exists a point P ∈ ins∠EDF such

that ∠BAC ∼= ∠EDP . By Theorem NEUT.38 let α be the isometry such

that α(∠EDP ) = ∠BAC and α(
px→
DE) =

px→
AB and α(

px→
DP ) =

px→
AC. Then let

Q = α(F ). By Corollary NEUT.44.2 α(∠EDF ) = ∠BAQ is right, and by

Theorem NEUT.15(11), C ∈ ins∠BAQ.

Conversely, suppose there exists a point Q such that ∠BAQ is right and

C ∈ ins∠BAQ. Since ∠BAQ ∼= ∠BAQ and ∠BAC ∼= ∠BAC, by Definition

NEUT.70 ∠BAC < ∠BAQ. Since ∠BAQ is right, by Definition NEUT.81,

∠BAC is acute. ⊓⊔

Lemma NEUTM.2 (cf Theorem NEUT.84) If A, B, and C are non-

collinear points on a neutral plane, and if ∠BAC is right, then ∠ABC and

∠ACB are both acute.

Proof. Let P be a point on the C-side of
←→
AB such that ∠ABP is right, and

let A′ be such that A′ B A. Then by Theorem NEUT.47(A)
←→
BP ‖ ←→AC. Since

C and P are on the same side of
←→
AB, by Exercise PSH.32 either C ∈ qy→

BP or

C ∈ ins∠ABP or C ∈ ins∠A′BP .

If C ∈ ins∠A′BP then by Definition PSH.36 C ∈ A′-side of
←→
BP and by

Theorem PSH.12 (Plane Separation Theorem),
qy px

AC must intersect
←→
BP which

is impossible since
←→
BP ‖ ←→AC. If C ∈ qy→

BP then both
←→
AC and

←→
BP are lines

perpendicular to
←→
AB and containing C, so that by Theorem NEUT.47(B)

these are the same line; then A = B which contradicts the hypothesis that

A, B, and C are noncollinear (and hence distinct). Therefore C ∈ ins∠ABP

and ∠ABC is acute. Similar reasoning, interchanging B and C, shows that

∠ACB is acute. ⊓⊔

Lemma NEUTM.3 (cf Exercise NEUT.20) Let △ABC be a right

triangle where ∠BAC is the right angle; then if E ∈ ←→BC and
←→
EA ⊥ ←→BC,

B E C. That is, E lies on the hypotenuse, but is not one of its endpoints.

Proof. If the conclusion is false, either E = B, E = C, B C E or E B C.
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If E = B then
←→
AB ⊥ ←→BC so that by Theorem NEUT.47(A),

←→
BC ‖ ←→AC;

this is impossible because a triangle has three corners, so E 6= B. A similar

argument shows that E 6= C.

If C B E let D be any point on the A-side of
←→
BC such that ∠CBD

is right. Then since ∠CBA is acute (by Lemma NEUTM.2), there exists a

point Q such that ∠CBQ is right and A ∈ ins∠CBQ. Then by Definition

PSH.36 A lies on the Q-side of
←→
BC; by Theorem NEUT.48(A) there is only

one line through B which is perpendicular to
←→
BC and both Q and D belong

to this line; moreover, both these points are on the A-side of
←→
BC. Therefore

px→
BD =

px→
BQ and ∠CBQ = ∠CBD, so by Theorem NEUTM.1 A ∈ ins∠CBD,

and A ∈ qy →
BDC.

Now
←→
BD ⊥ ←→BC and

←→
EA ⊥ ←→BC so that by Theorem NEUT.47(A)←→

BD ‖ ←→EA. Since C B E, E is on the side of
←→
BD opposite C so by The-

orem PSH.12 (Plane Separation),
qy px

EA and
←→
BD must intersect, contradicting

their parallelism. Thus C B E is false. A similar proof shows that B C E

is false. ⊓⊔

Lemma NEUTM.4 Let ∠ACB and ∠ADB be two right angles on a

neutral plane, where C and D are on the same side of
←→
AB. Then neither

C ∈ ins∠ADB or D ∈ ins∠ACB.

C
D

A

B

6 ADB cannot be a right angle

if 6 ACB is right.

Fig. 8.1 For Lemma NEUTM.4.

Proof. See Figure 8.1. If D ∈ ins∠ACB, by Definition PSH.36, D ∈ A-side
of
←→
BC and the B-side of

←→
AC. Since D ∈ C-side of

←→
AB, D ∈ ins∠ABC. By

Theorem PSH.40,
qy px

AC ⊆ ins∠ABC; by Theorem PSH.39, there exists a point

F of intersection of
qy px

AC and
←→
BD, so that A F C. By Corollary 2 of Theorem

PSH.39, C is on the side of
←→
BD opposite A. A similar argument will show

that C is on the side of
←→
AD opposite B.
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Let E = ftpr (D,
←→
AC). Apply Lemma NEUTM.3 to △ADF ; since ∠ADF

is right, A E F and hence A E F C, so E ∈ A-side of
←→
BD. Let E′ D E;

then E′ ∈ C-side of
←→
BD. Since B D F and F is on the opposite side of

←→
DE

to A, B ∈ A-side of
←→
DE.

Now
←→
CB ⊥ ←→AC and

←→
DE ⊥ ←→AC so by Theorem NEUT.47(A)

←→
CB ‖ ←→DE.

But B and C are on opposite sides of
←→
DE, so that

qy px

CB intersects
←→
DE, con-

tradicting their parallelism. Therefore D 6∈ ins∠ACB; interchanging C and

D in the above argument shows that C 6∈ ins∠ADB. ⊓⊔

Theorem NEUTM.5 Let C, D, E, F be points on the neutral plane

such that

(1) ∠CED and ∠CFD are right angles, and
←→
EF is the line of sym-

metry for both; and

(2) E and F are on opposite sides of
←→
CD.

Then

(A) ∠CED ∼= ∠CFD and
←→
CD ⊥ ←→EF ;

(B) if {H} = ←→CD ∩←→EF , px qy

EH ∼=
px qy

FH,
px qy

CH ∼=
px qy

DH, and
px qy

EC ∼=
px qy

FC ∼=
px qy

ED ∼=
px qy

FD.

Proof. First note that the first conclusion of (A) follows from Euclid’s fourth

postulate, Theorem NEUT.69, but in this chapter we are not assuming any-

thing from our development after Theorem NEUT.48, so this needs to be

proved.

Since
←→
EF is the line of symmetry for both ∠CED and∠CFD,R←→

EF
(
px→
FC) =

px→
FD and R←→

EF
(
px→
EC) =

px→
ED; then by elementary mapping theory

{R←→
EF

(C)} = R←→
EF

(
px→
FC ∩ px→

EC) = R←→
EF

(
px→
FC) ∩R←→

EF
(
px→
EC)

= (
px→
FD) ∩ (

px→
ED) = {D}.

By Theorem NEUT.22(A),
←→
CD is a fixed line for R←→

EF
and
←→
CD ⊥ ←→EF . Now

H , E, and F all belong to
←→
EF , so are fixed points for R←→

EF
; since R←→

EF
(C) =

D, by Theorem NEUT.15(5)
px qy

EC ∼=
px qy

ED,
px qy

FC ∼=
px qy

FD, and
px qy

HC ∼=
px qy

HD.

By Theorem NEUT.44,
←→
CD is a line of symmetry for

←→
EF . Let B =

R←→
CD

(E); then B is a point on
←→
EF because

←→
EF is a fixed line for R←→

CD
.

Then F and B are on the same side of
←→
CD because they are both in the side

opposite E, and are both on the same side of H . By Corollary NEUT.44.1

∠CBD is a right angle since it is congruent to ∠CED. We prove that B = F .

Suppose otherwise, that B 6= F ; by Theorem PSH.38
qy →
HF =

qy →
HB. By

Definition IB.4 exactly one of H F B, H B F , or B = F is true.
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If H F B, then F ∈ qy →
BH ; since H ∈ qy px

CD, by Theorem PSH.40 H ∈
ins∠CBD and hence F ∈ ins∠CBD. By Lemma NEUTM.4, this is impossi-

ble. Likewise, H B F is impossible. Therefore F = B = R←→
CD

(E); since H ,

C, and D are all fixed points for R←→
CD

, it follows from Theorem NEUT.15(5)

that
px qy

EC ∼=
px qy

FC,
px qy

ED ∼=
px qy

FD, and
px qy

HE ∼=
px qy

HF . ⊓⊔

Theorem NEUTM.6 If either Axiom PW or PS holds, every segment
px qy

AB on a neutral plane has a midpoint; this result is independent of Property

R.6 of Definition NEUT.2.

A

B

E′ E
H

X D

C

L

L′

L

M′ M

Fig. 8.2 For Theorem NEUTM.6.

Proof. See Figure 8.2. Let C and D be points on the same side of
←→
AB such

that
←→
AC ⊥ ←→AB and

←→
BD ⊥ ←→AB. Let L and M be the lines of symmetry of

∠BAC and ∠ABD respectively.

By Theorem NEUT.47(A),
←→
AC ‖ ←→BD. If L does not intersect

←→
BD, then

the two lines are parallel; both
←→
AC and L contain A and are parallel to

←→
BD.

This is impossible by either Axiom PS or PW. Therefore L intersects
←→
BD at

some point X . By Theorem NEUT.20(E) L contains a point P ∈ ins∠CAB

and
qy→
AP ⊆ ins∠BAC. Since L intersects

←→
AC at A, all points of the opposing

ray are on the side of
←→
AC opposite B so thatX ∈ qy→

AP ⊆ ins∠BAC. Therefore

X belongs to the C-side, that is, the D-side of
←→
AB, and thus X ∈ qy→

BD.

By Theorem PSH.37
qy px

XA ⊆ ins∠ABD; by Corollary PSH.39.2 A and X

are on opposite sides of M; thus by Theorem PSH.12 (Plane Separation)
qy px

AX ⊆ qy→
AX intersectsM at some point E.

Reflect the lines L and M, and the points C, D, and E in
←→
AB. Let

L′ = R←→
AB

(L),M′ = R←→
AB

(M), and E′ = R←→
AB

(E). Then ∠ABE′ ∼= ∠ABE,

and by Theorem NEUT.39, ∠ABE ∼= ∠EBD; by Theorem NEUT.14,

∠EBD ∼= ∠ABE ∼= ∠ABE′. By Exercise NEUT.40(A), ∠EBE′ ∼= ∠ABD,

and therefore ∠EBE′ is a right angle. Similarly, ∠EAE′ is a right angle, and
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both these angles have
←→
AB as their common line of symmetry. Let H be the

intersection of
←−→
EE′ with

px qy

AB. Then by Theorem NEUTM.5,
px qy

AH ∼=
px qy

BH , so

that H is a midpoint of
px qy

AB. ⊓⊔

Remark NEUTM.7 We would be most grateful if a reader with more

perspicacity than we should come up a proof of the existence of midpoints

using only properties R.1 through R.5 of Definition NEUT.2 without invoking

parallelism; this would make it possible, in the main development of Specht

to dispense with Property R.6 of this definition.
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Index

ÂB, arc subtending ∠AOB, 104

f [a, b], arc generated by f , 56

C((0, 0); 1), unit circle, 79

C((0, 0); r), circle with radius r, 79

L(f [a, b]), arc length of f over [a, b], 58

V(ϕ[a,b]), total variation of ϕ over [a, b], 60

•, inner product of vectors, 19

·, product of complex numbers, 42, 43

SP (f), summation of f over partition P,

57

absolute value

of a complex number, 50

acronym

AM, angle measure, 104–111

ARC, arc and arc length, 56–67

CNT, connected, 180–185

CNV, convex, 144–180

CS, cos and sin, 71–99

CX, complex numbers, 42–51

JCT, Jordan Curve Theorem, 114–115

LUPE, parallel lines from LUB, 189–194

PLGN, polygon, 115–130

SEP, separation, 128–144

VEC, vector space, 2–29

addition

of points on a plane, 2–3

affine mapping

and collineation, 25–29

on a vector space, 25–29

angle

central, of a circle, 104

measure, radian, 104

angle measure, 104–111

is additive, 107

of exterior angle of a triangle, 108

radian, 104

arc, 56

closed, 56

generated by function f , 56

of a circle, 104

rectifiable, 57

subtending angle, 104

arc length, 57

additive property of, 59

integral form for, 64

is bicontinuous bijection, 66

arithmetic

of complex numbers, 42

on a plane, 2–4

basis (of a vector space), 10

bound

least upper, 189

bounded variation

function of, 60

circle, 79

central angle, 104

circumference of, 79

diameter of, 79

enclosure of, 79
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inside of, 79

radius of, 79

unit, 79

circular functions, see cos, sin

cis

definition of mapping, 80

is continuous, 81

maps [0, 2π[ onto the unit circle, 81

coh, convex hull (of a set), 162

complex number, 42–51

conjugate, 50

modulus or absolute value, 50

real and imaginary part, 48

congruent (integers) (mod m), 118

conjugate (of a complex number), 50

coordinate, first and second, 6

coordinatization

left-handed, right-handed, 5

map, an isomorphism, 9–10

of a Euclidean/LUB plane, 4–7

corner

of polygon, regular and irregular, 172

cos, sin

basic properties, 75–78

composite argument formulae, 94

definition, 71–75

derivatives, 76

formulas for definition, 75

maxima and minima, 77

periodic of period 2π, 80

traditional angle definition, 94

cosine function, see cos, sin

curve, see arc

determinant (of a matrix), 22–23

dimension (of a vector space), 10

divisible, 118

dot (inner) product (of two vectors), 19

enc, enclosure

of a polygon, 130

endpoints

of a polygonal path, 120

entering intersection, 129

exc, exclosure

of a polygon, 130

exiting intersection, 129

extremal corners (of a polygon), 165

extremal points (of a finite set), 178

free segment

identification with a real number, 16

fudge theorem (for simple polygons), 126

function, mapping

circular, see cos, sin

of bounded variation, 60

periodic, 77

total variation of, 60

gauge, of a partition P, 57

group

Euclidean/LUB plane under +, 2

of all bijective linear mappings under

composition, 24

of all collineations of R2 with fixed point

(0, 0), 27

of complex numbers over ·, 45

vector space under +, 7

homeomorphism, bicontinuous bijection,

56

horizontal line, 12

imaginary part

of a complex number, 48

inner product (of vectors), 19

ins, inside

of a polygon, 123, 130

integral form for arc length, 64

intersection

of angle and segment, 127

of angle with segment, entering and

exiting, 129

of polygon and admissible angle, 144

of segments and rays, 115–118

isometry

preserves angle measure, 105–107

preserves arc length, 86

isomorphism

coordinatization map, 9–10

of real numbers and a line, 15
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vector space, 9

Jordan Curve Theorem

for a simple polygon, 114

for simple polygons, 185

introduction, 114

Jordan, Camille, 114

labeling function, 119

least upper bound, 189

left-handed coordinatization, 5

line

horizontal, 12

slope of, 13

vertical, 12

linear

mapping (transformation, operator),

20–25

space, see vector space

transformation (mapping, operator),

20–25

linearly independent (vectors), 10

LUB, least upper bound, 189

matrix (of a linear mapping), 21–23

midpoint

existence without Property R.6 of

Definition NEUT.2, 200

existence without Property R.6 of

Definition NEUTM.2, 195

modular numbering, 118–119

modulus

of a complex number, 50

multiplication

of complex numbers, 42, 43

norm (length) of a vector, 16

properties of, 18

normal

corner of a polygon, 166

point of a finite set, 179

ordered pair, triple

vector space of ordered pairs, 6

vector space of ordered triples, 11

orthogonal vectors, 19

out, outside

of a polygon, 123, 130

parallel

Property PE, parallels exist, 189

parity, odd and even

of a point, 130–138

partition

finite subset of of [a, b], 56

gauge of, 57

refinement of, 57

path, see polygonal path

periodic function, 77

polygon

j-corner of, 119

j-edge of, 119

adjacent corners of, 119

adjacent edges of, 120

admissible angle, 123

admissible ray, 123

corner, regular and irregular, 172

enclosure of, 130

exclosure of, 130

inside of, 130

outside of, 130

simple, 119

simple, separates the plane, 137

polygonal path, 120

connecting two points, 120

endpoints, 120

loop, 122

simple, 120

simplification, 122

subpath, 120

polygonally connected (set), 120

product

of complex numbers, 42, 43

Property PE, parallels exist, 189

Pythagorean theorem, 17

radian angle measure, 104

ray

test, 131

real part

of a complex number, 48
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rectifiable arc, 57

arc length of, 57

right-handed coordinatization, 5

rotation

analytic forms, 95–96

is a rigid motion, 89–91

rotund (polygon), 145

scalar product (multiple)

on a plane, 3

separates (the plane), 137

set

polygonally connected, 120

sides of a line intersecting a circle, 82–86

sin, see cos, sin

sine function, see cos, sin

slope of a line, 13

square root, of a distance, 110

sum

of points on a plane, 2–3

summation

of f over partition P, 57

supporting edge (of a polygon), 145

supporting line

basic, 165

of a finite set, 177

of a polygon, 145

total variation of function, 60

additive property of, 61

continuity, 61

nondecreasing property of, 61

translation

on coordinate plane, 96–99

triangle

sum of angles is π, 108

Ulrich, F. E., 114

unit circle, 79

and cos and sin, 79

variation

total, of function, 60

vector

orthogonal, 19

vector space

basis, 10

dimension, 10

isomorphism, 9

over real numbers, 7–29

scalars, 7

subspace, 8

vertical line, 12
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