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Preface

This Supplement is a companion to the book by Edward J. Specht, Harold
T. Jones, Keith G. Calkins, and Donald H. Rhoads entitled Euclidean Geom-
etry and its Subgeometries published in 2015 by Birkh&user. We shall refer
to this work as Specht.

Chapter 1 of this Supplement is an expansion of Specht Ch.18 (Section
18.2) in Specht. It duplicates some of the material found there, as well as
parts of Specht Ch.1, Section 1.5. Chapter 2 defines and develops complex
numbers on the coordinate plane.

Chapter 3 develops the notion of the length of an arc; Chapter 4 uses arc
length to define the circular functions sin and cos in a treatment originated
by our first author, Edward Specht. Chapter 5 builds on the previous two
chapters to define angle measure.

Chapter 6 is a leisurely exploration of properties of polygons on a Pasch
plane, eventuating in a proof of the Jordan Curve Theorem for the polygonal
case. It does not try to achieve this proof in the most economical way.

The final chapters are essentially fragments which were left over from the
main development, but which might have some interest for their own sakes.

Chapter 7 is a proof of “Property PE,” which says that given a line £
on a Pasch plane and a point @ not on £, there exists a line M containing
Q@ that is parallel to £. This was proved in Chapter 8 of Specht as part of
neutral geometry. Here we prove it for a Pasch plane (without assuming the
existence of a reflection set) on which the line £ has been ordered according
to Specht Ch.6 and Axiom LUB holds.

Chapter 8 shows that in Specht Ch.8 Definition NEUT.2, property R.6
(existence of midpoints) is a consequence of properties R.1 through R.5, pro-
vided Axiom PW holds.



ii

Citations and references. In this Supplement, we will often refer to the-
orems, definitions, and remarks, both from this Supplement, and from Specht.
Our preferred (brief) style of reference will be simply by label, acronym, and
number, as, for instance, “Theorem ISM.5” or “Definition VEC.12.” When
first referencing items of a particular acronym from Specht, we will include ad-
ditional labeling, as, for instance, “Specht Ch.12 Theorem ISM.5.” Repeated

uses of the same acronym will usually revert to the shorter style.

Condensed Table of Contents for Specht, Fuclidean Geometry

and its Subgeometries

Acronym Chapter Title Page
I 1 Preliminaries and Incidence Geometry 1
P 2 Affine Geometry: Incidence with Parallelism 37
CAP 3 Colineations of an Affine Plane 45
1B 4 Incidence and Betweenness 63
PSH 5 Pasch Geometry 79
ORD 6 Ordering a line in a Pasch Plane 139
COBE 7 Collineations preserving Betweenness 149
NEUT 8 Neutral Geometry 155
FSEG 9 Free Segments of a Neutral Plane 225
ROT 10 Rotations about a Point of a Neutral Plane 235
EUC 11  Euclidean Geometry Basics 251
ISM 12  Isometries of a Euclidean Plane 265
DLN 13 Dilations of a Euclidean Plane 281
OF 14  Every Line in a Euclidean Plane is an Ordered Field 305
SIM 15  Similarity on a Euclidean Plane 319
AX 16  Axial Affinities of a Euclidean Plane 335
QX 17  Rational Points on a Line 347
REAL 18 A Line as Real Numbers 361
RR 18  Coordinatization of a Plane 385
AA 19 Belineations on a Euclidean/LUB Plane 391
RS 20 Ratios of Sensed Segments 401
21 Consistency and Independence of Axioms, etc 413

21 Acronyms: LA, LB, LC, FM, DZI, MLT, PSM, LE,

21 Acronyms: BI, MMI, RSI, DZII, DZIII

References to acronyms other than those listed above will be to items in

this Supplement.



Contents

1 The Plane as a Vector Space (VEC) ...................... 1
1.1 Operations on the plane .............. ... ... ... ........ 2
1.2 Vector spaces, R? and isomorphisms ...................... 4
1.3 Lines and their slopes . ...... ... .. .. ... . . 11
1.4 Norms and inner products . ........... .. ... .. ... 16
1.5 Linear mappings . .. ...ttt 20
1.6 Affine mappings and belineations .. ....................... 25
1.7 Exercises for vector spaces . .............. . 30
1.8 Selected answers for vector spaces .............. ... ....... 32
2 The Field of Complex Numbers (CX)..................... 41
2.1 Definitions and theorems for complex numbers ............. 42
2.2 Computation with complex numbers ...................... 48
2.3 Exercises for complex numbers . .............. .. ... ....... 52
2.4 Selected answers for complex numbers..................... 52
3  Arc Length (ARC) ...t 55
3.1 Definitions and theorems for arc length................. ... 56
3.2 Exercises for arclength ........ .. .. ... .. . i 67
3.3 Selected answers for arc length ..... ... ... .. .. ... ... 68
4 The Real Functions Cosine and Sine (CS) ................ 71
4.1 Basic properties of cosine and sine; periodicity ............. 72
4.2 Cosine, sine, and the unit circle .......... ... ... .. ... ... 78
4.3 Sides of a line intersecting a circle ........................ 82

4.4 Tsometry preserves arc length; k =

wol3

; SUMMATY . v vvveeeen . 86

iii



iv Contents
4.5 Rotations; sum and difference formulas ... ........... ... ... 89
4.6 Translations of R2. ... ... ... ... .. i 96
4.7 Exercises for cosine and sine ....... ... .. o oo 99
4.8 Selected answers for exercises cosine and sine .............. 100
5 Angle Measure (AM) ... 103
5.1 Definitions and theorems for angle measure ................ 104
5.2 Exercises for angle measure .. ......... .. ... ... ... ... 111
5.3  Selected answers for angle measure ....................... 111
6 The Jordan Curve Theorem for Polygons ................. 113
6.1 Segments and rays (PLGN) ..... ... ..., 115
6.2 Polygons, polygonal paths, and rays (PLGN) .............. 118
6.3 Separation (SEP)...... ... .. 128
6.4 Rotundity and convexity (CNV) ... .. ... ... ... ... 144
6.5 Connectedness (CNT) . ...t 180
6.6 Exercises for Jordan Curve Theorem ................... ... 186
6.7 Selected answers for Jordan Curve Theorem ............... 186
7 Property PE on a Pasch Plane with Property LUB (LUPE)189
8 Existence of Midpoints in the Presence of a Parallel
Axiom (NEUTM) ... e 195
References......... ... . 201



List of Figures

1.1

3.1

4.1

4.2

4.3
4.4
4.5
4.6
4.7

4.8

5.1

6.1
6.2
6.3
6.4
6.5

Figures for Definition VEC.9: left-handed (left) and
right-handed (right). ....... . ... i i 6

Showing construction of the summation of f over the

partition

Pz{a=t0<t1<...<t6=b} ........................... 57
Graphs of f(z) = H% (top) and g(z) :/f(t) dt (bottom)

for Definition CS.1....... ... ... ... ... SRR 72
The graphs of ¢(x) = g~ (), sinx, and cosx for Definition

CS.3 and Heuristic Remark CS.4........ ... .. ... ... .... 74
A line divides a circle into two arcs. ......... ... ... ... ... 84
Graphs of sinz and cosz for reference. ..................... 88
The case where « is a point reflection. ..................... 90
Mustrating Case I. ... . 91
For Theorem CS.28 and Remark CS.28.1, showing action of
rotation p.. ... 92
Showing mapping of cis[0,t —s] to €. ... ... .. L. 92
For Theorem AM.13. .. ... .. . i 110

Showing possibilities for intersection of a ray and a segment. .. 116

For Lemma PLGN.11. ... .. ... . 124
For Theorem PLGN.13. ... ... ... ... ... ............. 126
For Theorem PLGN.17 Alternative (3). .............. ... ... 128
For Theorem SEP.4 (A) Case IT. ... ... ..., 132



vi

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26

6.27
6.28
6.29
6.30
6.31
6.32
6.33

7.1
7.2
7.3
7.4

8.1
8.2

List of Figures

For Theorem SEP.4(B) Case IT. . ....... ... .. 132
For Theorem SEP.7. ... ... ... . ... .. .. ... ... ... 135
For Remark SEP.9. ....... .. ... ... ... . ... .. 137
For proof that alternate (4) is impossible. ............... ... 139
For Theorem SEP.14, alternatives (1), (2), and (3). .......... 139
For Theorem SEP.14, alternative (1) parts (b) and (c)........ 140
For Theorem SEP.15. ... ... ... . ... ... . ... ... ... 142
For the construction for part (1)(b) of Theorem SEP.15....... 143
For Theorem CNV.3(A). ...t 146
For Theorem CNV.5(B). ...t 149
For one case of Lemma CNV.6(A) (see also Theorem PSH.53). 151
For Lemma CNV.6(E) alternative (i). ..............coooo... 154
For proof of Lemma CNV.6(G). . ..., 154
For proof of Lemma CNV.6(H). ....... ...t 155
For proof of Lemma CNV.6(I), cases (1)—(iii). ............... 156
For Lemma CNV.6(I), hypothesis (1), case (iv). ............. 157
For Lemma CNV.6(I), hypotheses (2)—(4), case (iv). ......... 158
For proof of Theorem CNV.7(A). ..., 159
For Theorem CNV.7, contradicting the convexity of enc F . ... 160
For proof of Theorem CNV.8(B) alternative (3).............. 161
For Theorem CNV.13(A),(B); the dotted lines are the lines of

D which are not edges of F. ... ... . 164
For proof of Theorem CNV.I7(1). ..., 165
For Remark CNV.26. ... ... ... .. i 172
For Theorem CNV.29, where X; = X3 and X; = X5. ........ 174
For proof of Theorem CNV.29 Case (I). .............co... 174
For proof of Theorem CNV.29 Case (II) Claim (a). .......... 175
For proof of Theorem CNV.29 Case (II) Claim (b). .......... 176
Showing insH Z insG. ...t 177
For Claim 2 in Theorem LUPE. ........................... 191
For Claim 3 in Theorem LUPE. ........................... 191
For Claim 4 in Theorem LUPE. ........................ ... 192
For Claim 7 in Theorem LUPE. ..................... ... ... 193
For Lemma NEUTM.4. ... ... ... .. .. .. .. .. ... ... .... 197
For Theorem NEUTM.6. .......... . ... ... ... ......... 199



Chapter 1
The Plane as a Vector Space (VEC)

Dependencies: This chapter is dependent on Euclidean Geometry and
its Subgeometries, by Specht, Jones, Calkins, and Rhoads, published by
Birkhauser, 2015

Acronym: VEC

Terms defined: addition, scalar product on the plane; coordinatization (right
or left-handed), axes, origin, clockwise and counterclockwise; first and second
coordinates on a plane; vector or linear space, vector space isomorphism,
coordinatization map; linearly independent, span, basis, dimension; ordered
triples, n-tuples; vertical, horizontal, slope, norm, inner (dot) product, or-
thogonal; linear mapping, sum and scalar product of linear mappings, matriz,

determinant; affine mapping

The first part of this chapter is an expansion of Chapter 18 of Fuclidean
Geometry and its Subgeometries by Specht, Jones, Calkins, and Rhoads, here-
after referred to as Specht. This duplicates some of the material found in
Specht Chapter 18, as well as parts of Chapter 1, Section 1.5. Later in the
present chapter we provide some results on linear and affine mappings which
are relevant to the main development in Specht.

In Section 18.3 of Specht Ch.18 we assigned a real number to each point
on an arbitrary line in a Euclidean/LUB plane. This process might be char-
acterized as coordinatizing the line. In Section 18.4 of the same chapter we
briefly outlined the process by which the Euclidean/LUB plane itself may be
coordinatized, assigning to each point on it a pair (a,b) of numbers.! Here

we develop this process in greater detail.

I Tt is possible to coordinatize Euclidean space, assigning to each point a triple (a, b, ¢) of

real numbers, but we do not pursue this.



2 1 The Plane as a Vector Space (VEC)

Here, references to items labeled VEC will be to the current chapter; all
other references are to Specht. In particular, this chapter contains numerous
references to Chapter 18 of that work, which uses acronyms REAL and RR.

We refer the reader to the note Citations and references at the end
of the Preface to this Supplement and to the abbreviated Table of Contents
(with acronyms) for Specht.

1.1 Operations on the plane

Throughout this chapter, P will denote a Euclidean/LUB plane as defined
in Specht Ch.18 Definition REAL.2.

Definition VEC.1 (A) For each A € P\ {O}, define 74 to be the trans-
lation of P such that 74(O) = A. Specht Ch.12 Theorem ISM.5 says that
such a translation exists and is unique.

(B) Define 7o = 1, the identity.

(C) For any A and B in P, define

A+ B=(10o74)(0) =715(14(0)) = 75(A).
The operation + is called addition and A + B is the sum of A and B.

Remark VEC.2 (A) The operation + from Definition VEC.1 applied
to points on a line L through O is identical to the operation & from Specht
Ch.14 Definition OF.1(A) and (C).

(B) Since we have made the identification of a line on the plane with the
real numbers, we abandon the use of the symbol & and henceforth will use
simply +. However, in cases where we wish to emphasize that we are adding
two points in a single line through O, we may revert temporarily back to .
Also, if we should have occasion to multiply points on such a line we may
continue to use ®—at this point there is no definition of the product of ar-

bitrary points on the plane.

Theorem VEC.3 The Euclidean/LUB plane P is an Abelian group under

the operation +.

Proof. Let T = {a | « is a translation of P or a = 1}, then by Theorem
ISM.8(A) T is an Abelian group under composition of mappings. Routine
calculations based on Definition VEC.1 confirm that P is an Abelian group
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under the operation +; we leave these to the reader as Exercise VEC.1. O

Theorem VEC.4 If O, A, and B are noncollinear, then A + B is the

fourth corner of the parallelogram whose other corners are O, A, and B.

Proof. This is an immediate consequence of Exercise ISM.2. O

Remark VEC.5 (A) Note that 74 is the translation that not only maps
O to A but also maps B to A+ B. Also, 7a_p(B) = (A—B)+ B = A so
TAa—p maps B to A.

(B) If A and B are any two points then 7_g(B) = O and 7_p(A4) = A— B.
By Specht Ch.8 Theorem NEUT.15 (since 7_p is an isometry) 7_3(54_33) =
E——3 E—3 E——3
(A — B)O and hence AB =2 O(A — B).

(C) The line £ = OA can be built into an ordered field using the machinery
of Specht Chapter 14; by Theorem OF.10(A)(1) of that chapter, for each
AeP, —A="TRop(A). Hence for any A, Ro(m) = ORo(A) = O(—A) and
E—3 =3
OA = O(—A). (cf Theorem OF.10(A)(4).)

(D) Combining parts (B) and (C), we have AB =~ O(A - B) = O(B — A).

Definition VEC.6 For every point A € P, and every real number z, de-
fine A as in Definition REAL.19 (and summarized in Theorem REAL.20),
where the line O<—/>1 has been built into an ordered field. x A is called the scalar

product of x and A, and the number z is called a scalar.

Remark VEC.6.1 (A) By Theorem REAL.37 we know that for each
real number x there exists a dilation ¢, with fixed point O such that for all
AeP\{O}, A =6,(A).

(B) Definition VEC.6 depends explicitly on the fact that the line m has
been built into a field. The multiplicative field properties of this line are es-
sential to the development of the properties of scalar product such as those
stated in Theorems REAL.23 and Corollary REAL.35.1.

Theorem VEC.7

(A) For every A € P\ {0}, OA = {zA € P|x € R}. That is, every line
through the origin is the set of all scalar multiples of any non-O point in that
line.

Moreover, if A and B are any points in P and x andy are any real numbers,

(B) z(yA) = (zy)A, (scalar multiplication is associative)
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(C) x(A+ B) = xA+ B, (scalar multiplication is distributive with respect
to addition of points)

(D) (z+y)A =2A+yA, (scalar multiplication is distributive with respect
to addition of scalars)

(E) 1A= A, and

(F)zA=0 iff t =0 or A =0 (or both).

Proof. (A) OA is a line through the origin O and therefore is a fixed line for
the dilation d,, whose existence is noted in Remark VEC.6.1, and hence if
x#0,2A € OA. By Theorem REAL.35(A), for every A’ € fﬁ\ {O}, there
exists a real number ¢ # 0 such that tU; = A’ and a real number s # 0 such
that sU; = A, so that A’ = éA.

(B) This is Specht Ch.18 Theorem REAL.23.
(C) This is Theorem REAL.32.
(D) This is Theorem REAL.31.
(E) 1A = A is immediate from Specht Ch.17 Definition QX.1(C).
(F)Ifx =0o0r A= O (or both), zA = O by Definition REAL.19(A)(1). If
xA = O, then by Theorem REAL.25 2A = 2(U ® A) = 2U ® A = O and by
Specht Ch.14 Theorem OF.10(H), 2U = O or A= O. If 2U = O then 2 =0
by Corollary REAL.34(B).

In parts (E) and (F) we used the ® symbol because we were referring back
to the product operation used in OF and REAL on the line L. 0O

1.2 Vector spaces, R? and isomorphisms

Theorem VEC.8 Let P be a Euclidean/LUB plane, and let O be its
origin. Let Ly and Lo be lines in P such that Ly N Ly = {O}. Using the
machinery of Chapters 14 and 18 of Specht, build each of the lines Ly and La
into an ordered field which is isomorphic to R, the set of all real numbers, and
let Uy and Us, respectively, be their units, so that both Uy and Us correspond
to the real number 1 under their respective isomorphisms.

(A) For every A € P, there exist unique real numbers a and b such that
A = aU; + bUs.

(B) alU1 +bU2 =0 iff a=b= 0.

(C) If A ¢ L1 ULy, so that both a # 0 and b # 0, EO(aUli = EbUg)/i and

3 E

O(bUs) = (al1) A.
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Proof. If A is any point on P, by Axiom PS there exists a unique line My
containing the point A such that either M; = L; (in case A € L;) or
M; || Ly; and there exists a unique line My such that either My = Lo
(in case A € Ly) or My || Ls.

By Exercise 1.1, M intersects L, in exactly one point, which we shall
call As, and My intersects Ly in exactly one point which we call A;. By
Theorem REAL.35, there exists a unique real number a such that A; = al;
and a unique real number b such that Ay = bUs. Since A uniquely determines
My and M, and these lines uniquely determine the points A; and Ao, which
in turn uniquely determine a and b, @ and b are uniquely determined by A.

Moreover, A € Ly iff A5 = O iff b = 0, in which case

A=A14+0= A1+ Ay = aU; + bUs;
Aelsiff Ay = O iff a =0, in which case
A:O+A2 :A1+A2 :CLU1+bU2;
and A=0 iff A€y Ny iff a =b =0, and again in this case
A=0+40 =alU; + bUs.

If Ae P\ (L; ULy), by Theorem VEC.4, aU; + bUs is the fourth corner
of the parallelogram of which O, aU;, bU> are the other three corners. Since
M contains the point A; and My contains the point As and are parallel
to (or equal to) Ly and Lo, respectively, they are the same, respectively, as
the sides (aUy)(aUy + bUs) and (aUs)(aU; + bUs) of this parallelogram. Since
both My and M; contain A, A = aU; + bUs. This completes the proof of
parts (A) and (B).

(C) The quadrilateral OO (aU; ) A(bUz) is a parallelogram because M; || Ly
and My || L. The result follows from Specht Ch.11 Theorem EUC.12(A). O

Definition VEC.9 (A) In Theorem VEC.8, if L; L Lo, the two units
Uy and Us,, together with their lines L; and Ly will be referred to as a
coordinatization of P. A coordinatization based on lines I.; and L, and
their units Uy and U, will be referred to as the coordinatization (Uy, Us).
(cf Definition VEC.14(B).)

(B) Ly and Ly are the axes of this coordinatization, and O is its origin.
For a visualization, see Figure 1.1.

(C) Interpreting IP as a physical plane, such as a sheet of paper or a chalk-
board, if a person’s right hand is placed with the palm toward the surface so
that the index finger points in the direction of OJ—>U1 and the thumb points in
the direction OHUQ , then the coordinatization of P is right-handed.
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U- 2 U2

U1 O O Ul

Fig. 1.1 Figures for Definition VEC.9: left-handed (left) and right-handed (right).

Whereas, if a person’s left hand is placed palm toward the surface so that
the index finger points in the direction of OHUl and the thumb points in the
direction OHUQ , then the coordinatization of P is left-handed.

The rotation P such that p(OH(h )= O]—>U2 is clockwise for left-handed co-

ordinatization and is counterclockwise for right-handed coordinatization.

Definition VEC.10 Let R? denote the set
R x R = {(a,b) | a and b are both members of R},

that is, R? is the Cartesian product of R and R (cf Specht Ch.1 Section 1.3).
For any (a,b) and (c,d) in R?, and any real number z, define

(A) (a,b) + (¢,d) = (a+ ¢,b+ d) and

(B) z(a,b) = (za, xb).

(C) For any point (a,b) € R?, we will refer to a as the first coordinate

(

of (a,b), and to b as the second coordinate.

Theorem VEC.11 For any (a,b), (c,d), and (e, f) in R?, and any real

numbers x and y,
(A) (1) (a,0) + (¢,d) = (¢, d) + (a
(2) (a,0) +((e,;d) + (e, f)) =

ciative).

a,b) (addition is commutative).
((a,b) + (e, d)) + (e, f) (addition is asso-

(3) (a,b) + (0,0) = (a,b) ((0,0) is the additive identity.)

(4) (—a,—=b)+(a,b) = (0,0) ((—a, —b) is the additive inverse of (a,b).)
(B) (1) z(y(a,b) = (xy)(a,b) (scalar multiplication is associative).

2)1

(a,b) = (a,b).
(C) (1) z((a,b) + (¢,d)) = x(a,b) + x(c,d) (scalar multiplication is dis-
tributive with respect to addition of points).



1.2 Vector spaces, R? and isomorphisms 7

(2) (z+y)(a,b) = z(a,b) +y(a,b) (scalar multiplication is distributive
with respect to addition of scalars).
(D) z(a,b) = (0,0) iff x =0 or (a,b) = (0,0) (or both).

Proof. Using Definition VEC.10 and properties of real numbers,
(A) (1) (a,b)+ (¢,d) = (a+ ¢, b+d) = (c+a,d+b) = (c,d) + (a,).
(2) (a,0) + ((¢,;d) + (e, f)) = (a,0) + (¢ + e, d+ f)
=((@a+(ct+e)b+(d+e))=((a+c)+e (b+d)+e)
=(a+cb+d)+ (e f) = ((a,0) + (¢, d)) + (e, f).
((a,0) +(0,0) = ((a + 0,6+ 0) = (a,b).
4) (—a,=b) + (a,b) = (a —a,b—1b) = (0,0).
(B) (1) 2(y(a,b) = 2(ya, yb) = (zya, xyd) = (zy)(a,b).
1(a,b) = (1la, 1b) = (a, b).
z((a,0) + (¢, d)) = z((a+¢,b+d)) = (z(a +c),z(b+d))
= (za + zc,xb + xd) = (za, xb) + (xc, xd)
= z(a,b) + x(c, d).
(& + 9)as (& + Y)B) = (w0 + ya, 2b + yb)
= (za,xb) + (ya, yb) = x(a,b) + y(a,b).
(D) z(a,b) = (0,0) iff (za,ab) = (0,0) iff za = 0 and b = 0 iff (z =0
=0)and (zx=0o0rb=0)iffz =00r (a =0and b=0) iff x =0 or

(2) (z+y)(a,b) =

Definition VEC.12 A vector space, or linear space over the field R of
real numbers (called scalars) is a set V of elements called vectors satisfying
the following conditions (A), (B), and (C):

(A) To every pair A and B of vectors in V there corresponds a vector
A+ B, called the sum of A and B, such that V forms an abelian group with
respect to the operation +, that is,

(1) A+ B= B+ Afor all A and B in V (addition is commutative),

(2) A+ (B+C)=(A+B)+C for all A, B, and C in V (addition is
associative),

(3) there exists in V a unique vector O (called the origin such that
for every A € V, A+ O = O (O is the additive identity), and

(4) to every vector A € V there corresponds a unique vector —A such
that A+ (—A) = O (—A is the additive inverse of A.

(B) To every pair A and x, where A € V and « is a real number, there
corresponds a vector zA € V called the product, or scalar product of x
and A, such that
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(1) x(yA) = (zy)A for any real numbers x and y and every A € V
(multiplication by scalars is associative), and
(2) 1A = A for every vector A € V.

(C) (1) 2z(A+ B) = xA + aB for every real number z and all vectors A
and B in V (scalar multiplication is distributive with respect to addition of
vectors), and

(2) (z +y)A = A+ yA for all real numbers x and y and every
vectors A € V (scalar multiplication is distributive with respect to addition
of scalars).

(D) If V is a vector space, a subset U C V is a subspace of V iff it is a
vector space under the same operations as in V. A subspace U of V is said to

be a proper subspace if there exists at least one point A € V such that A ¢ U.

Remark VEC.12.1 (A) By Theorem VEC.3 and Theorem VEC.7(A),
(B), (C), and (D), P is an additive abelian group and a vector space. By
Theorem VEC.11, R? = R x R is a vector space.

(B) The reader should verify for herself that R is a vector space over
itself—the vector space axioms are just a subset of the field axioms.

(C) The word vector in the term vector space does not imply their visual-
ization as arrows on the plane in various locations (that is, “bound vectors”);
if they are visualized as arrows, the initial point is always the origin O.

(D) The word space in the terms vector or linear space does not imply
that it is ordinary “space” as in the incidence axioms. A vector space is a
very general concept encompassing lines, planes, space, and spaces of higher
dimension—see also Remark VEC.17.

(E) A subset U of V is a subspace iff for all A and B in U and every real
number ¢, both A+ B € U and tA € U. This is because all the computational
properties of V are “inherited” by U. The set {O} is a trivial subspace of V;
also, V is a subspace of itself.

Theorem VEC.13 FEvery proper subspace (other than the trivial subspace
O) of V of the plane P is a line through the origin O.

Proof. Let A # O be a point of V. Then m C V. If U is a proper subspace
of P we show that it cannot contain any points other than those of OA.
Suppose the contrary, that B # O is also a point of V and B ¢ O<—/>l Then
also @ C V. If C is any point of P, let M be the line through C' which
is parallel to m, as guaranteed by Axiom PS. Since @ intersects m at
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O it must also intersect M at some point D, by Specht Ch.2 Exercise IP.4.
Then C' + (—D) € OA. Hence C — D +D=Cc¢ OA + OB and therefore
+ @ =P, and V = P, so it is not a proper subspace. Therefore the only

proper subspaces of P are lines through the origin. 0O

Definition VEC.14 (A) Let P be the Euclidean/LUB plane, O be its
origin, and let L1 and Lo be perpendicular lines in P such that Ly NLy = {O}
which have been built into ordered fields with U; and Us, respectively, as
their units. Define X to be a mapping from P to R? as follows: for every
A = aU; + bU; € P, define A\(A) = A(aUy + bU3) = (a,b).

(B) The mapping A defined in part (A) may be referred to as the coor-
dinatization map belonging to the coordinatization (Uy, Us) (cf Definition
VEC.9(A)).

(C) A mapping @ from a vector space V to a vector space U is a vec-
tor space isomorphism, or, if the context is well understood, simply an
isomorphism iff

(1) @ is a group isomorphism between the two spaces (as additive
groups), and
(2) for every real number x and every A € V, ®(xA) = xd(V).

Again, as with isomorphisms of groups and fields, if two vector spaces
are isomorphic, they cannot be distinguished algebraically and hence may be
identified.

Remark VEC.15 It is easy to show that a bijection @ of V to U is a
vector space isomorphism iff for all real numbers x and y and all members
A and B of V, §(xA + yB) = 2P(A) + y®(B). The proof of this is Exercise
VEC.2.

Theorem VEC.16 Let P, R?, L1, Ly and X be as in Definition VEC.1}.
(A) X is a bijection onto R? and is a vector space isomorphism between P
and R?.
(B) If A # O is any point of L1, then Ly = {zA | € R} and
ML) = {(z,0) | z € R}.
If B # O is any point of Lo, then Lo = {yB |y € R} and
A(L2) ={(0,y) |y € R}.
(C) A line L || Ly iff for some point C € P\ Ly, L =1Ly + C iff for some
real number ¢ # 0, A(L) = {(z,¢) | z € R}.
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A line L || Ly iff for some point D € P\ Lo, £ = Lo + D iff for some real
number d # 0, A(£) = {(d,y) | y € R}.

Proof. (A)(I) A is a one-to-one mapping, for if \(A) = A(B), where A =
aUy +bUz and B = cUy +dUs, then (a,b) = (¢, d). X is onto R?, for if (a, b) is
any member of R?, \(aU; + bUz) = (a,b). To see that it is an isomorphism,
we must prove properties (1) and (2) of Definition VEC.14(C).
(1) X is a group isomorphism between the two spaces (as additive groups),
since for every A = aU; + bUs and B = cUy + dUs in P,
)\(A +B) = )\(aUl + bUs + cU; + dUg) = MaU; + cUy + bUs + dUg)
=XN(a+c)Ui+ (b+d)Us) = (a+¢,b+d)
= (a,b) + (¢,d) = AM(A) + \(B).
(2) For every A = aUy + bUs and every real number x, using part (1)
Mz A) = Mz(aU;y + bUz2)) = MxzaU; + 2bUs) = (za, xb)
= z(a,b) = zA(alU; + bUs) = zA(A).
The proofs of parts (B) and (C) are Exercise VEC.4. O

Remark VEC.17 (A) One of our objectives here is to use the fact of
isomorphism between R? and P to simplify the way in which we think about
points in the plane. There is something quite clumsy about having constantly
to refer to a point A in the plane as alU; 4+ bUs. For many purposes it’s easier
to think of (and easier to write!) such a point as a pair (a, b) of real numbers.

In the following, we make the identification between aU; + bUs and (a, b),
treating them as if they were the same thing. We will be switching notations
back and forth at will—doing so is legitimate because of the isomorphism
A and Theorem VEC.16. In particular, it is legitimate to write part (C) of
Theorem VEC.16 just above as:

A line L || Ly iff for some real number ¢ # 0, L = {(z,c) | z € R}.

A line L || Lo iff for some real number d # 0, L = {(d,y) | y € R}.
Citations to Theorem VEC.16(C) will, without further reference, be consid-
ered to include this version.

(B) In the language of vector space theory, part (B) of Theorem VEC.8
(aUy+bUy = O iff a = b = 0) says that the two vectors Uy and U, are linearly
independent. Also, the fact that every point A in P can be expressed as
A = aU; + bUs for some a and b says that the two vectors U; and U, span
the space P. In any vector space, a set of vectors which is both linearly

independent and spans the space is called a basis for the space.
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It can be shown that every vector space has a basis, and that any two bases
for a given vector space have the same number of vectors, that is they have
the same cardinal number (cf Specht, Chapter 1, Section 1.4). The number
of elements in a basis of a space is called its dimension. Two vector spaces
which are isomorphic must have the same dimension. The plane P and R?
both have dimension 2. That R? has dimension 2 can be seen without resort-
ing to the isomorphism, by verifying that the set {(1,0),(0,1)} is a basis for
R2.

(C) Tt is quite natural to extend Definition VEC.10 to vector spaces con-
sisting of ordered triples of real numbers, and with some effort we might
show that space (as defined in the axioms for incidence geometry) is isomor-
phic to this vector space.

We may extend these notions further to n-tuples of real numbers. Define
the sum of any two n-tuples (a1, as,...,a,) and (b1, b, ...,b,) in R" = R x
Rx..xR,as

(a1,a2,...,an) + (b1,b2,....;b,) = (a1 + b1, a2 + ba, ..., an + by),
and for any real number z define the scalar product
x(a1,az, ..., an) = (xa, xas, ..., xay,).

Then it is easy to show (as we did in Theorem VEC.11 for R?) that R" is

a vector space, and that the set
{(1,0,0,...,0),(0,1,0,...,0),(0,0,1, ...,0), ..., (0,0,0, ..., 1) }
is a basis for R™. Thus R™ has dimension n.

(D) In more advanced vector space theory, these notions are extended to
spaces of infinite dimension. It is quite easy to see that the set of all real-
valued functions defined on the unit interval [0,1] (or for that matter, defined
on any other fixed interval or on the whole real line) is a vector space, under
pointwise addition of functions and scalar multiplication. That is, for any
two functions f and g define f + g to be the function whose value at each x
in their common domain is f(z) + g(z), and for any real number ¢ define ¢ f
to be the function whose value at each z in its domain is ¢f(z). In general,

spaces of functions do not have finite dimension.

1.3 Lines and their slopes

Again, P will denote the Euclidean/LUB plane, O its origin, and L; and
L, will be perpendicular lines in P such that Ly NLy = {O}, which have been
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built into ordered fields with U; and Us, respectively, as their units, so that
(U1,Us) is a coordinatization of P. Every point aU; + bUs € P is identified
with the point (a,b) € R? using the isomorphism ), as in Definition VEC.14.

Definition VEC.18 (A) A line £ on P is vertical iff £ PE Ly (meaning
that either £ || Ly or £ = Lo, as defined in Specht Ch.3 Definition CAP.10).
(B) A line £ on P is horizontal iff £ PE L;.

Remark VEC.18.1 (A) Part (C) of Theorem VEC.16 says that a line
L || Ly (and is horizontal) iff for some real number ¢ # 0, £ = {(z,¢) | z € R}.
Also, L || Ly (and is wvertical) iff for some real number d # 0, £ = {(d,y) |
y € R}.

(B) At the risk of seeming overly pedantic, we note the reasoning it takes
to verify that any horizontal line is perpendicular to any vertical line:

By Definition VEC.9, IL; and L, are perpendicular; by Specht Ch.8 Theo-
rem NEUT.32 each is a fixed line for the reflection over the other; by Specht
Ch.11 Corollary EUC.3.1 every line parallel to a fixed line for a reflection is
a fixed line for that reflection. It follows that lines parallel to LL; are fixed
lines for the reflection over Lo, and by Theorem NEUT.32 are perpendicular
to L.

By a similar argument all lines parallel to Lo are perpendicular to ;. By
Theorem EUC.3, any line parallel to L is perpendicular to any line parallel
to LLo.

Theorem VEC.19 Let L be a line in P which is not vertical. There exists
a real number m such that for any two points X = (x1,x2) and Y = (y1,y2)

— Y2—x3
of L, m = P

Proof. (Case 1: L is horizontal.) For any two points X = (x1,23) and Y =
(y1,y2) of P, 29 = yo so that for all X and Y in P, Zf:—;f =0.

(Case 2: L is not horizontal and O € L.) By Theorem REAL.37, for every
real number ¢ # 0 there exists a dilation ¢; with fixed point O such that for
every X # O in P, tX = 6;(X). From Specht Ch.3 Theorem CAP.18 L is a
fixed line for ¢; so for every ¢ and every point X € L, §,(X) € L.

Assume that £ has been built into an ordered field with unit U = (a,b).
Then by Corollary REAL.35.1, for any two non-O points X = (x1,x2) and
Y = (y1,y2) of L there exists a real number ¢ such that tX =Y. Then

tX =t(x1,22) = (to1,txz) =Y = (y1,y2)
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and txy; = y; and txs = ys. It follows that i—f = Z—f = Z—f for any two points
(x1,22) and (y1,y2) in L. Also,
Y2a—®a _ txg—xo _ (t=D)xa _ mp _ y2

Yy1—T1 te1—x1 (t*l)xl oz ;7
Now suppose that Z = (z1,22) and W = (wy,ws) are any distinct non-O
points of £. By the same reasoning,

Z2—W2 _ 22 _ X2

Z1—w1 z1 S
Therefore ;ﬁ:if is independent of our choice of points X and Y on the line
L, so long as neither X =0 or Y = O.

Finally, if X = (21,22) = (0,0) = O, and Y = (y1,92) is any other point

on L, Zf:—if = i—f If we let m = ;”—f, then m = Zf:—;f for any choice of X and
Y on L.
(Case 3: L is not horizontal and O ¢ L.) Let A = (a,b) be a point of L,
which will be fixed for the rest of this argument. Let
M=L-A={X-A|XeLl}=74(L).
By Definition CAP.6, M is a line passing through O which is parallel to L.
A point X = (x1,22) € Liff X — A = (21 — a,z9 — b) € M, and a point

Y =(y1,y2) e LY — A= (y1 —a,ys — b) € M. Then
(y2—b)—(x2—b) _ yo—b—mat+b _ ya—za.

(y1i—a)—(z1—a) — yi—a—zita ~ y1—ax1’
this fraction, however, has been shown in Case 2 to be independent of the
points X and Y, hence independent of the points X — A and Y — A. This

proves the theorem. 0O

Definition VEC.20 Let £ be a nonvertical line on P, and let X =

— Y2—T2

(x1,22) and Y = (y1,y2) be points on L. The slope of L is m = .

Theorem VEC.21 Let s be any real number and Q be any point on P.

Then there exists a unique line L through Q with slope s.

Proof. (I: Existence.) Let £ be the line through @ = (¢1,¢2) and (¢1 +1,¢2+
s). Then the slope of L is gfi%gf =s.

(II: Uniqueness.) Let M be any nonvertical line through @ which has the
same slope s as L. Let the intersection of M and the vertical line through
(g1+1,92) be T = (q1+1, g2 +t), for some real number ¢. The slope of M is
% = % =t. But the slope of M is s, sos =tand T = (q1+1,q2+s) € L
so that £ and M have two points in common, and are the same line. 0O

Theorem VEC.22 (A) If £ and M are non-vertical lines on P, then L
and M have the same slope iff L PE M.
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(B) If L with slope s and M with slope t are distinct non-vertical lines on
P, then £ L M iff st = —1.

Proof. (A) If L # M, let A = (a,b) € L and B = (¢,d) € M. Then
L+ (B—A)=7p_a(L) is a line that is parallel or equal to £, by Definition
CAP.6. Since A € £, A+ (B—A) = Bso L+ (B—A) and M intersect at the
point B, and therefore they are the same line. If X = (z1,22) is any point
distinct from A in £, then the point Y = X +(B—A) = (z1+c—a,x2+d—b)
is a point of M distinct from B, and the slope of M is Eiiii:g%:i = if:g
which is the slope of L. Therefore if £ and M are parallel, they have the

same slope.

Conversely, if these two lines have the same slope, then by the previous
argument, £+ (B — A) has the same slope as £ because they are parallel, and
since L+ (B — A) and M intersect at B, by the uniqueness part of Theorem
VEC.21, L+ (B — A) = M and hence L || M.

(B) The proof is Exercise VEC.13. O

Theorem VEC.23 Let Q = (q1,q2) be a point on P, s a real number,
and let L be the line through Q with slope s. Then
L= {(r1,72) | 22 — g2 — s(x1 — 1) = 0}.
That is to say, a point (x1,x2) € L iff xo = g2 + s(x1 — q1)-

Proof. Let X = (x1,x2), then by the uniqueness part of Theorem VEC.21,
X € L\{(q1,q2)} it 2=22 = 5. Hence X € L iff zo — g2 —s(x1 —q1) =0. O

T1—q1

Theorem VEC.24 Let U = (uy,usz) and V = (v1,v2) be distinct points
on P. Then UV = {(z1,22) | (v2 —u2)(x1 —u1) — (v1 — u1)(x2 — ug) = 0}.

Proof. (Case 1: UV is nonvertical.) Let (21, 22) be any ordered pair of real
numbers. The slope of W is Zf:“z by Theorem VEC.19. Let U play the

role of @ in Theorem VEC.23; the;1 by that theorem,
Xe W if w9 — ug — (ZT:ZT)(‘M —wuy) =0,
ie., (v1 — u%%cg —ug) — (v —ug)(z1 —uy) = 0.
(Case 2: is vertical.) Let X = (x1,x2) be any point of P. Then v

is vertical iff u; = vy, so that (v1 — uy)(22 — u2) — (v2 —u2)(xy —uy) =0

becomes (vy — ug)(x1 — u1) = 0. This is true iff 1 = uq, which is to say,
X = (z1,m2) € W |



1.3 Lines and their slopes 15

Theorem VEC.25 Let U and V be distinct points on P, U = (u,u2),
and V = (vi,v2). Then
UV ={X|X=t(V-U)+U and t €R}
={(x1,22) | (x1,22) = t(v1 —u1) +uq
and t(vy —u2) +ue and ¢ € R}.

Proof. (Case 1: W is nonvertical.) W — U is a line £ which passes through
O. Assume £ has been built into an ordered field with O # V —U as its origin
and unit U. Then V — U # O is a point of £, and a point X = (21, 22) € uv
ff X -U = (acl — U1, T2 _UQ) e L.

By Corollary REAL.35.1 and the fact that the line £ is fixed for d;, where
t is any real number, we know that X = (z1,22) € W iff there exists a real
number ¢ such that X — U = ¢(V — U). That is to say,

(acl —U1,T2 — u2) = t(’l)l — U1,V — UQ) = (f(’Ul — ’U,l), t(’l)g — u2)),
or (x1,x2) = (t(v1 —uy1) + ug, t(va — uz) + ug).
This proves Case 1.

(Case 2: UV is vertical.) Let (z1,22) be any ordered pair of real numbers.
Then W/ is vertical iff u; = v1. Hence in this case X € W iff 1 = u;. We
know there exists a real number ¢ such that xo = ¢(v2 —u2)+u2. Then for this
value of ¢ in particular, x; = t(0) +uy = t(v1 — u1) + u1. Conversely, suppose
X9 = t(vy — ug) + ug; then since uy = vy, &1 = t(0) + w1 = t(v1 — w1)t + us.
O

Theorem VEC.25.1 Let U and V be distinct points on P, U = (uy, usa),
and V. = (v1,v2). The mapping © of R onto W such that for each real
number t, O(t) = t(V —U)+ U preserves order and betweenness. That is, for
any real numbers v, s, and t,

r<siff @(r)=r(V-U)+U<0O(s)=s(V-U)+U and
r—s=t iff (r(V-U)+U)-(s(V-U)+U)-t(V-U)+1U).

Proof. Build W into an ordered field with origin O = U and unit U = V —U.
Then by Theorem VEC.25 UV = {X | X = t0+0 and ¢ € R}. By Theorem
REAL.35, the mapping O(t) = t(V —U) + U = tU + O = tU is order
preserving, that is, t < s iff tU < sU iff t(V —U) + U < s(V - U) 4+ U.

So for any three points X = rU, Y = sU, and Z = tU on W, by Specht
Ch.6 Theorem ORD.6

X-Y-Ziff ( X<Y<ZorZ<Y<X)iff(r<s<tort<s<r)

which is true iff r—s—t. O
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1.4 Norms and inner products

In this section, P will denote the Euclidean/LUB plane, O its origin, and
L; and Ly will be perpendicular lines in P such that Ly N Ly = {O}, which
have been built into ordered fields with U; and Us,, respectively, as their
units, so that (Uy,Uz) is a coordinatization of P, and OE—Ulj = OE—UQJ Every
point al; + bUs € P is identified with the point (a,b) € R? using the isomor-
phism A, as in Definition VEC.14.

Theorem VEC.26 Let A = a1U; + a2Us be any member of P. Then
E———3 E—3
there exists a unique real number ¢ > 0 such that [OcUy | = [OA] and cUy =

@[OT], where @ is the mapping defined in Specht Ch.9 Definition FSEG.1}.

Proof. By Theorem FSEG.13 there exists a unique point X € OU; such that
[b—X]] = [W] By Theorem REAL.35(A) there exists a unique real number
¢ such that X = cU;, and since X € OUy, ¢ > 0. O

Definition VEC.26.1 Let A be any member of P. Then if A # O,
define the norm of A (denoted ||A]|) as the positive real number ¢ such that
[ 3 3
OA = Ocl; (ie. cUy = P[OA]) the existence of which is guaranteed by
Theorem VEC.26; if A = O define ||A| = 0.

By Definition OF.16, || A|| is the length of the segment OA, or the distance
from O to A.

Theorem VEC.26.2 For any two vectors A and B in P\ {O},
|All = |B] iff OA=0B.

Proof. OA =~ OB iff [0A)] = 0B iff $[0A] = #[OB]. O

Theorem VEC.26.3 For any two vectors A and B in P,
EE— E—mmm2
AB=O(B—A).

Proof. Since 74 is a translation, the lines O(B — A) and TA(O(B — A)) — 4B
are parallel (cf Definition CAP.6). By Theorem VEC.4 OAO(B — A)B is a
parallelogram. By Theorem EUC.12(A), AB = b(B - Ai, since these seg-
ments are opposite edges of this parallelogram. 0O

Theorem VEC.26.4 For any distinct vectors A and B in P, |B — A||
is the length of the segment Sﬁ, as defined in Definition OF.16.
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=3 E——m3
Proof. By Theorem VEC.26.3, [AB] = [O(B — A)], so that by Definition
£ [ E——3
OF.16, the length of the segment AB is P[AB] = P[O(B — A)] = ||B — AJ|.
O

Theorem VEC.26.5 (Third form of the Pythagorean Theorem)
For any three distinct non-collinear vectors A, B, and C in P,

|A—=B|*>=||B-C|?*+||A-C|? iff LZACB is a right angle.

Proof. By Theorem VEC.26 and Theorem VEC 26 3, there exist positive real

numbers a, b, and ¢ such that aU; = BC] O(B — C)] U, = P[AC | =
3 E—3 [—J
P[O(A—C)], and cU; = P[AB] = P[O(A — B)] By Definition VEC 26.1,

a=|B-C|,b=]|A-C|,and ¢ = | A - B].

In the notation of Specht Ch.15 Theorem SIM.23.1 (Second form of
the Pythagorean Theorem), let A = all; = @[[O(B—C’)]], B = U, =
B[O(A—C)], and C = ¢U; = $[O(A — B)]. Then by that theorem, ZACB
is right iff (cU1)? = (aUp)? + (bU1)?, and by Theorem REAL.25, this is
U, = a®U, + b*Uy, or

AUy — a?Uy — b*Up = (¢ — a® — b2)U1 0.
By Corollary REAL.34(B) this is true iff ¢ — a? — b* = 0 or ¢ = a? + b2
That is, |[A—B||?=|B-C|*?+||[A-C|?* O

Theorem VEC.27 (A) For any vector A = a1 Uy + a2Us € P, ||A]|? =
a1 + as?.

(B) For any distinct vectors A = a1Uy + aUs and B = byUy + boUs in P,
A= B|* = (a1 — b1)* + (a2 — b2)?.

Proof. (A) The quadrilateral 00 (a1U1)A(a2Us) is a parallelogram and
O(alUlj 1 O(CLQUQj
so by Theorem EUC.3 O(alUrlj i (aLUl)A. By Theorem EUC.12(A)
(1) (alUl)A = O(agUg).
The three points O, a1U;, and A form a triangle, where ZO(a1U7)A is
right. Since [073 = W, by Specht Ch.13 Theorem DLN.17 and Theorem
REAL.37,

3

(11) b(agUgj = b(agUlj.

By Theorem VEC.26.3, i i
(iii) (alUl) | = O(A — a,Uy).
Putting congruences (i), (ii) and (iii) together, )
D( — alUlj ZalUl)A &~ LO(agUgj &~ LO(agUlj,
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so by Definition VEC.26.1 ||A — a1U|| = |la2Uy|| = |az|. Also by definition,
larUy — O|| = ||a1U4 ]| = |ai|. By Theorem VEC.26.5,
IA]? = [[A = O = [laxUr = O|* + || A = ax V||
= |a1|2 + |a2|2 =% + as’.
(B) A— B =a1U; + agUs — biUy — baUs
=a1U; — b1Ur 4+ a2Us — boUs = (a1 — b1)Ur + (a2 — ba)Us
so by part (A) |[A—BJ|]? = (a1 —b1)? + (a2 — b2)®. O

Remark VEC.28 (A) Without proof one cannot assume that for a given
real number ¢, the point tU; rotated onto OHUQ would be the same point as tUs.
That is, it’s not automatic that the scale for scalar multiplication on L; is the
same as for scalar multiplication on Lo. If OE—Ulj = OE—UQJ , Theorem REAL.37
assures us that these two scales are indeed the same, that is, %TU; ~ %TU;
This was important in the proof just above, because the norm is defined in
terms of a scalar multiple on LL;, but we wanted to express the result in terms
of a scalar multiple on Lo. That is why we invoked congruence (ii) in this
proof.

(B) We defined the norm of a vector as a point of P, in a manner quite
specific to the plane. Under the identification between P and R? provided by
Definition VEC.14 and Theorem VEC.16, for any point (a,b) € R? the result
of Theorem VEC.27(A) above becomes

I(a,b)||* = a® +b* or ||(a, b)l| = Via? + 2.
For any two points (a,b) and (c,d) of R?, part (B) of Theorem VEC.27
becomes
1(a,8) = (e, )12 = (a — c)? + (b — d)?
or ||(a,0) = (c,d)|| = \/(a — ¢)? + (b — d)*.
(C) In R™, expressions similar to those in (A) are generally used for the

definition of norm. That is, for any point (a1,as,...,a,) € R™, the norm
(a1, az,...;an)|| = Va2 + a2? + ... + a,2.
Norms on vector spaces have a number of useful properties; we state the

most fundamental of these in the following Theorem; in more general vec-
tor spaces these three properties are sometimes used as a definition of a norm.

Theorem VEC.29 For all points A = (a,b) and B = (c,d) in R?, and
every real number x,
(1) [ Al > 0 iff (a,b) # (0,0);
2) |14+ BI < [ A] +|BI; that is [l(a+ e, b+ )] < |, b)]| + (e, )]
(the triangle inequality); and
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(3) lzAll = |z[[|All, that is [|z(a, b)|| = |z[|(a,b)|| (the homogeneity
property).

Proof. The proof is Exercise VEC.6. O

Definition VEC.30 (A) The inner product (sometimes called the dot
product) of two vectors (a,b) and (c,d) in R? is the real number ac + bd,
and is denoted here by the symbol (a,b) e (¢, d).

(B) Two vectors (a,b) and (¢, d) are orthogonal iff (a,b) e (¢,d) = 0.

Remark VEC.31 (A) Properties of the inner product are listed and
proved in Exercise VEC.7.

(B) In general vector spaces (over the field of real numbers) the inner prod-
uct is defined as a real-valued function which satisfies the properties listed in
Exercise VEC.7. The present definition (and its natural extensions) are valid
only on R™. In more general theory, the inner product of two vectors A and
B is usually denoted (A, B) but for our very limited treatment we avoid this

notation since it may be confused with our notation for vectors in R2.

Theorem VEC.32 For every vector A = (a,b), Ae A= ||A|>.

Proof. Ae A= (a,b)e(a,b)=0a2+0b2=|A|>. O

Theorem VEC.33 Two nonzero vectors A = (a,b) and B = (c,d) are
orthogonal iff (0,0)(a,b) L (0,0)(c,d).

Proof. Using the properties of inner product from Exercise VEC 4,
[A-B?=(A-B)e(A-—B)=AeA—-2AeB+BeB
=|A|? +|B|> —24eB.
By the Pythagorean Theorem and its converse (cf Specht Ch.15 Theorem
SIM.23) OA L OB iff [A— B|? = |A]? + |BJ?. Hence Ae B=0iff A L B. O

The equality |A — B|? = |A|?> + |B|> — 24 e B is a generalization of the

Pythagorean Theorem since it holds for any triangle.
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1.5 Linear mappings

In this section, P will denote the Euclidean/LUB plane, O its origin, and
L; and Ly will be perpendicular lines in P such that Ly N Ly = {O}, which
have been built into ordered fields with U; and Us,, respectively, as their units,
so that (Uy, Us) is a coordinatization of P. Every point alU; +bU; € P is iden-
tified with the point (a,b) € R? using the isomorphism ), as in Definition
VEC.14.

Definition VEC.34 Let V be a vector space over the field of real num-
bers.
(A) A linear mapping (or linear transformation or linear operator)
a on V is a mapping of V into V which satisfies the following conditions:
(1) for all A and BinV, a(A+ B) = a(A4) + a(B), and
(2) for every A € V and every real number ¢, a(tA) = ta(A).
(B) The mapping O is the mapping such that O(A) = O for every A € V.
(C) The mapping —« is the mapping such that for every A € V,
(—a)(4) = —(a(A)).
(D) (1) The sum of two linear mappings « and S on V is the mapping
a + 0 such that for every A € V, (a + 8)(A) = a(4) + B(4).
(2) The product or scalar product of a real number ¢t and a
linear mapping « on V is the mapping ta such that for every A € V,

(te)(A) = t(a(A)).

Theorem VEC.35 LetV be a vector space over the field of real numbers.
(A) If o« and B are linear mappings on V, and t is any real number, then
the mappings o + B and ta are linear mappings on V.
(B) The mappings O and v are linear mappings on V.
(C) For every linear mapping « on V, the mapping —a as in Definition
VEC.34(C) is a linear mapping.
(D) If v is any linear mapping on V, then
(1) «(O) = O; and
(2) for any A€V, a(—A) = —(a(4)).
(E) The set of all linear mappings on the vector space V, with the defi-
nitions of sum and scalar product given in Definition VEC.34(C) is itself a

vector space over the real numbers.
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Proof. The proof of parts (A) through (D) is Exercise VEC.8. The proof of
part (E) is Exercise VEC.9. O

Theorem VEC.36 (A) A linear mapping o on a vector space V is not
one-to-one iff for some A# O in'V, a(A) = O.
(B) If v is a linear mapping on a vector space V, then the image a(V) of

V under o is a subspace of V.

Proof. (A) If for some A # O in V, a(A) = O, by Theorem VEC.35(D)(1)
a(0) = O so a is not one-to-one. Conversely, if « is not one-to-one, there exist
distinct points A and B of V such that a(A) = a(B) and hence a(A—B) = O.

(B) Let A and B be points of a(V) and let ¢ be a real number. Then
there exist points C' and D of V such that o(C) = A and (D) = B. It
follows that a(C' + D) = a(C) + (D) = A+ B so that A+ B € a(V). Also,
a(tC) = ta(C) = tA so that tA € (V). By Remark VEC.12.1(E), «(V) is
a subspace of V. 0O

Definition/Remark VEC.37 (A) In the remainder of this section we

will often write points X = (z1,22) of R? in the form X = “11. For each
To
X = o € R? define « e + 2t .
T2 T3 2121 + 222

(B) It should be noted here that the mapping « is often defined in terms
of matrices and matrix multiplication. A matrix is a rectangular array of

a11 a12

numbers such as [ . This one is a “square 2 by 2 matrix.”

a1 422
Two matrices can be multiplied provided the number of columns in the

left-hand matrix (multiplicand) is the same as the number of rows in the

ary am] and lbll b12 b13

right hand matrix. Thus, ] can be multiplied,

a21 422 ba1 b22 b23
- a b11 b12
but [ 1 121 and |boy bog | can’t.
a21 a22
b31 b3z

Multiplication is carried out by the “row by column rule.” by which the
ijth entry of the product (that is, the entry in the ith row and the jth
column) is the sum of the products of the entries in the ith row of the left-



22 1 The Plane as a Vector Space (VEC)

hand matrix with the entries in the jth column of the right hand matrix.
Thus, the product

aiil a2 ) b11 b12 b13
a1 a2 ba1 b2z ba3
_ (a11b11 + a12b21) (a11b12 4+ a12b22) (a11b13 + a12b23)
(@21b11 + a22ba21) (a21b12 + a22baz) (a21b13 + azabag)

We can use the same rule to express the value of the mapping o on R2.
Recall that for each X € R? we wrote X = (71, 72) as a matrix with 2 rows
171] . [allxl + a1272

and 1 column, that is, as
T2 a2121 + a22%2

xl] , and we defined « [
T

The right-hand side here is precisely the product N using the
a1 422 T2

a11 @12

row by column rule. In this usage, the matrix [ ] is said to be the

az1 a2
matrix of the mapping «. If we know the values of « at the points (1,0)

and (0,1), we can easily find the matrix of «, since

oo = ] - 2]

aiil a2

The determinant of the matrix
az1 a2

] is the quantity aj1a20 —aj2a21,

which is usually denoted by the symbol a1 a2

a21 a2 a21 a2
of the mapping o we will often say that a11a20—ai2a2; is the determinant of a.

ail a
If l 12 is the matrix

Theorem VEC.38 The mapping o defined in Definition VEC.37 is a

linear mapping on R2.

T 'A%

Y2

Proof. Let X = and Y =

T2
any real number. Then

] be any two points of R?, and let ¢ be

T U1

Y2

a(X+Y) = o +

T2

_ a1 (z1 + y1) + ar2(z2 + y2)
as1 (1 + y1) + asa(z2 + y2)

ez +anyr + a2xz + a2y
2171 + a21Y1 + a22T2 + a22Y2
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_ l&ui?l + a12l“2] n lﬁuyl + a12y2

= a(X) + a(Y).
(2171 + Q2272 a21Y1 + a22Y2

a1 (tx1) + arz(tzs)

tao as1 (tz1) + age(txs) t(a21 (1) + a22(z2))

Also a(tX) = af lmll) -

_ [t(all(xl) + a12(5€2))]
=ta(X). O

Theorem VEC.39 The mapping o defined in Definition VEC.37 is one-

to-one iff its determinant aji1ass — ajsaz # 0.

Proof. We show that there exist real numbers x; and x5, not both zero, such
that a1121 + a1029 = 0 and as1x1 + agexs = 0 iff the determinant ai1a20 —
a12a21 = 0. That is, the mapping « is not one-to-one iff the determinant is 0.

(I) Suppose the determinant ajjass — aj2az; = 0. It is quite easy to show
that the mapping is not one-to-one if none of the entries a1, ass, a1z or as;
is zero. Sorting through the various cases where one or more of the entries
is zero is not difficult, but tedious, and we leave this work to the reader as
Exercise VEC.10.

If all entries are non-zero, then let 1 = 1 and let 2o = —Z—E. Then
= 411922 " 56 that

a2

1121 + @122 = a1 + a12(

a1

_au
aiz

) =ai1 —a1 =0
and a1 + azws = a1 + ag(—9L) = L2 — g, (L) = 0,
so that a(z1,22) = (0,0). But (21, 22) # (0,0), so by Theorem VEC.36, « is
not one-to-one.
(II) Suppose a11x1 + a1222 = 0 and az121 + agexs = 0, where not both a4
and xo are zero.
If 21 #0, a1 + algi—f =0 and a9y + aggi—f = 0, so that there is no loss

of generality to assume that 7 = 1. Then the assumption takes the form

a11 + a1oTy = 0 and a21 + 22T2 = O, so that To = —Z—i; and also To = —Z—i;
hence % = % and a11022 — 12021 — 0. If Ty = 0 and T2 }é 0 then

0 = a1121 + a1222 = a2z and 0 = as1x1 + as2Ts = agex9, hence ao = 0,

a9 = 0 and a11a22 — A12a21 = 0. O

Theorem VEC.40 A linear mapping o defined on P is one-to-one iff it

1s onto. That is, it is a bijection iff it is either one-to-one or onto.

Proof. (I) Suppose « is onto P and not one-to-one. There exists some point

Uiy # O of such that a(U;) = O. Let Uy be any point such that OU; L OUs.
= R

Build OU; and OUs into ordered fields with U; and Us as their units. « is
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onto means that for every point B € P, there exists a point A such that
a(A) = B.

By Theorem VEC.8, for some real numbers s and ¢, A = sU; + tUs. Then

B = a(A) = a(sUr) + a(tUsz) = sa(Ur) + ta(Usz) = ta(Us)

since o(Uy) = O.
Therefore, every point of P is a member of Oa(Us ). But by Axiom 1.5(B)
we know there are points of P that are not on this line, contradicting the
assumption that « is not one-to-one.

(IT) Conversely, suppose that « is not onto P. Then «(P) is a proper
subspace of P, and by Theorem VEC.13 it is a line through the origin.

Again using Theorem VEC.8, let U; and U; be any two non-O points of
P such that Uy, Us and O are noncollinear and assume that the lines W;
and 67]—; have been built into ordered fields such that for every point A of P
there are real numbers a and b such that A = aU; + bUs. Then both «(Uy)
and a(Usz) are members of the line a(PP). If either a(Uy) = O or a(Us) = O,
« is not one-to-one. If neither, then by Corollary REAL.35.1 there exists a
real number ¢ such that «(U;) = ta(Us), and

0= Oé(Ul) — ta(Ug) = Oé(Ul) — a(tUg) = Oé(Ul — tUg).

Since the lines OU; and OUsy have only the point O in common, U; # tUs
and hence Uy — tUs # O. Therefore « is not one-to-one. 0O

Theorem VEC.41 The linear mapping o defined on R? by Definition
VEC.37 is a bijection iff its determinant ai1a9e — ajgas; # 0.

Proof. By Theorem VEC.39 « is one-to-one iff aj1a22 — aj2a21 # 0. By The-
orem VEC.40 « is a bijection iff it is one-to-one.

Note that here we have used the identification between P and R? that was
made in Theorem VEC.16 and Remark VEC.17(A). O

Theorem VEC.42 (A) The set of all bijective linear mappings on a
vector space V forms a group under composition of mappings.
(B) The group defined in part (A) is not abelian.

Proof. (A) By elementary function theory, composition of mappings, hence of
bijective linear maps, is associative. There exists an identity ¢ for composition,
and it is a linear mapping. The composition of two bijections is a bijection,
by elementary function theory. The composition of two linear mappings is

linear, as can be seen from the following calculations.
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Let o and 8 be linear maps. Then for every A and B in V, and every real
number t, we have
0o B(A+ B) = a(B(A+ B)) = a(3(A
= a(B(A)) + a(8(B))
and
ao f(tA) = a(B(tA)) = a(tB(A)) = ta(B(A)) = taro B(A).

Again by elementary function theory, every bijection has an inverse which
is a bijection. It remains only to prove that the inverse of a linear mapping is
linear. Let « be a bijective linear map, and let § be its inverse. Then for every
A and B in V, since « is onto, there exist points C' and D in V such that
a(C) = A and a(D) = B, and by linearity of a, a(C + D) = A + B so that
B(A+ B)=C+ D. Then 8(A+ B) =C + D = 3(A) + 3(B). Also, for any
real number ¢, a(tC) = ta(C) = tA so that S(tA) = B(a(tC)) = tC = t5(A).
Hence 3 is linear.

(B) The proof is Exercise VEC.11. O

Theorem VEC.43 Let o be a bijective linear map on a vector space V.

Then « has a fixed point other than O iff the mapping o —1 is not one-to-one.

Proof. « has a fixed point other than O iff for some point A # O, a(A) = A,
that is, a(4) — A = O, or the mapping « — ¢ is not one-to-one. O

1.6 Affine mappings and belineations

In this section, P will denote the Euclidean/LUB plane, O its origin, and
L; and Ly will be perpendicular lines in P such that Iy N Ly = {O}, which
have been built into ordered fields with Uy and Us, respectively, as their units,
so that (Uy, Uz) is a coordinatization of P. Every point aU; 4+ bUs € P is iden-
tified with the point (a,b) € R? using the isomorphism ), as in Definition
VEC.14.

Definition VEC.44 Let V be a vector space. A mapping 5 of V to V is
an affine mapping iff there exists a linear mapping o on V and a point D of
V such that for every A € V, 8(A) = a(A) + D. That is, 8 = 7p o o, where
Tp is the translation such that 7(O) = D.

When we wish to emphasize the relationship between a and g we will refer

to (8 as an affine mapping associated with the linear mapping «, or to « as
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the linear mapping associated with the affine mapping 3.

Remark VEC.45 An affine mapping 3 on R? (identified with P) takes
the form
a1171 + a12w2 + di
az171 + ags + da

T
o

Z2 2

, where D = ldll .
d

Theorem VEC.46 (A) Let o be a linear mapping on a vector space V
and let B be an affine mapping associated with o. Then « is a bijection iff 5
s a bijection.

(B) Let a be a linear mapping on R? and B be an affine mapping associated

with ao. Then [ is a bijection iff the determinant ai1a29 — ai2a21 1S non-zero.

Proof. (A) For some D € V, 3(A) = 7p o . Since translations are bijections
(cf Theorem ISM.6 and Theorem NEUT.11), by elementary function theory,
B is a bijection iff « is a bijection.

(B) Follows directly from Part (A) and Theorem VEC.41. O

Theorem VEC.47 If fi1,hy, fo, and he are real numbers such that
(f1, f2) # (0,0), then £ = {(fit + h1, fot + ha) | t € R} is the line through
(f1+ ha, fa + ha) and (hy, ha).

Proof. This is an immediate consequence of Theorem VEC.25, if we let
vi=f; —h; and u; =h; fori=1,2. 0O

Theorem VEC.48 Let D be a point of R? and let o be linear map-
ping on R2. Define 3 to be the mapping on R? such that for every A € R?,
B(A) = a(A) + D (so that B is an affine mapping associated with «). If the
determinant of « is nonzero, then

(A) B is a belineation, that is, a bijection preserving betweenness; and

(B) B is a collineation, mapping lines to lines.

Proof. (A) By Theorem VEC.46 both e and /8 are bijections. Let A, B, and

C be points of R?; using Definition LC.8 (from Specht, Chapter 21, section

21.5.2) and Theorem LC.12, A-B-C' iff there exists a real number ¢ such that

0<t<land B=A+tC — A). Then
B(B)=a(B)+D=a((A)+t(C—-A)+D=a(A)+alt(C—-A)+D

a(A) +ta(C — A)+ D = a(A) + ta(C) — ta(A) + D

=a(A)+ D +ta(C) +tD — ta(A) —tD
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= a(A) + D + t[(a(C) + D) — (a(A) + D)]
— B(A) +[3(C) — B(A),
so that S(A)-B(B)-B(C) and S is a belineation.
(B) By Specht Ch.21 Theorems LC.2 through LC.20, R? is a Pasch plane,
since all the axioms through Axiom PSA hold. Then by Specht Ch.7 Theorem
COBE.2, § is a collineation. 0O

Theorem VEC.49 FEvery belineation of R? is an affine mapping of R2.

Proof. Let + be any belineation of R2. By Specht Ch.19 Theorem AA.10,

ol |1
ol |o|’

[1] are noncollinear, let g1, g2, 71, 72, 51, and s2 be real numbers such that

2(Bf) - (B - B B - )

and let 8 be the affine mapping such that

is determined by its values on any three noncollinear points. Since

3 i) _ (r—q)r1+(s1—q)r2 + @
T2 (r2 — g2)w1 + (52 — q2)72 + @2

f) = ol (bl) = CED -

Hence v = 3. Here we have followed Martin [3].2 O

)

Theorem VEC.50 (A) A mapping o is a belineation of R? with fized
point (0,0) iff it is a bijective linear map of R2.
(B) The set of all belineations of R? with fived point (0,0) is a group under

composition of mappings.

Proof. (A) By Theorem VEC.49, a belineation of R? is a bijective affine
mapping [ whose value at each point Ais §(A) = a(A)+D (« is its associated
linear map). Since « is a linear map, «(0,0) = (0,0), so 3(0,0) = (0,0) iff
D = (0,0), which means that 3 = «. Hence, every belineation of R? with
fixed point (0,0) is a bijective linear map. Conversely, by Theorem VEC.48

2 George E. Martin, Transformation Geometry, An Introduction to Symmetry, Springer,
1982 (Theorem 15.11).
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every bijective linear map is a belineation, and every linear map has (0,0) as
a fixed point.
(B) By Theorem VEC.42 the set of all bijective linear maps forms a group

under composition. 0O

Theorem VEC.51 Let a be a belineation of R? with fized point (0,0).
Then by Theorem VEC.50, a is a bijective linear map. Hence by Definition
VEC.37 and Theorem VEC.38, there exist real numbers ai1, ass, ai2 and asy
1 of R2, a([xll) _ laulﬁ + a1272  Then
To T2 a21T1 + a22T2
« has no other fized points iff (a11 — 1)(a2e — 1) — a12a21 # 0.

such that for every member l

Proof. By Theorem VEC.43, « has a fixed point other than (0,0) iff the

mapping « — ¢ is not one-to-one.

T
of R?,
T2

()

By Theorem VEC.39, this mapping is one-to-one, hence has no fixed points
other than (O, O) iff (a11 - 1)(0,22 - 1) — a12a21 7§ 0. O

For every every member [

(a1 — L)a1 + ar2z2
a1 1 + (aze — 1)xo

Theorem VEC.52 A belineation ¢ of R? = R x R is an isometry iff for
every two distinct members (z1,22) and (y1,y2) of R?,

lo(ar, 22) — @(y1, y2)| = || (x1,22) — (Y1, y2) | = /(@1 — y1)? + (w2 — y2)2.

Proof. (I) Let (z1,22), (y1,92), and (z1,22) be three noncollinear members

of R2. If the equality holds for every two distinct members of R?, then

(@1, 22) — 0(y1, y2)ll = [(z1,22) — (Y1, 92)|,
(1, 22) — (21, 22)|| = [(21,22) — (21, 22)]], and

(Y1, y2) — @(21, 22)[| = [[(y1, y2) — (21, 22)]-
By Theorem VEC.26

E

(21, 72)0(Y1, Y2

T
E

90(301 L x2)p(21, 22

E

(Y1, y2)p(21, 22) = (y1,y2) (21, 22).
By Theorem NEUT.62 there exists an isometry v of R? such that
V(A1 22)(Y1,y2)(21, 22)) = Dp(@1, 22) (Y1, y2) (21, 22).
Since the values of ¢ and ¢ agree on the three noncollinear points (x1,x2),
(y1,92), and (21, 22), by Theorem AA.10 ¢ = ).

1%

T, x?)(ylv y2§7
x1,x2)(21, 22), and

I

N~—"U~—1)
[—T—m

an

E el
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(IT) If ¢ is an isometry of R?, by Theorem NEUT.15,

E 3 3

o((z1,72)(y1,92)) = p(z1,22) (Y1, Y2)
and by Definition NEUT.6(B)

B
E E J

(1, 22) (Y1, y2) = (1, 22)0 (Y1, Y2)-
By Theorem VEC.26.3, this is

O((1,22) — (y1,92)) = O(p(w1,22) — (Y1, v2))-
and by Theorem VEC.26.2 this is equivalent to

[(z1,22) = (Y1, 92) | = lo(w1,22) — (Y1, 92)[|. O

Theorem VEC.53 There exists a belineation of R? which has no fived

point and is not an isometry.

Proof. By Theorem VEC.48, an affine mapping whose associated linear map
has non-zero determinant, is a collineation.

Let ¢ be the linear map of R? such that for every member (z1,z2) € R,
o(a1,x2) = (21, 222). That is,

X - 1'I1+0'I2
@:vg N 0-$1+2'$2,
and the determinant of ¢ is aj1a90 —a12a21 =1:2—0-0= 2 # 0, so that ¢ is

a collineation. Let ¢ be the affine map such that for every member (x1, z3)
of R?, U(x1,22) = (x1 + 1, 22). Then

. T1| l-294+0-20+1
T2 O-21+1-294+0

, where D = [1] ,
0

and the determinant of the linear mapping associated with v is
ajiag —ajzaz; =1-1-0-0=1#0,
so that v is a collineation. Let 8 = ¢ o ¢. Then
O(x1,22) = Y(p(x1,22)) = (21, 229) = (21 + 1, 2292).

If 0 had a fixed point (z1,22), 1 = 1 + 1 and 1 = 0, which is false, so 0

has no fixed point. If § were an isometry,
10(z1, 22) — O(y1, y2) | =||(x1 + 1, 222) = (y1 + 1, 292
= [[(z1, 22) — (y1,52)],

so that \/(z1 —y1)2 +4(z2 —42)2 = /(@1 —y1)2 + (¥2 — y2)?, and thus
4 =1 which is false. By Theorem VEC.52, 0 is not an isometry. 0O
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1.7 Exercises for vector spaces

Exercise VEC.1* Complete the routine computations necessary to
prove Theorem VEC.3, that is, show that P is an Abelian group under the
operation + .

Exercise VEC.2* Prove Remark VEC.15: a bijection mapping @ from
V to U is a (vector space) isomorphism iff for all real numbers x and y and
all members A and B of V, (zA + yB) = 2P(A) + yP(B).

Exercise VEC.3* Assuming the hypotheses of Theorem VEC.8, let A =
aUy + bUy and B = cU; + dUsy be points of P. Rewrite the assertions (B)
through (F) of Theorem VEC.7 in terms of U; and Us.

Exercise VEC.4* Prove Theorem VEC.16(B) and (C).

Exercise VEC.5* Let P be a Euclidean/LUB plane, and let Q = (¢1,¢2)
and R = (ry,72) be distinct points of P. Then the point M = (441 2172)
is the midpoint of iﬁ%

Exercise VEC.6* Prove Theorem VEC.29: for any points A = (a,b)
and B = (¢,d) in P = R?, and any real number z,

(1) 141l = lI(a, )| = 0;

(2) [A+ Bl = l[(a+ ¢, b+ d)|| < [[(a,b)[| + [I(c; d)|| = [ Al + [| B]l; and

(3) [l All = [lz(a, b)|| = |z[[|(a, b)[| = |[[|All

Exercise VEC.7* Let A, B, and C be vectors and t be a real number;
then

) °
(B) t(Ae B) = (tA)e B= Ae (tB);
(C) Ae(B+C)=AeB+ Ae(;and
(D) Ae A=||A||> >0,and Ae A=0iff A=O.
Exercise VEC.8* Prove Theorem VEC.35(A) through (D):
(A) If o« and S are linear mappings on V, and t is any real number, then
the mappings o + S and ta are linear mappings on V.
(B) The mappings O and 2 are linear mappings on V.
(C) For every linear mapping « on V, the mapping —« as in Definition
VEC.34(C) is a linear mapping.
(D) If « is any linear mapping on V, then
(1) «(O) = O; and
(2) for any A € V, a(—A) = —(a(A4)).
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Exercise VEC.9* Prove Theorem VEC.35(E): the set of all linear map-
pings on the vector space V, with the definitions of sum and scalar product
given in Definition VEC.34(C) is itself a vector space over the real numbers.

Exercise VEC.10* Complete the proof of Theorem VEC.39: if the de-
terminant aijase — ajoas; = 0 and one or more of the entries a11, ass, ais or
a1 is zero, show that the mapping is not one-to-one.

Exercise VEC.11* Prove part (B) of Theorem VEC.42, by giving a
counterexample showing that the set of all bijective linear mappings on the
vector space R? is not abelian.

Exercise VEC.12* Let P be a Euclidean/LUB plane, and let £ be a
line with slope s on P which is neither vertical nor horizontal. Let @ be a
point on £ such that Q@ = (q1,¢2), and let X # @ be a point on £ such that
X = (,Tl,xg).

If s > 0, then x1 < g1 and x3 < g2, or x1 > ¢1 and z2 > ¢o.

If s <0, then 1 < g1 and x5 > g2, or 1 > ¢1 and z2 < ¢o.

Exercise VEC.13* Prove Theorem VEC.22(B): iff £ and M be distinct
lines which are neither vertical nor horizontal and which have respective
slopes s and ¢, then £ 1 M iff st = —1.

Exercise VEC.14* Let a, b, and ¢ be real numbers such that a and b
are not both zero. Then £ = {(x1,22) | ax1 + bxa + ¢ = 0} is characterized
as follows:

(I) If b= 0, then a # 0 and L is the vertical line through (=£,0).

(IT) If b # 0, then L is the line through (0, 3¢) with slope 2.

Exercise VEC.15% Let P be a Euclidean/LUB plane, and a, b, and ¢ be
real numbers where not both a and b are 0; let

L ={(x1,22) | axy1 + bxa + ¢ =0}
and

M = {(x1,22) | br1 — axe + ¢ = 0}.
Then £ 1 M.

Exercise VEC.16* The set of collineations of R? with (0,0) as a sole
fixed point, together with the identity mapping 2, is not a group under com-
position of mappings.

Exercise VEC.17* There exist stretches S and T of R? such that T o S
has only the fixed point (0,0).
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Exercise VEC.18 Let k£ be a nonzero real number and let ¢ be a
collineation of R? such that for every member (z1,z2) of R?, p(x1,22) =
(kx1, kxo). Prove that

(1) ¢ is a dilation of R? with fixed point (0,0) (cf Specht Ch.3 Theorem
CAP.22).

(2) Using the equality ¢(x1,x2) = (kz1, kxs) prove that the set of dilations
of R? with fixed point (0,0), together with 2 (the identity mapping of R? is
a group under composition of mappings.

Exercise VEC.19 Let k£ be a nonzero real numbers, ¢ be the collineation
of R? such that for every member (z1,z2) of R? ¢(z1,22) = (kz1,22) and
let ¢ be the collineation of R? such that for every member (z1,73) of R
’t/J(LL‘l, 1'2) = (l‘l, kl‘g)

Prove: (1) ¢ is a stretch of R? with axis L.

(2) 1 is a shear of R? with axis Ls.

(3) ¢ ot = 1p o is a dilation of R? with fixed point (0,0).

(4) The set of stretches with axis L; together with the identity ¢ is a group
under composition of mappings. (Use the equality p(x1,x2) = (kx1, k2).

(5) The set of stretches with axis Ly together with the identity ¢ is a group
under composition of mappings. (Use the equality ¢ (z1, z2) = (21, kx2).

Exercise VEC.20 Let V be a set of collineations of R? with the property
that for every member ¢ of V there exist nonzero real numbers r and s such
that for every member (x1,72) of R?, o(x1,22) = (rx1,sz2). Prove that

VU {1} is an abelian group under composition of mappings.

1.8 Selected answers for vector spaces

Ezercise VEC.1 Proof. Let A, B, and C be any points of P, and let 74,
78, and T¢ be the translations in T such that 74(0) = A, 75(0) = B, and
Tc(O) =C.

A+ B = (1a07p)(0) € P since 74 o 7 is a mapping of P to P, so that P
is closed under addition.

A+ (B+C)=(tao(t8o70))(0) = ((tao1s)o1c)(0) = (A+ B) +C
so that addition is associative.

A+ B = (1a07p)(0) = (t5o74)(0) = B+ A, so addition is commutative.

A4+ 0O = (14070)(0) = (14 02)(0) = 74(0) = A s0 O is the additive
identity.
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For any translation 74 which maps O to A, there exists an inverse trans-
lation 7471 If we define —A = 747 10), A+ (—A) = (ta(ta~1(0)) = O so
that —A is the additive inverse of A. O

Ezercise VEC.2 Proof. If @ is an isomorphism then for all real numbers x
and y and all Aand Bin V, &(xA+yB) = P(xA)+P(yB) = xP(A)+yP(B).
Conversely, assume that for all real numbers x and y and all A and B in V,

S(zA+yB) = P(xA) + P(yB) = 2P(A) + yP(B).
Let x =y = 1; then
H(A+ B) =P(xA+yB) =P(zA) + P(yB) = P(A) + P(B).
Let y = 0; then
P(zA) =P(xA+0-B) =aP(A) +0-P(B) = xP(A).

Therefore @ is an isomorphism. 0O

Ezercise VEC.3 Proof.
(B) a(y(aly +bUz)) = a(yA) = (zy)A = (ey)al; + (zy)bUs,
(C) z(aUy + bUy + cUy + dUs) = (A + B) = A+ B
= x(aUl + cUy + bU, + dUQ)
=z(a+c)Ur + (b + d)Us,
(D) (z+y)(aUy4+0Us) = (;v—i—y)A =zA+yA = :v(aUl—I—bUg)—f—y(aUl—i—bUg),
(E) 1(aU;y + bU3) = 1A = aU; + bUs, and
(F) z(aUy +bUs) =2A =0 =0U; + 00Uz iff z =0 or A = O, and by the
proof of Theorem VEC.7, A = O means that both a =0 and b=0. O

Ezercise VEC.J Proof. (B) By Theorem VEC.7(A) a point X € L, iff
for some real number z, X = zA, proving the first assertion. This is true in
particular if A = U;. By Theorem VEC.8(A) there exist real numbers o and
b such that X = aU; + bUs. Thus X € L, iff for some real number x

O = alUy + bUy — 22Uy = aUy — z2Uy + bUs = (a — x)Uy + bUs
which by Theorem VEC.8(B) is true iff @ = 2 and b = 0. Therefore X =
alUy +bUz € Ly iff a =2 and b = 0 iff A(X) = A(aU; + bUz) = (a,b) = (z,0)
for some real number z.

A similar proof shows that X = aU; + bUs € Ly iff a = 0 and b = y iff
AX) = MaUy + bUsz) = (a,b) = (0,y) for some real number y.

(C) Let £ be a line in P which is parallel to Ly, and let C' € £, and 7¢
be the unique translation such that 7¢(O) = C. Then by Definition CAP.6
7o (L) is a line which is either equal to or parallel to Ly, and which contains
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the point C. By Axiom PS (from Specht Chapter 2) L = 7¢(L;) = C + Ly,
and since C € L and L || Ly, C € L.

Conversely, if for some C' € P\ L, £ = C+1Lq, then since 7¢ (1) = C+1L,4
and 7 is a translation, either C+1L; || Ly or C+L; = L. Bt C = C4+0 ¢ 1y
so the latter is ruled out, and C' + Ly || L.

This shows that £ || Ly iff there exists a C' ¢ IL; such that £ = C + L.

By Theorem VEC.8(A) every point C' € P can be written as C' = eU; +cUs
for some real numbers e and ¢. Suppose that for some C' € P\Ly, £L = C+1L;.
By Part(B), ¢ # 0, and also by Part (B) X € L; iff X = 22U for some real
number x. Thus for every X € C + 1Ly, X = eU; + cUs + 2U; = yUy + cUs
for some real number y = e 4 x.

Conversely, suppose that there exists a real number ¢ # 0 such that for
every X, X = xU; + cUs> for some real number z. Let C' = cUs,, so that
C ¢ IL1. Then since xU; € Ly, for every X = cUs + 2U; where z is a real
number, X = cUs + 2U; = C 4+ zUy € C + L.

This shows that for C' ¢ Ly, X € C + L, iff there exists a real number
¢ # 0 such that X = cUs + zU;.

Therefore £ || Ly iff there exists a point C' € £ and a real number ¢ # 0
such that £L=C+1L; = {X | X = cUz + 2U; and z € R}, and this is true
it AM(L£) = AMC + L) ={(z,¢) | x € R}.

A similar proof shows that a line £ || Lq iff for some point D € P\ Lo,
L = D + Ly iff for some real number d # 0, A(£) = {(d,y) |y € R}. O

Exercise VEC.5 Proof. By Theorem VEC.25,

QR=1{X|X=t(R—Q)+Q and t € R}

= {(z1,22) | (x1,22) =t(r1 — q1) + 1 and t(re — ¢2) + g2 and t € R}.
Ift=0,X=0R-Q)+Q=Qandift=1,X=1(R-Q)+Q=R.
Ift= % then

X=3(R-Q+Q=3R-3Q+Q=3R+3Q="7

and this point belongs to ﬁ But R;Q = (qlg”, qﬁ;z) which is M. By
Theorem VEC.25.1, since 0 < % <1, Q-M-Rso M € Qj_}% Now

1Q = M|l = /(g1 — (BF2))2 + (g — (2222))2
=& -2 g -3

and
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— (=% -3’ + (=2 -3) = Q- M.
Hence by Theorem VEC.26.2, RM = QM and by Definition NEUT.6(C),

M is the midpoint of Eﬁ O

Ezercise VEC.6 Proof.
(1) [|(a,b)|| = va% + b2 > 0, by properties of real numbers.
(2) For any real numbers a, b, ¢ and d
0 < (be — ad)? = b*c? — 2abed + a*d?
so b%c? + a?d? > 2abed. Then
0 < (ac+bd)? = a%c? + 2abed + b2d? < a?c? + b2c? + a?d? + b*d?
= (0 +0%)(c* + d?) = || A|]*|| B||?
hence ac + bd < ||Al||| B]|. Then
1A+ BI? = l(@,b) + (e I = ll(a+c¢,b+d)|?
=(a+ )+ (b+d)?* =a®>+*+2ac+b> +d* +2bd
= (a® 4+ b%) + (¢* + d?) + 2(ac + bd)
< A2 + 1B + 2 A2 BI* = (Al + |1BI)*.
Hence |4+ BI| < ] + | BI.
(3) l2A] = [l2(a, D) = ||(za, )2 = (za)? + (xb)?
= 2202 4 2202 = 2%(a® + b2) = |z*(a® + b?) = |z]*|| A2
so [z Al = [lz(a, b)I| = |z[[[(a, b)I| = [=[[|All. O

Ezercise VEC.7 Proof. Let A = (a1,a2), B = (b1,b2), C = (c1, c2), where
ay, as, by, ba, c1, and co are real numbers.
(1) Ae B =aib; + asby = biaj + baas = Be A.
(2) t(A e B) =t(ar1by + asbs),
(tA) e B = (t(a1,az)) e (b1,ba) = (tay,taz) e (b1, bs)
=t(a; ®@by) + t(az @ bo) = t(ar1by + azbs),
Ae (tB) = (a1,a2) e (t(b1,b2)) = (a1, az2) e (tby, ths)
= a1(th1) + az(the) = t(a1by + azbs).
(3) (a1,a2) @ ((b1,b2) + (c1,¢2)) = (a1, a2)(b1 + c1,b2 + c2)
= (a1(b1 + ¢1),a2(ba 4+ c2)) = (a1b1 + arc1, azbs + ascs)
= (a1,a2) ® (by,ba) + (a1,az2) e (c1, c2).
(4) Ao A=af+a3=|A]?. O

Ezercise VEC.8 Proof. Prove Theorem VEC.35 parts (A) through (D):
for all A and B in V, and all real numbers ¢ and s,
(A) (a+B)(A+B)=a(A+B)+ B(A+B)
= a(4) +a(B) + B(A) + 5(B)
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(a(4) + B(A)) + (a(B) + 5(B))
(a+B)(A) + (o + B)(B);

and
(a4 B)(tA) = a(tA) + B(tA) = ta(A) + tB(A)
— H(a(A) + B(A)) = t{a + B)(A).
Thus « + S is linear.
(ta)(A+ B) = t(a(A+ B)) = t(a(A) + a(B))
= t(a(A4)) + t(a(B)) = (ta)(4) + (ta)(B)
and by associativity of scalar product,
(ta)(s4) = Ha(sA)) = t(sa(A)) = (ts)a(A)
= (st)a(A) = s(ta(A) = s(ta)(A).

Thus ta is linear.

(B)O(A+ B)=0=0(A)+0(B); OtA)=0=t-0=t-0(A).
1(A+ B)=A+ B =1(A)+(B); 1(tA) =tA=1t-1(A)
(C) (1) a(A + B) + (—a(A)) + (—a(B))
=a(A4) + a(B) + (—a(4)) + (—a(B))
=a(A) + (-a(4)) + a(B) + (-a(B)) = O
which shows that —a(A + B) = (—a(A)) + (—a(B)).
(2) atA) +t((—a)(A)) = atA) + t(—a(A)) = t(a(4)) + t(-a(A))
= t(a(A) + (—a(4))) =t(0) = O,

which shows that (—«)(tA) = —(a(t4)) = t((—a)(A)).
(D) (1) By property (A)(2) of Definition VEC.34,
a(0)=a(0-A) =0 a(hd) =0.
(2) a(A) +a(=4) = a(A + (-4)) = «(0) = O,
so a(—A) = —a(4). O

Ezercise VEC.9 Proof. Prove Theorem VEC.35(E). We key the various
parts of this proof to the properties listed in Definition VEC.12. Let a, £,
and vy be linear mappings on V, and let ¢ and s be any real numbers.

(A) By Exercise VEC.8(A), @+ § and t« are linear mappings. Let A and
B be any members of V.

(1) (e + B)(A) = aA) + B(A) = B(A) + a(A) = (B + a)(4)
soa+f=p0+a.

(2) (a+ (B+7))(A) = a(4) + (8 +7)(4) = a(A) + (5(4) +~(4))
(a(A) + B(A)) +7(4) = (a+ B)(A) +~(4)
((a+8) +7)(4)

so(a+pB)+y=a+(B+7y

\_/
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(3) O as defined in Definition VEC.34(B) is a linear mapping by
Exercise VEC.6(B). Then (o + O)(A) = a(A) + O(A) = a(A) + O = a(A)
so a+ O = «. If 8 is a linear mapping such that o + 8 = «, then for every
AeV, a(A)+ B(A) = a(A) so that §(A) = O and thus 8 = O.

(4) —a as defined in Definition VEC.34(C) is a linear mapping by
Exercise VEC.6(C). Then

(0 + (—a))(4) = a(A) + (—a)(4) = a(A) + (—a(A)) = O = O(4)

so that o + (—a) = O. If there is a linear mapping /3 such that a« + 5 = O,
then O = (a4 B)(A) = a(A) + B(A) so that S(A) = —a(A) for every A and
hence = —a.

(B) (1) (H(s0))(A)) = H((s0)(A)) = H(s(a(A))) = (ts)a(A) = (tsa)(4),
so that t(sa) = (ts)a.

(2) (1a)(4) = 1(a(A ))=0<
(C) (1) (t(a+ B))(A) = t((A)

so that t(a + ) = ta + t0.
(2)(t + s)a(A) = t((A)) + s(a(A))) = (ta)(A) + (s2)(A4)
so that (t+ s)a =ta+sa. O

Exercise VEC.10 Proof. In this argument we will refer to the numbers
ai1, 092,012, a21 as the “entries.”

(Case 1) If 3 entries are 0 but age or aj is nonzero, let 1 = 1 and x5 = 0;
and the result a1121 + a1222 = 0 and as1 21 + asexe = 0 will follow.

(Case 2) If 3 entries are 0 but aq1 or agq is nonzero, let 1 = 0 and z2 = 1;
then a11x1 4+ a1axo = 0 and asyx1 + asers = 0.

(Case 3) If 2 entries are 0 but a;; and aj are nonzero, let 1 = a1 and
To = —aq1; then a1121 + a1222 = 0 and as121 + agsexs = 0.

(Case 4) If 2 entries are 0 but az; and age are nonzero, let £ = ass and
To = —asgy; then aj1x1 4+ a1or2 = 0 and a1 + azere = 0.

(Case 5) If 2 entries are 0 but a7 and ag; are nonzero, let 1 = 0 and
x9 = 1; then ay121 + a1222 = 0 and as1z1 + asexs = 0.

(Case 6) If 2 entries are 0 but a;2 and age are nonzero, let x; = 1 and
r9 = 0; then ai1121 + a1222 = 0 and as1 11 + asexe = 0.

(Case 7) If 2 entries are 0 but a;; and aqg are nonzero, then either ajs or
as1 is zero, and this reduces to Case 1 or 2.

(Case 8) If 2 entries are 0 but a2 and ag; are nonzero, then either aq or

aso is zero, and this reduces to Case 1 or 2.
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(Case 9) If a single entry is zero and all others are non-zero, then by
aj1a99 — ai2a21 = 0 one other entry must be zero, and this reduces to one of
the Cases 3 through 8. O

Ezxercise VEC.11 Proof. Let o be the linear mapping on R? such that
a(1,0) = (0,1) and «(0,1) = (1,0); and let 8 be the linear mapping on R?
such that 5(1,0) = (1,1) and 5(0,1) = (1, —-1).

In the form of the mapping given in Definition VEC.37, for «, a1; = 0,
a12 =1, as;1 =1 and age = 0, so that the determinant is0-0—1-1= —1 #£ 0.
For 8 (using bs in place of as), b11 = 1, bya = 1, bay = 1 and by = —1, so
that the determinant is 1-(—1) —1-1 = —2 # 0. Thus both « and g are
bijections by Theorem VEC.41.

that o 8 # Boa. O

Exercise VEC.12 Proof. By Definition VEC.20 s = ﬁ. Hence if s > 0,
then x1 — ¢ and z2 — g2 are both positive or both negative. Hence ¢; < z
and ¢ < x2 or g1 > x1 and ¢ga > xo. If s < 0, then x5 — g2 is negative and
x1 — q1 is positive, or x5 — s is positive and x1 — ¢ is negative so that either

r1 < q and 9 > g or x1 > q1 and x5 < go. O

Ezercise VEC.18 Proof. Let the slope of £ be s and the slope of M be t.

(I) If £ L M, let Q@ = (q1,q2) be their point of intersection, and let A/
be the vertical line through (¢1 + 1,¢2). Then the point of intersection of £
and NV is S = (q1 + 1,¢2 + s) and the point of intersection of M and N is
T=(qg+1,q+1).

(II) Conversely, if st = —1, then s and ¢ are of opposite parity (i.e. one is
positive and the other is negative), and s # t. By Theorem VEC.20 £ and M
are not parallel, so must intersect at some point @ = (q1,q2). Let A/ be the
vertical line through (¢1 + 1, ¢2). Neither £ nor M is vertical so there must
be a point of intersection of N with each of them. The point of intersection
of £Land Nis S = (¢1 + 1,92 + s) and the point of intersection of M and N
isT=(q1+1,q2 +t), as before.

(IIT) The third form of the Pythagorean Theorem (Theorem VEC.26.5)
says that ZSQT is right iff ||S — T2 = ||S — Q|12+ ||T — Q||

By Theorem VEC.27,

IS—TI =V +T—ai— 12T @ +s—m -2 =G0 =|s—1
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1S=Qll=vV(an+1—q)>+ (g2 +s—q2)?> = V12 + 52 =1+ 52, and

IT-Ql=vV(@+1-q)2+(@+t—@)=VI2+Z=VI+tZ=1.

Hence [|S — T2 = ||S — Q>+ |T — Q% iff |s — ¢t = 1 + s* + (1 + ) iff
s—1t2 =52 -2t + 12 =1+ 82+ 1+t2iff 2 — 25t +t2 =1+ 52 + 1 + 2 iff
—2st=21iff st=—1. O

Ezercise VEC.14 Proof. For reference, the equation of the line is azxy +
bro +c¢=0.

(I) If b = 0, then £ = {(x1,22) | 1 = =£}. It thus contains the point
(=*,0). By Theorem VEC.16 L is parallel to Lo and by Definition VEC.18
it is a vertical line.

(IT) If b # 0, then the point (0, 3¢) is on £, since a - 04 b(=%) + ¢ = 0.
(1, =4=¢) is a point on the line since a-14-b(=5=<)+c = 0. Thus by Definition
VEC.20 the slope of L is

—a—c —C
b b a

1-0 b
so that £ is the line through (0, 3¢) with slope —%. O

Ezercise VEC.15 Proof. For reference, £ = {(z1,x2) | az1 + bza + ¢ = 0}
and M = {(z1,22) | br1 — aze + ¢ = 0}.

(Case 1: @ =0.) Then £ = {(21,72) | 22 = 3°} and M = {(w1,22) | 71 =
< }. By Theorem VEC.16(C), £ || Ly and M || L. By Definition VEC.18,
L is horizontal and M is vertical, and by Remark VEC.18.1(B) £ 1L M.

(Case 2: b= 0.) In this case £ = {(z1,22) | 21 = =°} and M = {(21,22) |
3 = £}. By Theorem VEC.16(C), £ || Ly and M || L;. By Definition
VEC.18, L is vertical and M is horizontal, and by Remark VEC.18.1(B)
L1 M.

(Case 3: a # 0 and b # 0.) By Exercise VEC.14(II), the slope of £ is —%.
Replacing, in the argument of Exercise VEC.14(I1), a@ with b and b with —a,
we see that the slope of M is g. Thus, the product of the two slopes is —1,
and by Exercise VEC.13, £L L M. O

Exercise VEC.16 Proof. Let S and T be the collineations of R x R such

2;1 and T'(z,y) = [j .

# 0, by Theorem VEC.51 S and

8

that for all members of (z,y) of R x R, S(z,y) =

2—-1 0
-1

L1
Since 2

‘#Oand

1 1
2 5—1‘
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0
T each have only the fixed point [O]’ whereas (T o S) [I] = [ , every

Y

ke 8

member lﬂ of { lﬂ | x € R} is a fixed point of T o S. Moreover, T' o S # 1,
so that the product T o S is neither the identity nor a collineation with only
0

[01 as a fixed point. Hence the set is not closed under composition, and is

not a group. 0O

Exercise VEC.17 Proof. Let r and t be real numbers different from 0 and

S and T be the collineations of R x R such that for all * € R xR,

Y
(D[ marCh- 2]
r+ry

. Note that every member of the
y te 4+ (1 +tr)y

horizontal axis {(x,0) | z € R} is a fixed point of S and every member

Then (T o S)(H) -

of the vertical axis {(0,y) | y € R} is a fixed point of T. However, since
0 r
t1+tr

0
# 0, by Theorem VEC.51, T o S has only the fixed point [01 . O



Chapter 2
The Field of Complex Numbers (CX)

Dependencies: Fuclidean Geometry and its Subgeometries (Specht); Chap-
ter 1 of this supplement

Acronym: CX

New terms defined: product of points on the plane, complex number, purely
imaginary, real (complex numbers); real and imaginary parts, modulus, abso-

lute value, complex conjugate (of a complex number)

In this chapter, C will be the plane P which, in the previous chapter
(acronym VEC) was made into a vector space.

The only product defined in a general vector space is the product of a real
number and a vector, that is, the scalar product. Products of vectors are not
defined.! However, the plane (the archetypical two-dimensional vector space)
is quite special among vector spaces, because a coherent and useful notion of
product can be constructed on it, and this product makes it into a field—the
field of complex numbers.

Multiplication operations have been defined on n-tuples of real numbers
in the cases where n = 4 (quaternions) and n = 8 (octonians), in addition
to ordinary vector space addition on these spaces. But these systems are not
fields, as in them multiplication is not commutative. Attempts have been
made to define a multiplication operation on n-tuples of real numbers for
n > 3, so that the field properties hold. There are algebraic theorems which
show that such attempts cannot succeed. (cf John L. Kelley, Algebra: A Mod-
ern Introduction, D. Van Nostrand, 1965 [2]).

L Except in the vector space R where the vector space and the field are the same.

41



42 2 The Field of Complex Numbers (CX)

This chapter is dependent on all of Specht, and includes references such as
“Theorem ROT.15” which refer to items in that work. The note Citations
and references at the end of the Preface to this Supplement explains the
conventions we use for such citations, and an abbreviated Table of Contents

(with acronyms) for Specht is included for the reader’s guidance.

References in this chapter to items labeled VEC or CX are to this Supple-

ment; all other references are to Spechi.

2.1 Definitions and theorems for complex numbers

We now define the product of two points in C and show that with this
definition, together with vector space addition, C is a field. We will use the
symbol “” for this new product. With one notable exception, if A and B
are two points of the plane C which are collinear with the origin O, their
product A ® B as members of the line @ will not be the same as their
product according to our new definition. Indeed, the two products are wildly
different—the product A - B will in general not even belong to fﬁ The ex-
ception is the case where m = ILq, where the two products agree. The new
product “” will be an extension to the whole plane of the product ® on L;.
If we have occasion to discuss the ordered field multiplication of points on a

single line (other than LL;), we may use the notation ©.

Definition CX.1 In this definition and the rest of the chapter, C will de-
note the Euclidean/LUB plane with origin O, IL; and Ly will be perpendicular
lines in C such that Ly NLy = {O}, which have been built into ordered fields
(using the machinery of Specht Chapter 14) with U; and Us, respectively, as
their units, where OE—Ulj >~ OE—UQJ

Addition of points in C is defined as in Definition VEC.1 and scalar product
as in Definition VEC.6, so that C is a vector space under the operation +
and scalar product. The norm || A|| of a point A is as in Definition VEC.26.1,
and every point A = al; + bU, € C is identified with the point (a,b) € R?
using the vector space isomorphism A, as in Definition VEC.14.

(A) Define the mapping p4 as follows:
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(i) If A e C\ 6?]—; then p4 is the unique rotation of C about O
such that pa(OU;) = OA. The existence and uniqueness of this rotation is
guaranteed by Specht Ch.10 Theorem ROT.15.

(i) If A e OJ—>U17 then pa = (the identity).

(iii) If A € OUj, where Uj-O-Uj, then ps = Ro, where Ro is the
point reflection about O (cf Definition ROT.1(B), etc.).

(B) Define the mapping d4 as follows:

(i) If A e C\ OJ_)Ul then 4 is the unique dilation of C with fixed point

O such that §4(U7) = pa~t(A).
This is equivalent to da(pa(U1)) = A, for by Specht Ch.13 Theorem
DLN.7(E),
34(pa(Un)) = pa(d4(Uh)) = pa(pa'(4)) = A.
A dilation cannot have two fixed points, so if pa =1 (A) = Uy (i.e. A = pa(Uy)),
define 64 = 1.

(ii) If A € OU,, then 8.4 is the unique dilation of C with fixed point O
such that d4(U1) = A. (A dilation cannot have two fixed points, so if A = Uy,
define 4 =1.)

The existence and uniqueness of these dilations is guaranteed by Theorem
DLN.7.
(C) Define the product A - B of A and B as follows:
() IfA=0or B=0O (or A=0 = B), then A- B=0.
(ii) If A and B are both members of C\ {O}, then A-B = d4(pa(B)).
The operation - on C is called multiplication.
(D) The points of the set C, which has now been equipped with the oper-

ations + and - , are called complex numbers.

Remark CX.2 (A) Suppose A € O]—>U{7 where U{-O-U;. By Definition
CX.1(A)(iii), pa = Ro and d4(U1) = pa~*(A) = Ro(A), because R;' =
Ro (cf Corollary ROT.6).

(B) Applying Definition CX.1(C) to the line Ly = W; confirms that this
definition agrees with ® from Specht Ch.14 Definition OF.1. For if A € O]—>U1
then pa = and d4(pa(Uh)) = 5,%(1_(>U1)) = A so that §4 o p4 is the dilation
04 of Definition OF.1(B). If A € OUj then p4a = Ro and by part (A) of this
remark, d4(U1) = Ro(A) so that

(04 0pa)(Ur) =0a(pa(U1)) = 04(Ro(A)) = Ro(Ro(A4)) = A
which agrees with the dilation d4 as defined in Definition OF.1(B).

Therefore the present definition of - is an extension to the whole plane of
the notion of product in Definition OF.1(D).
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(C) Upon reflection, it will be seen that Definition CX.1 is the formaliza-
tion in this context of the usual definition for products of complex numbers.
Applying the rotation p4 to the point B is the same as “adding the angles
of A and B”; applying the dilation 4 “multiplies the modulii” of the points
A and B, where the modulus of a complex number A is the length of the
segment [OTLf, or the distance from O to A, as defined in Definition OF.16.

That is to say, applying d4 to pa(B) “stretches” or “shrinks” pa(B) by
the same ratio as d4 “s‘gﬂghes” or “shrinks” U; to get A.

The case where A € OU{ where U{—O-U; can be a bit tricky to visualize.
The rotation py = Ro maps the point B to —B, and then the dilation §4
stretches that point in the same way that it stretches Uy to —A € OHUl .

Theorem CX.3 For any points A and B in C\ {O}
(A) (Ga0pa)(T1) = A,

(B) A- B=da(pa(B)) =(0aopacdpopp)(Ui), and
(C) da.p=0400p and pa.p = pa© pB.

Proof. (A) ) If A€ OHUl, then pa =1, pa(U1) = Uy, and
0a(pa(Ur)) = 0a(Ur) = A.

(I IfAe (C\O]—>U17 then by Specht Ch.13 Theorem DLN7(E) §4(pa(U)) =
pa(da (]@) and by Definition CX.1(B)(i) this is pa(p,'(A)) = A. Note that
if A € OUy, where Uj—-O-Uy, this last calculation becomes Ro(Ro(A)) = A.

(B) By Definition CX.1(C) and part (A) applied to B, we have

A-B=04a(pa(B)) =06a(pa(dp(pp(Ur)))) = (6a0paodpopp)(U1).

(C) In this part of the proof, when we say a mapping is a rotation™ we
mean that it is either a rotation about O or the identity :; when we say a
mapping is a dilation® we mean that it is either a dilation with fixed point
O or the identity 2.

By Theorem DLN.20, the union of the set of all rotations about O and
the set of all dilations with fixed point O, together with their compositions
and the identity map 2 comprises an abelian group under composition. Thus
by Theorem DLN.20 and part (B) above, for any A and B in C\ {O},

A-B=(6a0pacdpopp)(Ui)=(50p)(Ur)
where p is a rotation™® and ¢ is a dilation*.

By Specht Ch.3 Theorem CAP.18, O(A - BY is a fixed line for 0=, so either
p(U1) € O(A-B)or p(U;) e O(—A- B ). If the latter is true, define §’ so that
for every point X € C, §'(X) = —6(X), and p’ so that for every point X € C,
P (X) = —p(X); then p/(Uy) € ]O(A - B). Then
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(8 0 ¢ )(U1) = &' (—p(U1)) = —&(p(U1))
= —(=6(p(Uh))) = d6(p(U1)) = A- B.

Hence in either case, there exists a dilation® § and a rotation® p such that
(§op)(U1) = A-B, p(U1) € O(A - BS, and §0p = (54065)0 (paopp). Both 6
and 04 o dp are dilations* and both p and p4 o pp are rotations*. Both p(Uy)
and (pa o pp)(U;) are in b(A - B and EOp(Uli ~ OU; = EO(pA o pB(Ul)j S0
by Property R.4 of Specht Ch.8 Definition NEUT.2, p(Uy) = (pa o pp)(Uy)
and thus p = paopp. p is therefore the rotation® that maps OU; to O(A - B),
that is, p = paopp = pa.p.

Then ¢ is the dilation* that maps p(U;) to A- B and hence is the dilation*
that maps U; to p~1(A - B); by Theorem CAP.24 there is only one such di-

lation* and hence § =d4 005 =Jda.5. O

Theorem CX.4 C\ {O} is an Abelian group under the operation “”,
where Uy is the identity and for every A € C\ {O} the inverse of A is the

point ;" (p 1 (U1)).

Proof. Let G be the union of the set of all rotations C about O, the set of all
dilations of C with fixed point O, the set of all compositions of mappings in
these two sets, and {u}.

By Theorem DLN.20 G is an Abelian group under the composition of
mappings. The proof that C\ {O} is an Abelian group under the operation -
consists of a series of calculations using Definition CX.1 and Theorem CX.3,
and is left to the reader as Exercise CX.1. O

Theorem CX.5 Let ¢ be a collineation of the Euclidean/LUB plane C
such that ¢(0) = 0 and let S and T be members of C. Then (S +T) =

p(S) + (1)

Proof. (Case 1: S = O.) By Definition CX.1 each side of the above equality
is equal to (7).

(Case 2: S # O.) g is the translation of C such that 75(0) = S. Then by
Theorem CAP.13 po7gop~!is a translation of C. Since (poTgo¢~1)(0) =
©(S), porgop ™t =7, and so p o Tg = Ty,s) © ¢ and thus (¢ o 75)(T) =
(To(s) 0 )T, Le., p(7s(T)) = 75y (p(T)), or (S +T) = o(S) +¢(T). O

Theorem CX.6 (Distributive Property) Let A, B, and C' be members
of C. Then A-(B+C)=(A-B)+(A-C).
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Proof. Define ¢ = d4 0 pa as defined in Definition CX.1(A) and (B). Then ¢
is a collineation with ¢(O) = O, since both §4 and pa are collineations with
fixed point O.

(Case 1: A = 0.) By Definitions VEC.1 and CX.1 A-(B+C) = p4(B+C).
By Theorem CX.5

paA(B+C)=9a(B)+pa(C)=A-B+A-C.
(Case 2: A# O.) Then A- (B+ C) = pa(B + C). By Theorem CX.5
pa(B+C)=pa(B)+pa(C)=A-B+A-C. O

Theorem CX.7 The Euclidean/LUB plane C under the operations of

addition and multiplication is a field.

Proof. This is a synthesis of Theorems VEC.3, CX.4, and CX.6. O
Note that C is not an ordered field.

Theorem CX.8 Let C be the complex plane, and (as in our overall as-
sumptions) let Ly be a line in C with origin O which has been built into an
ordered field with unit Uy, the multiplicative identity for C. Let t be any real
number, and let §; be as in Definition CX.185.2, that is, for all points A € Ly,
01 (A) =tA.

(A) For all points A € C, §;(A) = tA (not just for points A € Ly, as in
Definition CX.13.2).

(B) If U is a point of C\ {1} such that OU; = OU, then for all real
numbers t # 0, btUlj ~ OtU.

(C) Let A be any point in C\ {O}, and suppose the line L = OA is built
into an ordered field with origin O and unit U. Then §;(A) =tA =tU; - A.

(D) In particular, for any A € Lq, 0,(A) = tA =tU; - A.

Proof. (A) This is Specht Ch.18 Theorem REAL.37.
S_U} Let p be the rotation of C such that p(U;) € OJ_U) so that p maps OUl
to OU and p~' maps W to OU1.
E—2 E—-4 E———3
Since p is an isometry, OU = OU; = Op(U; ) and by Property R.4 of Specht
Ch.8 Definition NEUT.2, p(U;) = U, that is, Uy = p~(U). By Theorem
DLN.17 and Theorem NEUT.15,
e = == E 3
0(0:(U)) = 6:(0OU) = 6:(0U1) = O(6¢(Un)).
(C) Tt isn’t possible to directly use Theorem REAL.25 to show that tU; -
= t(U; - A) = tA, because that theorem applies only to the product of

A
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points in a line I through O, whilst U; and A are points in different lines
through the origin.

Let p be as defined in the proof of part (B). Then let A’ = p~1(A), so that
p(A) = A.

By Definition CX.1, the complex number product tU; - A = div, (pru, (A))
by Definition CX.1(C)

(Case 1: t > 0.) tU; € OHUl so that by Definition CX.1(A) piy, = ¢ and
hence

Ui - A= 0w, (pew, (A)) = 0w, (A) = diw, (p(A))
= p(dw, (A7) commutativity (Theorem DLN.7(E))
=p(tU; © A') by Definition OF.1(D) (both A" and tU; € L)

= p(tU; - A") - and © are the same on L;
=p(t(Uy - A’")) by Theorem REAL.25 (both A" and tU; € Lq)
= p(tA) by identity of U
= p(0:(A")) 0 as in Definition REAL.38
= d(p(A")) commutativity (Theorem DLN.7(E))
=0:(A) by definition
=tA Theorem REAL.37 applies d; to all points.

(Case 2: t < 0.) —t = (=1)t, so by Case 1, ((=1)t)U; - A = ((—1)t)A.
The left-hand side of this equality is ((—1)(tUy) - A = (=1)(tU; - A) by The-
orems REAL.23 and REAL.25. The right-hand side is (—1)(¢A) by Theorem
REAL.25, so we have (—1)(tU; - A) = (—1)(tA); multiplying both sides by
—1 and using Theorem REAL.25 and arithmetic, we have 1(tU;y - A) = 1(tA)
which is tU; - A = tA by Theorem VEC.7(E).

(D) This is part (A) where £L=L¢. O

Remark CX.9 Theorem CX.8 shows that the comparative scales for
scalar multiplication in IL; and another line through the origin are the same
if the segments from O to their respective units are congruent. In particular
this is true for LLy. Moreover, scalar multiplication tA agrees with complex

number multiplication tU; - A.

Theorem CX.9 If A and B are distinct members of C\ OUy, then
AOU, B is similar to AOA(B - A).

Proof. By Definition CX.1 and the fact that a rotation is an isometry,
ZU,0B = ZAO(B - A) (cf Theorem NEUT.15). By Theorem DLN.14,
dilations preserve angles so that ZOU;B = ZOA(B - A). By Definition
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E————3

E———3 E—3 ES—5

[O(A - B)] so that [OA] = [O(A - B)] @[OB]. Therefore the ratios of corre-
sponding edges of AOU, B ~ AOA(B A) are the same. By Theorem SIM.18
AOU B ~ ANOA(B-A). O

SIM.7, [OU; ||OA] = [OA] so that [OA] = [0A] @[OU; ); also [0A]|OB] =
&)

2.2 Computation with complex numbers

In this section, C is the complex plane, which is equipped with origin O
and operations + and - . I; and Ly are perpendicular lines on P intersect-
ing at O, which are built into ordered fields with units U; and U, for L,
and L, respectively. We assume that Us is chosen so that O[—UQJ = O[—JUl By
Theorem CX.4 U; is the multiplicative identity for C. By Theorem VEC.8
every complex number Z can be written as Z = xzU; +yUs where x and y are
uniquely determined real numbers. + will denote addition, and - will denote

multiplication of two complex numbers.

Definition CX.10 (A) If Z = zU; + yUs is any complex number, z is
said to be the real part of Z, and y is the imaginary part of Z.

(B) A complex number Z is said to be real iff Z € L; and hence Z = 2Uy;
it is (purely) imaginary iff Z € Ly and hence Z = yUs.

Theorem CX.11
(A) If x and y are any real numbers, then xU; + yUs = O iff x =y = 0.
(B) For all real numbers x and y, Uy - yUy = (xy)U;.
(C) For all real numbers x and y, xUs - yUs = (zy)(Us - Us).
(D) For all real numbers x and y, xUy - yUs = yUs - 2Uy = (zy)Us.
(E) U =-Ui.
(F) OU1 - OU2 0.
Proof. (A) This is Theorem VEC.8(B).
(B) Since - is the same as @ on Ly, this follows from two applications of
Theorem REAL.23 and one of Theorem REAL.25 as follows:
xUy - yUy = 2U; © yUy = (U © yUy) = 2(yUy © Uy)
=z(y(U1 © Uh)) = (zy) (U1 © Uy) = (zy)UL.
(C) By Theorem CX.8, xUy = aU; - Uy and yUs = yU; - Us. Then by part
(C) and commutativity,
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xUy -yUs = 22Uy - U - yUy - Ug = 22Uy - yUy - Uy - Us
= (zy)Ur - Uz - Uz = (2y) (U2 - U2),
using Theorem CX.8 once again.
(D) By Theorem CX.8, yUs = yU; - Us. Using part (B),
aUy - yUsy = 2U; - yUy - Uy = (ay)U; - Us = (2y)Us.

(E) By Definition CX.1, since py, is the rotation that maps U; to Us,
dy, = 1. By Theorem ROT.15(A), py, = R © Ry,, where M is the line of
symmetry of ZU;OU, (and also of its vertical angle Z(—U;)O(—Us)). Then
R, (Us2) € O(_UQ; and Ry (=Us) € O(=U; ). Hence

Us - Uz = pyu, (UQ) = RM(R]Ll (UQ)) S O(—Ul }

?he mapping pu,, and hence 231s0 tpe glapping pU, © pU, is an isometry
s0 ?(Ugr'Ugj = b(pyz(pUz(Ulj))j > LOUfj. Also Ro(Uy) = —Ui, so that
OU; = O(=U;) and O(Us - Uy) = O(=U4). By Property R.4 of Definition
NEUT.2, Uy - Us = —U,.

(F) Immediate from Definition REAL.19(A)(1). O

Remark/Definition CX.12 (A) With the rules in Theorem CX.11 just
above, together with the rules for addition and the distributive law which were
developed earlier in the chapter, we have everything we need to do complex
number arithmetic. At this point we abandon the use of capital letters A,
B, X, and the like for complex numbers; henceforth we will use lower case
letters. We will usually reserve the later letters of the alphabet (z and w in
particular) for non-real complex numbers and use the earlier letters for real
numbers.

(B) We abandon O as our designation of the origin, in favor of the number
zero (0).

(C) We will use 1 for Uy, the unit in L1, which is the multiplicative identity
for C. This gives us the freedom to write 2U; - yU; as simply zy.

(D) We will write ¢ in place of Us. Be sure not to confuse the symbol i
with the symbol ¢ for the identity.

Thus, instead of writing a complex number as Z = zU; + yUs, we will
write z = x + yi. It is also quite legitimate to write a complex number
Z = zU;y + yUs; as the ordered pair (z,y).

Theorem CX.13 (Restatement of Theorem CX.12) Using the no-
tation just introduced, the statement that every complexr number Z can be

written as Z = xUy + yUs where x and y are uniquely determined real num-



50 2 The Field of Complex Numbers (CX)

bers becomes “every complex number z can be written as z = x + yi where x
and y are uniquely determined real numbers”.

(A

If x and y are any real numbers, then x +yi =0 iff t =y = 0.

C) For all real numbers x and y, (xi)(yi) = (vy)i?

(
(
(D
(
(

)

B) For all real numbers x and y, xy = xy 112
)
) F

or all real numbers x and y, x(yi) = (zy)i.

=

<

)i =14 =—1.
F) 0i =

Theorem CX.14 (Computation involving complex numbers.) Let
a, b, ¢, and d be real numbers, so that a+ bi and c+ di are complexr numbers.
Then
(A) (a+bi) + (c+di) = (a+c)+ (b+d)i.
B) (a+ bi)(c+ di) = (ac — bd) + (ad + bc)i.
C) (a+ bi)(a —bi) = a® + b?.
)

Ife+di #0, then bl = agtbd 4 —adibe;

D c+di c24-d?

(
(
( Fra
Proof. We use the various rules of Theorem CX.13 as well as the field prop-
erties of C.

(A) Follows immediately from commutativity of addition.
(B) (a + bi)(c+ di) = ac + bdi® + adi + bci = (ac — bd) + (ad + be)i.
(C) (a+ bi)(a—bi) = a® — b%i? = a® + b2
(D) E

D a+bi a+bi)(c=di) _ ac—bdi’—adi+bci __ ac+bd + —ad+be 0O
ct+di — (ctdi)(c—di) c24d? T c2+4d?

c2+d2

Definition CX.15 (A) The modulus or absolute value of a complex
number z = a+ bi is its norm ||z, which is written in the context of complex
numbers, as |z|.

(B) If z = a + bi is any complex number, Z = a — bi is its complex con-

jugate.

Remark CX.16 (A) Recalling Definition VEC.6, if z = a+bi is a complex
number and ¢ is a real number, the scalar product tz = ta + tbi.
(B) By Theorem VEC.27(A), for any complex number z = a + bi, |z| =
VaZ+ 7.
(C) For any complex number z = a + bi,
2z = (a+ bi)(a — bi) = a2 + abi — bai — b%% = a% — b2(—1) = aTb? = |z|*.

2 Notation can obscure what is really going on, but in this case it’s ok, since we have

proved already that U1 - yUr = (xy)Us.
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(D) a+ bi =0+ 0i iff |a + bi| = 0. For if |a + bi| = a® + b* = 0 then since
both a? > 0 and b2 > 0, both must be zero. Here Specht Ch.14 Theorem
OF.10(C) is used twice.

(E) Notice that we have two uses of the symbol |z|; if z is a real number,
Definition OF.13(B) applies. In this case |z| = z if z > 0 and |z| = —z if
z < 0. If z is a non-real complex number, Definition CX.15(A) applies. In
either case, |z| is the length of the segment Fz, that is to say, the distance
from 0 to z. The two definitions agree if z is a real number.

Some authors strongly prefer the terms magnitude or modulus rather
than “absolute value” for complex numbers since the common method of
finding the absolute value (as defined in Definition OF.13) of a real number
doesn’t work for complex numbers. This avoids the confusion possible when
the same symbol is used for two different definitions. However, the term ab-
solute value has become entrenched.

Theorem CX.17 Leta, b, ¢, and d be real numbers. Then
[(a+ bi)(c+ di)| = |a+ bi||c+ dil.
That is, the absolute value of the product of two complex numbers is the

product of their absolute values.

Proof. |(a + bi)(c + di)| = |(ac — bd) + (ad + bc)i]
= +/(ac — bd)? + (ad + bc)?
= va2e2 — 2achd + b2d? + a2d? + 2adbe + b2c2
Va2e2 + a2d? + b2¢2 + b2d2
=/a2( + d2) + b2(c2 + d?)
— ETPET )
= Va2 + 2@ + & = |a+ bil|c+ di|. O

Corollary CX.18 Let a, b, ¢, and d be real numbers, then (a+bi)(c+di) =
0407 iff at least one of the complex numbers a+bi or c+dzi is the zero complex
number 0 + 03.

Proof. The “if” part is immediate by definition, so we prove the converse. If
|a + bil|c + di| = 0, by Exercise CX.3 either |a + bi| = 0 or |c+ di| = 0 (or
both). It is valid to use Theorem OF.10 since we are using only properties of
real numbers here. By Remark CX.16(D), either a =b=0or ¢ =d = 0, or
both. O
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2.3 Exercises for complex numbers

Exercise CX.1* Complete the computations necessary to prove Theo-
rem CX.4.

Exercise CX.2* Let X be any nonzero complex number and let Y be any
member of W , then there exists a unique real number ¢ such that ¥ =tX
(cf Definition CX.T7).

Exercise CX.3* Let A and B be complex numbers. A©B = O iff A =0
or B =0 (or both A and B are equal to zero).

Exercise CX.4 Following the lead of the last sentence in Remark CX.14,
rewrite the conclusions of Theorem CX.15, using the notation (z,y) in place
of = + yi.

2.4 Selected answers for complex numbers

Ezercise CX.1 Proof. Let A, B, and C' be any members of C\ {O}. By
Definition CX.1, A- B € C\ {O}, so this set is closed under the operation.
(I) Associativity.

A-(B-C)=(A-(bpoppodcopc)(Ui)) by Theorem CX.3(B)
=da0pa((0poppodcopc)(Ur)) Definition CX.1(C)
= (0a0pa)o(dpoppoicopc)(U)
= (baopaodpopp)o(dcopc)(Ur) associativity of bijections
=(baodpopaopp)o(dcopc)(Ur) Theorem DLN.7(E)
= (6a.popa.p)o(dcopc)(Ur) Theorem CX.3(C)
= (6a.Bopa.B)((6c o pc)(Ur))
=(A-B)-C Definition CX.1(C)

(IT) Identity. By Definition CX.1, A-U; = d4 0 pa(Uy) = A, so that Uy is
the multiplicative identity.
(IIT) Commutativity. By Definition CX.1, and Theorem DLN.22 (commu-
tativity of G)
A-B=20d50pa(épopp(Ur)) =(0aopaocdpopp)(Ur)
=(0goppodaopao)(Uy) =dpopp(daopaoc(Uy)=DB-A.
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(IV) Inverses. Let A~' = 6, (p,'(U1)). Then by Theorem DLN.20(A)
(commutativity of G)
A- A7t =640 pa((64" 0 p3")(U1))
= (04003 0paopy)(U1) =10u(Uh) =U1. O

Exercise CX.2 Proof. This is Corollary REAL.35.1. O

Ezercise CX.3 Proof. The proof of Exercise OF.10(H) is valid here since
that proof uses only field properties and does not involve any properties of
the relation <. 0O






Chapter 3
Arc Length (ARC)

Dependencies: Fuclidean Geometry and its Subgeometries (Specht)
Acronym:ARC
New terms defined: arc, closed arc, rectifiable arc, arc length, summation,

function of bounded variation, total variation

This chapter defines rectifiable arcs, arc length, and functions of bounded
variation. The following Chapter 4 defines the circular functions sin and cos
and develops their properties, starting from an antiderivative of the function
flx) = H% Chapter 5 defines angle measure in terms of the length of arc
of a unit circle, and proves several interesting results using this definition.

To understand these chapters the reader needs some background in cal-
culus and analysis: we assume familiarity with limits, € — § limit proofs,
continuity and uniform continuity of functions, the mean value theorem, as
well as Riemann sums and integrals.

Here we will be working with R?, the Cartesian coordinate plane. In Specht
Ch.21 Theorem LC.44 we summarized a proof that all the axioms in that work
hold for R2. Therefore, in the present chapter and the two that follow, we are

free to use all the theorems and definitions from Specht.

For an explanation of our conventions for citations of items in Specht, we
refer the reader to the note Citations and references at the end of the
Preface to this Supplement, and to the abbreviated Table of Contents (with

acronyms) included there.

In this chapter references to items labeled ARC will be to this Supplement;
all other references are to Specht.

55
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On notation: If @ and b are real numbers, we will denote ab by [a, b],
ab by a,b], ab by [a,b[, and ab by Ja,b]. If f is a function defined on real
numbers, we may denote the set {f(x) | = € [a,b]} by f[a,b] instead of the
more formally correct symbol f([a,b]). If m and n are integers and m < n, we
use the symbol [m;n] to denote the set {k | k is an integer and m < k < n}.

3.1 Definitions and theorems for arc length

Definition ARC.1 (I) A subset C of R? is an arc iff a and b are real
numbers such that a < b, and there exists a mapping f of ab = [a,b] into R?
such that

(a) € = fla b,

(b) f is one-to-one,

(c) f is continuous on [a,b], and

(d) f~1is continuous on f[a, b].

A mapping with these properties is a homeomorphism. If ¢ = b, the arc is
the trivial arc, consisting of a single point. It is understood that an arc does
not intersect itself.

A subset C of R? is a closed arc iff a and b are real numbers such that
a < b, and there exists a mapping f of ab = [a,b] into R? such that (a)
C = fla,b], (b) the restriction of f to [a,b] is one-to-one, (c) f is continuous
on [a,b], and (d) f~! is continuous on f[a,b[, and (e) f(a) = f(b). A closed
arc intersects itself only at its endpoints.

If C and f are as defined above, we will say that C is an arc generated
by the function f or an arc generated by the function f over [a,?],
or a closed arc generated by the function f over [a,?].

If fla,b] is a closed arc generated by the function f over [a,b], and if
a < x < b, then both f[a,z] and f[z,b] are arcs (not closed).

If we need a symbol for an arc without reference to the function which
generates it, we will generally use the the symbol C rather than A, since C
suggests the word curve, the name popularly given to what we have defined
as arc.

(IT) A partition of [a, b] is a finite subset Pla,b] = {a = zo, 21, ..., z, = b}
of [a, b] such that

(A) n > 1, so that PJ[a,b] contains at least the two elements a and b, and

(B) a=x¢ <21 < ... < 2, = b, that is, for every k € [1;n], tp—1 < t.
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We will find it convenient at times to summarize the definition of partition
by writing
Pla,b] ={a =z <21 < ... <y =b}.

A partition Pla, b] containing only the two elements a and b will be referred to
as the trivial partition. Within a given argument, if it is clear what interval
is being partitioned, we may write Pla,b] simply as P. Note that this use
of the word “partition” is related to, but not the same as its use in Specht
Chapter 1, Section 1.4.

(IIT) If Py [a, b] and Pala, b] are partitions of [a, b], then Pa[a, b] is a refine-
ment of Psa, b] iff P;a,b] is a proper subset of Pa[a, b].

(IV) Let f be a function with values in R or R?, defined on the interval
[a,b], and let P be a partition of [a,b]. The summation of f over the

partition P is
Sp(F) = 3 1£() = f(to)]
If it is desired to emphasize the domain of f we may write the sum as
Spia(f) = 3 1£(t) = f(ti-)]

For a visualization see Figure 3.1.

f(t2)

a =ty t1 to ts ty

Fig. 3.1 Showing construction of the summation of f over the partition
P={a=ty <t <..<tg=">b}

(V) Let Pla,b] = {a =ty < t; < ... <tn, =b} be a partition of [a,b]. The
gauge of Pla,b] is the number
max{ty —tx—1 | k € [1;n]} = max{|ty — tx—1| | k € [1;n]}.
(VI) The arc (or closed arc) fla,b], as well as the mapping f, is said to be
rectifiable iff there exists a positive number A such that for every partition

,P[a’vb] of [aab]v Sp(f) = E |f(tk) - f(tk—1)| < h.
k=1
(VII) If the arc (or closed arc) fla,b] is rectifiable, then its arc length,
or simply its length, is
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L(f[a,b]) = lub{Sp(f) | P is a partition of [a, b]}.

Remark ARC.2 (A) The arc length L(f[a,b]) of a rectifiable arc f[a, b]
in R? is always defined because the set of all sums Sp(f), where P is a
partition of [a, b], is a set of real numbers which is bounded above, and such
sets always have a least upper bound.

(B) If a = b, (f[a,b] is the trivial arc) the only possible sum Sp(f) is
[f(a) — f(b)] = 0 so L(f[a,b]) = 0. If a # b then since f is one-to-one,
[f(a) — f(b)| # 0 is a sum Sp(f), and since the arc length is the least upper
bound of all such sums, L(f[a,b]) > 0.

(C) In Definition ARC.1(I), the definition of an arc (not closed) does not
need to declare that the inverse of f is continuous; this is a consequence of a
theorem from general topology which states that any one-to-one continuous

function defined on a compact domain has a continuous inverse.

Theorem ARC.3 Let fla,b] be an arc generated by the function [ over
[a,b]. If Py and Py are partitions of [a,b], and Ps is a refinement of Py, then
Spl(f) < sz(f)

Proof. By Definition ARC.1(III), P; C P2 and Py # Pa. Then there exists a
natural number m and a sequence

P1=01C2C..C9n="P
of partitions of [a, b] such that for every k with 1 < k < m, there exists a real
number ¢ such that

Ok \ Q-1 = {t},

where t is a singleton, both z,_; and x, belong to Qx_1, and z,_1 <t < x}.
That is to say, each of the partitions Qj contains one more point than its
predecessor Q1.

Thus, it suffices to show that if Pla,b] = {a = 2o < 21 < ... < z, = b}
is a partition of [a,b] and t is a real number such that xz;_1 < t < x, the
partition Q[a,b] = Pla,b] U {t} satisfies

Sp(f) < Salf).
This follows immediately from
|flee—1) = flae)] < [f(@e-1) = FOI+[F() = f(ax)];
which is true by the triangle inequality for R2. O
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If C is a closed arc, for Sp(f) # 0 it is necessary for P to contain at least

three points. Theorem ARC.3, however, is true in the case of a closed arc.

Theorem ARC.4 Suppose that a and b are distinct real numbers, where
a < b, and that fla,b] is an arc (or closed arc) generated by the function f
over [a, b].

(A) If [d, €] is a proper subsegment of [a,b], that is, d < e and both d and
e are members of [a,b], but [a,b] # [d, €], then if fla,b] is rectifiable, f[d, €]
1s rectifiable.

(B) If ¢ is a real number such that a < ¢ <b,

L(f[a,b]) = L(f[a, c]) + L(f[c, b]).

Proof. (A) Let Pld,e] = {d =z < z1 < ... < z,, = e} be a partition of [d, e].
Then Qla,b] = P[d,e] U{a,b} is a partition of [a, b];
(Case 1:) if a # d and b # e then
Qlabj={a<d=z9<z1 <..<zp =0<Db};

(Case 2:) if a = d then Qla,b] ={a=d=2¢ <21 < .. <z, =€ <b};
(Case 3:) if b=-e then Qa,b] ={a <d=z¢<z1 <..<zp =e=Db};
Since fla,b] is rectifiable, there exists a number h > 0 such that for every

partition R[a,b] of [a,b], Sr(f) < h; thus, in particular, So(f) < h.
In Case 1, this means that (noting that f(x¢) = f(d) and f(z,) = f(e))

h> Sa(f) = 3 1F(t) =t +1£(xo) = F(@)] + 1£0) = ()
> 52 1£() ~ f(txn)| = Sp (1),

so that Sp(f) < h. Since P was initially chosen to be an arbitrary partition
of [d, e], this means that f[d, €] is rectifiable.

Likewise, in Case 2,
h>So(f) = k; |f(tx) = f(te-2)| + £ (b) = f(zn)| = Sp(f),
and in Case 3, R
h>So(f) = k; [f(tx) = f(te—1)| + | (20) — fla)] = Sp(f),
so that in either case, f[d, e is rectifiable.
(B) (I) Let f1 and f2 be the restrictions of f to [a, ] and [, b], respectively.
By part (A) the arcs fi[a,c] and fi[c, b] are rectifiable, and
L(f1]a,c]) = lub{Sq(f1) | Q is a partition of [a, c|}, and
L(f2[e,b]) = lub{Sg(f2) | Q is a partition of [c, b]}.
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Let P be any partition of [a, b]; then P U {c} is a partition of [a,b]; define
P1 = (PU{c}) Nla,c] and Py = (P U {c}) N e, b; then P; is a partition of
[a, ] and P; is a partition of [c, b].

Then, for any partition P of [a,b], and using Theorem ARC.3,

Sp(f) < Spuep(f) = Sp,(f1) + Sp, (f2) < L(fla, c]) + L(f[c, ).
so that
L(f[a,b]) = lub{Sp(f) | P is a partition of [a, b]}
< L(fi[a, ) + L(fale,B).

(IT) Conversely, let € be any positive real number. By definition of L( f1 [a, c])

and L(f2[c, b]) there exist partitions Py of [a,c] and Pz of [c, b] such that
Sp, (fl) > L(fl[avc]) - %7 and 87)2(f2) > L(fQ[Cv b]) - %
Let P =Py UPy; P is a partition of [a,b] and
Sp(f) = Sp,(f1) + Sp.(f2) > L(fila,c]) — 5 + L(f2[c, 0]) — 5
— L(fifa,d]) + L{fale, ) .
Therefore if Q is any refinement of P, using Theorem ARC.3,
Sa(f) > S»(f) > L{fila.d) + L(fale.B)) —e.
Since we chose € arbitrarily, this means that
L(f[a,b]) = lub{Sp(f) | P is a partition of [a,b]}
> L(fila, ) + L{fale, b).

(IIT) That L(f[a,b]) = L(fi[a,c]) + L(f2[c,b]) follows immediately from

parts (I) and (II) above. O

Definition ARC.5 Let a and b be distinct real numbers and let ¢ be
a mapping of [a,b] = ab into R. ¢ is of bounded variation on [a,b] iff
there exists a positive number h such that for every partition Pla, ] of [a, ],
Spap (@) < h. (Here, Sp, () is as defined in Definition ARC.1(IV).)
If ¢ is of bounded variation on [a, b, then the total variation of ¢ on
[a,b] is
V(@[a,5)) = lub{Sp[q,3 (H) | Pla,b] is a partition of [a, b]}.

Let t be any member of ]a, b] = ab. Then V(ipy, ) is the total variation of ¢

on [a,t] = al.

Remark ARC.6 Our definition here of the total variation is the same as
that in Definition ARC.1(VII) for arc length, except that now we are dealing
with a real-valued function, rather than a function with values in R2.

The symbol V(p[a,b]) for the total variation of the function ¢ over the
segment [a,b] is completely analogous to the symbol L(f[a,b]) for the arc
length of an arc f[a,b]. The symbol Sp(p) means the same thing in both
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contexts.

Theorem ARC.7 Suppose that a and b are distinct real numbers, where
a < b, and that ¢ is a mapping of [a,b] into R. Let [d,e] be a proper sub-
segment of [a,b], that is, d < e and both d and e are members of [a,b], but
[a,b] # [d,e]. Then

(A) if ¢ is of bounded variation on [a,b], it is also of bounded variation on
[d,e]; and

(B) if ¢ is a real number such that a < ¢ <b,

V(gla, b)) = Vgla, ) + V(g[e,b)-

We may express this last expression by saying that V(pla,t]) is an additive
Sfunction of t.

Proof. With the substitution where appropriate of V(y[a,b]) for L(f[a,b]),
the proof of Theorem ARC.4 is valid word-for-word for Theorem ARC.7. O

Theorem ARC.8 Leta and b be real numbers such that a < b and let ¢
be a mapping of [a,b] = ab into R which is of bounded variation on [a,b]. If
Y is the mapping such that for every member x of [a,b], ¥ (x) = V(p[a,2]),
then

(A) 9 is nondecreasing on [a,b], and

(B) If ¢ is continuous on [a,b], then v is continuous on [a,b].

Proof. (A) If s and ¢ are members of [a,b] such that s < ¢, then ¥(t) =
V(gla,t]) and ¥(s) = V(p[a, s]). By Theorem ARC.7(B),
V(pla, t]) = V(ela, s]) + V(pls, 1)),
so that, rearranging,
P(t) = ¢(s) = V(pla, t]) — V(pla, s]) = V(g[s,1]) = 0,
and thus ¢ (s) < (t).

(B) We assume there exists a member z of [a,b] such that 1 is not con-
tinuous at x and show that this assumption leads to a contradiction. Since
1) is nondecreasing the only discontinuity can be a jump discontinuity; either
(Case 1) the limit from the right is greater than ¢ (z) or (Case 2) the limit
from the left is less than ¢ (z).

(Case 1:) There exists a number d > 0 such that (limit from the right)
lim (t) — (x) = d, where ¢ €]z, b] = xb.

(I) We begin our proof by making the following observations labeled (a),
(b), and (c):
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From part (A), ¢(t) = V(g[a,t]) is an increasing function of ¢, and it is
additive by Theorem ARC.7(B). Thus for all ¢ > z,

Vipla, 1) = V(pla, z]) + V(plz, t]).

so that
V(pla, t]) = V(pla, z]) = V(plz, t]) > d.
Since thm V(g[z,t]) = d, there exists a number tg > = such that for all ¢ with
—x
x < t<to,

4 < Vigle.f) < 2. (a)
Also, since ¢ is continuous, the number ¢y may also be chosen so that for all
t with z <t < ty,
lo(t) = p(to)| < €. (D)
For every partition P = Plx, ] of [z, ], where x < t < o, and applying (a)
Spiwa(9) < V(plo ) < 2. (©)
(II) By the definition of least upper bound, we can choose Py = {x = 21 <
1 < Ty < ... < xp = 1o} to be a partition of [z, %] such that
Spy () > V(plz, to]) — ¢.
Then

Spy () = lp(a1) — p(xo)| + kE lo(2x) — o(zp-1)|
=2
<%+ggw&w—wmhﬂm
or, rearranging and using (I)(a) above,
g;wm»—wmqn>&u@—%>ku«m—%—%>d—%=%#

(IIT) Now let Py = {z =yo < y1 < y2 < ... < Ymm = 21} be a partition of

To,T1 x,x1]; since V(p|z,21]) > d, we can choose P; so that
[ ] = [z, 21];
Sp,(¢) > V(plz,1]) — ¢ >d— < =42,

Let @ =Py U Py; then Q is a partition of [3:, t] and by (II),

Sale) = Sp(0) + 3 lelzx) — ol

4d | 3d _ 7d
>F5+5 =53

But by (I)(c), Sa(p) < %, so we have a contradiction.

(Case 2:) We follow the proof of Case 1. There exists a number d > 0 such
that (limit from the left) ¢ (z) — tlgrglﬁ P(t) = d, where t € [a, z]. We leave the
rest of the proof to the reader as Exercise ARC.1. 0O

Remark ARC.9 (A) A real-valued function defined on a set £ of real
numbers is said to be uniformly continuous iff for any real number € > 0,
there exists a real number § > 0 such that for all x and y in &, if |z — y| < 0,

then [f(z) — f(y)| <e.
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(B) A real-valued function defined on a set & of real numbers is said to
be bounded iff there exists a real number b > 0, such that for every z € &,
|f ()] <.

(C) Tt is well known from calculus that if a real-valued function f defined
on a closed interval [a,b] is continuous, it is uniformly continuous; from this
it is easy to see that it is also bounded; for if € and ¢ are as in (A), let n be
any integer such that n @; then for any = € [a,b], |z — a|] < n(d) and there
exists a subset {a =t < t; < t2 < ... < tp—1 < t, = z} such that for all
k€ [1;n], [tk — tk—1| < ¢, and hence for all k € [1;n], |f(tx) — f(tr—1)| <€,
so that

F(@) = F@) < 3 1f(0) = f(tx-2)] < ne.
Then let b = | f(a)|+ ne; for all « € [a,b], | f(x)] <b,so that f is bounded on

[a, b].

Theorem ARC.10 Let f be a continuous function defined on the closed
interval [a,b] having values in R or R?. By Remark ARC.9, f is uniformly
continuous on [a,b].

For each integer j > 0 let {P;} be a partition of [a,b] and let g; be the
gauge of the partition P;. Suppose that Jlggo g; = 0 and gljiLnO Sp, (f) exists
and is equal to some number L. Since for all j, Sp,(f) >0, L > 0.

(A) Then for every partition P of [a,b],

Sp(f) < lim Sp,(f) = L.
9;—0
(B) The least upper bound
lub{Sp(f) | P is a partition of [a, b]}.

exists, and is equal to L.

Proof. (A) Suppose the contrary is true, that for some partition P = {a =
o< a1 < <2< ... <xy = b} of [a,b],
Sp(f) > L.

Let d = Sp(f) — L, that is, Sp(f) = L + d Since f is uniformly continuous,
there exists a real number § > 0 such that for all z and y in [a, b], if |[z—y| < 0,
then |f(x) — f(y)| < 3%. Let jo be so large that for all j > jo,

(1) gj < min{xy —xp—1 | k€ {[1,n]};

(2) gj < §; and

(3) |Sp, — L| < £, so that Sp, < L + 4.

Let j > jo; for each k € [1;n], define Vi = PjN|zr—1,zk[= {yo < y1 <
Y2 < ... < Ym,} by (1) above, this set is nonempty, and ), is a partition of
(Y0, 9y, *)]. Then
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nilf(yp(’“))  F W)+ 1F 0 ®) = )]+ |F @) — Fym @]

=Sy, (f) + | f (o™ — f(@r—1)| + |f(@r) = f ¥ ®)]
> [fan) = flee-1)l; (%)
this last inequality uses the fact that {zx_1,90", 11", y2®), ... ym, ®), 21}
is a refinement of the trivial partition {zj_1,xr} of [zr_1,x)]. Here it is

k)

possible, but not necessary, for z;_1 = yo*) or ymk( = Tk.

Now all the terms | f(y, ™) — f(yp—1*)| (which belong to the summations
f |f (yp ™) — f(yp—1%))| over all partitions V) are also terms in the sum-
=1

mation Sp, (f); therefore the sum of all these terms is less or equal to Sp, (f).
It follows that

Sn,(f) 2 3 Su (),

and using (*) above,

S, (1) + 3 (1Fo®) — )| + 1) — Flm, D))

k=1

> 32 83D+ 3 (1Fw0®) = Flaxn)| +1F@) = Fme )
> 32 1) = Flae)] = Sp(f)

Finally, since |yo™®) —zx_1] <6 and |z — Y, B[ < 6,
£ ™)) = flap_1)| < £ and |f(zx) — f(yme®)| < £,
so that

3 (£ ) = Flaka®)] 417 (ex) = Flome V) < %
and -

Sp,(f) + % > Sp(f), or Sp,(f) > Sp(f) — ¥
Recall from the beginning of the proof that Sp(f) = L+d, so that
Sp,(f)>L+d— L+—
But from condition (3) above,
Sp,(f) < L+,
a contradiction. It follows that for every partition P of [a,b], Sp(f) < L.
(B) By part (A), L is an upper bound for
{Sp(f) | P is a partition of [a, b]}.
By definition of limit, for every e > 0, there exists a partition P; such that
L — Sp,(f) < €. Therefore the least upper bound is greater or equal to L,
hence equal to L. 0O

Theorem ARC.11 (Integral form for arc length) Leta and b be real

numbers such that a < b and let « and [ be continuous real valued functions
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defined on [a,b] = Eﬁg, such that the function f(t) = (a(t), 8(t)) mapping [a, b
to a subset C of R? is continuous. Assume further that the derivatives o and
B exist and are continuous on [a,b], and that for every member t of [a,b],
(o/(t)>2 + (ﬁ’(t))2 > 0. Then

(A) fla,b] is a rectifiable arc (or closed arc), and

(B) for every member x of | 2 bl,
s Sy~ ()

Proof. For each natural number j, let P;[a,z] be a partition of [a,z] such

that for each j, Pji1]a, z] is a refinement of Pja, z], and lim g; = 0, where
Jj—o0

g; is the gauge of Pj[a, z]. For an arbitrary j, let P;[a,x] = {to < t1 < t2 <
. <ty}. Then Sp,(f) is

kiiil |f(t) = fth-1)| = kZiZl \/(Oé(tk) — a(tk_l))Q + (Bltn) - g(tk_l))Q,

By the mean-value theorem for derivatives, for each k € [1;n] there exist

numbers s, and uy, of |t;_1,t;[ such that a(ty) — a(ty—1) = (tr — th—1)a’ (s)
and B(t) — ﬂ(tkfl) = (tk — tg—1)B'(ur). Then
() = ; (00 = S0

<> @GO+ B2t — ter)
2

k=1
V1B = (B (1)t — ti—1) (%)

Since ' is continuous on |a, ] it is bounded on [a, b]. Thus there exists a
positive number h such that for every ¢ belonging to [a,b], |5/ (t)| < b Toa)

Since £’ is uniformly continuous on [a, b], for every positive number € there
exists a positive number § such that for all numbers s and ¢ belonging to [a, ],
if [s — ¥ < 6, then |B'(s) — B'(t)] < sy

Thus if we choose the partition Pj[a,x] = {tg < t; < t2 < ... < t,} so that
g; = max{(ty —tp_1) | k € [L;n]} <4,

él VB (ur))? = (B (k)P (tk — tr-1)
V1B (u) + B (si) |/ 18 (ur) — B (sk)[(tk — ti—1)-

n

k
SNV CARI N D SRVELCRIER LN
< VB (ug)| + \/Iﬁ’ (sk) 2\/|ﬂ )< 2\/ (b @)

Also, for all k,

—

For all k&,
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15 (u) = B ()] < \/ sy

so that .
> VB (ur))? — (B (k)2 (tr — tr—1)
k=1
< 2 h . €2 - te —to_
\/2<b—a) \/2(b—a)h 2tk =)
=4/ (be_za) kgl(tk —th1) = ey (b —a) =€
Therefore

lim 35 \/[(8(ur))? — (B'(sk))?(tr — te—1) =0,
9,70 k=1
where taking the limit 1im0 means the same thing as taking the limit lim
g;— j—o0o
through the sequence Pj|a, z] of partitions of [a, x].
By definition of the integral (from calculus), and by the argument just
above, the limit of the right-hand side of (*) is

Z \/(o/(u))2 + (ﬂ’(u))2 du + 0.

For each j > 1, Pj;1[a, z] is a refinement of P;[a, z], so the sequence Sp, (f)

(the left-hand side of (*)) is non-decreasing (with j), and has an upper bound
since the right-hand side of (*) has a limit. Therefore the limit lim0 Sp; (f)
9i—

exists; by Theorem ARC.10, this is
L(fla,x]) = lub{Sp(f) | P is a partition of [a, x]},
completing the proof. O

Theorem ARC.12 (Arc length is a bicontinuous bijection) Let a
and b be real numbers such that a < b; let o and B be continuous real-valued
functions defined on [a,b], such that [ = (o, ) is a one-to-one continuous
function of [a,b] into R? (and thus a homeomorphism); assume also that the
arc fla,b] is rectifiable.

Let ¢ be the mapping defined on [a,b] such that p(a) = 0 and for every
t €la,b], p(t) = L(f[a,b]). Then

(A) ¢ is increasing, one-to-one, and continuous on [a,b];

(B) ¢! exists, is increasing, and is continuous on p(a)p(b); and

(C) the mapping p o f~* is a one-to-one mapping of f([a,b]) = C into R;
that is, if ©(s) = @(t) then f(s) = f(t).

Proof. (A) Let s and ¢ be members of [a,b] such that s < t.

(Case 1: @ = s < t < b.) Let Pla,t] be a partition of [a,t]. Since f is
one-to-one, every term of Sp, 4(f) is positive (as opposed to non-negative).
Therefore L(f[a,t]) is positive and so ¢(a) =0 < ¢(1).
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(Case 2: a < s.) Let PJs,t] be a partition of [s,t]. Since every term of
Spis,(f)) is positive, IL(f[s,t]) is positive. By Theorem ARC.4, L(fla,t]) =
L(fla, s]) + L(f[s,t]), (t) = »(s) + L(f[s,t]), so ¢(s) < ¢(t). Thus ¢ is
increasing, and is one-to-one.

To show continuity of ¢, let s and ¢ be members of [a, b] such that s < ¢, let
n be a natural number, and let Pla,b] = {a = 9 < 21 < 22 < ... <z, = b}

be a partition of [a,b]. Then
2 @) = flena)l < 3 falze) —alze-)l+ 2 () = Blzk-)|

< l%/_(la[s, t]) + V(B[s, t]).
Since P[a, b] is an arbitrary partition of [a, b],
L(f[a,1]) < V(ags,g) + V(Bs,z)-
Let € be any positive number. By Remark ARC.9(C) there exists a positive
number ¢ such that for all members s and ¢ of [a, b] for which 0 < s <t <b
and t — s < 0, L(f[s,t]) < e. Since L(f[s,t]) = ¢(t) — ¢(s), this means that
( is continuous on [a, b].
B3

(B) By Exercise ARC.3 ¢! is increasing and continuous on ¢(a)p(b).

(C) Since f and ¢ are one-to-one, so are f~! and po f~1. O

3.2 Exercises for arc length

Exercise ARC.1* Complete the proof of Theorem ARC.8(B), Case 2.

Exercise ARC.2* Let a and b be distinct real numbers, o and 8 be
mappings of [a,b] into R and f = («, 8), then:

(A) f is continuous on [a, b] iff each of « or f is continuous on [a, b].

(B) f is rectifiable iff each of o and 5 is of bounded variation on [a, b].

Exercise ARC.3* Let a and b be real numbers such that a < b. If ¢ is a
mapping of [a, b] into R which is increasing and is continuous on [a, b], then:

(I) =1 exists.

(IT) ¢~ is increasing on [p(a), ¢(b)].

(III) ! is continuous on [p(a), p(b)].

Exercise ARC.4* Let ¢ be a mapping of R into R which is increasing
and continuous on R, then:

(I) o1 exists.

(IT) ¢~ is increasing on R.

(III) ! is continuous on R.
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3.3 Selected answers for arc length

Exercise ARC.1 Proof. We follow the proof of Case 1 of Theorem
ARC.8(B). There exists a number d > 0 such that (limit from the left)
P(x) — }im Y(t) = d, where t € [a, x].

—x
(I) ¥(t) = V(¢[a, t]) is an increasing function of ¢, and is additive. For all
t<uw,
V(pla, z]) = V(gla, t]) + V(glt, z]).
so that
V(pla,2]) — V(gla, ) = V(glt,a]) > d.
Since }im V(plx,t]) = d, there exists a number ¢y < x such that for all ¢ with
—x
x>t 2> 1,
< Viglt,al) < 2. (a)
Also, since ¢ is continuous, the number ¢y may also be chosen so that for all
t with = >t > ty,
(@) —e(t) < £ (b)
For every partition P = P[t, x] of [t,x], where x > t > 1o, and applying (a)
Spital(9) <Vl al) < 2. (©)

(IT) By the definition of least upper bound, we can choose Py = {to =

x1 <11 <29 < ...< T, =2} to be a partition of [tg, 2] such that
Spo () > V(pl0,2,]) — &
Then by (I)(b) above,

Srli) = & p(on) = )|+ [p(en) = plan-)

n—1
< kE o) — plar-1)| + &,
=1

or, rearranging and using (I)(a) above,

n—1
kZ_II o(k) = plze—1)] > Spy(p) — € > V(plz,to]) — § — ¢ >d - =%

(III) Now let P; = {zp—1 =yo < y1 < y2 < ... < ym = 2} be a partition
of [Xp—1,xn] = [Xn_1,z]; since V(p[z,_1,2]) > d, we can choose P; so that
Sp.(¢) > V(plzn-1,2]) — £ 2d - ¢ =%

Let Q =Py U Py; then Q is a partition of [t, z] and by (II),
n—1
So(p) = ;;—:1 (k) = plar-1)] + Spi () > H + 5 = ¥

But by (I)(c), So(yp) < &, so we have a contradiction. O
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Ezercise ARC.2 Proof. (A) If a and 8 are each continuous on [a, b], then
for every member s of [a,b] and for every positive number e, there exists

a positive number ¢ such that for every member t of [a,b] \ {s}, if |t —
5| < 6, then |a(t) — a(s)] < & and 3(t) — B(s)| < 5. Thus | f(s) - £(1)] =

V(00 =)+ (50~ 5))” < 0O a1 +150-B) < 5+5 =<

Hence if @ and 8 are continuous on [a,b], then f is continuous on [a,b)].

Conversely, if f is continuous on [a,b], then for every member s of [a,d]
and for every positive number ¢, there exists a positive number €, such that
for every member ¢ of [a,b] \ {s}, if |t — s| < ¢, then f(t) — f(s)] < e

Hence a(t) ~ a(s)] < 1/ (att) () "+ (50) ~ 5))” = 15~ o)) <
and [8(t) - B(s)] < \/ () ~ () + (80) = 8)” = 17() ~ S(s)] < e

Therefore « is continuous on [a,b] and § is continuous on [a, ).
b
3

(B) (I) If each of a or 8 is of bounded variation on [a,b], then there
exists an h > 0 such that for every partition Pla,b] = {a = zp <
Ty < @3 < .. <z, = b} of [a,b], Y |a(ty) — a(ty-1)] < % and

k=1

i |B(tr)—B(tk—1)| < £.Since for each member k of [1;n], | f(tx)— f(te—1)| =
k=1

2 2
\/ (alte) = alte1)) + (Bt) = Alts1)) < laltn) — alte)| + |8(t) -
B(tk—1)]|, so f: |f(tx) — f(tk=1)| < h. Thus f is rectifiable on [a, b].

(IT) ConV];;slely, if f is rectifiable on [a,b], then there exists an h > 0
such that for every partition Pls,t] = {a = 20 < 21 < 2 < ... < Ty, =
b}, Zn: |f(tr) — f(tk—1)| < h. Since for every member k of [1;n], |a(ty) —

k=1
altp—1)| < /(alty) — altp—1))? + (B(te) — Blts—1))? = | f(tx)— f(ts—1)| < h
and |S5(tr) — B(tk—1)| < |f(tr)— f(tk—1)| < h, so both a and 5 are of bounded

variation on [a,b]. O

Ezercise ARC.3 Proof. (I) We prove that for every member u of [a, ]
there exists a unique number s of [a,b] such that p(s) = w. Assume that
there exist distinct members s and ¢ of [a, b] such that ¢(s) = ¢(t) = u. We
choose the notation so that s < ¢. Since ¢ is increasing on [a, b], ¢©(s) < (),
a contradiction.

(IT) Let v and v be members of ¢[a,b] such that v < v. By part (I) there

exist distinct and unique members s and t of [a,b] such that ¢(s) = u and
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o(t) =v. If t <s, then v < u, contrary to the given fact that v < v. Hence
s < t, that is ¢~} (u) < p~1(v).

(IIT) Let w and v be members of ¢[a,b] such that p(a) < u < v < (b).
By part (I) there exist unique members s and ¢ of [a, ] such that ¢(s) =
and ¢(t) = v. We prove that ¢]s, t[=]u,v[=]p(s), p(t)[.

(A) If ¢ is any member of ]s, ¢[, then s < g < t s0 p(s) < ¢(q) < ¢(t). Thus
v(q) €]e(s), p(t)[=]u,v[. Since ¢ is any member of |s, t[, ¢ s, t[ C |u, v|.

Conversely, if w is any member of |u, v[, then by the continuity of ¢ and the
intermediate value theorem there exists a unique member ¢ of |s, [ such that
©(q) = w. Since w is any member of Ju, v[, Ju,v[C]e(s), ¢(t)], and therefore
Ju, o[ =1 (), $(O), and o (s, p(B)[ =], [

(B) We now prove that ¢! is continuous on [p(a), ¢(b)].

(Case 1: ¢! is continuous at ¢(a).) Let € > 0, and let s €]a, b (so that
©(s) €]p(a), p(b)[) be a number such that |s — a| < e. Let 6 = |p(a) — ©(s)];
then for every u €]p(a), ¢(b)[ such that |p(a) — u| < 0, u €]p(a), ©(s)], so

1 is continuous at

0~ 1(u) €]a, s[, and hence |a — ¢~ !(u)| < e. Therefore p—
(a).

(Case 2: ¢~ 1 is continuous at ¢(b).) The proof is similar to that for Case
1 with obvious substitutions of b for a.

(Case 3: o~ ! is continuous at every point u €]p(a),(b)[.) Since u €
lo(a), o), ¢~ (u) €la,b]. Let € > 0. Let s and t be points of ]a,b[ such
that a < s < o t(u) <t < band |s — ¢ '(u)] < eand |t —p~t(u)] < e
Then ¢(a) < ¢(s) < u < p(t) < p(b). Let § = min{|p(s) — ul, |o(t) — ul}.
Then if |z —u| < 6, p(s) < z < @(t); so s < ¢ Y(z) < t, and hence

1

|~ (x) — ¢~ (u)| < e. Therefore ¢! is continuous at u. O

Ezercise ARC.4 Proof. The proofs of parts (I) and (IT) are word-for-word
identical to those for Exercise ARC.3, with R substituted for [a, b].

(IIT) Let w and v be members of R such that u < v. By part (I) there exist
unique members s and ¢ of R such that ¢(s) = u and ¢(t) = v. The proof
that that ¢ls,t[=]u,v[=]p(s), p(t)[ is exactly as in part (IIT) of Exercise
ARC.3.

The proof that ¢! is continuous on R is almost exactly the same as in
Case 3 of part (IIT)(B) of Exercise ARC.3, with R substituted for Ja,b[. O



Chapter 4
The Real Functions Cosine and Sine

(CS)

Dependencies: Fuclidean Geometry and its Subgeometries (Specht); Chap-
ter 8 of this supplement

Acronym: CS

New terms defined: sine and cosine functions, periodic function, unit cir-

cle, circumference, the function cis

In this chapter we define the circular functions sin and cos using a function
q(z) which is the inverse of the function
x
2
= [ ——dt.
9() / 1+ 22

0
This function g(z) turns out to be the restriction of tan(§) to the interval

| —m,w[t

This chapter depends on the previous chapter; as in that chapter, we as-
sume familiarity with calculus and are free to use any theorems and definitions
from Specht. References such as “Theorem ROT.15” cite items from Specht,
and references to items with acronyms ARC and CS are to the present Sup-
plement. Again, we refer the reader to the note Citations and references
at the end of the Preface to this Supplement, and to the abbreviated Table
of Contents for Specht included there.

On notation: although sin, cos, and tan are functions, where no ambiguity
arises we will use traditional shorthand, writing sinz for sin(z), cosz for
cos(x), and tanz for tan(x). We will also write sin® z for (sinz)? = (sin(z))?
and, when ¢ is a function, ¢%(z) for (¢(z))?. We will use the notation f’ to

denote the derivative of a function f.

L This definition of the circular functions sin and cos appears to have originated with

Edward Specht, the first author of Fuclidean Geometry and its Subgeometries.

71
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4 The Real Functions Cosine and Sine (CS)

4.1 Basic properties of cosine and sine; periodicity

Definition CS.1 (A) For each real number z, define f(z) =

)= / F(t)dt.
0

(B) For each real number z define
(C) Define g(1) = k.

2
1+ 22

g(x

> T
Ay
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, h
5
2t g(z)
k-|---4~
14 /|
|
|
t t t t t t t t ¢ > T
5 4 3 "2 1 0o 1 2 3 4 5
1,,
—9ol
-3
—h

Fig. 4.1 Graphs of f(x) = H% (top) and

g(x) :/ f(t)dt (bottom) for Definition CS.1.
0
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Theorem CS.2 (A) The graph of g is symmetric with respect to the origin
O = (0,0) and so is an odd function (meaning that for all z, g(—x) = —g(z)).

(B) g is an increasing and continuous function on R.

(C) The limit mll)rfoog(x) exists, and is equal to a number h < 4. Also the

limsit Er}l g(x) exists and equals —h.
(D)1 <g(l)=k<2 and also g(1) =k < h.

Proof. See Figure 4.1 above. (A) is obvious from calculus.
(B) If 1 < @2, then

9(w3) — 9(z1) /f ) dt - /f £) dt = /f )t > 0.

Thus ¢ is increasing. To see that it is contlnuous note that for all z, 0 <
f(x) < 2; for any € > 0, define § = §; then for any x > 0 and y > 0, if
|y - I| < 25

|g<x>—g<y>|:|/f<t /f dtl—l/f )dt] < 2l —y| = e
0 0 x

2 1f0§:17§1
2/z%  ifx>1

f(z) <2;for 1 < z, f(z) < 1/1: . Therefore, for all > 0, f(z) < F(x), and

/f dt</ (t)dt:2+/2t’2dt

—2+2( 1)(z —1—1 1)—2—2/x+2—4—2/:v<4
Since g(x) is an increasing function and bounded above by 4, the limit h =

(C) For # > 0 define F(z) = { . Then for 0 < z < 1,

zgrfoo g(z) exists and is less than or equal to 4.

As we observed in part (A), the graph of g is symmetric with respect to
(0,0), so CEgrzloog(ac) =—h.

(D) First note that f(0) =2, f(3) = £, and f(1) = 1. Then if 0 < ¢ < 3,
S <f(t)<2andif L <t<1,1<f(t) <8 Then
1

1 3 1

sothat 443 =8 < [f0)at= [ s+ [foa<iei=t
0 0 %
2;

1 9
This shows that 1 < 15 < g(1) =k < 2 <

is an increasing functlon7 sol<g(l)=k<h. O
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Definition CS.3 Since g is an increasing and continuous function map-
ping R into | — h,+h[C R, by Exercise ARC.4, ¢ has an inverse function
which is also continuous and increasing on R. We denote the inverse function
of g by ¢. The graph of ¢ (shown below in Figure 4.2) is the reflection over
the line £ = {(x1,22) | 1 = z2} of the graph of g.

Fig. 4.2 The graphs of ¢(z) = g~ !(z), sinz, and cosz for Definition CS.3 and Heuristic
Remark CS.4.
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Heuristic Remark CS.4 At this stage we refer to the usual intuitive de-
velopment of trigonometry, not to use as part of our development, but to give

some guidance as to what definitions might be fruitful. From trigonometry,

we have
z sing _ 2sin§cosy _ singz
tan 2 7 cost — 2cos?§  l+cosz’
This becomes
sinx __ sin? x o 1—cos® x _ (I—cosz)(14cosz) _ 1—coszx

+cosx ~ sinz(ldcosz) = sinxz(ldcosz) sin z(1+cos x ~  sinz

1 1 1 1
Solving the two equations tan £ = —SIBZ_ and tan £ = =SS for cosz and

2 1+cosx 2 sin @
. . 1—tan® Z . 2tan %

sinz in terms of tan § we get cosz = m and sinz = m We use

the last two equations to define sin and cos.

Definition/Remark CS.5

_1-¢()
CoOST = ————
1+ ¢%(x) .
Define 2q(x) for —h < x < h. We would also like to define
sinx = L)
1+ ¢*(z)
these functions at x = —h and x = h, but the definition above won’t work at

these points because g(—h) and ¢(h) are undefined. So using the definitions
of sin and cos on | — h, h[, we evaluate their limits at —h and h and use them

to complete the definitions.
S
a2 (x)

lim cosx = lim <5 T = —1 so we define cosh = —1.
z—h x—h qz(z)
1
— 1
. . 2
lim cosz = lim “H2— = —1 so we define cos(—h) = —1.
z——h z——h 2@ T
2

lim sinz = lim —& 7 = 0 so we define sinh = 0.
z—h z—h Z@ T
2

lim sinz = lim —“— =0 so we define sin(—h) = 0.
z——h z——h qz(z)Jr

This completes the definitions of sin and cos on [—h,h]. Their graphs are

shown in the lower figure on the facing page.

Theorem CS.6 For every x € [—h,h]

(A) sin and cos are continuous at x,

(B) cos?x +sinx = 1,

(C) |cosx| <1 and |sin(x)] < 1,

(D) cos0 =1,sin0 =0, cosk = cos(—k) =0, sink = 1 and sin(—k) = —1,
where k is the number whose existence is guaranteed by Theorem CS.2(D),
such that k > 0 and q(k) =1, and
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(E) cosz > 0 for —k < < k and cosx < 0 for —h < x < —k and
k<x<h;sine >0 for0 <z <handsinx <0 for —h <z <0.

(F) cos is an increasing function on [—h,0[ and a decreasing function on
[0, .

Proof. (A) sin and cos are continuous at h and —h by Definition/Remark
CS.5; they are continuous at all other points because ¢ is a continuous func-
tion and the denominator 1 + ¢?(x) is never zero.

By Definition/Remark CS.5 both (B) and (C) are true for z = —h and

x = h. So we may assume that —h < x < h.
20 4 gin? 1—@)\* (2@ \®
(B) cos*z +sin x:( 1 ) —l—( 4 )

1+¢%(x) 1+¢%(z)
— 122¢%(@)+q" 4% (2) _ (I4q’(2))” _ 4
o (1+¢*(@))* T +e@)?

(C) If |cos z| > 1, then cos? x > 1; if |sinz| > 1, then sin® 2 > 1; in either
case cos? x + sin® z would be greater than 1, contradicting part (1).

(D) The results all follow from the definitions of the functions sin and
cos in Definition/Remark CS.5. cos0 = 1 and sin0 = 0 because ¢(0) = 0;
cosk = cos(—k) = 0, sink = 1 and sin(—k) = —1 because ¢(k) = 1 and
q(—k)=-1.

(E) Recall that g is a one-to-one increasing function. In Definition/Remark
CS.4, the numerator of the expression for cosz is 1 — ¢%(z), and the denomi-
nator is always positive. For —k < z < k, |g(x)| < 1 so that 1—¢*(z) > 0. For
—h <z < —k q(z) < —1sothat 1 —¢*(z) < 0; and for k < z < h, g(z) > 1
so that 1 — ¢?(x) < 0. Finally, cos(—h) = cos(h) = —1 by Definition/Remark
CS 4.

The numerator of the expression for sinz is 2¢(x) and the denominator is
always positive; for 0 < z < h, ¢(z) > 0; for —h <z <0, ¢(x) < 0.

(F) As in (E), we use the fact that ¢ is one-to-one and increasing. As x

2
increases from —h to —k to 0, cosx = }%’z‘gzg increases from —1 to 0 to 1;

1"’2(963 decreases from 1 to0to —1. O

as x increases from 0 to k to h, cosx = 15—+
14+¢%(x

Theorem CS.7 If —h < x < h, the deriwative ¢’ of q exists at x and
¢(z) = HLl,

x

2
Proof. For every real number z, g(x) = / e dt. By the Fundamental
0
Theorem of Calculus, ¢'(z) = —2=. Since ¢ is the inverse of g, and using the

a7
: : : / - 1 o 1+q2(m)
quotient rule for derivatives, ¢'(z) = - aay = = - O
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Theorem CS.8 If —h < x < h, cos’x = —sinz and sin’ x = cosx.
—q?(x
Proof. (1) Since coszac = 11+;12((w))), 2
— (+¢* @) (=2q(x)d (@) —(1—q° (x))2q(x)q' ()
cos ¢ — (e q (¢11+q2(30))2 q a(z)q
_ [220(@)(1+¢® (2) ~ (1-¢*(2))2q(2)]q’ (z)
,, ata?@)?
_ [220@)—2¢°(2)—249(2)+2¢° (@)]q' (=) _ ( _—4q(x)
= (Tr ()7 = (mrte)d @)

Using Theorem CS.7,
_ x 2 z _ " .
cos'w = ((H;ggﬂﬁgf) (1+q2( )) - 1+2qq2((ac)) = —sinz.
(II) Since sinx = 12_(:()1),
sin’ ¢ — (F@°(@)20 ()~ (2q(@))2q(@)g' (2) _ (146> (@) ~2¢*(2))2¢’ ()
2(2) 0+ (@))? , (21+¢§2(x))2 o
1—q¢”(x 1—q°(x 146 (x L
- (%)(2(]/@)) = ((1+qqz((ac)))2)'2'( q2( ) = 1+Zzgz) =cosx. O

Theorem CS.9 In this theorem we confine our attention to the segment
[—h, h] because so far we have defined cos and sin only on that segment.

(I) cos has a mazimum of 1 at 0, and a minimum of —1 at —h and at h.
These are relative and absolute mazima (minima).

(IT) sin has a mazimum of 1 at k, and a minimum of —1 at —k. These are

relative and absolute maxima (minima).

Proof. In this proof we will use the results of Theorem CS.6 and Theorem
CS.8 without further reference.

(I) Since cos’ x = —sinx and — sinx is positive for —k < z < 0, is negative
for 0 < x < h, and is 0 at x = 0, 0 is a relative maximum of cos. We know
that cos(0) = 1, and since for all z, cosx < 1, this is an absolute maximum.
Since —sinx is positive for —h < x < 0 and is negative for 0 < x < h, cos
has an absolute minimum of —1 at both h and —h.

(IT) Exercise CS.1. O

Definition CS.10 (A) Let p be a positive real number. A real valued
function f is periodic of period p iff for every real number ¢, and every
integer n, f(t +np) = f(t).

(B) In Definition/Remark CS.5 we defined cos and sin on the interval
[—h, h]. We now extend this definition by periodicity so that cos and sin are
defined on R.

For each t € R, there exists a unique integer n and a unique number
x €] — h, h] such that ¢ = x + 2hn. Define cost = cosz and sint = sinx.
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Theorem CS.11 For every real number t, cos(—t) = cost and sin(—t) =

—sint.

Proof. (Case 1: —h < t < h.) By Definition/Remark CS.5, cos(—t) =

1—g2(—t) _ 1—((—q®)?* _ 1—(q(t)* _ . o 2q(—t) o
TeH = THCanr = Trapp = cost and sin(—t) = ey =
—29() _ _gint
1442 (1) ’

(Case 2: [t| = h.) By Definition/Remark CS.5, cosh = cos(—h) = —1.
Moreover, sin(—h) = sinh = 0.

(Case 3:) If ¢ is any real number, then by Definition CS.10 there exists
an integer n such that ¢ = s + 2hn, where —h < s < h. So, cos(—t) =
cos(—s — 2hn) = cos(—s) = coss and cost = cos(s + 2hn) = coss, so
cos(—t) = cost. Moreover, sin(—t) = sin(= s — 2hn) = sin(—s) = —sins =
—sin(s + 2hn) = —sint. O

Theorem CS.12 The functions cos and sin defined on R in Definition
CS.10 are

(A) continuous, and

(B) periodic of period 2h.

Proof. (A) Since by definition, cos(—h) = cosh = —1, and sin(—h) = sinh =
0, and both functions are continuous on [—h, h], they are continuous on R.

(B) In this proof, let f be either cos or sin. Let ¢ be any real number and
n any integer, and let « = t + 2hn. There exist integers m1 and ms such that
y1 = t+ 2hmy €] — h,h], and y2 = x + 2hma €] — h, h|; substituting the
expression for = just above, we have yo = = + 2hmg = t + 2hn + 2hmy =
t+2h(n+ma) €] — h, hl.

The difference yo — y2 = 2h(n + ma — my) is an integral multiple of 2h,
and since both y; and yo2 belong to | — h, h], y1 = ya.

y1 =t + 2hmy = x 4 2hms.
By Definition CS.10,
fn) = ft+2hmy) = f(t) and f(y1) = f(x + 2hms) = f(z),

so that f(t) = f(x); thus f is periodic of period 2h. O

4.2 Cosine, sine, and the unit circle

Definition CS.13 (A) Let r be any real number greater than 0; define
C((0,0);7) to be the set {(z1,z2) | 27 + x3 = r?}; this set is the circle with
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center (0,0) and radius r. We will have special interest in C((0,0);1) =
{(z1,22) | 23 + 23 = 1}, which is called the unit circle.

(B) The inside of a circle C(O;7) is the set {X | dis(X,O) < r}, denoted
ins C(O;r); the enclosure of C(O;7) is the set {X | dis(X, O) < r}, denoted
encC(O;r). If L is aline and O € L, the set LNencC(O;r) is a diameter of
the circle; if C(O;7) N L = {X,Y}, then the number dis(X,Y) is called the
diameter of C(O;r); clearly, the diameter of C(O;r) is equal to 2r.

(C) The circumference of a circle is its arc length. The number 7 is
defined to be the ratio of the circumference of a circle to its diameter. Since

the diameter of the unit circle is 2, its circumference is 27.

Theorem CS.14 (A) The unit circle C((0,0);1) with center (0,0) and
radius 1 is the set
E ={(cost,sint) | —h <t < h}.
(B) The unit circle is also equal to
{(cost,sint) | —h <t < h} = {(cost,sint) | —h <t < h}
= {(cost,sint) | 0 <t < 2h} = {(cost,sint) | 0 <t < 2h}
= {(cost,sint) | —2h < t < 0}.

Proof. (A) (I) By Definition/Remark CS.5 and Theorem CS.6(B), for all
t €]—h, h], cos? t+sin®t = 1, so every member of £ is a member of C((0,0);1).

(IT) To prove that every member of C((0,0);1) is a member of & =
{(cost,sint) | —h <t < h} we consider eight cases.

(Case 1: 21 = 1 and a2 = 0.) Let ¢ = 0; then 23 = cos0 = 1 and
To =sin0 = 0.

(Case 2: 21 = —1l and 29 = 0.) Let t = h or t = —h; then x; = cosh = —1
and r9 = sinh = 0.

(Case 3: 21 = 0 and x5 = 1.) Let t = k; then 2y = cosk = 0 and
To =sink = 1.

(Case 4: 1 = 0 and zo = —1.) Let t = —Fk; then x; = cos(—k) = 0 and
x9 = sin(—k) = —1.

(Case 5: 0 < z1 < 1 and 0 < 25 < 1.) Since cos0 = 1 and cosk = 0, by
the Intermediate Value Theorem of calculus there exists a number ¢ €0, k]
such that cost = 7.

The function sin is continuous, sin0 =0, sink =1, and 0 < t < 1, so that
0 < sint < 1. By definition of the unit circle, 12 + 292 = 1; by Theorem
CS.6(B) cos?t + sin®t = 1; since cost = x1, cos?t +sin?t = x12 +sin’t = 1

so that sin®t = 292; hence sint = xs.
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(Case 6: 0 < 27 < 1 and —1 < x9 < 0.) By the Intermediate Value
Theorem there exists a number ¢t €| — k, 0] such that cost = x;. Since sint €
]-1,0[ and cos? t+sin?t = 1, by reasoning similar to that in Case 5, sint = z.

(Case 7: =1 < 21 < 0 and 0 < x2 < 1.) By the Intermediate Value
Theorem there exists a number ¢ € |k, h[ such that cost = x1. Since sint €
10, 1[ and cos? t+sin?t = 1, by reasoning similar to that in Case 5, sint = x.

(Case 8: —1 < 21 < 0 and —1 < 23 < 0.) By the Intermediate Value
Theorem there exists a number ¢ €] — h, —k[ such that cost = z7. Since
sint €] —1,0[ and cos?t + sin?t = 1, by reasoning similar to that in Case 5,
sint = xs.

(B) In part (A), the end point (cosh,sinh) = (cos(—h),sin(—h)) is in-
cluded twice; thus either of the next two formulations is correct, since they
merely omit this redundancy. The other formulations are true since cos and

sin are periodic of period 2h. O

Theorem CS.15 (A) The arc length of the unit circle is 2h, where h is
the positive real number defined in Theorem CS.2(C).
(B) Let h = EIE g(x), as defined in Theorem CS.2(C); then h = .

We will show that k& = % in Theorem CS.25.

Proof. (A) Since the unit circle is the set {(cost,sint) | 0 < ¢ < 2h}, by

Theorem ARC.11 its arc length is
2h

2h 2h
(cos’'t)2 + (sin’ t)2dt = | \/(—sint)2 + (cost)2dt = [ 1dt = 2h.
0/\/ S S / S S /

0 0
(B) By part (A), the arc length of the unit circle is 2h; by Definition
CS.13(C), this is 27. O

Definition CS.16 Define cis to be the function mapping R into R?,
whose value at each ¢ is cist = (cost,sint).

Remark CS.17 (A) From Definition CS.16, cis0 = (1,0), cisk = (0,1),
and cismt = (—1,0). The notation cis is intended to suggest the complex
number cost + isint. The reader should bear in mind that cist¢ refers to a
point of the plane, specifically, a point of the unit circle, not to a number, as
with cost and sint.

(B) We will often use the symbol cis([a, b]) to mean {cis(z) | = € [a,b] },

and cis([a, b[) to mean {cis(z) | € [a,b[}. Again, as always, when we use
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the notation [a, b] or [a, b] to describe an interval of numbers, it is specifically
understood that a < b.

(C) On a circle, each pair of distinct points S = cis s and T' = cist defines
two arcs, and we need to specify which one we are talking about. We do this
by specifying the interval upon which cis is defined. If s < ¢, we describe the
arc traversed in the positive direction from s to ¢ by cis[s, t].

The complementary arc defined by ciss and cist (the one that “goes
around the other way,” containing the point cis 0) is the set {cisu | u &]s, [ }.
If s # 0, this arc cannot be written as the image under cis of an interval which
is a subset of [0, 27] . It could be written as cis[t — 2, s] or cis[t, s + 27].

(D) In the development up through Theorem CS.9,the domain of definition
of sin and cos was the interval [—h, h| = [r, 7]. With Definition CS.10(B), we
extended this definition to the whole real line; so now it does not really make
any difference what interval of length 27 we use as a “primary” domain of
definition. In Theorem CS.14(B) we made it “official” that any of the intervals
[—m, 7], ]—m 7|, [-m,«[,[0,2n], [0,27[, or |—27, 0] will do for this purpose,
as cis maps any of these intervals onto the unit circle.

(E) Bearing in mind that where both end-points are included, the function
cis is not one-to-one, the unit circle may be referred to in any of the following
ways: cis[—m, 7], cis| — 7, 7], cis[—7, 7[, cis|0, 27|, cis]0, 27], cis[0, 27| ; or, for
that matter, as cis|a,a + 27, cis]a,a + 27, cis[a,a + 27[; or cis[a — 27, al,

cis]a — 2m, a] cis[a — 27, a[, where a can be any real number.

Theorem CS.18 The mapping cis on the interval [0,2w[, or on any in-
terval [a,a + 27[ or ]a,a + 27], is continuous and one-to-one onto the unit

circle; it is one-to-one on any interval [a,b] where 0 < b—a < 2.

Proof. Since both cos and sin are continuous, cis is continuous.

We show that cis is one-to-one on the interval [—m,7[. By Theorem
CS.6(F), cos is an increasing function on [—7,0[ and a decreasing function
on [0, [, hence is one-to-one on both intervals. Thus if ¢ > s and cist = cis s,
not both ¢ and s can be in [, 0[ and not both can be in [0, 7]. Therefore
t € [0, and s € [—m, 0[. Then by Theorem CS.6(E), sint > 0 and sins < 0,
so that cist # cis s, a contradiction.

If © € [—m, 0], then cis(x + 27) = cisz so the values taken by cis on [0, 27|
are exactly those taken on [—m, 7[. Hence if there are two points in [0, 27|
where cis takes the same value, there must be two points in [—, 7[ where cis

takes the same value, which we have shown to be impossible. Therefore cis
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is one-to-one on [0, 27|, and by periodicity cis is one-to-one on any interval
[a,a + 27| or ]a, a + 27].

Finally, by Theorem CS.6(B), cis maps [0, 27[ into the unit circle; and by
Theorem CS.14 cis maps [0, 27 onto the unit circle. O

Theorem CS.19 Let ¢ be the mapping of [0,2x] into R such that for
every member t of [0, 27], ¢(t) = L(cis|0,t]), the length of the arc of the unit
circle from cis0 = (1,0) to cist. Then ¢(0) =0, and

(A) for every number t € [0,27], ©(t) =t;

(B) if s and t are real numbers such that 0 < s < t < 27, then the arc
length L(cis[s, t]) is t — s; and

(C) the arc length 1L(cis|0, k]) of the unit circle from (1,0) = cis0 to (0,1) =
cisk is k and the arc length L(cis|k, ) from (0,1) = cisk to (—=1,0) = cish

s — k.

Proof. Note that for all numbers s, (cos’ s)?+(sin’ s)? = (sin s)?+(cos s)? = 1.

(
(A) By Theorem ARC 11, for every member ¢ of ]0, 27],
i

o(t) = /((cos 5)? + (sin’ s) = /1ds
0 0

(B) Since cisls, t] is the image under cisu of [s, t], we may apply Theorem
ARC.11, and the arc length L(cis[s, t]) is
t

/\/(cos’u)2+ (sin’u)zduz/tdu:t—s.

S

(C) This follows immediately from part (B). O

4.3 Sides of a line intersecting a circle

Remark CS.20 In the proofs of future theorems it will be important
to be able to tell what points are on what sides of lines. In the next series
of results, we will show explicitly that a line through two arbitrary points
A = cisa and B = cisb on a unit circle (and this could easily be extended
to any circle) divides it into two arcs as described in Chapter 3 Definition
ARC.1, each of them being the image under the (continuous) mapping cis of
an interval of real numbers.

These results will also show that, speaking informally, cis preserves “sense”
on the unit circle; that is, if @ < b, then rotating A = cisa to B = cisb is
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a rotation in the “positive direction”; or, moving ¢ from a toward b moves
cist from A toward B. The problem with these statements is that the terms

7w

“sense,” “positive direction,” and “toward” are not well defined mathemati-
cal terms. In more formal language mathematical language, the idea can be
expressed as follows: let a < b < a + 7, so that the points A = cisa and
B = cisb form an angle ZAOB; then whenever t €]a, b[, cist belongs to the
inside of this angle; more to the point, cist lies on the B = cis b-side of &i

Of course, all this is intuitively obvious, inasmuch as the mapping cis is
continuous. But it does seem to require proof.

To start things off right, we should point out something else that many
will consider quite obvious: a line can intersect a circle in at most two points,
and a line contains a point on the inside of a circle iff it intersects the circle in
two points. Moreover, if a line intersects a circle C(O;r) in two points A and
B, the line of symmetry of ZAOB intersects the line j@ at a point which is
inside the circle. The proof of this is Exercise CS.13.

As an aid to keeping things straight, we strongly advise the reader to con-

struct copious figures while reading the following proofs.

Theorem CS.21 Let A = cisa, B = cisb, and C = cisc be points on the
unit circle C(O;1) such that 0 < b—a < 2w. Then if a < ¢ < b, every point
T = cist where a <t < b belongs to the C-side of j@

Proof. (A) Let © = lub{t | cis[c,t[C C-side of /ﬁ} If cisz = B then
cis[e, b[ C C-side of AB. 1 cisz # B, cisz & AB so it is either in the C-side
or the side opposite the C-side of @ Thus there exists a number e such
that for all Z € /@, |cisz — Z| > e. By continuity of cis, there exists 6 > 0
such that if |x — w| < ¢, then |cisz — cisw| < e.

(Case 1:) If cisz € C-side jﬁ, then because z = lub {¢ | cis[c, t[ C C-side
of jﬁ} there exists a w such that |w — 2| < § and cisw is in the side of A
opposite the C-side.

(Case 2:) If cisz ¢ C-side j@ , then it must belong to the side opposite C,
and there exists a w such that |w — x| < § and cisw € C-side of AB.

In either case cisz and cisw are on opposite sides of ﬁ, so by Theorem
PSH.11 there exists a point Z € jﬁ such that cisz—Z—cisw, and € < |cisz —
Z| < |cisz — cisw| < €, a contradiction. Therefore all the points cis¢ where
t € [c,b] belong to the C-side of AB.

(B) Let @ = glb{t | cis]t,c]} C C-side of AB. If cisz = A then cis]z, ] C
C-side of j@ If cisx # A, cisz & j@ S0 it is either in the C-side or in the
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side opposite the C-side of j@ . Thus there exists a number € such that for
all Z € /ﬁ, |cisz — Z| > €. By continuity of cis, there exists § > 0 such that
if |z —w| < 4, then |cisx — cisw| < e.

Substituting « = glb {¢ | cis]t, ]} for @ = lub {¢ | cis[c, [}, the balance of
the proof for (B) is almost word-for-word as in part (A). Therefore all the
points cist where ¢t €]a,c] belong to the C-side of /ﬁ , and it follows that
every point of cis]a, b[ is on the C-side. O

Theorem CS.22 Let A = cisa and B = cisb be any points on the unit
circle C(O;1).
(A) Either
(I) A-O-B and the notation may be chosen (and the points possibly
renamed) so that b= a + 7, or
(IT) A—O-B s false and the notation may be chosen (and the points
possibly renamed) so that b —a < 7.
(B) In either case (I) or (II), the points A and B define two arcs on the
unit circle, cis|a,b] and cis[b, a + 27]; and
(1) all the points of cis]a,b[ are on the same side of j@;
(2) all the points of cis]b,a + 27[ are on the same side of /ﬁ; and
(3) every point of cisla,b[ is on the opposite side of/ﬁ from every
point of cis]b, a + 27|
(C) In case (II), if b—a < 7 then cis|a, b] C ins LZAOB, and cis|b, a+2n[ C
out ZAOB;

aw

Fig. 4.3 A line divides a circle into two arcs.

Proof. See Figure 4.3. (Case I. A~-O-B) We can choose a and b (possibly
renaming the points) so that b = a + 7 and therefore a < b. In this case,
ZAOB is not defined. One of the arcs between A and B is cis[a,b]. Also,
A = cis(a + 27) so that b < a + 27, and one of the arcs between A and B
is cis[b,a + 27]. Let L be the perpendicular bisector of Sél_é, C be the point
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of intersection of £ with cis]a,b[, and let C’ be the point of intersection of
L with cis|b, a + 27[. These points are on opposite sides of the line /ﬁ, and
by Theorem CS.21, every point of cis]a, b[ is on the C-side, and every point
of cis|b, a + 27[ is on the C’-side of AB. This proves (B)(1), (2) and (3) for
Case (I).

(Case II: A-O-B is false.) Initially choose a and b so that both 0 < a < 2,
0 <b< 2mand a < b. If b —a < m we leave the notation “as is”; if
b—a>m, thena—b < —7. Let ¢/ = b and b/ = a + 27, so that cisa’ and
cisb’ are the original points A and B, which have now been renamed. Then
V—a =a+2n—b=a—b+ 27 < —7 + 27 = «. Either way we have found
numbers a and b such that cisa and cisb are the given points A and B, a < b
and b —a < w. Moreover, b < a + 7 < a + 27 and cisa = cis(a + 2m).

This proves part (A) of the theorem, and shows that one of the arcs defined
by A and B is cis|a, b], and the other is cis[b, a + 27]. The first of these arcs
subtends the angle ZAOB.

Let A" and B’ be points on the unit circle such that A’-O-A and B'-O-B,
so that {L? cis((%_i—_;r) and B’ = cis(b + 7). Apply Theorem CS.21 to the
sides of AA” and BB'. If a < t < b, th&a <t <b<a+mso by Theorem
CS.21, T = cist is on(t_he> B-side of AA’; also since b — 7 < a < t < b,
T is on the A-side of BB’; by Definition PSH.36 T € ins ZAOB, so that
cis]a, b[ C ins ZAOB, proving the first assertion of part(C).

Ifb<t<a+2rthen either b<t<b+morb+7m <t <a+ 27 Note
that b <<_a_—_)|— m < b+ 7 and the points A’ = cis(a + 7) and A are on opposite
sides of BB'; also a+ 7 < lzi;r < a+ 27 and the points B’ = cis(b+ 7) and
B are on opposite sides of AA’. .

Ifb < t < b+m, by Theorem CS.21 cist € A’ = cis(a+m)-side of BB’ which
is the side of BB’ opposite A, hence cist € out 4(A_O>B. Ifo+n<t< a—i—(ﬁ;
by Theorem CS.21 cist € B’ = cis(b+ m)-side of AA” which is the side of AA’
opposite B, hence cist € out ZAOB; thus cis b, a+27[ C out LZAOB, proving
the second assertion of (C). By Theorem PSH.41, ins ZAOB N out ZAOB =
(b, so that cis]a,b[Ncis]b, a + 27[= (.

Applying Theorem CS.21 to the sides of /ﬁ, we find that all the points of
cis]a,b[ are on the same side of j@, and all the points of cis]b, a + 27| are
on the same side of @

Every point of C(O; 1)\ {A, B} is a member of either cis]a,b[ or cis]b,a+
27[, and therefore to one of the sides of ﬁ Let W be the line of symmetry
of ZAOB, where both C' and C’ are points on the circle. By Exercise CS.13
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>
CC" intersects B at a point D such that dis(O, D) < 1, so that C-D-C",
and hence C' and C’ are on opposite sides of /ﬁ

Choose the notation so that C' € cis]a,b[, so that cis]a,b[C C-side of
AB. Since C’ belongs to the side opposite C, C' & cisla,b[, and since
cis]a,b[Ucis]b,a + 2n[= C(O;1) \ {A, B}, C’" € cis]|b,a + 27|, and hence
cis]b,a + 27[C C’-side of AB. Then every point of cis]a,b[ is on the same
side of @, and every point of cis]b,a 4+ 27| is on the opposite side. This
proves parts (B)(1),(2) and (3) for case (II). O

4.4 Isometry preserves arc length; k = 7; summary

Lemma CS.23 (Preservation of arc length) Let ¢ be an isometry of
the plane such that ¢(O) = O’; then ¢ preserves distance and maps the unit
circle C(O;1) onto the unit circle C(O';1). Let s and t be real numbers such
that s < t and t — s < 27, so that cis[s,t] is an arc on C(O;1) whose end
points are cis s and cist.

(A) The set ¢(cis[s, t]) is an arc on the unit circle C(O'; 1) with end points
p(ciss) and ¢(cist), and ¢ maps cis[s,t] one-to-one onto p(cis[s, t]).

(B) The arc length L(p(cis[s, t])) of o(cis[s,t]) equals the arc length
L(cis[s, t]) of cis]s, t].

Proof. (A) Let f = ¢ ocis. Specht Ch.21 Theorem LC.25.1 shows that
isometries preserve distance. Since ¢(O) = O’ this implies that the points
f(s) = ¢(ciss) belong to the unit circle C(O’;1). It also implies that ¢ is
continuous, and therefore f = ¢ o cis is continuous. By Theorem CS.18 cis
is one-to-one on [s,t] and since ¢ is an isometry, it is one-to-one, so that
f is one-to-one on [s,t], and its restriction to that interval has an inverse.
Therefore f = ¢ o cis is a continuous one-to-one mapping of [s,t] into the
unit circle C(O'; 1).

Thus s and ¢ define not only the arc cis[s, ¢], but also the image ¢(cis[s, t]) =
f[s,t], which is an arc of the unit circle C(O'; 1).

Moreover, cisu € cis[s,t] iff u € [s,t] iff f(u) € ¢(cis[s,?]) so that the
mapping ¢ maps cis[s, ] one-to-one onto ¢(cis[s, t]). This completes the proof
of (A).

B)Let P={s—t =1ty <t1 <ty <..<t, =0} bea partition of [s,1].
Since ¢ preserves distance, for each j € {1,2,...,n},

|cist; — cistj1| = [p(cist;) — p(cistj—1)| = [f(t;) — f(tj-1)]-
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The length of the arc p(cis[s, t]) is the least upper bound of all summations
Sp(f) = 33 100) = (t5-0)
which are exactly the same as the summations
Sp(cis) = Zn: | cis(t;) — cis(t;—1)]
which define the length of the aré_clis[s, t]. Therefore its arc length is the same
as that of its image under ¢. 0O

Remark CS.24 (A) In the next theorem we remedy a deficiency of our
development so far. In Theorem CS.2(C) we established the number h (which
has turned out to be 7) as the limit mlin;o g(x). In part (D) of the same
theorem we showed that the number & = g(1) (that is, that number & for
which ¢(k) = 1) is between 1 and 2 and is less than h. In Theorem CS.6(D)
we showed that cosk = 0 and in Theorem CS.9 we showed that sink = 0, so
that cisk = (0,1). It’s “obvious” from the picture that the arc length from
cis0 to cis k is half that from cisO to cism; but this hasn’t been proved. We
have not established the relation between k and h.

If it had been simple to calculate numerically the integral of f(¢) from 0
to 1, and from 0 to “infinity,” we might have established this relation ere
this, but since the standard method of calculation of these integrals involves
the arctan function, which presupposes the definition of tan which in turn
presupposes the definitions of sin and cos, and these functions are what we
are trying to define, such an argument would be circular. In parts (C) and
(D) of the next theorem, we prove that indeed, k = h/2 = 7/2.

Theorem CS.25 The arc length L(cis|0, k]) = L(cis[k, 7]) so that 71—k =
k and therefore k = 3.

Proof. For all numbers s, (cos’s)? + (sin’ s)? = (sins)? + (cos s)? = 1. Also
by Theorem CS.19(B), if s and ¢ are real numbers such that 0 < s <t < 27,
then the arc length L(cis[s, ]) is t — s.

Let £ =(0,0)(0,1), and let Rz be the mirror mapping (reflection) defined
on R? in Specht Ch.21 Definition LB.16 and further developed in Remark
LC.22 and subsequently. Then R maps each point cist = (cost,sint), where
t € [0,k], to the point (— cost,sint) = (cost,sint) = cist where t € [k, 7].
Moreover, R.(cis0) = cism; and because cisk € £, Rz (cisk) = cisk. Then

R (cis[0, k]) = (cis[m, k]) = (cis[k, 7]).
Taking arc lengths and applying Lemma CS.23, we have
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L(cis[k, 71]) = L(R(cis[0, k])) = L(cis[0, k]),
so that L(cis[k, 7]) = L(cis[0, k]). Then by Theorem CS.19(B), the left-hand
side is m — k, and the right-hand side is k, so that k =7 —k and k = 3. O

1

V sin
‘ 1 1 ‘ >z
~Sn/2 o /2 ’ "/ \r_><37r/2
— 14

Fig. 4.4 Graphs of sinz and cos x for reference.

Theorem CS.26 (Summary) (A) cos and sin are continuous functions,
periodic of period 27, mapping R onto [—1,1]; for every t € R, cost = cos(—t)
and sint = — sin(—t).

(B) For every integer n,

cos 5 = cos(g +mn) = 0,

cos0 = cos2mn =1, and

cosm = cos(—m) = cos(m + 27n) = —1.
(C) For every integer n,

sin0 = sinmn = 0,

sin § = sin(§ + 27n) = 1, and

sin(—=%) = sin(—% 4 2mn) = —1.

(D) cist = (cost,sint) is a continuous function, periodic of period 2,
mapping [0, 27| onto the unit circle C((0,0);1). The restriction of cis to any

interval [s,t] where |t — s| < 2w is one-to-one.

Proof. See Figure 4.4. In Definition CS.2(C) and (D) we defined real numbers
h = zEIfoog(x) and k& = ¢g(1); in Theorem CS.15(B) we showed that h = 7
and in Theorem CS.25 that & = 7. In this proof we will use these facts freely
without further reference.

(A) By Theorem CS.12, cos and sin are continuous and periodic of period
27; by Theorem CS.9 both cos and sin take on both values 1 and —1 and
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by the Intermediate Value Theorem for continuous functions, they both map
onto [—1,1]; by Theorem CS.11, cost = cos(—t) and sint = — sin(—t).

(B) By Theorem CS.6(D), cos 5 = cos(—%) = 0; by periodicity, for all

integers n, cos(3 + 7n) = 0. By Theorem CS.9, cosO = 1 and cosm =
cos(—m) = —1; by periodicity, for all integers n, cos27n = 1 and cos(w +
2mn) = —1.

(C) By Theorem CS.6(D) and Definition/Remark CS.5, sin0 = sinmw =
sin(—m) = 0; by periodicity, for all integers n, sin(r + 7n) = 0. By Theorem
CS.9, sin § = 1 and sin —F = —1; by periodicity, for all integers n, sin § =
sin(§ + 27n) = 1; and sin(—5) = sin(—5 + 2mn) = —1.

(D) This is Theorem CS.18. O

Corollary CS.27 Let u and v be any real numbers; then there exists a
number ¢t € [0,2x[ and a real number r > 0 such that uw = rcost and v =

rsint, that is, (u,v) = rcist.

Proof. By Theorem CS.26(D), cis maps [0, 27] onto the unit circle. Let 4 =

and O = Then 42 + 92 = 1 and since cis maps onto the unit

U v
VuZio? VuZio?
circle, there exists a number t € [0, 27| such that & = cost and 9sint; let

r =+vu?+v?%; then u = rcost and v =rsint. 0O

4.5 Rotations; sum and difference formulas

It is intuitive to think of rotations as rigid motions about a center. In
Chapter 10 of Specht, where we studied rotations, the closest we came to
showing this was in Theorem ROT.22. In that theorem we showed that if
a is a rotation about O, the angle ZAO(«(A)) is congruent to every other
angle ZBO(a(B)).

On the coordinate plane R? we can show that a rotation, as defined in
Definition ROT.1, is indeed a rigid motion. We do this by showing that a
rotation that takes cis 0 into cis s also takes cis(t — s) into cis(t— s+ s) = cist.

In the following, reflections are as in Chapter 21 of Specht, Definition
LB.16; by Theorem LC.25 these preserve distance. Thus any reflection over

a line through the center O of a unit circle maps the unit circle onto itself.
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Theorem CS.28 (A rotation is a rigid motion) Let s andt be distinct
real numbers, 0 < s <t < 2w, and t — s < w. There exists a unique rotation
p of R? about O = (0,0) such that

(A) p(cis[0,t — s]) = cis[s, t], p(cis0) = cis s, p(cis(t — s)) = cist, and

(B) the arclength L(cis[0,t — s]) = L(cis[s,t]) =t — s.

Proof. By Theorem ROT.15, there exist unique rotations p and « about O

such that p(cis0) = cis s and «(cis0) = cis(t — s). By Theorem ROT.21,
plcis(t — s)) = p(a(cis0)) = a(p(cis0)) = a(cis s)

so that by Lemma CS.23, p(cis[0,¢ — s]) is the arc on the unit circle with

endpoints cis s and a(cis s), and the arclength L(p(cis[0, ¢ —s])) = L(cis[0, ¢ —

s]); by Theorem CS.19(B), this length is t — s.

The end points of cis[s, ¢] are cis s and cist, and L(cis[s, t]) = ¢ — s; thus if
we can show that a(cis s) and cist are on the same side of the line m, it
will follow from Theorem ARC.12 that p(cis(t—s)) = a(cis s) = cist, proving
the theorem.

First we dispose of the case where « is the point reflection Ro (and see
Figure 4.5); in this case cis(t — s) = a(cis0) = cisw and t — s = . The line
O(cis s) intersects the unit circle at the point cis(s+7) = cis(s+t—s) = cist.
Therefore, since p is an isometry and a belineation, by Theorem NEUT.15,

(o(cis(t — s))(pleis 0)) = p({cis(t = ) (eis0)) = p(O(cis0))
= p(0)(p(cis 0)) = O(cis s) = (cist)(cis s).
By assumption, p(cis0) = cis s, so that p(cis(t — s)) = cist, and p(cis[0,¢ —
s]) = cisls, t]. Moreover, the arclengths of cis[0,t — s] and p(cis[0,t — s]) are
both .

ciss = p(cis0)

cis(t — s) = a(cis0)\\p @) cis0
cist = a(cis s) = p(cis(t — s))
Fig. 4.5 The case where « is a point reflection.

Now suppose that « is not the point reflection. By Exercise ROT.4(D), if
X and Y are any points on the unit circle, a(X) € Y-side of OX iff a(Y)
is in the side of W opposite X. We apply this to the present situation by
making the following assignments: let X = cis0, Y = cis s, so that a(X) =
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a(cis0) = cis(t — s) and a(Y) = a(ciss) = p(cis(t — s)). Then there are two
cases (I) and (II) as follows:

Case I: a(cis 0) = cis(t—s) € cis s-side of O(cis 0) and «(cis s) is in the side
of O(cis s) opposite cis0.) See Figure 4.6. Note that s < 7; for if s > 7, since
cis(t—s) is in the cis s-side of O(cis0), then t —s > 7 so that ¢t = s+t—s > 27
contradicting our assumption that ¢ < 2.

Therefore s < mandt—s < 7w, 0<s<t=t—s+s < m+s, and
T+ s < 2w < 2w 4+ s. By Theorem CS.22, ¢is0 = cis 27 is on the opposite
side of O(cis s) from cis t; from our assumption for Case (I), «(cis s) is on the
side of O(cis s) opposite cis0, so that cist and a(ciss) are on the same side
of O(cis s .

ms(t — ) = a(cis0)
cis s = p(cis0) i

cist = a(cis s) = p(cis(t — s))

Fig. 4.6 Illustrating Case I.

(Case IT: a(cis0) = cis(t — s) is in the side of O(cis(); opposite cis s and
a(ciss) € cisO-side of O(ciss).) The reader may wish to construct figures
illustrating the two subcases.

(Subcase a: 0 <t —s < 7mand 7 < s < 27m.) Then s < 27 < s + 7 and
s<t=s+t—s < s+ m By Theorem CS.22, cist and cis0 = cis 27 are on
the same side of O(cis s).

(Subcase b: 0 < s <mand m <t—s < 2m.) Thent =t —s+s>7n+s
and t < 27 so that s <t < s+ 2m. Also, s < 27 < s+ 27 so that by Theorem
CS.22, cist and cis0 = cis 27 are on the same side of O(cis s).

In either subcase, cist € cis 0-side of O(cis s ;; by assumption in Case (II),
a(cis s) is also in this side, so «(cis ) and cist are on the same side of O(cis S;

Thus in all cases p(cis(t — s)) = «a(cis s) = cist, proving part (A); part (B)
follows immediately from Lemma CS.23.

See also Figure 4.7 and the following remark. 0O

Remark CS.28.1 To discern the inner structure and action of the ro-
tation p in Theorem CS.28, let £ = O(cisO; (the “horizontal axis”) and
let M be the line of symmetry of the angle Z(cis0)O(cis s). Then define
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cis s

cis(t — s)

M7 cis(s — t)

Fig. 4.7 For Theorem CS.28 and Remark CS.28.1, showing action of rotation p.

p = R o Re. This is the rotation guaranteed by Theorem ROT.15, which
maps cis[0,t — s] to cis[t, s]. Refer also to Figure 4.7.
R maps cis|0,t — s] to the arc cis[s — ¢, 0], and then R ¢ maps this arc to

cis[t, s], carrying each point of cis[s —¢, 0] along a line parallel to (cis 0)(cis s).

If cis 2 is a point of cis[s —t, 0], then (cis ) (R (cisz)) is a fixed line for R4,

and all such lines are parallel.

Corollary CS.29 Let £ be an arc of the unit circle having length less
than w. Then there exist numbers s and t and a rotation p about O such that
0<s<2m 0<t<2nm, p(cis[0,t —s]) = &, and p(cis0) and p(cis(t — s)) are
endpoints of £.

Proof. Suppose the endpoints of £ are the points cisu and cisv where 0 <
u < 27 and 0 < v < 27; we may choose the notation so that 0 < u < v < 2.
If v < u+ m < 27, the arc can be written as cis[u, v] and the result follows

from Theorem CS.28 by letting ¢ = v and s = u.

cis(t — s)

cis s .
< Ccisu

Ro
cist &

™ cis0

cisv
Fig. 4.8 Showing mapping of cis[0, ¢ — s] to &.

Suppose, on the other hand, that the arc is “split” by the point cis0, as
in Figure 4.8. That is, 0 < u < m and v > u + 7, so that the point cisu lies
on one side of £ = O(1,0) and cisv lies on the other side, and cisv is on the
same side of the line O(cisu) as cisO. Then there are no points s and ¢ in

[0, 27[ with ¢ > s such that & = cis[s, t]. We can, however, represent the arc
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as & = cis[v,u + 27, so its arc length is u + 27 — v. In this case we cannot
directly apply Theorem CS.28, since u + 27 ¢ [0, 27].

Let Ro be the point reflection, which is a rotation about O. (cf Definition
ROT.1) Then cisv-O-Ro(cisv) and cisu-O-Ro(cisu). Let s = v — 7 and
t = u+ m; then Ro(cisv) = ciss and Ro(cisu) = cist, so that Ro(€) =
cis[s, t], where 0 <t < 27 and 0 < s < 27.

Nowt—s=u+m—(v—m) =u—0v+21 < 27 since u — v < 0; since
u—v < —m, t—s < . By Theorem CS.28, there exists a rotation ¢ about
O such that o(cis[0,t — s]) = cis[s, t], o(cis0) = ciss, and o(cis(t — 8)) =
cist. Define p = Rp o o, which by Theorem ROT.17, is a rotation. Then
p(cis0) = Ro(o(cis0)) = Ro(ciss) = cisw, p(cist —s) = Ro(o(cis(t —s))) =
Ro(cist) = cisu, and p(cis[0,t—s]) = Ro(o(cis[0,t—s])) = Ro(cis[s, t]) = £.

Here we have used the fact that Rp is its own inverse. 0O

Corollary CS.30 Let cis[s,t] and cis[u,v] be arcs of the unit circle
C(O;1), and that 1 > t —s = v —u > 0, so that the lengths of both arcs
are the same; then there exists a rotation p of the unit circle such that

p(cis[s, t]) = cis[u, v].

Proof. . By Corollary CS.29 there exist rotations o and p such that cis[s, t| =
o(cis[0,t — s]) and cis[u,v] = p(cis[0,v — u]) = wp(cis[0,t — s]). Define
p = poo ! which is a rotation by Theorem ROT.17. Then p(cis[s,t]) =
(o~ (cis[s, t]) = p(cis[0,t — s]) = cis[u,v]. O

Theorem CS.31 If s and t are distinct real numbers 0 < s < 2w and
0 <t < 27 then cos(t — s) = costcoss + sintsin s.

Proof. (Case 1: t > s.) By Theorem CS.28, there exists a rotation such that
p(cis0) = cis s and p(cis(t—s)) = cist. Since p is an isometry, thus preserving
distance,
dis(cis 0, cis(t — s)) = dis(cis s, cis t).
Using the definition of distance and equating the squares of both sides of
this, we have
(cos0 — cos(t — 8))? + (sin 0 — sin(t — 5))?
= (1 —cos(t — 5))? + (sin(t — 5))?
= (coss — cost)? + (sins — sint)?
which reduces to
1 —2cos(t — s) 4 cos?(t — s) + sin?(t — s)

= cos?s+sin?s + cos?t +sin®t — 2cos s cost — 2sinssint,
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that is,
1—2cos(t—s)+1=141—2cosscost —2sinssint.
Hence cos(t — s) = cos scost + sin ssin .
(Case 2: t < s.) The proof is Exercise CS.2. O

Theorem CS.32 (Composite argument formulae for cosine and
sine.) For all real numbers s and t:

(I) cos(s —t) = cosscost + sin ssint.

(IT) sin(s — t) = sin scost — cos s sin .

(ITI) cos(s +t) = cos scost — sin ssin .

(IV) sin(s 4+ t) = sin s cost + cos s sin t.

Proof. (I) (Case 1: s =t # 0.) cos(s —t) = cos0 = 1, and
cos s cost + sinssint = cos? s + sin? s = 1.
(Case 2: s = 0.) Then cos(t—s) = cost, and cos s cost+sin ssint = cos t40.
(Case 3: t = 0.) Then cos(t — s) = cos —s = cos s, and
cos scost +sinssint = coss + 0.

(Case 4: 0 < t < 2w and 0 < s < 27 and s # t.) The proof is Theorem
CS.24.

(Case 5: s and t are real numbers such that s # t.) Then by periodicity
(cf Definition CS.10) there exist integers j and &k and real numbers u and v
such that 0 < u < 27, 0 < v < 27, u # v and s = 2j7 + u and t = 2kw + v.
By Theorem CS.31

cos(s — t) = cos(u — v) = cosucosv + sinu sinv
= cos(2jm + u) cos(2km + v) + sin(2j7 + ) sin(2k7w + v)
= cosscost + sin ssint.

(IT) For every real number u, cos(§ —u) = cos(5) cosu +sin(7) sin u; also,
for every real number v, sin(Z —v) = cosv; if welet u =Z —vthenv =2 —u

2 2 2
so that for every real number u, sinu = cosv = cos(§ — u). Hence for all real
numbers s and t,

sin(s —t) = cos(§ — (s —t)) = cos((§5 —s) + 1)
= cos(§ — s)cost —sin(§ — s)sint = sin s cost — cos ssint.
(IIT) Exercise CS.2.
(IV) By part (IT), for all real numbers s and ¢, sin(s+t) = sin(s — (—t)) =

sin s cost — cos ssin(—t) = sinscost + cosssint. 0O

Theorem CS.33 (Traditional angle definition of sin and cos) As-

sume that:
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(1) t is a real number such that 0 <t < 2m;

(2) ¢ is the mapping, applied to C((0,0);r), whose existence is established
by Theorem ARC.12;

(3) Q is the point cist;

(4) P = (x1,x2) is a member oijﬁ\{Q}, and

(5) r >0, and r* = 2% + 3.

Then cost = =L and sint = 2.

Proof. (Case 1: t =0.) cos0 =1 =1.sin0 =Y = 0.
(Case 2: 0 <t < Z.) Let R = ftpr(Q,&}) and S = ftpr(P, &Jz) Then
AOPQ ~ AOSP. Hence cos(t) = =+ and sint = 2.
Case 3: t = §.) Exercise CS.3.
ase 4: T <t < 32} Exercise CS.4.
ase 5: t = 37.) Exercise CS.5.

Case 6: 3T < ¢ < 27.) Exercise CS.6. O

(
(C
(C
(

Remark CS.34 The next two theorems give analytic form to rotations we
studied in Theorems CS.28 and CS.29. In particular, Theorem CS.36 shows
that the line of symmetry of the angle /(cis 0)O(cis s), referred to early in the

proof of Theorem CS.28, is in fact O(cis ), as we might reasonably expect.

Theorem CS.35 Let s be a real number such that 0 < s < 7, and let
M = O(cis s) be the line from the origin through the point cis s (which belongs
to the unit circle C(O;1)). Let Raq be the mapping () defined over M in
Definition LB.16. Then for every point (x1,z2) of the plane R?,

(cos2s)x1 + (sin 25)x2>

R ,Tg) =
wm(@1,22) (sin2s)z1 — (cos2s)xs

Proof. The equation of the line M is azy + bxy + ¢ = 0 where a = sins,
b = —coss, and ¢ = 0, as can be verified by substituting x; = coss and
9 = sins into (sins)x; — (coss)zs. From Defnition LB.16, for any point
(11,72) € R2,

)

(b2—a2)11—2ab12—2ac )

_ a?+b?

Rm ('rl’ .IQ) - < —2abx1+(a®—b%)xs—2bc
a?+b?

since a2 4 b% = cos® s 4+ sin? s = 1 and ¢ = 0, this becomes

(b? — a®)z1 — 2abxo
R , =
L($1 T2) <—2abx1 + (a2 _ b2)$2
B <(cos2 s — sin® s)z; + 2(sin s cos s)y

2(sin s cos s)z1 + (sin? s — cos? s)xo

N——
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By Theorem CS.32(III), cos 2s = cos? s — sin® s, and by Theorem CS.32(IV),
sin 2s = 2sin s cos s, so that the last expression becomes

(cos2s)xy + (sin 2s)xo
Raal@r,z) = <(sin 2s)x1 — (cos 25):1:2>'

Theorem CS.36 Let s be a real number such that 0 < s < 2w, and
let M = O(cis%; be the line from the origin through the point cis§ =
(cos §,sin 5), which point belongs to the unit circle C((0,0);1). Let L =
0,0)(1, 09. Let Rm and R be the reflections (@) defined in Definition LB.16
over the lines M and L respectively, and let p = Raq 0 Re. By Definition
ROT.1, p is a rotation.

(A) For every point (x1,x2) € R?,
cos s)xr; — (sins)x
plan,22) = Roa(Re(an,mz) = [ (0971 — b o)ez)
(sin 8)x1 + (cos s)x2
(B) p is the unique rotation of R? about O = (0,0) such that p(1,0) =

p(cis0) = (cos s,sins) = cis s.
(C) The line M is the line of symmetry of Z(cis0)O(cis s).

Proof. (A) Re(x1,22) = (21, —22) and by Theorem CS.28,
p(z1,22) = Rm(Re(x, 22)) = Ram(xr, —2)
_ ((cos 2(3))x1 + (sin 2(%))(—962)) _ ((cos s)x1 — (sin s):vg>
s) ’
2

(sin2(3))w1 — (cos2(5))(—x2) (sin s)zy + (cos s)x2

. [(coss)-1—(sins)-0) o
(B) p(1,0) = p(cis0) = ((sin §) -1+ (coss) - 0) = (cos s,sin s) = cis s;

and by Theorem ROT.15(A), there can be only one rotation p about O such
that p(cis0) = cis s.

(C) M is the line of symmetry of Z(cis0)O(ciss) because by part (B),
R maps cis0 to ciss and O is a fixed point for Ry. O

4.6 Translations of R2.

Remark CS.37 (A) Recall from Specht Ch.3 Definition CAP.6 that a
translation is a collineation « of the plane which has no fixed point, and such
that for every line £ either «(L) || £ or a(L) = L.
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Theorem CS.38 A mapping a of R? into itself is a translation iff for
some point (p1,p2) # (0,0) of R%, and every point (x1,x2) € R?, a(x1,22) =
(21 + p1, 22 + p2).

Proof. (A) Suppose that there exists a point (p1, p2) such that for every point
(acl R ,TQ) S R2,
a(z1,22) = (Y1,92) = (21 + p1, 22 + p2).
Let £ be a line having the equation az1+bxs+c = 0, and let d = ¢—apy —bps.
Then (z1,z2) € L iff
ay1 + bys + d = axy + apy + brs + bps + ¢ — ap1 — bps
= (ax1 +bra+¢)+0=0
which is true iff ay; + by + d = 0, that is to say, a(x1,22) = (y1,¥2) is a
member of the line axy 4+ bxo + d = 0. This is true iff the line £ is either
parallel to, or equal to a(L). Therefore « is a a translation.

(B) Conversely, suppose « is a translation. Then for every line £ with
equation axi + bxo + ¢ =0, a(L) is a line parallel or equal to £, that is, for
some d, o(L) has equation ay; + byz + d = 0.

If ¢ = d then (L) = £ and we may let p; = py = 0.

If ¢ # d, then either a # 0 or b # 0 (or both). If a # 0, let p; = %
and ps = 1. Then (x1,z2) € L iff axy + bxg + ¢ = 0 which is true iff

ayr +bys + d = a(zy + =) 4 b(wy +1) + d
=ax1+brs—d+c—b+b+d=ary +brs+c=0.
Thus (z1,x2) is on the line ax; + bxy + ¢ = 0 iff a(z1,22) = (y1,92) =
(21 + p1, 22 + p2) is on the line ayy + bys + d = 0.
The case where b # 0 we leave to the reader as Exercise CS.7. O

Theorem CS.39 Let @ be a closed ray on R?, and let o be a translation;
then a(ﬁ) is the ray a(A)a(B;.

Proof. By Specht Ch.21 Definition LA.1(3D), AB = {A+t(B—A)|t>0}.
By Theorem CS.38, there exists a point P such that for all X, a(X) = X+ P.
Then Y € a(@) iff for some X € /ﬁ,
Y=aX)=X+P=A+P+t((B+P)—-(A+P))
=a(X) + t(a(B) — a(A))
which is true iff Y € a(A)a(B). O

Remark CS.40 (A) Since an angle is the union of two non-opposite rays,
(cf Specht Ch.5 Definition PSH.29), if « is a translation and if ZBAC' is an
angle with corner A, then a(£ZBAC) = Za(B)a(A)a(C).
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(B) We have seen in Specht Ch.12 Theorem ISM.4(B) that if £; and Lo are
parallel lines in a Euclidean plane, the mapping R, o R, is a translation.

The next theorem proves this for R?, using direct computation.

Theorem CS.41 Let L1 and Lo be parallel lines on R?. Then Re,oRe,

is a translation.

Proof. By Theorem LB.13 there exist real numbers a, b, ¢c; and co such that

c1 # ca,
L1 ={(z1,22) | (x1,22) € R? and axy + bwy +c¢; = 0} and
Lo = {(x1,22) | (v1,72) € R? and ax; + bxs + co = 0}.
Let (21, 72) be any member of R?; by Definition LB.16,

b’ —a® 2ab 2
U1 Z1 a2 +Z2 Tl — g2y d2 — a;fgz
=Re I a?-b? ey |°
T2 T1+ e — it
Y2 a2 +b2 a2 b2 a2 b2
b2—a? (b2 —d? 2ab 2acy
212 (a2+b2 xl 212 L2 — g2

2ab —2ab —b? 2b 2
——5 (a2+ab2 Z1 + Tz 2 — 2_&2) - azlfgz

a?+b?
Re. (R, (2)) _

—2ab [ b*—d® _ ab _ 2acy

22102 (a2+b2 I a2+b2 L2 = 2o
a?—b? —2ab b2 2bcy _ _2beco
+a2+b2 (a2+b2 r1+ 2 a2+b2 T2 = gz aZ1b2

2 2
b2 —a? + —2ab
W2 b2 W2 +b2 Z1
b2 —a? —2ab —2ab a®—b?
+ ((a2+b2 (a2+b2) + (a2+b2 (a2+b2 €2
4 b2 —a? —2acy 4 —2ab —2bcy \ _ _2acy
a2+b2 a2+b2 a2+b2 a2+b2 a2+b2
—2ab b2 —a? a’—b? 2ab
—2ab —2ab (a®>=b%)
+ a2+b2) (a2+b2) + (a2F02)2
+ —2ab —2acy + a’—b? —2bcy \ _ _2bco
a2+b2 a2+b2 a2+b2 a2+b2 a2+b2

The coefficients of 21 and x5 (in order of appearance in the matrix just above)

reduce to

2 2
() + (%) (58)) -0,
2 2 2 2
(52) + (5582) (-7 ) = 0. and

—2ab (a®=b")"\ _
a2+b2) + (a2+b2)2) =L
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The constant terms reduce as follows:

b2 —a? —2acy + —2ab —2bc1 |\ _ _2acy
a? +b2 a? +b2 a? +b2 a? +b2 a? +b2

o (bz—az)(—2a01)+(4ab201) _ 2acy __ 2acl(a2—b2+2b2) _ 2acs
= (a2+02)2 202 = (a2102)2 a2+b2
_ [ 2aci(a®+b*%) _ 2ace  _ [ 2aci _ 2ace  _ [2a(c1—c2)
= (a2 +02)2 2+62 = \a2502 a2+b2 = a2 b2 .
—2ab —2acy + (a2—b2)(_2b01) _ _2beo

@2 +b? @z b2 (a2+b2)2 W2+b2
_ [ (4a®be)+ (b —a*)(2bc1) \ | 2bcy [ (@®+b2)(2be1)\ | 2bcy
= (a2+b2)2 2+bZ (a2+52)2 @2 +b2

_ 2bcq _ 2bcy 2b(c1—c2)
= \ taz1v7) aZ+bZ a2 102

so that Re,(Re, (71,72)) = (21 + k1,22 + k) where k; = % and
k _ 2b(01—02)
2= Ta25p2 ¢

At least one of a or b is non-zero, so that a2 +b% > 0; and ¢; # c»; therefore

at least one of k1 or ks is non-zero. Thus the mapping Rp, o Rz, is not the

identity, and therefore by Theorem CS.38 is a translation . 0O

4.7 Exercises for cosine and sine

Exercise CS.1 Prove part II of Theorem CS.9.
Exercise CS.2* Prove Case 2 of Theorem CS.32.
Exercise CS.3 Prove Case 3 of Theorem CS.33.
Exercise CS.4 Prove Case 4 of Theorem CS.33.
Exercise CS.5 Prove Case 5 of Theorem CS.33.
Exercise CS.6 Prove Case 6 of Theorem CS.33.
Exercise CS.7* Complete the proof of Theorem CS.38(B), the case
where b # 0.
Exercise CS.8%* Let £ = i0,0)(cos s,sins); for each each (z1,22) € R?
define
a(x1,x2) = 1 c0s2s + X9 sin 2s,
B(x1,22) = 21 8in 2s + w9 cos 2s, and
Re(x1,22) = (21, 22), B(21, 22)).
Prove that for every (x1,z2) € R?\ L, (a(:vl,xg) o1 P wa) o

2 ’ 2 )
point on the line (0,0)(cos s, sin s .

1S a
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Exercise CS.9 Let a and b be real numbers such that (a,b) # (0,0); for
each (z1,z2) € R?, define
plor,22) = (it — oy, o + Vi )
then p is a rotation about (0,0).
Exercise CS.10* According to Theorem ISM.5 for any point A € R?
there is a translation 74 such that 74(0O) = A. Definition VEC.1 uses this

fact to define addition on a Euclidean plane such as R2.

Let 74 be a translation of R?, where A = (ay,az) # (0,0) is some point of
that plane. Show that 74 has an inverse 7_ 4 which is a translation.

Exercise CS.11* Show that a translation of R? preserves distance, i.e.
if A = (a1,a2) is a member of R?\ {(0,0)} and 74 is the translation such
that for every member (x1,x3) of R, 74(x1,72) = (71 + a1,22 + az), then
for any two members (x1,x2) and (yi1,y2) of R?,

dis(7a(z1, 22), Ta(y1, y2)) = dis((z1, 22), (y1,y2))-

Exercise CS.12* Ifcist = (cost,sint) is a point on the unit circle C(O; 1)

where O = (0,0), then
cis(t + ) = —cist = (— cost, — sint)

and (cist)-O—(cis(t + m)).

Exercise CS.13* Let C(O;r) be a circle in R? with radius 7 and center
O = (0,0). Then (A) no line intersects the circle C(O;r) in more than two
points; and (B) a line containing intersects C(O;r) in two points iff it it
contains a point X such that dis(X,0) < r. Moreover, if a line intersects
the circle C(O;r) in two points A and B, the line of symmetry of ZAOB
intersects the line j@ at a point C' such that disOC < r.

4.8 Selected answers for exercises cosine and sine

Ezercise CS.2 Proof. From Case 1 and the fact that cos is an even function,
cos(t — s) = cos(s —t) = costcoss + sintsin s

= cosscost + sinssint.
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Ezercise CS.7 Proof. If b # 0, let p; = 1 and py = %; then for all

(x1,22) € L,
a(zr,z2) = (Y1, 92) = (21 + 1, 15 + =he=2)
and
ayr + bys +d = a(z1 + 1) + b(zs + =2=2) 4+ 4
=axr1+bro+a—d+c—a+d=axy+bry+c=0,

so every (x1,x2) in the line axq +bxo+c¢ = 0 maps to a point (z1 +p1, x2+p2)
in the line ay; + by2 +d = 0.

This completes the converse argument. O

Ezercise CS.8 Proof.

sin s (zl cos 25+x22 sin 2s+x 1 ) — Ccos S (zl sin 2s+z22 Ccos 28+To )
_ cos 2ssin s;sin 2s cossle 4 sin s sin 25—2005 2scossx2 4 x1 sin SEIQ cos s
:su2lsxl_|_—c2oss$2:(). 0

Ezercise CS.10 Proof. Tf A = (a1,as2), then —A = (—ay, —az); For every
member (x1,72) of R?, 74(z1,22) = (1 + a1,72 + az), and 74~ (21, 12) =
T-a(x1,72) = (T1—a1, 22 —az). Thus 7_4(7a(21,22)) = ((¥1+a1) —a1, (v2+

az) — CLQ) e (:El,:EQ). O

Ezercise CS.11 Proof.
dis(ra (21, 22), (y1,92)) = dis((z1 + a1, 22 + a2), (41 + a1, 92 + a2))
= V(@1 +a1) = (y1 + a1))? + (22 + a2) — (y2 + a2))?
= V(@1 —41)? + (22 — 32)?
= dis((x1,x2), (y1,¥2)). O

Ezercise CS.12 Proof. By Theorem CS.32,
cos(t + m) = cost cos(m) + sin ¢ sin(m)
=cost(—1)+sint-0 = —cost
and
sin(t + 7) = sint cos(w) — costsin(m)
=sint(—1) —cost-0 = —sint. O
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Ezercise CS.13 Proof. Uf X = (x1,22) is any point on a line £, then
by Remark LB.2(C) there exists a point Y = (y1,y2) such that Z € £ iff
Z = X +tY for some real number ¢. Thus, a point Z = X +tY € L is a point
of C(O; 1) iff (x1+ty1, xa+tys) € C(O;7), that is, (w1 +ty1)?+(va+ty2)? = r2.
Expanding, we have

23 + 2y} + t(2z1y1) + 23 + t2y3 + t(2maye) = 1,
and rearranging,
ot + 23 + 2 (yf +y3) + 1221y + 2292)) =17,
or

(7 + 25 — 1) + t(2(z191 + 22y2)) + 2 (47 +y3) = 0.

This is a quadratic in ¢ and by the quadratic formula, it has at most two
solutions. This proves part (A).

To show part (B), assume that dis(X,0) < r, that is, #3 + 23 < 2. Then
we may state the above equation as a + tb+ t?c = 0 where a = 23 + 13 — 2,
b= 2(x1y1 + w2y2), and ¢ = y? + y3. By the quadratic formula, this has two
solutions iff the discriminant %> — 4ac > 0. That is,

(2(z1y1 + 22y2))? — 4(2f + 23 —r*)(y? +y3) > 0.
Then (2(z1y1 + z2y2))? > 0; (v +y3) > 0, and 27 + 23 — r? < 0 so that the
discriminant is greater than 0, and there are two solutions; hence the line £
intersects the circle at two points.

Conversely, if £ intersects the circle at two points A = (a1,a2) and B =
(b1, b2), let M be the line of symmetry of the angle ZAOB. Then let C be the
point of intersection of M and L; C' € ins ZAOB and L is a fixed line for R4,
so the two lines are perpendicular. It follows from the Pythagorean Theorem
(Theorem VEC.26.5 or Specht Ch.15 Theorem SIM.23.1) that dis(C, O) < 1.
O



Chapter 5
Angle Measure (AM)

Dependencies: Fuclidean Geometry and its Subgeometries (Specht); Chap-
ters 8 and 4 of this supplement
Acronym: AM

New terms defined: (radian) measure of an angle

We now develop the concept of angle measure, using the ideas of arc length
as developed in Chapter 3 and sin and cos as developed in Chapter 4 of this
Supplement. Again, in this chapter, we work in R?. Since it is shown in
Chapter 21 of Specht that all the axioms of that development hold for R?
and R?, here we may use all the theorems from that book.

In chapters 3 and 4 we considered arcs on a unit circle having arc lengths
up to (but not including) 27. In this chapter we will shift our focus to arcs
(on the unit circle) having length less than 7, that is, which subtend angles,
the definition of which (Specht Ch.5 Definition PSH.29) specifically excludes
“straight angles” or anything “greater.” There are no “270 degree angles”
here. Note that when we write ZAOB = ZCOD we mean set equality; there

is no implication that O[—/i = % or m = %

References in this chapter to items labeled VEC, ARC, CS, and AM are
to this Supplement; all other references, such as “Theorem PSH.41” are to
Specht. Again, we refer the reader to the note Citations and references at
the end of the Preface to this Supplement, and to the abbreviated Table of

Contents (with acronyms) included there.
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5.1 Definitions and theorems for angle measure

Definition/Remark AM.1 (A) Let O = (0,0) be a point of R, and let r
be a positive real number. In Definition CS.13 we defined C((0,0);r) = C(O;r)
to be the circle with center O = (0,0) and radius r, and defined its inside,
enclosure, and diameter. We also designated C(O;1) as the unit circle.

(B) Let C and D be points of R? such that C, D, and O are noncollinear,
so that the rays % and m form ZCOD. Let r > 0 be a real number, and
let A and B be points on O]? and O]?, respectively, such that dis(O, A) =
dis(0, B) = r, so that {A} = C(O;)NOC, and {B} = C(0:)NOD, so that
/ZAOB = /ZCOD.

Define AB to be C(O;7) Nenc LAOB. AB is called an arc of the circle
C(O;r), and is said to subtend the angle ZAOB, which is a central angle
of C(O;r). Here enc ZAOB means the enclosure of ZAOB, that is, the union
of ZAOB and its inside ins ZAOB (cf Definition PSH.36).

(C) According to the definition of AB just above, if F' is a point of AB,
which is neither A nor B, then AB is a subset of @ U F-side of @, and
also of OB U F-side of OB (cf Theorem CS.22).

By the definition of angle (Specht Ch.5 Definition PSH.29), fﬁ #+ @,
that is, the rays m and OE? are not opposite. This definition does not
allow for arcs which contain both endpoints of any diameter of the circle. In
particular, on the unit circle, it does not allow arcs with length greater or
equal to 7.

(D) Let ZCOD be any angle, and let A and B be points on Oj? and ]O?,
respectively, such that dis(O, A) = dis(O, B) = 1, so that both A and B are
points of the unit circle C(O;1). Define the (radian) angle measure of
ZC0OD = ZAOB (denoted measZAOB) to be the arc length L(Zl\?) of AB.

Theorem AM.2 Let A and B be distinct points on the circle C(O;r),
where r > 0, for which it is false that A~-O-B. Then AB is an arc as defined
in Chapter 3, Definition ARC.1.

Proof. Let A’ and B’ respectively be the points of intersection of the unit
circle with O<—/>1 and Oﬁ By Theorem CS.22 the notation may be chosen (and
the points possibly renamed) so that A = rA’ = rcisa and B = rB’ = rcisb,
b> a, and b — a < 7. From part (C) of that theorem, r cis]a, b[C ins LZAOB
and rcis]b,a + 27[ C out LZAOB. From Theorem PSH.41(B),

C(O;r)\ {4, B} = (ins LZAOB N C(O;7)) U (out LZAOB N C(O;r)).
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Since 7 cis maps [a, a + 27[ one-to-one onto C(O;r), it is also true that
C(O;r)\ {4, B} = rcis]a,b[Urcis]b,a + 27]
By elementary set theory, r cis]a, b[= ins ZAOB N C(O;r) and hence
rcisfa, b] = enc ZAOB N C(O;r);
therefore every arc AB is an arc cisla, b] as previously defined. 0O

Theorem AM.3 Let O and O’ be distinct points on R2, r a positive real
number, and let T be a translation of R? such that T(O) = O'. Let A and B
be distinct points on the circle C(O;r) and let C and D be distinct points on
the circle C(O';r), so that AB is an arc on C(O;r) and A'B is an arc on

C(O';r). Then AB= AR ZﬁT(Z)-T'\(B) ~ AP,

Proof. 1f T(X)T\(B) ~ A'B’ there exists an isometry ¢ such that
p(T(A)T(B)) = A'B;
then .
___ (¢oT)AB) =e(TA)T(B) = AB,
so AB= A'B’.
Conversely, if AB= A'B , there exists an isometry ¢ such that 1/)(@) =
A'B'; then T o~ (A'B') = T(A)T(B) so that T(A)T(B) = AB'. O

Take note: for simplicity, several of the following theorems are stated and
proved for the unit circle C(O;1); it is easy to extend them as needed to the
circle C(O;r) where r > 0.

Theorem AM.4 Let AB and CD be arcs on the unit circle C(0;1). Sup-
pose there exists an isometry ¢ such that ga(C/'l\)) = AB, o(C) = A and
©(D) = B; then O is a fized point for ¢, and p(LCOD) = LAOB.

Proof. Since all the points A, B, C, and D are on the unit circle with center
O, the distance from each to O is 1. Suppose that O is not a fixed point for
v, and let O' = p(0) £ O.

Let £ be the right-angle bisector of the segment ADB = o(C)p(D), and let
{P} = AB NL; then L is the line of symmetry of ZAOB. Because ¢ preserves
distance, A and B are also on the unit circle centered at O, and L is also
the line of symmetry of ZAO’B. Therefore £ = Ocp(O;.

Let @ be the point of intersection of AB and L. Since © maps the arc CD
into the unit circle C(O’;1) and onto the arc ZE, Q € AB C C(O’;1), and
dis(Q,0") = 1.
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Case 1: If O’ is on the O-side of @, then O’ = O, because there is only one
point on £ on each side of () which is a distance 1 from Q.

Case 2: If O-Q-0’; by the Pythagorean Theorem (Theorem SIM.23),
dis(P,0) < 1 and dis(P, O') < 1; since dis(Q, O) = 1, O-P-Q. Since O-Q-0’
it follows from Theorem PSH.8(A) that P-Q-0’; therefore, from dis(P, O') <
1, we have dis(Q, O’) < 1; but dis(Q, O’) = 1 because @ € C(O’;1). This is a
contradiction. 0O

Theorem AM.5 Let O be a point on R2, and let A, B, C, and D be
points on the unit circle C(O; 1) such that A # B, C # D, and AB and CD
are arcs on this circle.

(1) If o is an isometry on R?; then cp(@) =CD iff ©(ZAOB) = ZCOD.
That is to say, AB=~CD iff ZAOB = /ZCOD.

(2) If p is a rotation of the plane; then p(@) = CD iff p(LAOB) =
ZC0OD.

(3) The following statements are equivalent:

(a) AB and CD have the same arc length; that is, L(ZE) = L(C/'—B);
(b) there exists an isometry on R? such that QD(ZE) =CD; and
(c) there exists a rotation p such that p(@) =CD.

Proof. (1) If ¢ is an isometry such that @(Zl\?) = CD, then either p(A)=C
and ¢(B) = D, or ¢(A) = D and ¢(B) = C. By Theorem AM.4, ¢(0O) = O,
so that either p(A) € OC and »(B) € OD or p(A) € OD and w(B) € %;
in either case, p(LAOB) = ZCOD.

Conversely, if ¢ is an isometry and ¢(ZAOB) = ZCOD, by Theo-
rem NEUT.15(11) ¢(ins ZAOB) = ins ZCOD, so that ¢(enc ZAOB) =
enc ZCOD. Also ¢ preserves distance so that it maps the unit circle onto
itself. It follows that p(enc ZAOB) NC(0;1) = enc ZCOD NC(0;1), that is
to say, cp(@) =CD.

(2) If p is a rotation, it is an isometry; then if p(@) = CD, by part (1)
p(0) = O and p(£LAOB) = ZCOD. Conversely, if p is a rotation such that
p(LAOB) = /COD, by part (1) p(AB = CD.

(3) We shall prove (a)=(c)=(b)=(a).

(a)=(c): If L(ZE) = L(C/'—B), then by Corollary CS.30, there exists a
rotation p such that p(@) = CD.

(c)=(b): If p is a rotation then it is an isometry.
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(b)=-(a): If ¢ is an isometry such that QD(ZE) = CD, by Theorem AM.4,
©(0) = O; by Lemma CS.23(B), it follows that L(AB) = L(CD). O

Theorem AM.6 Let A, B, O, A’, B', and O’ be points on R? such
that A, B, and O are noncollinear and A’, B’, and O" are noncollinear; then
ZAOB = L/A’'O'B’ iff meas ZAOB = meas ZA'O'B’.

Proof. We may choose these points so that dis(O, A) = dis(O, B) = 1 and
dis(0', A") = dis(O’,B’) = 1. Then by Definition AM.1, meas ZAOB =
meas ZA'O’ B’ iff the arc lengths }L(ZE) and L(z@) are the same.

Suppose ZAOB = /A'O’B’; let ¢ be the isometry such that o(ZAOB) =
LA'0'B’; then by Specht Ch.8 Theorem NEUT.15(11), ¢(ins ZAOB) =
ins ZA'0’B’. Since ¢ preserves distance, (C(0;1)) = C(O';1). Since ¢ is
one-to-one, and using elementary set theory,

QD(ZE) = p(ins LZAOB NC(0;1)) = p(ins LZAOB) N p(C(0; 1))
—ins ZA'O'B'NC(0;1) = A'B.
Then by Lemma CS.23, L(Zl\?) = L(@), that is, the angles have the same
measure.

Conversely, suppose that L(ZE) = L(z@ ), Let T be the translation of
R? such that 7(O) = O'. Then T is an isometry, and preserves distance,
so that 7(C(0O;1)) = C(O’;1). By Lemma CS.23, T(A/)RB) is an arc on
C(0’;1) which has the same arc length as AB. Because L(@) = L(Zl\?) =
}L(T(X)-T\(B)), by Theorem AM.5(3) there exists an isometry ¢ such that
@[J(T(A/)T\(B)) = A'B’; then o is an isometry mapping AB onto AB. O

Theorem AM.7 (A) Let A, O, and B be noncollinear points on R? and
let C' be a member of ins LZAOB, then
meas ZAOC + meas ZBOC = meas ZAOB.
(B) Let A, O, and B be points such that A~O-B and let C be a point off
of j@, then meas ZAOC + meas ZBOC = 7.

Proof. Without loss of generality we can assume that all points A, B, and C
are on the unit circle C(O; 1) with center O and radius 1.

(A) Since by Theorem AM.2, AB is the image under the mapping cis of
some interval [a,b] where A = cisa and B = cisb, for some ¢ with a < ¢ < b,
C = cisc. Then by Theorem ARC .4,

meas ZAOC + meas ZBOC = L(ZE’) + IL(C/'B) = L(ZE) = meas ZAOB.

(B) Suppose that A = cis a; then B = cis(a+m) = cis(a—mn). Then C' = cisc

where either a < ¢ < a+mora >c¢>a—w.Ifa <c<a+m(a>c>a—mn),let
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& ={A,B}U(C(O;1)NC-side of /ﬁ) Then &€ = cisa, a+ 7](= cis[a, a —7]),
and £ = AC UCB. By Theorem ARC.4,

L) = L(ZE’) + L(C/’l\?) = meas ZAOC + meas ZCOB;
By Theorem CS.19(B), L(£) ==n. O

Theorem AM.8 (Sum of measures of angles of a triangle is 7.) Let
A, B, and C be noncollinear points on R?, then meas ZABC +meas Z/BCA+
meas ZCAB = .

Proof. Let L = par(B, C<'—/>l) be the line parallel to C<'—/>l) which contains B. (cf
Axiom PS) Let D and E be points of £ such that D is on the A-side of %, E
is on the C-side of j@, and D-B-FE. By Theorem EUC.11 ZABD = /BAC
and ZEBC = ZACB. By Theorem AM.6 meas ZABD = meas ZBAC
and meas ZEBC = meas ZACB. By Theorem AM.7(A) meas ZEBC +
meas ZABC = meas /FEBA. Putting all this together and using Theorem
AM.7(B),
meas ZACB + meas ZABC' 4+ meas ZBAC
= meas ZEBC + meas ZABC + meas ZABD
=meas ZEBA + meas ZABD = 7. 0O

Corollary AM.9 Let A, B, and C be noncollinear points on R?, and
let D be a point such that C—A-D; then meas ZABC + meas /BCA =
meas ZBAD.

Proof. Let E be a point such that F € par(A,%) and E and B are on
the same side of /ﬁ By Theorem EUC.11 ZABC =2 /BAE and /BCA =
/EAD. By Theorem AM.6 meas Z/ABC = meas /BAE and meas ZACB =
meas Z/DAFE. By Theorem AM.7 meas /BAE+meas /DAFE = meas /BAD.
Therefore meas ZABC + meas ZACB = meas ZBAD. O

We can restate Corollary AM.9 thusly: The sum of the measures of any
two angles of a triangle is equal to the measure of an exterior angle at the

other corner of the triangle.

Theorem AM.10 Letr be a positive real number and let C(O;r) be the
circle with center O and radius v on R%. Let A, B, and C be noncollinear
points on C(O;r) such that C—O-A; then meas ZACB = meas ZOBC =

% meas ZAOB.
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Proof. Since dis(O, B) = dis(0,C) = r, OB = OC. By Theorem NEUT.40
(Pons Asinorum) ZOBC =~ /OCB. By Theorem AM.6 meas ZOBC =
meas ZOCB. By Theorems AM.6 and AM.9 meas ZAOB = meas ZOBC +
meas ZOCB = 2meas ZACB. Therefore meas ZACB = meas Z/OBC =
%meas ZAOB. O

Corollary AM.11 Let r be a positive real number and let C(O;r) be the
circle with center O and radius v on R%. Let A, B, and C be noncollinear
points on C(O;1) such that C-O-A and A, B, and C are noncollinear, then
meas ZACB = 3.

Proof. By Theorem AM.10,

meas ZOBC' = % meas ZAOB and meas ZOBA = % meas ZBOC.
Then by Theorem AM.7(B), meas ZAOB + meas /ZBOC = m, so that
meas ZABC = meas ZOBC + meas Z/OBA = 3. [

Theorem AM.12 Let r be a positive real number and let C(O;r) be
the circle on R?; let A, B, and C be noncollinear points on C(O;r), then
meas ZBAC = %meas /BOC.

Proof. (Case 1: A-O-C'.) This is Theorem AM.10.
In the next two cases, let D be the point of intersection of A0 and C (O;7).

(Case 2: O € ins ZBAC'.) By Theorem AM.7

meas ZBAC = meas ZBAD + meas ZCAD.
By Theorem AM.10,
meas ZCAD = % meas ZCOD and meas ZBAD = % meas ZBOD.

By Theorem AM.7 meas ZBOD + meas ZCOD = meas ZBOC. Therefore

3 meas ZBOC = § meas ZBOD + 3 meas ZCOD

=meas ZBAD + meas ZCAD = meas ZBAC.

(Case 3: O € out ZBAC'.) By Theorem AM.7(A)

meas ZBAC + meas ZCAD = meas /BAD

and

meas ZBOC + meas ZCOD = meas ZBOD.
Therefore,

meas /BAC = meas /BAD — meas ZCAD
and

meas ZBOC = meas ZBOD — meas ZCOD.
By Case 1 (that is, Theorem AM.10),

% meas ZCOD = meas ZC'AD and % meas ZBOD = meas /BAD.
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Then
% meas ZBOC = % meas ZBOD — % meas ZCOD
= meas /BAD — meas ZCAD = meas /BAC. 0O

Theorem AM.13 (Geometric proof of square roots) Given a seg-

ment with length H, another segment can be constructed having length v/ H.

C

Fig. 5.1 For Theorem AM.13.

Proof. Refer to Figure 5.1. Let O be any point on R? and let C(O; £EL)
be the circle on R? with center O and radius % Let A and B be points
on this circle such that A-O-B, and let D be the point on j@ such that
dis(A,D) = H and dis(D,B) =1 (ift H = 1 then D = O). Let M be the
line through D which is perpendicular to AB. Since dis(D,0) < ZH by
Exercise CS.13 the line M intersects C(O; £EL) at two points C and E. By
Theorem AM.8
meas ZC AD + meas ZAC'D + meas ZADC = 7.
By Exercise AM.1, meas ZADC = 7 so that
meas ZCAD + meas ZACD = 3.

By similar reasoning, meas ZBCD + meas ZCBD = 7.

By Corollary AM.11, meas ZACB = 7; again by Theorem AM.8
meas ZABC + meas ZACB + meas ZBAC =,
so that meas ZABC + meas ZBAC = 3.
Since AABC and AADC have ZBAC in common,
meas ZACD = meas ZCBD.
Since AABC and ACBD have ZABC' in common,
meas / BAC = meas Z/BCD.
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E—3

By Specht Ch.15 Theorem SIM.18 AACD ~ ACBD. Moreover [g] =
[AD]

,ie., [CD1]? = [AD]|®[DB]. Hence (dis(C, D))? = dis(4, D)-dis(D, B).

E—3
[CD]
Since dis(D, B) = 1, dis(C, D) = 4/dis(4, D). O

Remark AM.14 In algebra the ordered extension field SF of the rational
numbers such that every positive (real) number belonging to it has a square
root is called the surd field. It is the “smallest” ordered subfield of real
numbers such that every positive number belonging to it has a square root
belonging to it.

Theorem AM.13 shows that the underlying field in coordinate space must
contain square roots in order to carry out the full development of this book
in coordinate space.

That is, given a segment, AD having length H, from Theorem AM.13 there
exists a segment CD having length vH. Definition VEC.26.1 in Chapter 1
defines the length of this segment to be the real number ¢ such that OcU =
OHX, where CD = OS and the length of U is 1. This is impossible unless
there is a real number /H.

5.2 Exercises for angle measure

Exercise AM.1* The radian measure of a right angle is 7.

5.3 Selected answers for angle measure

Ezercise AM.1 Proof. By Definition NEUT.41(C) an angle ZBAC is right
iff it is congruent to a supplement of itself. Let ZDAFE be a supplement of
ZBAC, so that ZDAE = /BAC. By Theorem AM.7(B), meas ZDAFE +
meas /BAC = w. By Theorem AM.6 meas /DAFE = meas /BAC, therefore
meas ZDAE = meas /BAC = 5. O






Chapter 6
The Jordan Curve Theorem for
Polygons

Dependencies: Chapters 1, 4, 5, and 6 from FEuclidean Geometry and its
Subgeometries (Specht)

Acronyms: JCT, PLGN, SEP, CNV, CNT

New terms defined: polygon, inside, outside, enclosure, exclosure, side;
polygonal path, subpath, j-corner, j-edge, adjacent edges, adjacent corners,
endpoints, simple; polygonally connected, admissible ray, admaissible angle,
entering, exiting; parity, even, odd; separates the plane; support, supporting
line, basic line, extremal point, normal point, bounded (set); reqular corner,

irregular corner

This chapter is dependent only on Pasch geometry and ordering, as devel-
oped in Chapters 5 and 6 of Specht; it does not depend on, or refer to other
chapters in this Supplement. In it, “plane” will mean “Pasch plane.”

Items referenced by acronyms JCT, PLGN, SEP, CNV, or CNT (for in-
stance “Lemma PLGN.3”) will be internal references to this chapter. Other
items (as, for instance “Theorem PSH.6”) will be from chapters in Specht
according to the following table, which is a subset of the abbreviated Table
of Contents for Specht at the end of the Preface of this Supplement.

Acronym Chapter Title Page
I 1 Preliminaries and Incidence Geometry 1
1B 4 Incidence and Betweenness 63
PSH 5 Pasch Geometry 79
ORD 6 Ordering a line in a Pasch Plane 139

The Jordan Curve Theorem says that the complement of a simple, closed

curve is the union of two connected sets, one of them (the interior) being

113
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bounded, the other (the exterior) unbounded; the curve is the boundary of
both the interior and the exterior, and any path from the interior to the
exterior must intersect this boundary.

This is quite intuitively obvious; indeed, Professor F. E. Ulrich used to
introduce it in his Complex Analysis course at Rice by saying “Every cow
knows this theorem; she knows that if she’s in the pasture and wants to get
out, she has to cross the fence.”

Camille Jordan (1838-1922) was the first to give a proof in the continuous
case, which was published in his book Cours d’analyse de [ "Ecole Polytech-
nique [1]; but his proof was considered by many mathematicians to be faulty.
Moreover, Jordan assumed the validity of the theorem for the case of a simple
closed polygonal path.

It is this polygonal case that we prove in this chapter. Some say this case
is quite easy to prove, but we have not sought a minimal path to it; we will,
rather, embark on a rather leisurely exploration of the properties of polygons

which will eventuate in Jordan’s theorem, which we now state more precisely.

Theorem JCT.1 (Jordan Curve Theorem (JCT) for a simple
polygon) If G is a simple polygon in the Pasch plane P, then

(A) P=GUinsGUoutG, where G, ins G, and out G are pairwise disjoint
sets;

(B) if P € insG and Q € out G, then P]_émg +£0;

(C) G and ins G are bounded sets, and out G is unbounded; and

(D) ins G and out G are polygonally connected sets.

Here we have violated our usual practice and used terms before they are
defined, relying on your intuition for the meanings of several words. We have
not defined the terms simple polygon or polygonal connectedness (to be de-
fined in Definition PLGN.5), let alone inside (insG) and outside (out G) of a
polygon G (to be defined in Definition SEP.3). The terms bounded and un-
bounded sets are defined in Definition CNV.21.

Remark JCT.2 (Alternatives for reading the chapter) Conclusions
(A) and (B) of Theorem JCT.1 are Theorem SEP.12; together they define
what we mean by saying that the curve (or polygon) “is the boundary of
both the interior and the exterior” of the plane: the boundary is what the
cow has to cross to get out of the pasture.
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Conclusion (C) is Theorem CNV.22; and conclusion (D) is Theorem
CNT.3. This provides several alternatives for reading the chapter, or part
of it.

The development leading to conclusion (C) includes Theorems SEP.13
through SEP.15, and the development leading to conclusion (D) includes at
least Theorems CNV.22 through CNV.29. The acronyms do not correspond
to the part of the JCT theorem being proved.

The reader who wishes to pursue the proof in the more general continuous
case might well begin with G. T. Whyburn, Analytic Topology, AMS Collo-
quium Publications, Chapter VI, (Reprint) [4].

6.1 Segments and rays (PLGN)

This section develops basic facts about the intersections of a ray and an ar-
bitrary collection of segments in the plane. In order to have the most general
possible applicaton we use the notation C'D® to denote a “generic” segment
with endpoints C' and D. Thus, CD® will denote either EC'_Dj,ﬁ,(}'j_:‘D, or
CD. In the case that C' = D, either CDS = CD = {C} ={D} or CD% =.
(Note that Specht Ch.4 Definition IB.3, where segments are defined, does not
accommodate the case where both endpoints are the same and the segment
is a single point, whereas here we may wish sometimes to regard that case as

a “degenerate” segment.)

Lemma PLGN.1 (Intersections of a segment and a ray) Let UV®
be any segment in the Pasch plane P, with U # V, and let A and B be
two distinct points of the plane, where A ¢ UVS. Then exactly one of the
following is true:

(0) ABNUVS = 0,

(1) ABNUVS = {W)} where U-W-V,

(2) ABNUVS = {W?} where W =U or W =V, or

(3) ﬁﬂUVS =UV® and A, B,U, and V are collinear.

Proof. See Figure 6.1. If ﬁﬁUVS # (), either the intersection is a single
point or is not. If it is the single point {W}, either W = U, W = V or
U-W-V. (Alternatives (1) and (2) in the statement of the Lemma)
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U o o
\,”'B 1% B
W= U

- -
- -

Ae” Ae”
(1) Intersecting at one (2) Intersecting at one (3) Intersecting at more
point, not an endpoint point, an endpoint than one point

Fig. 6.1 Showing possibilities for intersection of a ray and a segment.

If the intersection contains more than one point, by Axiom I.1 the line
j@ is the same as the line W so that A, B,U, and V must be collinear. If
UV? is not a subset of @, let X be a point of UV?® that is not a member
of AB; then X—A-B. Let Y € ABNUVS, so that X—A-Y. Both X and Y
belong to UV and therefore A € UV®, a contradiction to our hypothesis.
Thus UV® C AB and (3) is established. O

Corollary PLGN.1.1 (A) If A,B,U, and V are collinear points, either
(0) or (3) holds.

(B) Conclusion (2) implies that either U or V€ UV®, and is impossible
fUVS =UV.

Corollary PLGN.1.2 If A, B, and U are distinct points of the plane and
UVS =UU, then conclusion (1) is impossible, and (2) and (3) are equivalent.

In what follows, we adopt the following conventions: if K and L are two
subsets of a set ordered by < and A is a point of the set, then

(1) £ < £ means that for every K € K and every L € L, K < L;

(2) A < £ means {A} < L, that is, for every L € £, A < L; and

(3) £ < A means £ < {A}, that is, for every L € £,L < A.

Lemma PLGN.2 (Order of disjoint collinear segments) Let ﬁj be
a segment in the plane which is ordered by an order relation < according to
Definition ORD.1 (as a subset of a line L). Let A, B,C, and D be distinct
points on 3:’762]

(A) If A ¢ OD®, and there exists a point Y € CD?® such that A <Y,
then for every Z € CD®, A < Z, that is, A < CD5.

(B) If A ¢ CD?®, and there exists a point Y € CD® such that A >Y, then
for every Z € CD®, A > Z, that is, A > CD?.
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(C) If AB° N CD?® = (), and there exists a point X € AB° and a point
Y € OD¥ such that X < Y, then for every W € AB® and Z € CD%,
W < Z, that is, ABS < CD*.

Proof. (A) Let Z be any point of CD®; either Y < Z or Z < Y. In the first
case, A <Y < Z so A < Z. In the second case, if Z < A, Z # A because
A ¢ CD?, so the only possibility is Z < A < Y; but then A € 2% cCCD?,
so the only possibility is Z < A < Y; but then A € 2% C CD® which
is impossible by hypothesis. A similar proof (with the inequalities reversed)
shows part (B).

(C) Since X <Y and X ¢ CD?, by part (A), X < Z for every Z € CD".
Let Z be any member of CD*; since Z ¢ AB® and Z > X, for every
W € AB®,Z > W by part (B). Since Z is arbitrary, AB® < CD%. 0O

Lemma PLGN.3 Let P and Q) be any distinct points on the plane; let <
be the ordering on % given by Specht Ch.6 Definition ORD.1 with P < Q,
and let £ be any finite subset of I% Then

(1) there exists a minimum (least, first) point C' and a mazimum (greatest,
last) point D for € (see also Remark PLGN.5.1),

(2) £ C CD, and

(3) if H is any segment and € C H C %, then CD C H (CD is the

smallest segment containing £ ).

Proof. Conclusion (1) is immediate from Theorem ORD.10; (2) follows (Def-
inition ORD.8) because for all X € £, X > C and X < D. To show (3)
suppose £ C H, and there is a point X € CD such that X ¢ H. Then
C < X < D.His a segment containing £ so either H < X or H > X. If
H < X, € < X and in particular D < X which contradicts X < D. A similar
proof gives a contradiction if H > X. O

Theorem PLGN.4 Let £ = UZ:1 Ek, where each & is a closed segment
(possibly a single point) in the Pasch plane P. Let P and Q be points on the
Pasch plane P where P & £.

(A) ]f% 1s ordered so that P < @ and Pjﬁﬁg + 0, there exists a first
point C' € Pjﬁ such that C € &, and a last point D € Pjﬁ such that D € &.
Moreover, Pjﬁﬂg - CE'_D]

(B) There ezists a point A € Pjﬁ such that PANE = 0.
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Proof. (A) The intersection of every closed segment with % is a closed
segment or the empty set. By elementary set theory, £ ﬂPjﬁ =Up—1(Ek ﬂPjﬁ)
and each set Fi, = &N Pjﬁ is also a closed segment which is a subset of PQ).

Each segment Fj, has endpoints Cj; and Dy, where C), < Dy, (again allow-
ing the possibility that Cy = Dy, so that for each k, Fj, = EC’k—D;j) Let G be
the set of all end points C, and Dj. Using Lemma PLGN.3(1), choose C' and
D to be the first and last points, respectively, of G.

Let X be any point of |J;_, Fi; then for some k, X € Fy, so that C <
Cr < X < D < D. Therefore C' is the first point of Pjﬁ such that C' €
Uit Fe=EnN Pjﬁ, D is the last such point, and €N PQ C CD.

(B) If Pjﬁﬁg = () then let A be any point of Pj@, and PANE = 0. If
Pjﬁﬁé’ # (), order % so that P < @, and apply part (A) to get C, the
first point of intersection of Pjﬁ and &. Let A be any point of Pjﬁ such that
P-A-C then PANE = 0. O

6.2 Polygons, polygonal paths, and rays (PLGN)

In the following theorems we will need some basic terminology about mod-
ular integers. We say that an integer a is divisible by an integer b iff there
exists an integer ¢ such that a = bc, that is, b divides a without a remainder.
Let m be a natural number, and let a and b be integers. We say that a is
congruent to b mod m (and write a = b (mod m)) iff a — b is divisible by
m, which is called the modulus.

For any natural number m, the relation a = b (mod m) is an equivalence
relation (cf Section 1.4). The equivalence class of any integer a is the set of
all integers of the form km + a, where k is any integer and m is the modulus.

In modular numbering, two integers which differ by a multiple of the mod-
ulus are identified, as they belong to the same equivalence class (mod m).
Telling time on an ordinary 12 hour clock is a good example of a use of mod-
ular numbers. There is a 48 hour difference between 10 AM on 11 May and
10 AM on 13 May, but the clock indicates the same at both times because
the number of hours between these two times is a multiple of 12.

In this section we will arbitrarily choose some corner of a polygon! as

the “first” one, and label it as X;. As the polygon is traversed in some

1 Here we are being very informal, as we have not yet defined the term polygon.
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predetermined direction, each corner encountered in the traversal is named
successively X5, X3, and so on, until the first corner is again reached. X is
then given a second name, X,,41, where m is the number of corners of the
polygon (the modulus of the numbering system). Additional traversals in the
same direction will re-name X7 as X142, X14+3m, - . .and so on. The polygon
can also be traversed in the opposite direction, with successive corners being
labeled Xy, X_1, X_2, and so on, until the first corner is reached, and is
named Xj_,,; another traversal in the same direction will name this point
X1 _9m, and so on. Thus the first corner will end up having infinitely many
names, ..., X1-3m, X1-2m, X1—m, X1, X1+m, X1+2ms> X1+3m, - - -, each of
which differs from another by a multiple of m. We formalize these ideas in
the following definitions and proofs.

It is not our purpose to create a general theory of polygons, so in the next
definition we define only simple polygons. We will sometimes use the word

“polygon’

)

alone, but it will always mean “simple polygon.”

Definition PLGN.5 Let X be a mapping from the set Z of integers
into a Pasch plane P (that is, X : Z — P). Then X pairs each integer
' ooy —3,—-2,-1,0,1,2,3,...,,n,... with a point X; of P (here,
instead of the usual notation X (i) for the value of X at the integer i, we

1= ...,—m

write X;). X is a labeling function, and is necessarily many-to-one, as it

pairs many integers with the same point on the plane.

(A) Polygons: Let n > 3, and suppose that for all integers ¢ and 7,
X; = X; iff i = j(mod n). The set G = J;_, [XkaH] is a simple polygon
(notation: (X71,..., X)) iff both

(1) for all integers j,

XX NXj41X 42 = {Xj41} and
Xj, Xj4+1, and X, o are noncollinear, and

(2) for all integers j and k such that j # k(mod n), j # k+ 1(mod n),

and j 2 k — 1(mod n), X; X, 41 N X Xpp1 = 0.

For every integer j, the point X is called the j-corner and the segment
E——73 . .
X;Xj11 is called the j-edge.

Two integers i and j are adjacent iff i =j+1or j =14+ 1.

Two corners X; and X; of a polygon with n edges are adjacent iff either
i =74 1(mod n) or j =i+ 1(mod n).
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E—F73 E—7—3
The i-edge X;X;4+1 and the j-edge X; X1 of a polygon are adjacent iff
either ¢ = j + 1(mod n) or j =i+ 1(mod n).

Note that any quadrilateral as defined by Specht Ch.5 Definition PSH.31
is a simple polygon, since opposite edges do not intersect, and any triangle as
defined by Definition IB.7 is a simple polygon (vacuously, since condition (2)
of Definition PLGN.5(A) is true for a triangle because its hypothesis is false).

(B) Polygonal paths: In this part of the definition, we do not use modular
numbering. Let P be the Pasch plane and X be a mapping from the set
[1;m + 1] of integers into P such that for all integers ¢ and j € [1;m + 1],
X, =X, iffi = j.

(1) Let m > 3; the set J = U?:lm (notation: ((X1,..., Xms1)))
is a polygonal path (with endpoints X; and X,,1) iff for all integers
jellym—1], )

XX NXj41X 42 = {Xj41} and

X;, X411, and X o are noncollinear.

In this case we may say that J is a polygonal path joining, or connecting
Xy and X, 41-

For any k € [1;m + 1], Xj is the k-corner; for any k € [1;m], m is
the k-edge; and X1, X141 are the endpoints of ((X1,..., X;n41)).

(2) Let J be a polygonal path; then Z is a subpath of 7 iff Z is a polygonal
path and Z C J. This means that every point of Z is also a point of J.

(3) A polygonal path ((Xi,...,X,,11)) is said to be simple iff for all
members j and k of [1;m], if j + 1 < k, then [XijH]ﬂ[XkaH] =0.

(4) A subset &€ of the plane P is polygonally connected iff for every pair

{A, B} of distinct points in £ there exists a polygonal path 7 with endpoints
A and B such that J C €.

Remark PLGN.5.1 In this chapter we shall frequently be dealing with
aray ﬁ which intersects a set such as a polygon at a finite number of points.
In such cases we will frequently speak of the first or last intersection of the
ray with the other set. In such cases it will be understood that we are assum-
ing an order relation < to exist on the ray with A < B, and that the first

and last points of intersection are those guaranteed by Lemma PLGN.3(1).

Remark PLGN.6 (A) The edges of a polygonal path intersect at the

common endpoints of edges with adjacent indices, and if the path is simple,
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adjacent edges will intersect only at their endpoints (for if two adjacent edges
intersect at two points, their lines will be the same and there will be three
successive collinear corners). If the path is not simple there will be pairs of
non-adjacent edges intersecting, possibly at endpoints and possibly at other
points.

(B) Any subpath of a simple polygonal path 7 is also simple.

(C) Let G = (X1,...,X,) be a polygon and let A and B be distinct
points of G where A € m and B € )E(]X—]HJ where i < j. Then
((A, Xi+1,...,X;,B)) is a polygonal path connecting A and B. Thus every
polygon is polygonally connected.

(D) If £ and F are polygonally connected subsets of the plane and ENF #
(), then £ U F is polygonally connected.

(E) Every convex set is polygonally connected.

(F) If G = (X41,...,X,,) and F are simple polygons and F C G, then
F=4gG.

Assertions (A) through (E) do not need extensive proof. We prove assertion

(i) First we need to prove that if F C G, every edge AB of F is a subset of
some edge of G. Since AB contains infinitely many points, and there are only
finitely many edges of G, some edge CD of G contains at least two points
of AB. Then AB - @, and ABNCD is a segment. If AB 4 EC'_Dj7 then
A-C-B-D or A-C-D-B or C-A-D-B.

We will prove the result for either of the first two cases; the proof in
the last case is similar. There exists exactly one other edge [C'ic; of G which
intersects CD at the point C, and C” cannot be collinear with C' and D, so
that CC' NCD = (). Let G' denote the union of all edges of G other than
CD and CC'. Then C ¢ G'. If the ray CA has empty intersection with G’
then A ¢ G’ and, because A ¢ ﬁ, A ¢ G; this contradicts our assumption
that F C G. Otherwise, CJ—/E has a first point P of intersection with G’ (by
Theorem PLGN.4) and either A-P-C—D or P-A-C-D. Choose Y so that
both A-Y-C and P-Y-C. Then Y € G'; Y ¢ CDsoY ¢ G which is a
contradiction because Y € [/TB] C G. Hence [/TB] - [CiD]

(ii) If two edges of F intersect at some point, then the two edges of G that
contain them must also intersect at the same point. Thus, every corner of F
is a corner of G, and since this is true, the endpoints of any edge of F are
corners of G and every edge of F is an edge of G.

(iii) It follows that the set of all edges belonging to both F and G is non-
empty. If G has an edge [XszH] that is not an edge of F, let j be the smallest
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E—7—3
integer such that j >4 and X; X, is an edge of both F and G. Now there
E—3 E—7—3
must be a second edge AX; of F intersecting X; X j+1 at ¢ i but th1s second
edge must be an edge of G which must therefore be X; 1 X;. Then X7 1X
is an edge of both F and G, contradicting our choice of j. 0O

Theorem PLGN.7 (Simplification of a polygonal path) Let M =
({X1,..., Xmy1)) be any polygonal path joining X1 and X,,11. Then there
exists a simple subpath M’ joining X1 and X,,11.

Proof. We first define an ordering of M. If P and @ are distinct points of
M, P < Q if and only if either
(a) P € EXsz-H] and Q € XJTJH] and i < j (where EXiXHl] and EXijJrl]
are edges of M), or
(b) P and @ belong to the same edge m of M and either
Xi-P-Q-Xit1,
X =P-Q-Xi1,
X;=P-Q = X; 1, or
X;=Pand X;11 = Q
(that is, the edge EXsz-H] has the ordering of ORD.1 where X; < X;41).
From Definition PLGN.5(B)(3) we see that the polygonal path M =
(X1, Xm+1>> is not simple iff for some members j and & of [1;m],
j+1 <k and X, XJH ﬁXkaH # (). Clearly this intersection will be a
closed segment AB, which may be degenerate, that is, a single point. Define

a loop point to be an end point of a segment so defined. There are only
finitely many such segments because the set of edges if finite, hence only
finitely many loop points.

If A is a loop point of M, there exists a sub-path ((A =Y1,...,Y,.11 = A))
of M, called a loop, which joins A back to a. A loop is a polygon, but is not
necessarily simple. There are only finitely many such loops since there are
only finitely many edges in M.

Let A; be the first loop point, and let By be the last point (in the ordering
< of M) such that B; = A;. Then there exists a polygonal path N} = ((4; =
Yi1,...,Y.41 = By = A;)) which is a subpath of M, where at least Y2,...,Y,
are successive corners of M.

Let My = (M \ N7) U{A1}. My is a subpath of M connecting X; to
Xmt1 in which all loops connecting A; to A; have been eliminated. If M;

is simple, the proof is complete. If not, the argument may be repeated as
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needed to arrive at the conclusion by induction. O

Definition PLGN.8 Let G be a simple polygon (X7, ..., X,,) and A and
B be two distinct points of the plane with A ¢ G. Then AB is an admissible
ray (for G) if it contains no corner of G. An angle ZBAC in the plane is an
admissible angle if both @ and 54? are admissible rays.

Remark PLGN.9 Let G be a simple polygon.

(A) The categories of “admissible” and “non-admissible” are applied only
to rays /ﬁ and angles ZBAC where A ¢ G. Where there is only one polygon
G in view, it will be convenient to speak of an admissible ray or angle without
naming the polygon. In contexts of more than one polygon, we may find rays
that are admissible for one polygon but not for another.

(B) If AB is an admissible ray, no intersection of AB with an edge of G
satisfies either condition (2) or (3) of Lemma PLGN.1, because these imply
that /ﬁ contains a corner. Thus every edge of G either is disjoint from 54?
(condition (0) of Lemma PLGN.1) or intersects AB at exactly one point, as
in condition (1) of this lemma. Since G has a finite number of edges, AB NG
contains at most a finite number of points of G.

(C) Let A be any point of the plane. There are finitely many rays ]/R that
contain a corner of G and infinitely many that do not. Thus every point A € G
always has both admissible and non-admissible rays ﬁ, and the number of
non-admissible rays is no greater than the number of corners of G.

(D) The following fact will make the statement of some theorems slightly
more compact. If A is any point and £ is a subset of the plane, there exists a
point B such that ABNE = 0 iff there exists a point C such that ACNE =0
(for if ABNE = () we may choose C € zjél_é)

Remark PLGN.10 A main purpose of this and the next section (SEP)
is to define the “inside” and “outside” of an arbitrary simple polygon G. It
will be shown that either all the admissible rays from a point A not on G have
an odd number of points of intersection with G (in which case we will define
the parity of A to be odd), or they all have an even number of intersections
(in which case the parity of A will be even). In the first case we will say that
A is inside G, and in the second case it will be outside. This makes it possible
to use a single “test” ray to determine whether A is inside or outside the
polygon. What makes this work is that all intersections of an admissible ray

with edges of a polygon are genuine crossings of the polygon.
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This project could have been carried out by considering arbitrary rays
emanating from the point A, not just admissible ones. That is, test rays might
include corners of G. This approach would add some complexity because it
would necessitate deciding which intersections (including those cases where
the ray contains a whole edge) are legitimate crossings of G and should be
counted. Intuitively, it is not hard to see that moving the ray over a little (cf
Theorem PLGN.13) so as to avoid containing any corners will not affect the
parity.

The main complexity in our approach of using only admissible rays arises
from the unfortunate possibility that the most convenient ray for testing the
parity of a point A might not be admissible. Lemma PLGN.11 through The-
orem PLGN.13 are technical arguments which are useful in situations where
the obvious test ray is not admissible, and an alternate test ray must be con-
structed.

Lemma PLGN.11 Let G be a simple polygon, and let A be any point of
the plane.

(A) If A& G and X # A is arbitrarily chosen, then there exists a point
Z e jﬁ such that AHng = 0.

(B) if A€ G and if X is chosen so that AX contains no corner of G, then
there exists a point Z € jﬁ such that AZ NG = 0.

I )
AX contains
no corner of G

,,,,,,,,,,,

=
In either case shown, there is a point Z € AX
T3
such that AZNG =0

Fig. 6.2 For Lemma PLGN.11.

Proof. See Figure 6.2. (A) This is Theorem PLGN.4(B).

(B) Assume that A is a member of the edge Wj C G; we consider two
cases:

(a) If P-=A-Q, then A ¢ G\ P]—CEQ Then we may apply Theorem PLGN .4 to
W and the union of all the edges of G other than 33765, that is, G\ P]—CEQ, and
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i)

find that there exists a point Z such that AZ ﬂg\Pj—Cj = (). Since /R contains
no corner of G, X ¢ %, and hence WH%TQ] = {A} so ﬁﬂPj—é = (), and
the conclusion follows by elementary set theory.
(b) If A= P, let RP be the edge of G intersecting Wj at P; then
AX NRP = AX NPQ = {P).
Applying Theorem PLGN .4 to G \ (}]%—PJ’U P]—CEQ) we conclude that there exists
a point Z such that
AZN(G\ (RPUPQ)) = 0.

But AZ ﬂ(l‘]fD u P]_Qr) = (), since AX contains no corner of G, and the conclu-
sion follows. A similar proof holds if A = Q. O

Theorem PLGN.12 Let £ be an edge of a simple polygon G; let A, B,
and C be noncollinear points of the plane, and suppose that no corner of G
belongs to ins AABC' or to AC. If £ intersects AC in a singleton, then &

intersects AB or BC, but not both, and this intersection is a singleton.

Proof. Suppose that R € €N AC and £ is the line containing £. Then
LNAC = {R}. By Theorem PSH.6 and the Postulate of Pasch, either (a)
BCnL#0, (b) ABAL#£0, or (¢) B € L.

In case (a) there is some point 7" such that £ N BC = {T}. IfEN BC =
(), then there exists a corner S of G with R-S-T. Since R € Ajﬁ and
T € ins/BAC, it follows that S € insZBAC. Also, since T' € 133—6[',
S € ins ZACB, so that S € ins AABC, a contradiction to the assumption
that ins AABC' contains no corner of G. Therefore £ intersects BC at T; by
Specht Ch.1 Exercise 1.1, the intersection is a singleton since £ # BC.

In cases (b) and (c) similar arguments show that £ intersects AB or {B}

respectively, and the intersection is a singleton. O

Corollary PLGN.12.1 Let £ be an edge of a simple polygon G; let A,
B, and C' be noncollinear points of the plane, and suppose that no corner
of G belongs to ins AABC' or to AC. Iijél—CC' intersects € but is not a subset
of £, then & intersects AB or BJ_CF, but not both, and this intersection is a

singleton.

Proof. Let R be a point of intersection of £ and AC. If there are two points
of intersection then by Exercise I.1 the line containing £ is the same as /ﬁ ,
s0 that € C AC. By Specht Ch.4 Definition IB.3 A—R—C.

By assumption, AC Z &. Thus there exists a point X € AC such that
X ¢ &. Let By and Es be the endpoints of £ (which is a closed segment).
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Neither F; or E5 is a member of /jl—C[’, for by hypothesis no corner of G can
belong to this set. Since R is a member of A]—CE’, neither R = F4 nor R = E>.
Hence F1—R-F>. Since X ¢ &, either X—FE1—R-FE> or E1—-R-FE>—X. In the
first case, since both X and R are members of AC , By € AC which contra-
dicts our assumption that AC contains no corner of G. In the second case,
NS AC which also yields a contradiction. It follows that there is only one
point of intersection of AC and &, so that Theorem PLGN.12 applies, and
the result follows. O

The following theorem allows the comparison of the number of intersec-
tions (with a simple polygon) of two specific admissible rays from two points,
based on the intersections of the segment connecting them. It gives meaning
to the idea of “moving a ray over a little” in order to get an admissible ray,
and provides a basic tool needed to define the parity of a ray, and hence of a

point.

Theorem PLGN.13 (Fudge theorem) Let G be a simple polygon, and
let A ¢ G and B be distinct points of the plane, and let P be a point not in
j@. Then by Remark PLGN.9(C), there exists a point @ € the P-side of jﬁ
such that Bjﬁ contains no corner of G.

Whenever this is true, there exists a point D € Bjﬁ such that the following
are all true:

(A) BDNG =0,

(B) the ray /ﬁ, and indeed, every ray 54_)% with X € B]HD, is admissible,
and no corner of G belongs to ins LZDAB U /ﬁ, or to ins ADAB U S‘lHD, its
subset;

(C) every edge € of G that intersects AD does 50 in a singleton, and also

intersects 3@

v .
_-~"w» } These rays contain
o

no corners of G

Fig. 6.3 For Theorem PLGN.13.
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Proof. See Figure 6.3. By Lemma PLGN.11(A), there exists a point Z € Bjﬁ
such that ﬁmg = (). The set of all corners of G on the P-side of /@ is
finite (again by Remark PLGN.9(C)). Therefore the set C = {Y € Bjﬁ | g
contains a corner of G} is a finite set and may be ordered by Definition
ORD.1 with B < @. By Theorem ORD.10 we may choose C' as the least
point belonging to C; choose D < min{C,Z}. Then BD C BHZ, which we
have already seen to be disjoint from G, proving (A).

By our choice of D, neither AD nor any ray 54_1/) where Y € BD can
contain a corner of G. For any point W € ins ZDAB, by Theorem PSH.29
(Crossbar), W NBD # 0, so W cannot contain a corner of G. Therefore,
ins ZDAB UAD cannot contain a corner of G, proving conclusion (B).

If some edge £ of G were to intersect AD in more than one point, it would
be collinear with A and D, and ﬁ would contain at least one endpoint of £
(a corner of G) which is impossible by definition of D; thus all the hypotheses
of Theorem PLGN.12 are satisfied, and £ intersects 3@, proving (C). O

Theorem PLGN.14 Let UV be a segment in the plane, and let A, B,
and C' be noncollinear points of the plane where A ¢ UV and neither U nor
V' belongs to either ray of ZBAC. Let < be an ordering of uv defined by
ORD.1 with U < V. Then exactly one of the following holds:

(1) UV has empty intersection with /BAC, in which case both U and V
belong to ins ZBAC' or both belong to out /BAC;

(2) UV has a single point P of intersection with ZBAC, in which case

U[—[P C ins ZBAC and ﬁ Cout LBAC, or
U[—[P C out ZBAC and ﬁ Cins ZBAC; or

(3) UV has exactly two points P and Q of intersection with ZBAC, in
which case both U and V belong to out ZBAC and PJ_Qr Cins ZBAC. In this
case if R is some point of P]—QC, PR and }[%—[Q are both subsets of ins LZBAC,
while UP and W are both subsets of out ZBAC.

Proof. First note that UV cannot intersect the angle ZBAC in more than
two points, because then it would intersect one of the rays in two points and
that ray would contain either U or V. This shows that these alternatives are
the only possibilities.

(1) If U and V are on “opposite” sides of ZBAC' (that is, one is inside and
the other outside), Theorem PSH.44 says that UV must intersect the angle;
thus, if there is no intersection, the two end points must both be inside or
both be outside.
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(2) From Theorem PSH.44(B), U and V have to be on “opposite sides”
of /ZBAC; if U € ins /BAC and X € U[—[P, by part (1) X also belongs to
ins /BAC' so UP C ins ZBAC, the remaining assertions follow by similar
arguments.

(3) See Figure 6.4. If there are exactly two points of intersection P and
@, they must lie on different rays of the angle (otherwise there would be
more than two points of intersection). From Theorem PSH.37 the segment
P]_Qr C ins ZBAC let R be a point with P-R-Q; then apply part (2) to the
segments UR and RV separately. 0O

Subset of out ZBAC -

- -+ These segments are
B// subsets of ins ZBAC

/

A 0 B
Subset of out ZBAC -- \

Fig. 6.4 For Theorem PLGN.17 Alternative (3).

6.3 Separation (SEP)

In this section we begin to show that a simple polygon separates the plane

into two regions. To signal this development we change our acronym to SEP.

n = 3 .
Theorem SEP.1 Let G = Uj:1 X; X1 be a simple polygon on a Pasch
plane; let A € G and let ZBAC be an admissible angle for G. Then the

number of intersections of ZBAC and G is even.

Proof. We start by constructing another set of segments S/ZYZHJ whose union
is G.
E—3

For each segment X;X; 1 which has two points P and @ of intersec-
tion with ZBAC (as in case (3)), we may choose the notation so that
X;j—P-Q—X; 1. By Theorem PLGN.14 there exists a point R; such that
P—Rj—Q, so that Xj—P—Rj—Q—Xj+1. Then XjRj N/Z/BAC = {P} and
E——13
R; X1 NLBAC = {Q}.
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Let £ be the union of the set of points I; so defined and the set of corners
Xj; € is a finite subset of G. We rename the points of £ by an inductive
process as follows:

(1) Let Y7 = Xj; if the segment ifl—Y; does not intersect Z/BAC, or if
it intersects ZBAC' in exactly one point, define Y5 = Xo. If )E(l—ng NZBAC
contains two points P and @, define Yo = R; (as defined above), and Y3 = Xo.

(2) Suppose that for some k < n, Xj has been renamed as Y;. If [XkaH]
is disjoint from /BAC, or if it intersects ZBAC' in exactly one point, define
Yit1 = Xt IfEXka_Hj NZBAC contains two points P and @, define Y; 11 =
Ry and Y19 = Xj11; then both the resulting segments intersect ZBAC in
exactly one point.

Continue this renaming process until for some m > 1, X, 11 = X; has
been renamed Y,,,41. Since Y1 = X1, Y,,,41 = Y7. Then G = UZT;1 m, and
each interval SQTH; intersects ZBAC in at most one point. Also, for each
i € [1;m] define Y; ., =Y;, so that each point Y; has two labels. The reason
for making this second label will become apparent shortly.

We say a segment S/ZTZH] is a passing segment iff it does not intersect
ZBAC. By Theorem PLGN.14(1), both end points of a passing segment are
on the same side of Z/BAC—either both are in ins ZBAC or both are in
out ZBAC.

If a segment S/ZYZHJ is not a passing segment, it intersects /BAC' in ex-

actly one point. We shall call such a segment a crossing segment. If lE/lY—Hl]
is a crossing segment, by Theorem PLGN.14(2) either Y; € out ZBAC and
Yir1 € ins ZBAC, in which case we will call it an entering segment, or
Y; € ins ZBAC and Y;;; € out ZBAC, in which case we call it an exit-
ing segment. Thus, every segment S/ZTZH] is either a passing or a crossing
segment, and crossing segments come in two flavors, entering or exiting.

Now let m (where i € [1;m]) be a crossing segment. If there is no
other crossing segment m, all other segments are passing, and both
Y; and Y;41 are on the same side of ZBAC, a contradiction to Theorem
PLGN.14(2). Therefore there exists at least one crossing segment m
where k < m such that k # i. Either ¢ < k or k < ; in the latter case,
k + m > i; in either case there exists an integer j € [1;2m] such that i < j
and Y]TJH] is a crossing segment. Let 5 be the smallest integer such that
1< j < 2m and lE/]YT‘ is crossing.

Informally, one may think of YJETJH] as the first crossing segment encoun-

E——13
tered in a traversal from Y;Y;;; in the direction of increasing indices.
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If YZTZH] is exiting, Yiy1 € out LBAC; if there are passing segments
m with ¢ < k < j, both Y, and Yj;; are in out ZBAC, so that
Y; € out ZBAC and YJETJH] must be an entering segment. By similar rea-
soning, if S/ZTZH] is entering, Yj41 € ins ZBAC, so that Y, € ins ZBAC, and
}E/jYle must be exiting.

Thus, as the polygon is traversed in the direction of increasing indices of
Y;, each crossing segment is entering (exiting) iff both the next prior and next
succeeding crossing segment are exiting (entering). Therefore the number of
exiting segments is the same as the number of entering segments, and the
total number of intersections of G with ZBAC' is even. O

We have “buried” the definitions of passing, crossing, entering, and eziting
segments in the above proof because these notions are not used elsewhere in
the development.

Definition SEP.2 Let G be a simple polygon and A a point not on G.

(A) Let AB be an admissible ray for G; if AB NG contains an even number
of members, the ray has even parity (relative to G). If it has an odd number
of elements, the ray has odd parity. A ray that does not intersect G has
even parity, because 0 is an even number.

(B) A point A has odd (even) parity with respect to G iff all admissible
rays with endpoint A have odd (even) parity with respect to G.

(C) The inside of G (notation: ins G) is the set of points not on G which
have odd parity with respect to G. The outside of G (notation: out G) is the
set of points not on G which have even parity with respect to G.

(D) The enclosure of G (notation: enc G) is the union of G and ins G, or
GUinsg.

(E) The exclosure of G (notation: exc G) is the union of G and out G, or
g Uoutg.

(F) The inside or the outside of G is called a side of G. If @) is any point
not on G, that is, @ € P\ G, then the side of G to which @ belongs is called
the @Q-side of G. The inside and the outside of G are opposite sides of G.

The next theorem (which is really a corollary of Theorem SEP.1) shows
that every point A € G has a parity according to Definition SEP.2(B) above.
It also shows that to determine the parity of a point, it is only necessary to

determine the parity of a single ray starting from that point. Such a ray, used
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to determine parity for A, may be referred to as a test ray for A.

Theorem SEP.3 Let G be a simple polygon on a Pasch plane, and let
A & G; then the parity of any admissible ray ﬁ is the same as the parity of

any other admissible ray AC.

Proof. If the number of intersections of one ray of Z/BAC with G is even
while the number of intersections of the other ray with G is odd, the total
number of intersections with ZBAC would be odd, contradicting Theorem
SEP.1. Therefore the number of intersections of AB with G is even (or odd)
iff the number of intersections of AC with G is even (or odd). O

The following theorem will be invoked freely without reference in the proofs
that follow.

Theorem SEP.4 Let G be a simple polygon and let A and B be points
not on G.

(A) If the segment AB contains no points of G then the parity of A equals
the parity of B.

(B) If ABNG = {R} is a singleton, and R is not a corner of G, then the
parities of A and B are different.

(C) Ifﬁﬁg = {R} is a singleton, and R = X; is a corner of G, then A
and B have the same parity if and only Zf[/TB] Nins ZX; 1 X; X411 = 0.

(D) Suppose ABNG = {R} is a singleton. If A € insG (outG) then AL C
insG (out G) and similarly for B.

Proof. (A) (Case I) If AB is admissible, the number of intersections it has
with G is the same as the number of intersections of the ray ﬁ \ ?TEB so the
parities of A and B are the same. A similar proof holds if ][3_4 is admissible.

(Case II) See Figure 6.5 for a visualization. If neither AB nor BA is ad-
missible, let P be a point not on ﬁ such that BE? is admissible. Then by
Theorem PLGN.13 there exists a point D € ﬁ such that ﬁ is admissible,
B]HD NG = (0, and every edge £ of G that intersects 1]4—DC must also intersect
AB ; but there are no edges intersecting AB , so there are no edges of G that
intersect jﬂc), and it follows that AD NG = (). By Case I, A and D have the

same parity, and D and B have the same parity.
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> >
If neither AB or BA is admissible;
construct admissible rays AD and BD so that
E—3 B3
neither AD or BD contain points of G
Then by Case I, A, B, and D have the same parity.

Fig. 6.5 For Theorem SEP.4 (A) Case II.

(B) Let & be the edge of G containing R. If the line containing & were the
same as @, then since A and B do not belong to G, AB would contain an
endpoint of £, and the intersection would not be a singleton. Thus £ & @

(Case I) If “AB is admissible then it has one more intersection with G than
does /ﬁ \ AH[B, so that the parities of A and B are different. A similar proof
holds if Ei is admissible.

If neither AB or BA is admissible, construct admissible rays
AD and BD = BP so that AD intersects only the
edge £ and 'BD contains no points of G. Then A and D
have different parities, while B and D have the same parity.

Fig. 6.6 For Theorem SEP.4(B) Case II.

(Case II) See Figure 6.6. If neither AB nor BA is admissible, pick S to be
an endpoint of the edge £ containing R. Note that S ¢ /@

Let P € RS be such that ﬁ is admissible. Then by Theorem PLGN.13
choose D € BP so that B]HDQQ = (), the ray ﬁ is admissible, and every
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edge &’ that intersects AD also intersects AB. Since there are no edges other
than € which intersect AB , no edge other than &£ can intersect AD.

Claim: & intersects AD. Note that by Theorem PSH.37, D € ins /BAP,
so that by the Crossbar Theorem PSH.39, ﬁ intersects RP at some point
T € £ Now R € A-side of ﬁ, and hence by Theorem IB.14, ﬁ C A-side
of ﬁ, so T is also on the A-side of ﬁ and T € AD. This proves the claim.

Therefore exactly one edge, namely &, intersects A]—DC, and since /ﬁ is
admissible, by case I the parities of A and D are different. Since BD ng =0,
by part (A) the parities of B and D are the same; hence the parities of A
and B are different.

(C) For this case we leave the construction of figures to the reader. Sup-
pose that there is a point Q € Sﬁ Nins ZX;—1X;X;41. Then m is a sub-
set of the X;_;-side of XiXiH and of the X;;;-side of XiXi_l and hence
])m Cins ZX; 1X;X;y1. Either A or B belongs to m and without loss of
generality we may assume A € ins ZX; 1 X;X;11. Then A, X; and X;,1 are
not collinear and X, 11 ¢ /ﬁ .

Choose P € m so that ﬁ is admissible. By Theorem PLGN.13
there exists a point D € BP such that ﬁ)jmg = (), ﬁ is admissible, and
every edge that intersects AD also must intersect AB.

By Theorem PSH.37, D € ins ZBAP, so that by the Crossbar Theorem
PSH.39, ﬁ intersects )]ﬁ at some point 7', and X;,—T-P-X;,1, so that T’
is not a corner of G. The only edges of G that intersect AB are )Tle and
m ; m is on the side of /ﬁ opposite to D; therefore m is the
only edge intersecting AD.

Since @ is admissible, by part (B) A and D have different parities. By
part (A) B and D have the same parity since ﬁ)jmg = (). Thus A and
B have different parities. By the contrapositive, if A and B have the same
parity, ABNins /X ;_1X; Xis1 = 0.

Conversely, assume that ABNins /X 1 X X1 = 0. If X;_1 and X1,
are on opposite sides of jﬁ, then m intersects jﬁ at a single point
C by Axiom PSA, and C € ins ZX,; 1X;X;11 by Theorem PSH.37. This
contradicts our initial assumption, and X;_; and X;;; must be on the same
side of /ﬁ

Let H be the side of jﬁ opposite X;_1 and X;;1, and let P € H be such
that Bj? is admissible. By Theorem PLGN.13 there exists a point D & Bj?
gu_cjh that BD NG = 0 and every edge of G intersecting AD also intersects
AB.
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By part (A) the parities of B and D are the same. There are two edges
of G intersecting AB at X, but both of these are disjoint from . Hence no
edge of G intersects AD and by part (A) the parities of A and D are the
same, so the parities of A and B are the same.

(D) AR and BR contain no points of G, so the result follows immediately
from part (A). O

Corollary SEP.4.1 Let G be a simple polygon and let A and B be distinct
points not on G. Then if the parities of A and B are different, Eél_Bjﬂg £ ).

Proof. Contrapositive of Theorem SEP.4(A). O

Corollary SEP.4.2 Let G be a simple polygon and let A and B be distinct
points not on G. Then if the parities of A and B are the same, AB NG is either
a singleton which is a corner of G or is not a singleton. (The intersection

could be empty, or it could contain two points, or a whole segment.)

Proof. Contrapositive of Theorem SEP.4(B). O

Remark SEP.5 Let G be a simple polygon or a polygonal path.

(A) Let A and B be distinct points not on G. Then if ABNG = {P} is
a singleton which is a corner of G, it is possible for AP and BP to both be
subsets of the inside, or both subsets of the outside of G.

(B) Let A, B, and C be any points with A—C—B. Then ABNG = {C} if
and only if C € G and ACNG = 0 and BC NG = 0.

Theorem SEP.6 Let C and D be distinct points, with C € EXiTH-lj7 an
edge of a simple polygon G. If either

(1) C is not a corner of G and D ¢ XiXm, or

(2) C =X;, a corner of G, and D ¢ /X ;1 X; Xit1,
then there exists a point E € CD such that E # C and ECNG = {C}.

Proof. (1) If CD ﬁXiXH_l = (), let E = D. Otherwise apply Theorem
PLGN 4 to the ray ﬁ with C' < Dj; let F' be the first intersection of ﬁ
B e ==
and G\ X;X;41, and let E < min{F, D}. Then EC NG = {C}.
(2) The proof is the same except that we choose F' to be the first intersec-
tion of Cﬁ and g\ CXV1,1X; UXzXer{) O
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Theorem SEP.7 Let C be any point on the edge m of a simple
polygon G, and let L be a line through C. If either
(1) C is not a corner of G and L is different from XiXHl, or
(2) C = X, a corner of G (endpoint of m), and L contains at least
one point of ins /X ;1 X; X;41;
then there exist points Fy and Ey € L such that
(a) E1—-C-Es,
(b) EiE2ng = {C},
(c) E,C C ins G, and
(d) E>C C outG.

Es

C
E,
Every point C of a polygon G is the end point of two segments
E—L E——L . . . .
FE1C and E5C' lying respectively in ins G and out G

Fig. 6.7 For Theorem SEP.7.

Proof. See Figure 6.7. (1) If m NL contains more than one point, then

X1 = L by Axiom L.1; therefore mﬁﬁ = {C}, a singleton. Let
P and @ be points of £ such that P-C-@Q. Then since P and @ are not
in xin-H by Theorem SEP.6(1) there exist points E; and Es such that
C-E\-P, C-E+-Q, E,CNG = {C} and E2C NG = {C}. This shows conclu-
sions (a) and (b).

Theorem SEP.4(A) says that every point in C]_JE1 has the same parity, and
likewise for C'E. By Theorem SEP.4(B) the parity of Ej is different from the
parity of Fs, so that with appropriate re-labeling, F; € ins G and conclusions
(c) and (d) follow.

(2) The proof is similar to that for part (1). Let P be a point on £ belong-
ing to ins ZX;_1X;X;1 and let @Q-C-P. Then @ is on the side of m
opposite X;_1 and @ € out £X;_1X;X;+1 by Theorem PSH.41(C). Since
neither P nor @ is on /X, 1X;X,11 we may apply Theorem SEP.6(2) to

show conclusions (a) and (b).
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. . =3 . . . I3
As before, every point in £1C has the same parity, and likewise for FoC'.

By SEP.4(C) the parity of Ej is different from the parity of Fs, so that with
appropriate re-labeling, E; € ins G and conclusions (c) and (d) follow. O

Corollary SEP.7.1 For any point C' of a simple polygon G, points F;
and E3 can be chosen so that conclusions (a) through (d) of Theorem SEP.7
are satisfied and the line m contains no corner of the polygon G, other
than the point C' in the case that C is a corner of G.

Proof. Suppose C' € XiXHl], an edge of G. Infinitely many lines W may
be generated where P € ins ZX;_1X;X;41, and since there are only finitely

many corners, we may choose P so that C'P contains no corner other than
possibly C. Then let £ = Cﬁ, and apply Theorem SEP.7. O

Corollary SEP.7.2 For any simple polygon G, both insG # 0 and
out G # (.

Theorem SEP.8 Suppose S is a nonempty subset of the Pasch plane P,
and T1 and Tz are subsets of P such that P =Ty UT2US and T1, T2, and S
are pairwise disjoint. Then the following are equivalent statements:

"

(a) For every My € T1 and every My € To, M1 MyNS # 0.

(b) For every My € Ty and every Ms € Ta, every simple polygonal path
(M, Xa, ..., Xm, Ma)) connecting My and My intersects S.

Proof. Assume (a) is true. Let N7 € T, Na € T3, and suppose further that
({Ny,Xs,...,Xm, N2)) is any simple polygonal path connecting N7 and Na.
For convenience rename these corners by letting Y1 = Ny, Y; = X; for all
i €[2;m], and Y41 = No.

If some corner Ys,...,Y,, € § then the path intersects S. If none of the
corners Ys, ..., Y, € S then all the corners belong either to 71 or 7T3. Since
Ny € 71 and Ny € Ts, the set of all corners belonging to 7; and the set
of all corners belonging to 73 are both non-empty. Let Y; be that corner
belonging to 73 having the smallest index. Then Y; # Ny, 4> 2, and Y;_; €
Ti. Since Y;_; € 71 and Y; € T3, by assumption mﬂé‘ # (), so that
({Ny,X2,...,Xm, N2)) intersects S.

The converse is obvious since the segment W is a simple polygonal
path joining M; and My. O
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Remark SEP.9 The statement “for any M; € 71 and any My € Ts, some
polygonal path ((M7, Xo, ..., X,,, Ms)) connecting M; and Ms intersects S”
is not equivalent to the equivalent statements (a) and (b) in Theorem SEP.8.

A counterexample is shown in Figure 6.8.

T
T

For any M; € 77 and any M, € 75 there is a polygonal path
connecting M; and M that intersects S,
but not every such path does so.

Fig. 6.8 For Remark SEP.9.

Definition SEP.10 A nonempty subset S of the Pasch plane P sepa-
rates P into two subsets 7; and 7: if and only if

(1)P=TLHUT2US,

(2) 71 and T3 and S are pairwise disjoint, and

(3) for all My € 77 and Ms € To, M{MsNS # 0.

Informally, we may say that S separates the plane into two parts 7;

and 75, or more briefly, S separates the plane.

Remark SEP.11 By Theorem SEP.8, S separates the plane into the two
parts 71 and 7z iff conditions (1) and (2) (of SEP.8) hold and every simple
polygonal path joining two points M; € T; and My € T; intersects S.

Theorem SEP.12 (Proof of Theorem JCT.1, parts (A) and (B))
A simple polygon G separates the plane P into two parts, ins G and out G.

Proof. By Definition SEP.3(C) ins G and out G are disjoint sets, both of which
are disjoint from G, and P = ins G Uout G U G, thus satisfying conditions (1)
and (2) of Definition SEP.10. Let M; € insG and Ms € out G. Then M; and
M> have different parities, and hence W must intersect G, by Corollary
SEP.4,1, so that condition (3) follows. O

Theorem SEP.13 (A) If £ is a polygonally connected set and G is a
simple polygon such that ENG = 0, then either £ C insG or £ C outG. In
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other words, all points of £ have the same parity relative to G. Notice that
this is a generalization of Theorem SEP.4(A).

(B) If € is a convex set and G is a simple polygon such that ENG = (),
then either £ CinsG or £ C out G.

(C) If F and G are simple polygons and F NG = 0, then F C insG or
F C out@G.

(D) If F and G are simple polygons and F NinsG # O and F Nout G # 0,
then FNG # (.

Proof. (A) Let P and @ be two points of £ which are connected by a polygonal
path ((P = X1, Xa,..., X, Xint1 = Q)) C €. Then by Theorem SEP.4(A),
P = X, has the same parity as Xo, and a simple induction argument shows
that P has the same parity as Q.

(B) Immediate from part (A) since every convex set is polygonally con-
nected.

(C) Immediate from part (A) and Remark PLGN.6(C).

(D) Since F is polygonally connected, there is a polygonal path in F
connecting a point of ins G with a point of out G, and this polygonal path
must contain a point of G by Theorem SEP.12. O

Theorem SEP.14 If F and G are simple polygons and FNG = 0, exactly
one of the following holds:
(1) G Cins F and F C out G, in which case
exc F = FUoutF is a proper subset of out G, and
encG =G UinsgG is a proper subset of ins F; or
(2) F CinsG and G C out F, in which case
excG = GUout§ is a proper subset of out F, and
enc F = FUinsF is a proper subset of insG; or
(3) G Cout F and F CoutG, in which case
encG = GUinsG is a proper subset of out F and
enc F = FUins F is a proper subset of outG.
The remaining logical possibility, (4) G C ins F and F C ins G, is impos-

sible.

Proof. By Theorem SEP.13(C) each of F and G must be a subset of either
the inside or the outside of the other. The alternatives (1) through (4) above
are the only logical possibilities. Figure 6.9 below illustrates the proof that

alternative (4) is impossible.
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Fig. 6.9 For proof that alternate (4) is impossible.

Proof that (4) is impossible. Suppose that G C ins F and F C insG.
Let P € insG, and let A be a point such that }?4 contains no corner of F
or G. Order PA by Definition ORD.1 with P < A. By Definition SEP.3 PA
has a non-empty intersection with G and by Theorem PLGN.4(A) there is a
last intersection @ of G with ﬁ Since G C ins F, ) € ins F so that the ray
PA \ Pﬁ intersects J and there is a last intersection R of F with PA \ Pﬁ,
and @ # R since @ € ins F, and R € F, whence @ < R.

Since R € F C ins G, the ray ][3—}1 \ PR intersects G at some point S. S # R
since R € insG and S € G whence (Q < R < S. This contradicts the fact that
@ is the last intersection of PA with G, so that alternative (4) is impossible.

To visualize the other alternatives, see Figure 6.10 below.

NAYAYE

Alternative ( Alternative ( Alternative (
G CinsF and F Q outg F CinsG and G g out]-' G CoutF and F g out g

Fig. 6.10 For Theorem SEP.14, alternatives (1), (2), and (3).

If alternative (1) is true: We assume that G C ins F and F C out G.

(a) First we show that out F C outG. Let M be any point of out F and
let H be any other point such that m contains no corner of F or G.

Note that M ¢ G since M € out F, which is disjoint from insF O G.
Suppose now ]\[7[H> does not intersect F. If m should intersect G at M’,
then the point M’ € ins F and M € out F, so by Theorem SEP.12 there is a
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point of F belonging to W - 1\7?1 which is impossible. Hence 1\77} ng =0,
the parity of M (relative to G) is even and M € outG.

Now suppose that W intersects F. Order W by Definition ORD.1 with
M < H. By Theorem PLGN.4(A) there exists a first point N of intersection
of M H with F, and since F C outG, N € outG. Now MNNF = 0 so that
MN Cout F (by Theorem SEP.4(A)), and MNNG = 0 because G C ins F.
Since neither M nor N belongs to G, and N € out G, it follows from SEP.4(A)
that M € out G. Therefore out F C out G and since F C out G, F Uout F C
outG.

Fig. 6.11 For Theorem SEP.14, alternative (1) parts (b) and (c).

(b) See Figure 6.11. We prove next that ins G C ins F. Let P be any point
of ins G and let A be any other point such that ﬁ?x contains no corner of F or
G. We know that PE_I)4 must intersect G, and ordering PE_I)4 with P < A, there
exists a first point @ of intersection of G and ]':3_}1

ﬁj contains no point of G other than @, so ][3—6[2 C insG (SEP.4) which is
disjoint from F C outG. @ € ins F because G C ins F, so @ ¢ F, hence %TQJ
contains no point of F. Since @ € G C ins F, it follows from SEP.4(A) that
P € ins F. This proves that ins G C ins F, and since G C ins F it follows that
GUinsG Cins F.

(¢) Finally, we show the inclusions GUins G C ins F and F Uout F C out G
are proper. Continue the construction of the immediately previous paragraphs
(illustrated by the figure) as follows: let R be the last point of intersection
of G and ﬁ, so that R € G C ins F, and by Theorem PLGN.4 (since the
parity of R relative to F is odd) there exists a first point S of intersection of
F and the ray PA \ PR.

Since RSNF = R]_Srﬁg = (), all points of the segment RS have the same
parity with respect to F as does R (by SEP.4), which belongs to G C ins F,
SO ﬁ’ C ins F. Also the ray % \ ][3—][% is disjoint from G so that ﬁ’ C outg.
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This shows that there are points of ins F which are not in insG, and also
that there are points of out G that are not points of out F. This completes
the proof of (1).

If alternative (2) is true: The proof is the same as that for (1) with F
and G interchanged.

If alternative (3) is true: We assume that G C out F and F C out G.

First we prove that insG C out F. Let P be any point of insG, and let A
be any point such that PE_I)4 does not contain a corner of F or G. P € ins G so
that every ray from P must intersect G at least once. Order ﬁ with P < A,
and let @ be the first point and R the last point of intersection of ][3—/)1 with
g.

(a) If the ray PA \ PR intersects F let S be the first point of intersection
of ﬁ\ﬁ with F, otherwise (b) let S be any point of ﬁ\ﬁ Then PJ_Qr
contains no point of G other than @ so that ]% C ins G and hence contains no
point of F since F C outG. Now @ € G C out F, so P € out F by Theorem
SEP.4(A). Therefore ins G C out F.

Finally we show that ins G C out F is a proper inclusion. The construction
is similar to that shown in the figure for part (1) above, the only difference
being that now F does not “enclose” G. In this construction, the segment
RS contains no point of G since R is the last point of G, and no point of
F since S is the first point of F with R < S. By Theorem SEP.4(A), since
R € G C out F, RJ_Sr C out F; similarly since S € out G, R]_§ C outd. Thus
points of RJ_ASg are in out F but not in G U insG, and hence the inclusion
G UinsG C out F is proper.

By exactly the same argument, with the roles of F and G interchanged,

F Uins F C out @ is also a proper inclusion. O

Theorem SEP.15 If F and G are simple polygons and FNG is a segment
C’HD], then both ]-'\[CiD] and Q\C'HD] are polygonally connected sets. By Theorem
SEP.13

E=— E—
(A) either G\ CD Cins F or G\ CD C out F, and
[—" [—"

(B) either F\ CD CinsG or F\ CD C outG.

Thus there are four mutually exclusive logical possibilities as follows:

(1) G\ CD C ins F and F\ CD C outG, in which case

out F is a proper subset of outG, and
insG is a proper subset of ins F; or
(2) f\C’HD] CinsG and G\ CDC out F, in which case

out G is a proper subset of out F, and
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ins F is a proper subset of insG; or
E— E—
(3) G\ CD CoutF and F\ CD C outG, in which case
insG is a proper subset of out F, and
ins F is a proper subset of outg.
The remaining logical possibility (4) G\ CD C ins F and F \ CD C ins g,

is impossible.

F g
C C
D
D D
Alternative (1) Alternative (2) Alternative (3)
E—3 E—43 E—3
G\ CD CinsF and F\CD CinsG and F\CD CoutG and
= E—3 E—

F\CD Coutg G\ CD CoutF G\CD CoutF

Fig. 6.12 For Theorem SEP.15.

Proof. See Figure 6.12 above. Most parts of the proof are essentially the
same as the corresponding parts of the proof of Theorem SEP.14, with the
following exceptions:

(a) Since F and G are not disjoint, we cannot prove the same set of in-
clusions as in SEP.14, e.g. GUins G is a proper subset of ins F—we can only
show that ins G is a proper subset of ins F, etc.

(b) When constructing a ray PE—%K7 say from a point P € ins§G, we must
choose A so that PA is disjoint from CD and intersections of the ray with
either F or G will belong to F \ [CiD] orto G\ [CiD] We formalize this idea as

follows.

Lemma Let C, D, P, and A be points such that P ¢ @ If the point
A €out ZCPD, then

(1) PANCD = 0

(2) if G is a simple polygon and CDC g, ng C g\ %373,' and

(3) a point X ofPE_fl@é G if and only if X ng\EC'_Dj

Proof. (1) By Theorem PSH.41(C) either A belongs to the side of PD op-
posite C' or to the side of %’ opposite D, and by Theorem IB.14 Pj—/i will
be on the same side and hence Pj—}l C out ZCPD. Therefore no point of ﬂ
belongs to EC'_Dj7 since 0D C ins ZCPD by Theorem PSH.37.
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Conclusions (2) and (3) are obvious consequences of conclusion (1). O
We now return to the proof of Theorem SEP.15.

Proof that alternative (4) is impossible. We repeat the proof that
alternative (4) of Theorem SEP.14 is impossible, altering that proof by choos-
ing the point A to lie in out ZC'PD. Then by the Lemma, all the intersections
of the ray ][3—/)1 with F and G lie in the sets F \ [CiD] and G\ C’HD] respectively,
so that the proof from SEP.14 suffices.

E— E—

If alternative (1) is true: G\ CD C ins F and F\ CD C outgG.

(a) First we show that out F C out G. Let M be any point of out F and let
H be any point with H # M with H € out ZC'M D, such that Mﬁ contains
no corner of F or G.

Note that M ¢ G C ins F since M € out F, which is disjoint from ins F 2
g. It Mﬁ does not intersect F the proof is identical to the proof in SEP.14.

If Mﬁ intersects JF, we order Mﬁ by Definition ORD.1 with M < H. By
Theorem PLGN.4(A) there exists a first point IV of intersection of M H with
F, and since N ¢ CD by the Lemma, and F \ CD Coutg, N € outg.

— —

Now MNNF = () so that MN C outF (by Theorem SEP.4(A)), and
— E—3 E—3
MNNG = 0 because G \ CD C ins F and MHNCD = 0. Since neither M
nor N belongs to G, and N € out G, it follows from Theorem SEP.4(A) that
M € out G. Therefore out F C out@.

Fig. 6.13 For the construction for part (1)(b) of Theorem SEP.15.

(b) Next we prove that insG C ins F. (See Figure 6.13 above for an illus-
tration of this case.) Let P be any point of ins G\ ED and let A be any other
point where A € out ZCPD (so that PANCD = () by the Lemma) and PA
contains no corner of F or G. Ordering ﬁ with P < A, there exists a first
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point @ of intersection of G and ﬂ Q ¢ CD and since G\ CD C ins F,
@ € insF. Now the segment PHCQ contains no point of G so ][3—6[2 C insg
(SEP.4) which is disjoint from F \ CD because F\ CD C outG, and hence
Pﬁ contains no point of F. It follows from SEP.4(A) that P € ins F, proving
that insG C ins F.

(¢) Finally, we show that the inclusions out F C out G, and ins G C ins F
are proper. Continue the construction of the previous paragraphs (illustrated
by Figure 6.13) as follows: let R be the last point of intersection of G and PE_I)4,
and since R ¢ CD and thus R € G \ CD C ins F, by Theorem PLGN.4(A)
there exists a first point S of intersection of F \ CD and the ray PA \ PR.

Since RS NF = }]z_s[‘mg = (), all points of the segment RS have the same
parity with respect to F as does R (by SEP.4), which belongs to G \ CD C
ins F, so RJ_Sr C ins F. Also the ray ﬁ\ﬁ is disjoint from G so that RJ_Sr -
out G. This shows that there are points of ins F which are not in insG, and
also that there are points of out G that are not points of out F. This completes
the proof of part (1).

If alternative (2) is true: Interchange G and F in the proof for alter-
native (1).

If alternative (3) is true: The proof is left to the reader as Exercise
SEP.1. O

6.4 Rotundity and convexity (CNV)

Theorem CNV.1 Let L be a line and G a simple polygon in the Pasch
plane P. Let C be the set of all corners of G that do not belong to L (GNL may
or may not be empty). Then for either side H of L, the following statements
are equivalent:

(1) CCH,

(2) G\ L CH, that is, every edge of G is a subset of LU H, and

(3) insG C H.

Proof. (1)=(2) If C C H, let £ be any edge of G. If both endpoints of £ are
members of C, then £ C H. If both ends of £ belong to £, then £ C L. All
other edges are of the form BD_d where P € £ and @ € C. By Theorem 1B.14,
P]ﬁ C H so that for every edge £, £ C LU H.

2)=1) G\ LI H, thenC C G\ L, soCCH.
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(2)=(3) Suppose G \ L C H. Let K be the side of £ opposite H, and
suppose P € insG. Now P could belong to £, H, or K. If P € L, let @ be
any point of /C such that Pjﬁ is admissible, and Pjﬁ must intersect G at some
point R ¢ L. But Pjﬁ C K by Theorem IB.14, so R € K which contradicts
the assumption that G\ £ C H.

If p € K, let P’ be a point of £ such that Pj’_P>’ C K and Pj’_P>’ is admissible.
Then since P € ins@, the ray Pj’_P>’ \ P]TPC’ must intersect G at some point R;
this ray is also a subset of K, so R € K, again a contradiction to G \ £ C H.
Therefore, no point of insG can be in £ or K, and insG C H.

(3)=(2) Suppose insG C H, and let K be the side of £ opposite H. Let
P € G\ £ and suppose P ¢ H, so that P € K. Then P belongs to some edge
& = EXsz-H] of G. If P € m choose @ ¢ XiXiH. If P is an endpoint
of £, say P = X; choose @ € ins ZX; 1 X;X,;41. In either case, by Theorem
SEP.7, the line M = % contains a point E such that PE Cinsg.

P ¢ L soif PENC # (), there is only one point F' in the intersection.
Choose C' so that P-C—E and P-C—F. If PEAL = 0 let C = E. Then
C € insG and C € K because PCNL = (), a contradiction to the assumption
that insG CH. O

Definition CNV.2 Let G be a simple polygon in the Pasch plane P.

(A) A line £ is a supporting line of G, or supports G if and only if
GNL # () and ins G is contained in a halfplane with edge £ (that is, ins G lies
entirely within one side of £).

(B) A segment ﬁj where P and @ are corners of G, is said to support G
iff the line % is a supporting line of G. If ﬁj is an edge of G then we say
that it is a supporting edge of G. If G is a quadrilateral, a diagonal may or
may not support G.

(C) A polygon & is rotund iff for every line £ containing an edge of &,
the corners of £ not on £ are on the same side of £. This is an extension of
Definition PSH.31, which applies to quadrilaterals.

Theorem CNV.3 (A) A line L is a supporting line of a simple polygon
G if and only if GNL # 0 and all the corners of G not lying on L belong to
the same side of L.

(B) A simple polygon G is rotund if and only if every edge supports G.

(C) An edge Wj supports a simple polygon G if and only if all the corners
of G other than P and Q) belong to the same side of .
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(D) For any simple polygon G = (X1,...,X,), the following statements
are equivalent:
(1) G is rotund,
(2) for each integer j € [1;n], all the corners Xj, where Xy # X, and
Xk # X1 belong to the same side H; of XijJrl, and G\ XijJrl] CHj,
(3) for each integer j € [1;n], insG is a subset of one side of X; X 11,
and
(4) for every integer j the corners different from X;_1, X;, and X1
belong to ins ZX,;_1X;Xj41. (Note: if j =1 then j —1 = 0 = n(modn) so
that X;_1 = X,,, and if j =n then j+1 = 1(modn) so that X;41 = X1.)
(E) Fuvery triangle is rotund.

Xjta

The polygon G is not rotund since X;_;
and X1 are on opposite sides of £

and L is not supporting.

Fig. 6.14 For Theorem CNV.3(A).

Proof. See Figure 6.14. (A) is immediate from Definition CNV.2(A) and The-
orem CNV.1. (B) follows immediately from Definition CNV.3(C) and part
(A) just above. (C) follows immediately from Definition CNV.2(B) and part
(A) just above.

In part (D), statement (2) is a restatement of Definition CNV.3(C), (the
last part follows immediately from Theorem CNV.1) and this is equivalent to
statement (3) by Theorem CNV.1. To prove (4) is equivalent to (1), suppose
G is rotund and let () be any corner of G different from X, 1, X;, and X1,
where j € [1;n]. Then by part (D)(2) above, @ and X1 are on the same side
of X;_1X; and  and X,;_; are on the same side of X;X;, . By Definition
PSH.36, Q € ins ZX; 1 X; Xj41.

Conversely, let j € [1;n] and let @ be any corner of G other than X;_1,
X, and X1, so that Q € ins ZX;_1X;X;1. Then by Definition PSH.36, )
and X;_; are on the same side of X; X ; therefore all corners other than X;
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and X, are on the same side of m and since j was chosen arbitrarily,
G is rotund by part (D)(2) above.

(E) Let A, B, and C be noncollinear points on the plane. Since C' is the
only corner of AABC not on ﬁ, B is the only corner of AABC not on jﬁ
and A is the only corner of AABC not on %, condition (D)(2) above is
vacuously satisfied and AABC is rotund. 0O

Theorem CNV.4 Let G = (X4,...,X,) be a rotund polygon, and for
each i € [1;n] let H; be the side of X;X,;11 containing all corners other than
X, and X;y1. Then

(A) for every point P € (\,_, H;, every ray ][@ intersects G in exactly one
point (so that the parity of P is odd);

(B) insG = (N, Hi, and is convez; and

(C) for every j € [1;n], insG Cins £X,;_1 X;X41.

(Ifj=1, X;-1 = Xp; if j =n then X;11 = X1.)

Proof. (A) Let P € (), H; and suppose % NG contains two points A and
B. If these are on the same edge of G, then by Axiom 1.1, P, ), A, and B
are collinear which is impossible since P belongs to a side of AB.

Now suppose A is the first of two points of intersection A and B (% is
ordered with P < @), and that A € XJTJHJ and B € [XkaH]7 where k # j.
Now P € H;, and the ray ]ED—fi intersects XJ—XJ-H in only one point, so that
the ray ﬁ\ﬁ C K;, the side of XijJrl opposite H ;. Therefore B € K;.
But by Theorem CNV.1, G C X; X, 1 U®H,; which is disjoint from /C; so we
have a contradiction. Note that in this part of the proof it does not matter
if A or B is a corner of G.

(B) By Theorem CNV.1, insG C H; for every i € [1;n], and therefore
insG C i, H;. Conversely, by part (A), every point of ()_; H; has odd
parity and ();_, H; C insG. Since each H; is a convex set (Corollary to
Theorem PSH.7) and the intersection of any collection of convex sets is convex
(Exercise IB.15), ins G is convex.

(C)insG =Ny Hi CHj1 NH; =ins £ZX; 1 X;X;41. O

Corollary CNV.4.1 If G is a rotund polygon and P € insG, then every

ray from P intersects G in a singleton Q). Furthermore, PHEQ C insG and

PO\PQ C outg.

Proof. From parts (A) and (B) every ray from P (admissible or not) inter-
sects G only once, at a point @, and if P-X—-Q, % intersects G only once so
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E—L E—LC
that PQ C insG. For any X, if P-Q-X then ][@\PX is a ray originating
from X which has no intersection with G and hence X € outG. 0O

Corollary CNV.4.2 Let G be a rotund polygon and let P € insG and
Q €outG. Then G intersects 3:’_65 at exactly one point.

Proof. By Corollary CNV.4.1, % intersects G at a single point A, and by
Corollary SEP.4.1, ﬁj must intersect G, and since A is the only possible
point of intersection, A € ﬁj O

Corollary CNV.4.3 If G is a triangle, then the definitions of insG in
PSH.36 and in SEP.3 have the same meaning.

Proof. Theorem CNV.3(E) says that a triangle is rotund; part (B) above
states that if G is rotund, ins G = (;_, H,. The left hand side is the defini-
tion of inside as in Definition SEP.3, using parity; the right hand side is the
definition of inside as in PSH.36. O

Theorem CNV.5 (Generalization of Theorem PSH.50)
Let G = (X4,..., X,,) be a rotund polygon and L a line. If GN L # (0, then
(A) LNencg is either a single point or a segment, and
(B) LN G is exactly one of the following:
(1) a single point S, in which case
(a) S is a corner X; of G,
(b) LNinsG =0 and LNins £ZX; 1 X; X411 =10
(Zf] = 1, Xj—l = Xn,' lf] =n then Xj+1 = Xl),
(c) the sets G\ {X;}, fXij,l, f)(ijJrl, insG and
ins ZX;_1X;X;41 are all subsets of the X;_1-side
(= Xj41-side) of L;
(2) ezxactly two points P and Q, in which case
(a) no edge of G contains both P and Q,
(b) £LNinsG = PQ # 0,
LNout§G = {X|X-P-Q}U{X|P-Q-X},
(c) L=
= {X|X-P-Q} U{P}U PQU{Q} U {X|P-Q-X}
= £\ PQU{P} U PQU{Q};
(3) more than two points, in which case
(a) LNinsG =0, and
(b) L contains an edge € of G.
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Proof. (A) Follows immediately from (B). The following Lemma will facili-
tate the rest of the proof.

Lemma Let G = (Xq,...,X,) be a rotund polygon and L a line.

(A) If LNG contains two points P and Q and PJ_Qr NG =0, then PJ_Qr CinsgG;
and

(B) if LNins G # O, then there exist exactly two points P and Q such that
£LNG={P,Q} and PQNG = 0.

Proof. (A) Let j be any member of [1;n], and denote by #; the side of
L containing all corners of G that are not on £. P and ) cannot both be
E—7F3
members of X;X;;, for then P]_Qr ng = P]_Qr would not be empty. Therefore
either P or () fails to belong to XijH].
= E—3
Let O € P(Q) and suppose that P ¢ X;X;1; by Theorem CNV.3(D)(2)
P e™H;, and OP contains no point of G so that O € H; by Definition 1B.11.
A similar proof holds if Q ¢ X]-Xj_H]. Thus O € (N_; H; = ins G by Theorem
CNV 4(B).
Conversely, if R € £LNinsG, then by Theorem CNV.4(A) every ray from
R intersects G at exactly one point. Let X and Y be such that X—R-Y"; then
11[2_)(> intersects G at exactly one point P and I'W intersects G at exactly one

point Q, LN G = {P,Q} and PONG = 0. O

Lo
\
B g L~ g
\ N
. \\- ) ® N
Alternative (1) Alternative (2) Alternative (3)

Fig. 6.15 For Theorem CNV.5(B).

(B) Clearly exactly one of the alternatives (1), (2), or (3) holds. See Figure
6.15.

(1) (a) Suppose LNG = {S} and S is not a corner of G. Then pick points
A and B on L such that A-S—B. Then ﬁ NG is a singleton and by Theorem
SEP.4(B) the parities of A and B are different so one of them, say B, belongs
to insG. Then choose X so that A-S—B-X. By Theorem CNV.4(A), ﬁ}, and
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hence £ must intersect G at some point C. This contradicts the assumption
that £NG = {S}, and therefore S must be a corner X; of G.

(b) By the Lemma, part (2), if £LNinsG # () then there are exactly two
points in the intersection £ N G, contradicting the assumption that LN G =
{S}. Hence LNinsG = 0.

If £ contains a point B of ins ZX;_1.X;X;41, choose A so that A-X;-B.
Since LN G is a singleton, so is AB NG, and by Theorem SEP.4(C), A and B
have different parities, so one of them belongs to ins G. Suppose B € LNins G,
and let X be such that A-X;—B-X. The ray BX must intersect G at some
point C' (by CNV 4), so there are two points in £N G, a contradiction. Thus
LNins ZX; 1 X;Xj41 = 0.

This fact furnishes an alternative proof that £ NinsG = (), since insG C
inSZXj_lXij+1 (CNV4(C))

(c) Suppose X;_1 and X;;1 are on different sides of £. Then by Axiom
PSA, m intersects £ at some point P, and by Theorem PSH.37
P ecins/ZX,; 1X;X;41, in contradiction to (b). Thus both X;_; and X1
belong to the same side of £, which we will call H. By Theorem IB.14,
)](jTj—l) CH and m CH.

If Q € ins/ZX;_1X;X;41, then m intersects m at some point
R by the Crossbar Theorem PSH.39 Eﬁ% C m C @-side of £ and hence
b_]% does not intersect £, and m is also disjoint from L, since X;_;
is on the same side of £ as X;41. Therefore all the points (in particular Q)
of &W%UEXJTXJH] are on the same side, which must be H.

Finally, by CNV.4(C), insG C ins ZX; 1X;X;11 € H, and by Theorem
CNV.1, G\ {X;} C H, completing the proof of this part.

(2) (a) If a single edge & of G contains two points of £, then &€ C L
and & contains more than two points of £ which contradicts the hypothesis.
Therefore, P and @ cannot be on the same edge.

(b) If LN G = {P,Q}, then PQNL = 0 and by the Lemma, PQ C insg.
By Corollary CNV 4.1, both {X|X-P-Q} and {X|P-Q-X} are subsets of
out G, which proves (b); the assertions of (c) follow easily.

(3) (a) If LNinsG # (), then by the Lemma (2) there exist exactly two
points P and @ such that LN G = {P,Q} and PJ—QC NG = (. This contradicts
the assumption that there are more than two points of intersection.

(b) First order £ by Definition ORD.1. If £ does not contain any edge of
G, then the intersection of £ with every edge is a single point, and the set
of all such intersections, being a finite set, has a least element P. Let Q) be
the second (next) element of the intersection. Then PJ—QC NG = 0, and by the
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3
Lemma, part (A), PQ C ins G, which is impossible by part (a). O

In order to make the statements and proofs of the following Lemma as
clear as possible, we will state each part separately with its proof and any
illustrations.

Lemma CNV.6(A) A quadrilateral is not rotund if and only if exactly
one of its corners belongs to the inside of the triangle whose corners are the

other three corners of the quadrilateral.

Proof. (A) Lemma CNV.6(A) is a repetition of Theorem PSH.53, (q.v.).
There are four possibilities ((i)—(iv))listed at the end of the proof of The-
orem PSH.53, for the quadrilateral (A, B,C, D) to be non-rotund. One of
these figures illustrates alternative (i), and we reproduce again here as Fig-
ure 6.16 for the reader’s convenience. It is quite easy to construct figures of
the other possibilities, and in each case it will be seen that there are two

supporting edges and two edges that are not supporting. O

B

C

Fig. 6.16 For one case of Lemma CNV.6(A) (see also Theorem PSH.53).

Lemma CNV.6(B) If G is a quadrilateral with three supporting edges,
then G is rotund.

Proof. (B) If G = (A, B,C, D) is not rotund, then by part (A) exactly two

edges are not supporting edges. O

Lemma CNV.6(C) For every quadrilateral F = (A, B,C, D), AC and
BD are its diagonals. Then

(1) each side of a line containing a non-supporting diagonal must contain
a corner of F;

(2) F is not rotund iff exactly one of its diagonals supports F;

(3) every quadrilateral has at least one non-supporting diagonal, and is

rotund iff neither diagonal supports F;



152 6 The Jordan Curve Theorem for Polygons

(4) (a) AC is the common edge of AABC and AADC; if it is non-
supporting, 134—6[', ins AABC, and ins AADC' are all subsets of ins F, and

(b) BD is the common edge of ABAD and ANBCD; if it is non-supporting,
B]_DE, ins ABAD, ins ABAD, and ins ABCD are all subsets of ins F.

Proof. (C) Result (1) follows directly from Definition CNV.2(C).

(2) This is essentially a re-statement of Lemma CNV.6(A). To say that
the corner A, for instance, of F belongs to the inside of the triangle ABC'D
is the same as saying that both A and C are on the same side of ﬁ, that
is, ﬁ is a supporting line containing the diagonal BD.

(3) If F is not rotund, it has exactly one supporting diagonal by part (2);
the other is non-supporting. If F is rotund, then by Theorem PSH.54 the
diagonals AC and BD intersect. If the intersection were a corner, then three
corners would be collinear which would violate the definition of quadrilateral.
Therefore by Definition IB.11, B and D are on opposite sides of % and A
and C are on opposite sides of @ Hence neither diagonal is supporting.

(4) Suppose a diagonal, say AC is not supporting, so that the corners B
and D are on opposite sides of jﬁ Then if X € /jl—C[', let Y € B]—CE'; the ray
)]W C B-side of % , so cannot intersect either AD or C’j_JD7 which are on the
D-side of jﬁ, and cannot intersect AB which is a subset of the side of W
opposite C. Therefore Y is the only point of intersection of X]—Y> with F, and
since Y contains no corner of F, XJ—Y> is admissible, and the parity of X is
odd.

If P e insAABC, let Q € AC be a point such that P[ﬁ contains no
corner of F. The segment PJ_Qr contains no point of AABC, and since it lies
entirely on the B-side of /ﬁ , it is disjoint from AD and C’HD], and hence from
F. The ray ][@ contains the ray %\PHCQ which contains an odd number
of points of F, since @ € insF. Hence P has odd parity, and belongs to
ins F. A similar argument for AADC shows that both ins AABC C ins F
and ins AADC C ins F.

A similar argument holds if the diagonal BD is not supporting. 0O

Lemma CNV.6(D) Let G be a simple polygon, and let A, B, C, and D
be noncollinear points where F = (A, B,C, D) is a quadrilateral such that

(1) ADNG = BC NG =0,

(2) ins(A, B,C, D) contains no corner of G, and

(3) CD contains no corner of G.
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Then every edge € of G that intersects CD ata single point must also intersect

AB and the intersection is a singleton.

Proof. (D) By Lemma CNV.6(C)(3), at least one of AC or BD is a diag-
onal that supports F. Without loss of generality we may assume that AC
does not support F. By Lemma CNV.6(C)(4), AC forms the common edge
of the two triangles AABC and ANADC, A]_Cr C ins F, ins NABC C ins F
and ins AADC C ins F. Therefore there are no corners of G in ins AABC,
ins AADC, or AC.

Suppose the edge £ (of G) intersects CD at a point P and no other point.
Applying Lemma PLGN.12 to AADC, we find that £ must intersect the di-
agonal AC in a single point; if that point is A, we are done; if the intersection
is a point of AC then we can apply the same theorem to the triangle AABC,
concluding that £ intersects AB (and hence Sﬁ), again in a singleton. 0O

Lemma CNV.6(E) If a quadrilateral G = (A, B,Q, P) is such that P
and Q are on the same side of AB (that is, AB is a supporting edge), then
there exist points C and D such that D € [/TPJ’, Ce %, and (A, B,C, D) is
rotund.

Proof. (E) If G is rotund the result follows immediately by choosing C' =
Q and D = P. If G is not rotund, from Lemma CNV.6(A) there are two
possibilities where P and ) are on the same side of A

(i) In alternative (i) (illustrated by Figure 6.17 overleaf), AP intersects
Bﬁ at R between B and Q; take C to be any point between R and B and
take D = P. P and @ are on the same side of @ and by Theorem CNV.1,
so are all points of G \ 541_1%, including D and C. A and D (= P) are on the
same side of %(: %) Since C' € RB and D € R]—/i, by Theorem PSH.4
Cﬁ does not intersect AB and hence A and B are on the same side of Cﬁ
by Definition IB.11. Finally, since R—D-A, A and D are on the same side of
% = ﬁ and (A, B,C, D) is rotund.

(ii) In alternative (ii), % intersects AP at S between A and P; take D
to be any point between S and A and take C' = Q. By a similar argument
(A, B,C, D) is rotund. We leave the construction of a figure illustrating al-

ternative (ii) to the reader. O

Lemma CNV.6(F) If a quadrilateral (A, B, C, D) is rotund, J is a point
between A and D, and K is a point between B and C, then (A, B, K,J) is
rotund.
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A and B are on opposite sides of w
B and @ are on opposite sides of zﬁ
D €ins AABQ
@ and P are on the same side of A

A and P are on the same side of

Fig. 6.17 For Lemma CNV.6(E) alternative (i).

Proof. (F) By Theorem CNV.1 both J and K (which belong to G \ Eﬁ) are
on the same side of /@; both K and B (which belong to G\ ﬁ) are on the
same side of AD (= AHJ), and both A and J (which belong to G\ %) are
on the same side of BC (= ﬁ) Then by Lemma CNV.6(B), G is rotund,
since it has three supporting edges. 0O

Lemma CNV.6(G) IfG = (A, B,C,D) is a rotund quadrilateral and &
18 a nonempty finite set of points which contains no point of Sﬁ, then there
exist points R and S such that A~R-D, B-S—C', and enc(A, B, S,R)yNE =
(and by Lemma CNV.6(F) (A, B, S, R) is rotund).

Fig. 6.18 For proof of Lemma CNV.6(G).

Proof. (G) See Figure 6.18. Let C = {X|A-X-D and XBne #0}. Cisa
finite set which does not contain A, so by Theorem ORD.10 we may let P’
be the first point of C (where A < D), and let P be any point with A-P-P’.
IfY € enc AABP N E, then either Y € BP or Y € ins ZABP in which case
1[3_1} intersects AP at some point Z, by the Crossbar Theorem PLGN.39, so
that either P or Z is a point of C, a contradiction to the definition of P’.
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Thus enc AABP contains no point of £. Similarly we may find @ € BC such
that enc AABQ contains no point of .

Now @ € insZBAD and B € AB and P € AD so by the Crossbar
Theorem PSH.39, i@ NBP # () and the intersection is a point {T'}. A similar
construction can be done for P € ins ZABC, the ray B]?, and the segment
l]ﬁ[’, and the point of intersection is again {T'} since distinct lines can intersect
in only one point.

Pick S with B-S—-@Q. Then by Theorem PSH.37 S € ins ZBT(Q, that is,
S e m ﬁm (see Definition PSH.36). Sj? intersects both A]_QE and BP
at the point 7" and contains points on the other side of both, hence any point
X with X-T—-S belongs to 15—371 N m = ins ZPT A. Again by the Crossbar
Theorem, ﬁ intersects AP at a point R with A-R-P.

Then (A, B, S, R) is a quadrilateral where

enc(A, B,S,T) C enc ANABP Uenc AABQ,
both of which are disjoint from €. By Lemma CNV.6(F) (A, B, S, R) is ro-
tund. O

Lemma CNV.6(H) If

(1) MN s an edge of a simple polygon F,

(2) A is a point such that M—A-N,

(3) P and Q are points on the same side of m, and

(4) APNF = AQNF = {A},
then P and Q have the same parity with respect to F (either both P and Q
belong to ins F or both belong to out F).

Here both P and @ belong to ins F

Fig. 6.19 For proof of Lemma CNV.6(H).

Proof. (H) See Figure 6.19. If P, @), and A are collinear, the result is imme-
diate from Theorem SEP.4(A). Otherwise, P ¢ m and since P is a point



156 6 The Jordan Curve Theorem for Polygons

such that APNF = (), the points @, A, and P satisfy the hypotheses of
Theorem PLGN.13. Thus there exists a point D € AP such that no corner
of F is in either ins AAQD or Q]_IE), and every edge that intersects Q]_IE) must
also intersect ij But there is only one edge intersecting Q]j, that is MHN,
and it does not intersect Q:’_DE since both D and @ are on the same side of
MN. Since neither D nor QeF, E)T)] NF =0, and {(P, D, Q)) is a polygonal
path connecting P and @ which does not intersect F. Hence by Theorem
SEP.13(A), P and @ have the same parity. O

Lemma CNV.6(I) Suppose )[(JX—JJrlj is an edge of a simple polygon F,
A and B are distinct members of )[(jX—jJrlj, P and Q are points on the same
side of Xij_H, PANF = {A}, CEQHBH}" = {B}, and one of the following
hypotheses holds:

(1) Xj=A-B-Xj11,

(2) A=X;, B# Xj41, and X;_1 € out LPAB,

(3) A# Xj, B=Xj}1, and X2 € out ZQBA, or

(4) A= Xj, B = Xj+1, Xj—l € out ZPAB and Xj+2 € out ZQBA
Then P and Q have the same parity with respect to F (either both P and Q
belong to ins F or both belong to out F).

Proof. (I) For cases (i)—(iii), the first three figures given as Figure 6.20 are
drawn as if hypothesis (1) above holds—the points A and B are not end
points; however, they can serve to illustrate hypotheses (2)—(4), where A or
B is an end point (we have to draw the figures some way). For case (iv),
Figure 6.21 illustrates hypothesis (1), and Figure 6.22 illustrates hypotheses

(2), (3), and (4).

Case (i) Case (ii) Case (iii)

Fig. 6.20 For proof of Lemma CNV.6(I), cases (i)—(iii).

(Case i) If ST‘PQ% £ 0, let {R} = Eél_lD]ﬂBﬁ Then ARURDB is a polyg-
onal path connecting P and ) which is disjoint from F and by Theorem
SEP.13(A), P and @ have the same parity with respect to F.
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(Case ii) If either A~Q—-P or B—P-Q), then by Theorem SEP.4(A) P and @
have the same parity since %TQJ is a subset of either PA or Q[HB and therefore
PQNF =0.

(Case iii) If {A, P,Q} is collinear and A-P-Q then choose @’ so that
B-Q'-Q, and in this case both {A, P,Q'} and {B,Q’, P} are noncollinear.
Similarly if { B, @, P} is collinear and B-@Q—-P choose P’ so that A-P'-P, so
that both {A, P', @} and { B, Q, P’} are noncollinear. The following argument
applied to either (4, B,Q’, P) or (A, B,Q, P’) as the case may be will show
that P and @Q’, or P’ and @', and thus P and @Q have the same parity.

(Case iv) Suppose {A, P,Q} and {B, @, P} are noncollinear, and that AP
is disjoint from BHCJQ Since P and @ are on the same side of ijjH =
jﬁ, BD_dﬁ;l_Bj = () and condition (2) of Definition PSH.31 is satisfied. The
triples {A, B, P} and {Q, A, B} are noncollinear, so that (A4, B, P,Q) is a
quadrilateral, but not necessarily rotund (see Figure 6.21).

Xj+1

Case (iv): the dots suggest the set H of ,
all corners of F other than X; and X1,

Fig. 6.21 For Lemma CNV.6(I), hypothesis (1), case (iv).

By Lemma CNV.6(E) above, we can find C' € B]_Qr and D € AP such that
(A, B,C, D) is rotund. Now let H be the set of all corners of F other than
X, and X, ;1. By Lemma CNV.6(G) above we may find points F' € AD and
E € BC such that if G = (A, B,E,F), then insGUG = enc§ contains no
corners of F other than possibly A or B (which would be the case if A or B
were the same as X; or X;11). Thus FE contains no corner of F , is a subset
of encG and does not contain either X; or X;;.

Since both AF and BE are disjoint from F we may apply Lemma
CNV.6(D) to conclude that every edge which intersects FEin only one point

must also intersect AB. But no edge of F contains two points of 1]7_EE, for if
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this segment contained two points of an edge, that edge would be a subset
of it (since neither E nor F € F) and }]7—E[ would contain a corner of F, a
contradlctlon Thus all edges 1ntersect1ng FE must also intersect AB SO that
XJ 1X7, X; XJ_H, and XJ+1X7+2 are the only edges that might intersect FE.

We now show that none of these are possible.

X; 1 P Q P Q P Q
P // ,/ | A:Xj - |
A= X / X \/ Xjta - L X2
" ! /\/
B~ Xjn
! B=X;n Xj-1 B=Xjn
Hypothesis (2) Hypothesis (3) Hypothesis (4)

Fig. 6.22 For Lemma CNV.6(I), hypotheses (2)—(4), case (iv).

(a) XJTJH] cannot intersect F'E since both F and E are on the same side
of /@ = X X1

(b) Neither can the edge W intersect FE: if hypotheses (1) or%
hold, A # X], S0 that if W intersects F L (which is in the side of A
opposite X) 1X would contain points on both sides of jﬁ and hence
would 1ntersect A by Axiom PSA, and because this last intersection would
be on the Xj-side of ﬁ and also on the F-side of /ﬁ, it would belong to
AP, contradicting APNF = 0.

If hypotheses (2) or (4) hold, XJ 1 € out LPAB = out ZPX;B, so that
m C out ZPX; B, whereas FE C 1ns LPAB (as it lies on the B-side of
jﬁ and on the P-side of j@ , so that XJ 1X cannot intersect FE

(¢) An argument similar to (b) shows that the edge m cannot in-
tersect FE. Hence FENF = (), and therefore ((P,F,E,Q)) is a polygonal
path joining P and @, which does not intersect F, so by Theorem SEP.13(A),
P and @ have the same parity. O

Theorem CNV.7 Let F = (Xy,...,X,) be a simple polygon. Then

ins F is convez iff F is rotund iff enc F is convez.

Proof. (A) From Theorem CNV.4(B), if F is rotund, then ins F is convex.
We show the converse, that if ins F is convex, F is rotund. See Figure 6.23.

Suppose F is not rotund. Then by Theorem CNV.3(D)(3) for some integer
J € [1;n] there are points of ins F on both sides of X Xjt1. Let X be a
point such that X;—X- X]+1 Then by Theorem SEP. 7(A) there is a point
E ¢ X Xj4+1 such that EX Cins F.



6.4 Rotundity and convexity (CNV) 159

Let P € insF be on the side of X jXj+1 opposite F. Without loss of
generality we assume P is on the X ;-side of ﬁz Then ﬁ intersects ijjH
at a point Z where P-Z-FE. If Z € XijH] then PE is a segment joining P
and F which also contains a point of F, a contradiction to the assumption
that ins F is convex.

E—7F—3
If Z ¢ X;X;41, Z-X;~X;11, since P is on the X,-side of EX. Then since
— e e
X; € ZX, and both ZX and EX are subsets of ins ZEPX, by the Crossbar
E——>
Theorem the ray PX; intersects EX at some point W which belongs to ins F.
Thus PW is a segment joining P and W which contains a point X, of F,
contradicting the assumption that ins F is convex. We have shown that ins F

is convex iff F is rotund.

P

E—)
The case in (A) where PE

intersects X; X1 outside X; X1

Fig. 6.23 For proof of Theorem CNV.7(A).

(B) Now we show that ins F is convex iff enc F is convex. Suppose ins F
is convex; by Lemma CNV.6(A) F is rotund. If P and @ € enc F, either
(i) both P and @ € ins F,
(ii) both P and @ € F,
(ili) Q € ins F and P € F, or
(iv) P€insF and Q € F.

In case (i) ﬁj C ins F C encF by assumption; in case (ii), if P and @
belong to the same edge of F then ﬁj is a subset of that edge and hence
of F and hence of enc F; if P and @ belong to different edges, by Theorem
CNV.5(2) PJ_Qr C ins F and hence Wj C enc F.
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In case (iii), since % Nins F # 0, % intersects F in exactly two points,
P and some point R, and Q) € PR by Theorem CNV.5. Thus %TQJ - PR -
enc F. Similarly for case (iv).

To prove the converse, assume enc F is convex, and let P and @ be any
two points of ins F. Then BD_d C enc F because enc F is convex.

Now suppose ﬁj is not a subset of ins F; then every point of PJ—QC that does
not belong to ins F belongs to F. Let A be the first point (where P < Q)
such that A € PJ_Qr NJF. Then A is a corner and there exists at least one edge
AB which is not a subset of %

Let D' be the first point of PBNF (where P < B) and let D be such that
P-D-D'-B. Then since P € ins F, D € insF by theorem SEP.4(A). Note
that both PB and AB are subsets of ins /ZPQ@B. Then D € ins ZPQ@B so by
the Crossbar Theorem, there exists a point X such that w NAB = {X}.
By Theorem SEP.7 there exists a point E on @ such that BX C out F.
Thus we have a segment (3)76,2]) connecting two points D and @ of ins F which
contains points of out F so that ﬁj ¢ enc F, contradicting the convexity of
enc F. See Figure 6.24. O

’I

P, @ and D all belong to ins F but there are
points of Qj_Di that belong to out F

Fig. 6.24 For Theorem CNV.7, contradicting the convexity of enc F

Theorem CNV.8 (A) Let F be a simple polygon, L a supporting line
of F, and let H be the half-plane with edge L such that ins F C H. Then
encF CHUL.

(B) Let F = (X1,...,Xn) be a simple polygon and let L be a line. Then
L Nins F # O iff there exist corners of F on opposite sides of L.

(C) Let F be a simple polygon and L be a line. L is a supporting line of
F if and only if FN L # 0 and L Nins F = ().

Proof. (A) By Theorem CNV.1(2), every edge of F is a subset of £ UH.
(B) Assume that £ Nins F # (. Then £ must intersect F, for otherwise

L C out F which is a contradiction to £ NinsF # (). If all the corners not

in £ are on one of its sides H, then ins F C H by Theorem CNV.1 which
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contradicts £Nins F # (). Therefore at least one corner must be on each side
of L.

Conversely, assume that X; and X}, are corners of F on opposite sides
of £, and choose the notation so that 1 < j < k < n (if necessary re-index
the corners). Let r be the greatest integer less than &k such that X, is on the
Xj-side of £, and let s be the least integer greater than r such that X, is on
the Xj-side of L.

Then for all ¢ with r < i < s, X; € L. Then s < r + 3 because otherwise
there would be three adjacent collinear corners of F which is impossible. Thus
one of three possibilities holds:

(1) s =r+ 1, in which case X, is on the opposite side of £ from X, and
)](T—Xz NL # § by Axiom PSA, and the intersection is a singleton P since
L+ m Then by Theorem SEP.7 there is a point of ins F on L.

(2) s = r+ 2, in which case X1 = X,41 € L. X, X,41, and X, are
noncollinear because F is a polygon. Let A and B be points on £ with
A-X,1-B. Then one of the points A or B is on the X,-side of XTHXS
and also on the z,-side of XTXTH and thus belongs to ins ZX, X, 1 X,. By
Theorem SEP.7 £ Nins F # 0.

Fig. 6.25 For proof of Theorem CNV.8(B) alternative (3).

(3) s = r+ 3, in which case X, ;1 and X, 5 both belong to £, while X,
and X, are on opposite sides of L. Pick a point P with X, 1—P-X, o; by
Theorem SEP.7 there exists £ ¢ £ with PE Cins F. See Figure 6.25.

Now FE is either on the X -side or on the X,-side of £. Without loss of
generality we may assume the former; pick a point C' € L to be the first
intersection of the ray 5(T+2Xr+1 \3(T+2Xr+f with F, and let @) be such that
C-Q-X,q1.

Since PE contains no point of F by Theorem PLGN.13 there is also a
point D € PE such that every edge £ that intersects Q]—DC also intersects C]ﬁD;
but the only edges that intersect CJQTD are (a) m C L which cannot
intersect QJ_DE because D is on a side of £, and (b) EXTTTH] which cannot
intersect Q]—DC because it is on the opposite side of £ from D. Thus QHD] does
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not intersect any edge of F and by Theorem SEP.4 ) and D have the same
parity. Since D € ins F, ) € ins F, hence £ Nins F # 0.

(C) If £ is a supporting line, by Definition CNV.2(A) F N L # 0 and
ins F is entirely on one side of £, and so disjoint from £. Conversely, suppose
FNL#Pand LNins F = (. By part (B), if LNins F = () then all the corners
not on L are on the same side H, so that by Theorem CNV.1, ins F C H and
L is a supporting line. 0O

Theorem CNV.9 Let F be a simple polygon and L be a supporting line
of F. If there exist distinct corners A and B of F such that A€ L, B € L,

and AB is not an edge of F, then enc F and ins F are both nonconvex.

Proof. If every point between A and B belonged to F, then AB would be
an edge of F. Therefore some point C' with A-C-B fails to belong to F, and
since ins F N L = () (Definition CNV.2(A)) C € out F. Therefore enc F is

nonconvex and by Theorem CNV.7 ins F is nonconvex. 0O

Corollary CNV.9.1 Let F be a simple polygon and L be a supporting
line of F. If ins F (or enc F) is convez, then for any distinct corners A and
B of F such that A€ L and B € L, AB is an edge of F.

Proof. The corollary is the contrapositive of Theorem CNV.9. O

Definition CNV.10 Let £ be any nonempty subset of the Pasch plane.
The convex hull of £ (notation: coh &) is the set T such that 7 is convex,
E C T, and if H is any convex set containing &, then 7 C H.

Theorem CNV.11 (A) If &€ C F are nonempty subsets of a plane, then
coh & C coh F.

(B) If € is any nonempty subset of a plane, then & is convex iff cohE C &
iff cohE = €.

(C) If € is any nonempty subset of a plane, coh(coh&) = coh €.

(D) If F is a simple polygon, then ins F C coh F, encF C cohF, and
coh(enc F) = coh F.

(E) If F is a simple polygon, then F is rotund iff ins F is convex iff con F =

enc F.

Proof. (A) coh F is a convex set containing £ so coh& C coh F.
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(B) If € is convex then coh& C &, since € is a convex set containing &.
Conversely, if coh& C &£, we know already that £ C coh &, so coh& = £ and
& is convex.

(C) coh & is convex, so by part (B) coh(coh&) = coh €.

(D) Let P € ins F, and let A and B be two points such that A-P-B and
j@ contains no corner of F; then both ][3—}1 and ][@ intersect F at points
C and D respectively, since the parity of P is odd, and P € CD C coh F
because coh F is convex. Since F C coh F it follows that enc F C coh F, and
from (A) and (C) coh(enc F) C coh(coh F) = coh F.

(E) If ins F is convex, then encF is convex by Theorem CNV.7, so
enc F = coh F by part (B). If coh F = enc F then enc F is convex so that by
Theorem CNV.7 ins F is convex. 0O

Theorem CNV.12 Let F be a simple polygon, A be any member of
ins F, P a corner of F, and H a given halfplane with edge /@ Then there
exists a corner Q of F belonging to H such that no corner of F belongs to

ins ZPAQ.

Proof. Since the line ﬁ has non-empty intersection with ins F, by Theorem
CNV.8(B) thereis a corner R of F with R € H (because there must be corners
on both sides of jﬁ) If there is no corner of F belonging to ins ZPAR take
@ = R and we are done.

On the other hand, if there is a corner of F belonging to ins ZPAR, then
the set D = {X|X is a corner of F and X € ins ZPAR} is non-empty. De-
fine an ordering < on D as follows: if S and T € D, S < T if and only
if S € ins/ZPAT. Let @ be the minimal element of D with respect to this
ordering. Then no corner of F belongs to ins ZPAQ. O

Corollary CNV.12.1 Let F be a simple polygon, QQ be any member of
ins F, and let P be any corner of F. Then there exists a corner QQ of F such
that no corner of F belongs to ins ZPAQ.

Proof. Let H be either halfplane with edge jﬁ ad

Theorem CNV.13 Let F be a simple polygon, D the set of all segments
both of whose endpoints are corners of F, £ the union of all segments in D,
and let A be an arbitrary point of ins F.

(A) Let P and @ be corners of F such that no corner of F belongs to
ins ZPAQ, B be any member of ins ZPAQ, and let C' be the last intersection
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of £ and 54? Then the line f(ﬁ containing the member EF of D which
intersects @ at C' is a supporting line of F.

(B) Let L be a supporting line of F which contains at least two distinct
corners of F. Then there exist distinct corners P and Q of F such that no
corner of F belongs to ins ZPAQ, and if B is any member of ins ZPAQ, then
the last intersection of the set £ and ﬁ is on L.

Fig. 6.26 For Theorem CNV.13(A),(B); the dotted lines are the lines of D which are not
edges of F.

Proof. See Figure 6.26. (A) It suffices to show that there is no corner of F
on the side of opposite the A-side. If there were such a corner R, then
since R is not on /ﬁ either £ and R would be on the same side of /ﬁ or F
and R would be on the same side of j@ . Furthermore, FR and ER would
be on the side of ﬁ opposite the A-side. Hence ﬁ would intersect exactly
one member of {FJTE, E]_IJE} at M such that A-C—M. This would contradict
the fact that C is the last point of intersection of £ and ﬁ

(B) Let the given corners on £ be J and K. If we let P = J, then by
Theorem CNV.12 there is a corner ) on the K-side of jﬁ such that there
are no corners of F in ins ZPAQ. If m intersects £ in a point M, then
P-M-K or M = K because if P-K-M, then K € ins ZPA(Q which contra-
dicts the definition of @. From this it follows that if B € ins ZPAQ), then
@ intersects £ at N such that P-N-M-K (possibly M = K). Let C be
the last intersection of 54? with £ Now C cannot be on the A-side of £
because PEHK C L and 54? intersects L, and C cannot be on the side of £
opposite the A-side because then there would be corners of F on that side of
L, contradicting the definition of a supporting line. Hence C' € £. O
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Definition CNV.14 Let F be a simple polygon. A supporting line £ of
F is basic if and only if £ contains at least two corners of F.

Remark CNV.15 (A) By Theorem CNV.13(A) every polygon has at
least one basic supporting line.

(B) Let £ be a basic supporting line of the simple polygon F. The set C
of corners of F belonging to L is finite, and may be ordered by Definition
ORD.1. Hence there exist two (distinct) corners, P and @, of F on L such
that all other corners of F on L are between P and Q.

Definition CNV.16 The corners P and @ of the above remark are the
extremal corners of F with respect to the basic supporting line L.

Thus all the corners (other than extremal corners) of F lying on a basic
supporting line £ are between the extremal corners.

Theorem CNV.17 If F is a simple polygon, L is a basic supporting line
of F, and V is an extremal corner of F with respect to L, then V' belongs to
exactly one other basic supporting line M of F, and V is an extremal corner
of F with respect to M.

7 7
7
g
7
rQ !
4 /
/
, /

Fig. 6.27 For proof of Theorem CNV.17(1).

Proof. See Figure 6.27. (I: Existence of M) Let U be any corner of F on L
different from V and let A be any member of ins F. By Theorem CNV.12
there exists a corner W of F such that U and W are on opposite sides of /W
and there is no corner of F which belongs to ins ZVAW.
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Let B be any member of ins ZVAW, D be the set of segments joining
corners of F, £ be the union of the members of D, C be the last intersection
of & with ﬁ; and let DE be the member of D such that D-C—FE.

Suppose the notation has been chosen so that F is the endpoint of DE on
the W-side of /ﬁ Therefore D lies on the V-side of /ﬁ and D ¢ ins ZVAW.
If D # V, there are three possibilities:

(i) D € £ U-side of VA C A-side of VE;

(ii) D € A-side of £ N U-side of VA C A-side of ﬁ; or

(iii) V-D-A.

In any of these cases, ﬁ C A-side of ﬁ so C' would lie between A
and the intersection of VE with @ , contradicting the definition of C'. Thus
D = V. By Theorem CNV.13(A) ﬁ = M is a supporting line of F and
since V' € M it is a basic supporting line different from L.

(IT: V' is an extremal corner) Since no corner of F belongs to H, V is an
extremal corner of F with respect to M.

(IIT: Uniqueness of M) All of the corners of F not on £ or on M lie in
ins Z/UVE. If N were a line containing V' and some other corner not on W
or ﬁ, that corner would belong to ins ZUV E and U and E would be on
opposite sides of A/, which could not be a supporting line. O

Definition CNV.18 Let F be a simple polygon. A corner V of F is
normal if and only if V' is an extremal corner of F with respect to some

basic supporting line of F.

Remark CNV.19 (A) By Theorem CNV.17 and Remark CNV.15(A)
every polygon has at least three normal corners and at least three basic
supporting lines.

(B) If a simple polygon G is rotund (i.e., ins G is convex), then every edge

of G is contained in a basic supporting line and every corner of G is normal.

Theorem CNV.20 Let F be any simple polygon. There is a simple poly-
gon G whose corners are the normal corners of F, every edge of G is contained
in a basic supporting line of F, and every basic supporting line of F contains
an edge of G.

(A) The polygon G is rotund, and encG = cohG.

(B) There is no simple polygon different from G whose corners are the
normal corners of F.

(C) Every corner of F not on G belongs to ins G, and F C encG.
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(D) coh F = encg.

Proof. by Remark CNV.15(B) every basic supporting line of F contains ex-
actly two normal corners. By Theorem CNV.17 every normal corner is con-
tained in exactly two basic supporting lines.

Choose any normal corner of F and call it X;. There are exactly two
basic supporting lines containing X;. Let £; be either one of them and let
X5 be the other normal corner on £;. Then there is exactly one other basic
supporting line containing Xs; name this line L5; Lo contains exactly one
other normal corner; name this corner X3. Continuing in this manner we
define a mapping X of some set [1;n] onto the set of all normal corners of F.

Let £; be the basic supporting line containing the normal corners X; and

Xjt+1, Ly the basic supporting line containing the normal corners X and

Xk+1, and suppose :XijJrf and :XkX;ngf intersect at some point C' such
that X;—C-X ;41 and X,—C—-X}1. Then X}, and X1 are on opposite sides
of L£;, which by Theorem CNV.8 contradicts the fact that it is a supporting
line of F. Hence no such C exists. If, on the other hand, we were to have
Xj—X,—Xj41, then these three normal corners would be collinear and this is
impossible by definition of extremal point.

This shows that Uzzlm is a simple polygon G. That it has the
properties claimed for it in (A) follows from the manner in which it was
constructed.

(A) Since each edge of G is contained in a basic supporting line £ of F it
follows by Theorem CNV.8 that all of the corners of F except those on L lie
on the same side of £, so G is rotund. By CNV.11(E), encG = cohg.

(B) The assertion follows immediately from the more general fact that a
rotund polynomial is completely determined by its corners. We state this here

as a lemma:

Lemma Given a set of corners for a rotund polygon G = (X1, Xa, ..., X,),

there is no simple polygon different from G having the same set of corners.

Proof. If there were a simple polygon G’ havmg the same set of corners as
G, there would be a corner X; of G (with XJ 1X and X XJ_H its adjacent
edges in G), such that one of the edges of G’ containing X; would be Xij
where X # X411 and X, # X1,

Then by Theorem CNV.3(D) X, € ins ZX; 1 X; X1 so X1 and X4
are on opposite sides of ? Since X;_1 and X1 are both corners of G,

there must exist a polygonal path @ = ((Y1,...,Y;,+1)) where Y1 = X;_4,
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Yim+1 = Xj41, each of the segments %’iYiH] is an edge of G’, and no segment

in Q is [XjX;:. (There is another polygonal path joining X; ; and X, in
G’ which includes BTX;)

Let p € [1;m] be the greatest index such that Y}, belongs to the X;_;-side
of X;Xp; then Yp41 ¢ X; X for otherwise there would be three collinear
corners of G, which is impossible since G is rotund. Thus Y,,; belongs to
the X41-side of m, and by Axiom PSA, m ﬂm = {C} for some
point C. By Theorem CNV.7, enc§ is convex, so that m C enc@ and
hence C € enc @, and thus C € BTX;: , which is impossible since G’ is simple.
Therefore no such polygon G’ as postulated above can exist. O

We return now to the proof of Theorem CNV.20.

(C) Let £; be the basic supporting line containing the normal corners X;
and X;41, and let H; be the side of £; that contains all corners of F other
than X; and X; ;. Then insG = ﬂ?zl H; contains all the corners of F that
are not on G, and encG = ins G U G contains all corners of F. Since enc§ is
convex, it contains every edge of F.

(D) Continuing from part (C): from F C encG and Theorem CNV.11(A),
coh F C coh(encG) = enc§ since enc G is convex. Now let H be any convex
set containing F. Every corner of G is a corner of F, so encG = cohG C H
(by Definition CNV.10) and hence encG C coh F. 0O

Definition CNV.21 (A) A convex subset £ of a plane is bounded if
and only if for each line £, £N L is contained in a segment (that is, a bounded
set) of L.

(B) A subset & of a plane is bounded if and only if there exists a bounded

convex subset of the plane containing £.

Theorem CNV.22 (Proof of Theorem JCT.1, part (C)) Let F be
a simple polygon. Then F and ins F are bounded but out F is not bounded.

Proof. By Theorem CNV.20 there exists a rotund polygon G such that
cohF = enc@G. Since G is rotund, by Theorem CNV.5 G and encG are
bounded. By Theorem CNV.11(D) F and insF are subsets of coh F and
hence are bounded.

Let AB be any edge of G, C' be any point on the side of /ﬁ opposite the
side containing the corners of G different from A and B, and D be any point

such that A-C-D. By the extension property of betweenness (cf Definition
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IB.1(B.3) and Definitions IB.3 and IB.4) no segment contains Cﬁ, and hence
no segment contains out F N Cﬁ because Cﬁ C out G C out F. Thus out F
is unbounded. 0O

Remark CNV.22.1 It is quite easy to prove that any simple polygon F
is bounded. Let £ be any line that intersects F; let P € L be a point which is
not on F and let Q and Q' be points on £ such that Q—P-Q’; first order the
line so that P < @; by Theorem PLGN.4(A) there exists a first point C' and
a last point D in Pjﬁﬁﬁ; similarly, we may order the line so that P < Q’,
z]m_d> by the same theorem the&xists a first point C’ and a last point D’ in
PQ' ' NL. Moreover, F N L C DD’, so that F is bounded.

This, however, does not prove that ins F is bounded, although it seems
intuitively obvious. But then, the Jordan Curve Theorem itself is intuitively

obvious.

Theorem CNV.23 Let F = (Xy,...,X,) be a simple polygon.

(A) The inside ins F is nonconvez if and only if there exist corners A and
B of F such that jﬁ is a supporting line of F and every point on this line
between A and B belongs to out F.

(B) Suppose ins F is nonconvex. Let A and B be the corners whose ex-
istence is assured by part (A). Re-index F (if necessary) so that X; = A,
X, = B, and X;_1 is on the side of X; X, 41 opposite B, where {i,j} C [1;n]
and i < j. For simplicity of notation, we will use A and B in place of X; and
X, respectively.

Let
G = (U}, XrXrs1) UAB,
and
H = (Uit X3 Xpr1) UAB.

Then G and H are simple polygons,

insH CinsG, ins F Cins G,

insH C out F, out G C out F, and

insG\ (H\ AB)UinsH) C ins F,
that is to say,

insGNoutH Cins F.
Furthermore, out F = out G Uins H U AHB

Proof. (A) Suppose ins F is nonconvex. By Theorem CNV.20 there exists a
simple polygon T such that coh F = enc T and every corner of 7 is a corner of
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F. Since ins F is not convex, by Theorem CNV.11(E) enc 7 = coh F # enc F,
so enc F is a proper subset of enc 7. Since every edge of 7 is contained in
a supporting line of F, T contains no points of ins F. Hence T contains
only points of F and out F. Suppose it contains only points of F. Then by
Remark PLGN.6(F) F = T, ins F = ins T, and hence ins F is convex which
contradicts our original assumption, so that 7 must contain some points of
out F.

Let CD be an edge of T which contains a point F in out F. Then the set
of corners of F belonging to CE can be ordered by Definition ORD.1 with
C < D. Let A be the corner of F on CFE closest to E by this ordering.

Similarly, let B be the corner of F on ED which is closest to E. Then
every point between A and B belongs to out F.

Conversely, if there exist corners A and B of F such that every point
between A and B belongs to out F, then enc F is nonconvex and by Theorem
CNV.7 ins F is nonconvex.

(B) A routine check of the definition of a simple polygon shows that G
and H satisfy the definition, inasmuch as AB does not intersect F. It should
be noted, however, that if B lies on m, then A is not a corner of G and
m is an edge of G. Likewise, if A lies on §Xj+1, then B is not a corner of
G and /TJH] is an edge of G. And if both these are true, neither A nor B is
a corner of G and m is an edge of G. Note also that it is not possible,
given the definition of A and B, for either X, ; or X;_; to be collinear with
A and B, for that would force A = X;11 or B = X;_; or both.

Since GN(H\ Eﬁ) =0 and H\ AB is polygonally connected, by Theorem
SEP.13(A) either H \ AB C insG or H V%Bj Coutg.

Now let Z be a point on the side of AB (a supporting line) opposite the
corners of F. Then jél_ZCﬁg = (); then by Theorem PLGN.13 there exists a
point D € AZ such that every edge of G that intersects m also intersects
m; m intersects XZ]T/]l but lies on the side of m opposite D, so
cannot intersect m; and AB is an edge of G that intersects both m
and m Hence the ray m has only one intersection with G, and X1
has odd parity. It follows that H \ AB Cinsg.

Then by Theorem SEP.15, case (2), we have

’H\Sﬁ Cins@G andg\fﬁ CoutH,
out G is a proper subset of out H, and
ins H is a proper subset of insG.

Now let P be any member of out G and let () be any member of out ZAPB
such that I% contains no corners of F, G, or H. % intersects G in exactly
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the points where it intersects F and ; the number of intersections with G
is even, and since out G C out H the number of intersections with H is even,
and hence the number of intersections with F is even. Thus outG C out F.
Taking complements with respect to the plane, this last relation gives us
FUins F C GUinsG, so that ins F C G UinsG. But ¢ C F U AB, and both
F and [/TB] are disjoint from ins F, so that ins F NG = (). Thus ins F C insg.

Let R be any member of insH and S be any member of out ZARB such
that R]? contains no corners of F, G, or H. Then ﬁﬂsél_Bj = () and }?
intersects G in exactly the points where it intersects F and H. The number
of intersections with H is odd, and the number of intersections with G is odd
because ins H C ins G, so the number of intersections with F must be even.
Hence ins H C out F.

Let T be any point of insG \ ((H \ 54_31) UinsH) and U be any point
of out ZAT B such that 7[”—U> contains no corners of F, G, or H. Then since
T €insg, ﬁ has an odd number of intersections with G.

Since AB is a supporting line of G, insG N AB =0 and T ¢ Eﬁ; by its
definition, T' ¢ ((H \ Sﬁ) Uins#), so T € out H, and has an even number
of intersections with H. Thus 7T has an odd number of intersections with F,
T € ins F, and insG \ ((H \ ﬁ) UinsH) C ins F. This reduces to insG N
out H C ins F since out H is the complement of (H \ [/TB]) UinsH).

The final assertion follows from taking complements of the relation

insG\ (H\ AB)UinsH) C ins F
to get
FUoutF CoutGUinsH UG U (K \ AB),
and since
GU(H\AB) = F UAB,
this can be written
FUout F € FUoutG UinsH U AB.
Now
fﬁoutfz}"ﬂ(othUinsHUﬁ) =0,
so we have
out F CoutGUinsH UA]—BC.
But
out G C out F and ins H C out F,
and by hypothesis
jﬁl_é C out F,
so that out F = out G U ins H UA]—BC. O
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Remark CNV.24 Let F = (X1,...,X,) be a simple polygon. The edges
)Tng]‘ and XJTJHJ intersect at X;. Let M and N be points such that
M-X;-Xj41 and N-X;-X;_q, and let A € ins ZNX;X;1 Then the line
ZX—; contains no point of ins ZX,;_1X;X;11. Let A-X;-B. Let A’ be the
first point of intersection of X;A with F (if there is no intersection, let A’
be any point of X]71), and let B’ the first point of intersection of m with
F,(again, if there is no intersection, let B’ be any point of ])@) Finally, let
P and @ be such that A'~P-X,~Q-B'.

Then by Theorem SEP.4(C), since PQNins £X; 1X;Xj11 = 0 both P
and @ € out ZX;_1X;X;41, and X;_; and X;;; are on the same side
of % (if they were on different sides, then %TQ] would contain points of
ins ZX;_1X,;X,;+1, a contradiction). Also, by SEP.4, P and @ have the same
parity relative to F.

Definition CNV.25 Given the setup of Remark CNV.24 above, the
corner X is regular iff the parity of P and @ is even, and irregular if their
parity is odd.

Fig. 6.28 For Remark CNV.26.

Remark CNV.26 (A) If a simple polygon F has an irregular corner X;,
then ins F is nonconvex. To see this, let P and @) be points such that P—X;-Q
and both P and @ € ins F; let D be a member of the X, _;-side (X;41-side)

E—3 L
of PO be such that PD N = ; then D € ins F and by Theorem PSH.6 DO
e B B e
intersects both X;X;4+1 and X;_1X;. By Theorem SEP.7(A), DJ_Qr contains
a point of out F, so that ins F is not convex.

(B) By part (A), if ins F is convex, F has no irregular corners. By Theo-
rem CNV .4(B), if F is rotund, ins F is convex, hence every corner of a rotund
polygon is regular. See Figure 6.28.

Theorem CNV.27 FEvery simple polygon F has at least three reqular

corners.
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Proof. By Remark CNV.19(A) it suffices to show that every normal corner
of F is a regular corner of F. Let A be a normal corner of F. By Theorem
CNV.20 there exists a simple rotund polygon G such that A is a corner of G;
let AB and AC be edges of G, and let D and FE be the corners of F such that
AD and AE are edges of . Then D and FE both belong to ZBACUins ZBAC.
Since A is a regular corner of G (G is rotund—see CNV.26(B)) there exist
points P and @ € out§G such that A is between P and Q, %TQJHQ = {A},
and P and @ both belong to out ZBAC. Since by Theorem PSH.41(D),
out ZBAC C out ZDAEFE, both P and () belong to out F. Hence A is a regu-
lar corner of 7. O

Theorem CNV.28 Let F be a simple polygon. Then F has an irreqular

corner if and only if ins F is nonconvex.

Proof. By Remark CNV.26, if F has an irregular corner, ins F is not convex.
Conversely, suppose ins F is nonconvex and let X;, X;, G and H be as in The-
orem CNV.23(B). By Theorem CNV.27 A has a regular corner X}, different
from X; and X so there exist points P and @ in out H such that P-X;-Q,
BD_dﬁ]: = {Xi} and P and @ are both members of out £/ X} 1 X5 Xp 1.
Since Xy € ((H \ )EQ—X;) C insG, and P and @ can be chosen so that
WQ)TX; = 0, it follows that both P and @ belong to insG. Hence by
the last inclusion in Theorem CNV.23(B) both P and @ belong to ins F and

X}, is an irregular corner of 7. O

Theorem CNV.29 (A) Let F = (Xq,...,X,) be a simple polygon with
n > 4. Then there exist corners A and B of F such that AHB Cins F.

(B) If F = (X1,...,X,,) is any simple polygon with n > 4, which has two
corners X; and X; with 1 <i < j <mn, such that JJQ—X§ Cins F, let

G= ( ! Xka+;) UXiXj;,

k=j—n
and

#H = (U XX ) UXX;,

Then G and H are simple polygons and insG C out H, ins H C out G, and
ins F =insGUins HU X; X ;. Note that k may take on values k <1 or k > n.

Proof. See Figure 6.29.
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X2 X2 _ - XQ

Fig. 6.29 For Theorem CNV.29, where X; = X3 and X; = X5.

(A) Let V be a regular corner of 7 and U and W be the corners of F such
E——3 E——3 E—— E——
that UV and WV are edges of F. Let & = enc(U,V,W) \ (UVUWV), and
D be the set of corners of F belonging to £.

(Case I) See Figure 6.30 below. If D = (), neither the inside of the triangle
(U, V,W), or UW contains a corner of F. Moreover, UW is not a subset of
any edge of F because F has at least 4 edges. Then by Corollary PLGN.12.1,

— —C
any edge that intersects UW must intersect either UV, WV, or {V}. But
there are no edges that intersect UV and %/V_Vg, other than themselves, and
we know they don’t intersect UW . Therefore no edge £ can intersect jU_I/IE/',
and by Theorem SEP.4(A) all points of UW have the same parity.

D € out F hence Z € ins F
and ]UW Cins F

Fig. 6.30 For proof of Theorem CNV.29 Case (I).

Since V is a regular corner there are points P and @) such that Wj NnF =
E—L 3 o —

{V} and both PV and V@ C out F. Let Z € UW; without loss of generality
we may assume that P is on the U-side of 7\)/ and @ is on the W-side.

By Theorem PLGN.13 there exists a point D € w such that every edge

that intersects ZD must also intersect ZV. There are two edges that do

E——3 E—3 E—L E——3

so: UV and WV; UV is a subset of the side of 7\/) opposite W, so UV

P [S— 3

cannot intersect ZD; therefore WV is the only edge that can intersect ZD,

and it does so in a singleton by the Crossbar Theorem PSH.39, because

W eins ZZV Q.
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Then by Theorem SEP.4(A) and (B), the parity of Z is different from the
parity of D (which is even) and hence Z € ins F and UW CinsF.Let A=U
and B =W, so that AB C ins F.

(Case IT) If D # () let C = {X|V-X-W and UX contains a corner of F}.
Ordering WV with V < W choose M to be the first element of C, and let
Z € UM be a corner.

Claim (a) See Figure 6.31. If £ is any edge that intersects ZV at a point
R, then £ must intersect UV or VM.

Line of £ \

Note that R' and R” could lie on the U-side
of ﬁ rather than as shown here.

Fig. 6.31 For proof of Theorem CNV.29 Case (II) Claim (a).

Note first that € cannot intersect ZV at two points, for then 7V would
contain a corner. By Theorem PLGN.12 £ must intersect VM or W, but no
edge can intersect VM because F is simple, so £ must intersect ZM at some
point R”. Let M’ be such that V-M'-M; then UM’ contains no corner and
intersects W at some point R’, by the Crossbar Theorem. We may apply
Theorem PLGN.12 again to AUM'V to conclude that & must intersect Uv
or VM’ (€ cannot contain V' because F is simple). This proves Claim (a).

But no edge intersects UV or ]\]4—’\/E - WV because F is simple. Therefore
no edge intersects ]Z—V[, and all points of 7V have the same parity.

Claim (b) 7V C ins F. See Figure 6.32 below.

Let N be a point of ZV. Without loss of generality we may assume that
P is on the U-side of W and @ is on the M-side.

By Theorem PLGN.13 there exists a point D € ‘]/HQ such that every edge
that intersects N D must also intersect NV. There are two edges that do so:
UV and W; UV is a subset of the side of ﬁ/ opposite D, so UV cannot
intersect ]ﬁ; W, therefore, is the only edge that can intersect ]ﬁ, and
it does so in a singleton by the Crossbar Theorem PSH.39, because M (and
W) belong to ins ZZV Q.
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p |4 D 0

U w

Fig. 6.32 For proof of Theorem CNV.29 Case (II) Claim (b).

Then by Theorem SEP.4(A) and (B), the parity of N is different from
the parity of D (which is even) and hence N € ins F and v C ins F. This
proves Claim (b).

Let A= Z and B =V, so that AB Cins F.

(B) A routine check of the definition of a simple polygon shows that G and
‘H are simple polygons. However, as in Theorem CNV.23, either X; or X, or
both may fail to be corners of either G or H. If X; fails to be a corner of G,
then it must be a corner of H and vice versa. A similar statement holds for
Xj.

Now G and H conveniently intersect in a segment )EQ—X; so we may apply
Theorem SEP.15 to them, and exactly one of its alternatives (1), (2), or (3)
holds.

We first show that there exist points of ins that are not in insG. Let
0 € JJQ—X§ , and choose a point R such that R ¢ TX; and OR contains
no corner of F. Since )EQ—X; is an edge of H, by Theorem SEP.7 there exist
points P and @ such that P-O-@Q and PO C out H and w C insH. Since
O € ins F, we may choose P and @) so that ﬁj Cins F.

Let S be a point such that S € out ZX;QX; and Q]? contains no corner of
F. For this ray, the number of intersections with F is the total of the number
of intersections with G and with H.

iﬁ has an odd number of intersections with F since @ € insF, an odd
number of intersections with A since @ € ins’H, and hence an even number
of intersections with G, so that @) € outg.

Therefore @ is a point of ins H but not a point of ins G, and insH C ins G
is false. Similarly, ins G C ins# is false, thus ruling out alternatives (1) and
(2) of Theorem SEP.15, and alternative (3) is valid so that insG C out H and
insH C out G. See Figure 6.33.
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Fig. 6.33 Showing insH ¢ insG.

We now show that ins F C ins GUins ’H,U)TX; If X €insFand X ¢ )TX;
and X ¢ ins#H, it follows that X € insg.

Again, let S be a point such that S € out ZX; X X; and XS contains no
corner of F. As above, the number of intersections with F is the total of the
number of intersections with G and with H.

Xj? has an odd number of intersections with F since X € insF; since
X ¢ ins H (and does not belong to #H) it belongs to out H and has an even
number of intersections with 7. Hence it has an odd number of intersections
with G, so that X € ins G. By a similar argument, if X € ins 7 and X ¢ )](Z—XJE
and X ¢ insG then X € insH. Note also that it has now been proved that
][3—[0 Cinsg.

Finally, we show that ins 7 D insG U insH U )E(Z—X; . By alternative (3) of
SEP.15 insG Nins F = . Let X € ins’H and X ¢ insG and X ¢ )EQ—X; S0
that X € outG. Again, let S be a point such that S € out ZX; X X; and )ﬁ
contains no corner of 7. Then Xj? intersects H an odd number of times, G an
even number of times, so that it intersects F an odd number of times, so that
X € ins F. A similar argument shows that if X € insG but does not belong
to )E(Z—X; or to insH, then X € ins 7. We already know that )](Z—XJE Cins F,
so it follows that ins F = ins G U ins H U )TX; O

Definition CNV.30 Let S be a finite noncollinear set of points. (Mean-
ing, according to Definition 1.0, that there is no line £ such that S C L.)
A supporting line of S is a line £ such that SN L # () and all points of
S not on L are on the same side of £. A basic supporting line of S is a

supporting line which has at least two members of S on it.

Theorem CNV.31 FEwvery finite noncollinear set S has a basic supporting

line.
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Proof. Let D be the set of segments whose endpoints are members of S and
let £ be the union of the members of D. Let A, P, and U be noncollinear
members of S. If any of the lines jﬁ, ﬁ, or ﬁ} is a supporting line of S,
then the proposition is true. Hence, assume none of these lines is a supporting
line of S.

If (ins ZPAU)NS = 0, then let Q = U. If (ins ZPAU)NS # B, then there
exists a member @ of enc ZPAU such that ins ZPAQ NS = (). Let B be any
member of ins ZPAQ and let C be the last point of intersection of £ and ﬁ
Then the line ﬁ containing the member EF of D which intersects AB is a
basic supporting line of S. To show this it suffices to show that no member
of § is on the side of H‘ opposite the A-side. If there were a member R of S
on this side, then since R is not on jﬁ , either F and R are on the same side
of ﬁ, or they are on opposite sides. Furthermore ER and FR are on the
side of ﬁ opposite the A-side. Hence by the Plane Separation Axiom 54?
intersects exactly one member of {E]HR, Fj'—}%} at M such that A-C—-M. This
contradicts the fact that C' is the last intersection of £ and /@ . O

Definition CNV.32 Let S be a finite noncollinear set of points and let
L be a basic supporting line of S. Using Definition ORD.1 to order the points
of £, then by Theorem ORD.10, £LNS has a maximum and a minimum point.

These points are the extremal points of S with respect to L.

Theorem CNV.33 Let S be a finite noncollinear set of points, L be a
basic supporting line of S, and V be an extremal point of S with respect to
L. Then V belongs to one and only one other basic supporting line M of S

and V is an extremal point of S with respect to M.

Proof. (Existence of M) Let U be any point of SN £ which is different from
V', A be any member of § not on £, and let H be the side of £ opposite the
A-side.

If jﬁ} is a supporting line of S, let M = /W Since L is a supporting line
of §, by Definition CNV.30 there is no point of § in H. Therefore V' is an
extremal point of & with respect to M.

If A<_)V is not a supporting line of S, then there exists a member W of S
such that W and U are on opposite sides of /W and no point of S belongs to
ins ZVAW. (To see this choose any member W' of § where W’ and U are on
opposite sides of jﬁ}, then let C = {X|X € VW' and AX contains a point
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of §}. Ordering C with V' < W’ let W be the least member of C. Then there
is no point of § belonging to ins ZVAW.)

Let D be the set of segments whose endpoints are members of S and let
& be the union of the members of D. Let B be any member of ins Z/VAW, C
the last intersection of £ with /ﬁ, and let DE be a member of D such that
D-C-FE.

Choose the notation so that E is the endpoint of DE which is on the
W-side of @; then D is on the V-side of AB and D ¢ ins ZVAW. By the
same argument as in Theorem CNV.17, D = V. (For once, even the notation
is the same, so the arguments are letter-for-letter the same.)

As in the proof of Theorem CNV.31, M = Wi is a basic supporting line
S. (This time the notation is not quite the same-substitute D for E and E
for F in the original argument, and it works.)

Since by Defnition CNV.30 no point of S belongs to H, V is an extremal
point of V' with respect to S.

(Uniqueness of M) Since S is contained in enc ZUVE, if N is a line
through V' and some other point of S, then S Nins ZUV E is nonempty and
N is not a supporting line of S. O

Definition CNV.34 Let S be a finite noncollinear set of points. A point
of § is normal if and only if it is an extremal point of S with respect to a

basic supporting line of S.

Remark CNV.35 By Theorems CNV.31 and CNV.33 every finite non-
collinear set of points has at least three normal points and at least three basic

supporting lines.

Theorem CNV.36 Let S be a finite noncollinear set of points.

(A) There is a simple polygon G whose corners are the normal points of S,
every edge of G is contained in a basic supporting line of S and every basic
supporting line of S contains an edge of G.

(B) The polygon G is rotund.

(C) There is no simple polygon different from G whose corners are normal
points of S.

(D) Every member of S not on G belongs to ins G, and S C encG.

(E) coh S = encg.
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Proof. A slight modification of the proof of Theorem CNV.20 is left to the
reader as Exercise CNV.1. O

6.5 Connectedness (CNT)

Lemma CNT.1 Suppose F is a simple polygon and J is a polygonal path
such that F N J = 0; by Theorem SEP.13(A) either J C ins F or C out F.
Then if Z is a closed segment AB and J is a simple polygonal path which is
not a segment, then there exists a one-to-one mapping ¢ of I onto J such
that the image of each endpoint of T is an endpoint of J.

Proof. Using Definition PLGN.5(B) let J = ;- m, where m is a nat-
ural number greater than 1. Using the denseness property of a segment (cf
Theorem PSH.22) we can find a set {4 = Wy, Wa,..., W41 = B} C AB
such that for each k € [1;m], Wi < Wy41 (where AB is ordered by ORD.1
with A < B). Using Theorem PSH.56, for each k € [1;m], let ¢ be a
one-to-one mapping of %/VkaH] onto EZka+1j such that ¢ (W) = Z; and

©k(Wit1) = Zig1. Let o = U], ¢k; then ¢ is a one-to-one mapping of Z
onto J such that o(W1) = Z; and ¢o(Wi41) = Zipt1. O

Theorem CNT.2 The outside of a rotund polygon is polygonally con-

nected.

Proof. Let F = (Xy,...,X,) be a rotund polygon and let A € insF. For
each i € [1;n— 1] define Y; recursively as follows: let Y7 and Y3 be any points
such that A-X1-Y; and A-X,-Y5.

For each i € [3;n — 1], if /HU?ZFHZ,QYZ-A contains some point Z, let Y;
be any point such that A-X,—Y;—Z, otherwise let A-X,-Y;; if 547; ﬁm
contains some point Z, let Y,, be any point such that A-X,,-Y,,—Z, otherwise
let A-X,,-Y,,.

No two rays R and AHXJ can intersect, for if they did, they would be
the same, and would contain both X; # X, in contradiction of Theorem
CNV.4(A), so that Y; # Y, if i # j. Also, by the construction, no three
adjacent points Y; can be collinear. Therefore G = (Y7,...,Y,,) is a polygon.

G is a subset of out F because every edge YZTZH] is on the side of X;X;41,
and STYE is on the side of m opposite A. Finally, G is simple, for if there
were integers j and k such that j = k(modn), j = k + 1(modn) and j =
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k—1(modn) and a pomt D such that D e VY, Y41 N YkYk+1, then /ﬁ would
intersect both X ; XJH and XkaH, contradicting Theorem CNV.4(A).

Now let P and @) be any members of out F. The Crossbar Theorem PSH.39
assures that G intersects each of ﬁ and m at exactly one point R or §
respectively. If R = S'let J = ﬁj Without loss of generality we may assume

E—3 [——
there exist ¢ < j belonging to [1;n] such that R € Y;Y; 1 and S € Y;Yj41. If
i=jlet 7 =PRURSUSQ. If i # j let

J = PRURY.1 U (U2l Vit ) USY; UQS.

Since A-P-R, A € insF, P € out F, R € out F, and 54? has only one
intersection with F, PR C out F; a similar argument shows iﬁ C out F; all
the other segments in the construction of J are known already to be subsets
of out 7, so J Cout F. 0O

Theorem CNT.3 (Proof of Theorem JCT.1, part (D); the inside
and outside of a simple polygon are polygonally connected.) Given
any simple polygon F = (X1, ..., Xy, both (A) the inside ins F and (B) the

outside out F are polygonally connected.

Proof. (A) First note that the inside of a triangle is polygonally connected
since it is convex. We now show that ins F is polygonally connected whenever
it is true that for every k with 3 < k < m, the inside of every polygon with k
edges is polygonally connected.

This shows, by the “strong form” of mathematical induction, that the
inside of every simple polygon is polygonally connected. The italicized state-
ment is called the “induction hypothesis.”

By Theorem CNV.29(A) there exist corners A and B of F such that
AB C ins F. Let G and H be the simple polygons described in Theorem
CNV.29(B). Since G and H each have fewer corners than F has, both ins G
and ins H are polygonally connected by the induction hypothesis.

As in the proof of CNV.29(B), let I # J be points such that 1J C ins F,
TINAB = {0}, 70 C insG and JO C insH. Let P # () be any points of
ins F. By CNV.29(B),

{P,Q} Cins F = insG Uins H U X, X,.
Then one of the following cases will hold:
(i) P and @ both belong to ins G (or ins H);
(ii) P €insG (or insH) and A-Q-B;
(iii) P € ins G and @ € insH; or
(iv) P and @ both belong to AB.
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In case (iv) ﬁj C AB C ins F and %TQJ is a polygonal path joining P
and @, and in case (i) there is a polygonal path joining P and @ in insG (or
ins H) (hence in ins F) by the induction hypothesis.

In case (ii) there exists a polygonal path J C insG (insH) with endpoints
Pand I (P and J) so that J U b_d uTOo (JUu b_d U E]_(j) is a polygonal path
contained in ins F connecting P and Q).

In case (iii) there exist polygonal paths Z C insG and J C insH such
that Z connects P to I and J connects @ to J. Then Z U ﬁUJ C ins F
is a polygonal path joining P and Q. It follows that ins F is polygonally
connected.

(B) If ins F is convex, then by Theorem CNV.7, F is rotund and by The-
orem CNT.2 out F is polygonally connected. If ins F is not convex, again we
use induction on m to show that out F is polygonally connected. We initiate
the induction by noting that the outside of a triangle is polygonally con-
nected since every triangle is convex. Now assume the induction hypothesis:
for every k with 3 < k < m, the outside of every polygon with k edges is
polygonally connected.

By Theorem CNV.23(A) there exist corners A and B such that AB is a
supporting line of F and every point between A and B belongs to out F.
Let G and H be the polygons defined in Theorem CNV.23(B). By Theorem
SEP.7, we may let I # J be points such that 1J C ins F, TJNAB = {0},
% C out G and % CinsH.

Also, from Theorem CNV.23(B) we get out F = out G UinsH U AB. We
will refer to this without reference in the rest of the proof.

Let P # @ € out F. We then have the following cases:

(i) P and @ both belong to out G (or ins H);
(ii) P € out G (or insH) and A-Q-B;

(iii) P € out G and @ € insH; or

(iv) P and @ both belong to AB.

In case (iv) BD_d C AB C out F and BD_d joins P and Q; in case (i) there is
a polygonal path joining P and @ in out G (or ins H)(hence in out F) by the
induction hypothesis.

In case (ii) there exists a polygonal path 7 C out G (ins H) with endpoints
Pand I (P and J) so that J U [6275 uTo (Ju [6275 U JHd) is a polygonal path
contained in out F connecting P and Q.

In case (iii) there exist polygonal paths Z C out G and J C ins H such that
7 connects P to I and J connects ) to J. Then IU[IT; UJ C out F is a polyg-
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onal path joining P and Q. It follows that out F is polygonally connected. O

Corollary CNT.3.1 If F is a simple polygon, then enc F and exc F are
polygonally connected.

Proof. Let P and @ be any members of enc F. If both P and @ € ins F the
proof is complete. By Theorem SEP.7, if P € F and ) € ins F there exists
a point I € ins F such that pI C ins F; if 7 is a path in ins F joining I and
Q, PIUT is a polygonal path in enc F joining P and (). Similar arguments

show the other assertions. 0O

Theorem CNT.4 If F and G are simple polygons such that G C enc F,
then out F C out G and ins G C ins F. Moreover, if G Nins F # (), then ins G

is a proper subset of ins F.

Proof. Let Q € out F, let A € ins F, let C be the last point of intersection
of F and m, and let P be any point such that A~-C—P. Then P € out F.
Let R be any point such that A-P-R. Since G C encF, G N PR = 0 and
hence P € out§. Since by Theorem CNT.3 out F is polygonally connected
there exists a polygonal path J C outF with endpoints P and @. Since
G CencF, JNG = 0. Then by Theorem SEP.13(A) either 7 C insG or
J Cout@. Since P € J and P € outG, J C outG. Hence Q € outG and
we have shown out F C out G. Taking complements with respect to the plane
gives encG C enc F.

Now suppose F NinsG # (). By Theorem SEP.7 there exist points C' and
F such that C € F NinsG, CFNF = {C} and CF C outF. Let G be
the first intersection of CE’—E% with G. Since C' € ins F, % C insG. Then
0 # CFNCG C out F NinsG, so there is a point of out F not in outg
contradicting out F C out G. Hence F NinsG = ) so ins G C ins F.

If GNins F # (), and argument similar to the one just given shows that
there exists a point of out G (hence not in ins G) that is in ins 7 showing that

ins G is a proper subset of ins F. O

Theorem CNT.5 Let F and G be simple polygons in the Pasch plane
P.
(A) If G Cenc F, then F C excG.
(B) If G C exc F, then either
(1) ins F Cins G, out G C out F, encF C encG, and F Cencg, or
(2) insF CoutG, insG C out F, enc F CexcG, and F C excG;
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moreover, if (1) holds and G Nout F # (), then both inclusions ins F C ins G
and out G C out F are proper.

Proof. (A) The second part of the proof of Theorem CNT.4 shows that F N
insG = () so that F CexcG = GUoutG.

(B) By Theorem CNT.2 ins F is polygonally connected. Since G C exc F,
GNins F = 0, so by Theorem SEP.13(A) either ins F C ins G or ins F C out G.

If (1) holds, and ins F C ins G, then excG = P\ insG C P\ ins F = exc F,
so out G C exc F. Suppose now that for some point C, outG N F = {C}.
By Theorem SEP.7 there exists a point F such that CE C insF; let D
be the first point of intersection of Cj? with G; then ﬁ C out§ (since
C € out G) and if we pick F' so that C—F-D and C-F-F, CHF C out GNins F.
But this contradicts ins F C insG. Thus out G N F = (), and since outG C
exc F, out G C out F; taking complements we have enc F C encG so that in
particular, F C encg.

If (2) holds, and ins F C out G, then encG = P\out G C P\ins F = exc F,
so that insG C exc F. Again, if F NinsG # (), by similar reasoning to that
of the previous paragraph, we can find points that belong both to ins G and
to ins F, which contradicts ins F C out§, so that F NinsG = (. Hence
ins G C out F; taking complements, enc F C exc§G so that F C excG.

We now show t(llg_fgnal assertion of the Theorem. Let O € GNout F, let Q'
be such that £ = OQ’ contains no corners of eithgr_{ or g,]a_nc>1 let Q'-O-P"'.
Choose @ and P to be the first intersections of OQ" and OP’, respectively,
with F. Then no point of 632_1‘E belongs to F and 632_16 C out F, by Theorem
SEP 4.

Now by Theorem SEP.7 there exist points E and F € L such that
EHO C insG and FH'CO C outG. FE is on either the P-side or on the -side
of O. In the former case, choose E’ so that P—-E'-O and E—E’-0O, so that
% C insG Nout F. A similar proof is valid in the other case. Thus both
ins F C insG and out G C out F are proper inclusions. 0O

Theorem CNT.6 Let F and G be simple polygons in the Pasch plane
P.If FNinsG # (0 and F NoutG # 0, then
A)GninsF #0,

(

(B)

(C) ins FNinsG # 0,
(D) out F Nout G # 0,
(E)
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(F) out F Nins G # 0.

Proof. If G were contained in enc F, then by Theorem CNT.5(A), F would
be contained in exc§, contradicting F NinsG # (. Hence G Nout F # (),
proving (B).

If G were contained in exc F, then in Theorem CNT.5(B) alternate (2) is
ruled out, so F would be contained in enc§, contradicting F NoutG # (.
Hence G Nins F # (), proving (A).

Let C € FNinsG. By Corollary SEP.7.1 there exists a point E such that
CE C ins F. Let @ be the first point of intersection of ﬁ and G. If F is
between C' and @, then CE C insG; if Q is between C' and FE let P be any
point between C' and @Q; then cP C insG. In either case, CP CinsGNins F,
proving (C).

The proofs of the other cases are similar and left to the reader as Exercise
CNT.1. O

Theorem CNT.7 Let F and G be simple polygons. If G C encF and
F Cencgq, then F =4G.

Proof. If G C enc F and F C enc @, then by Theorem CNT.5(A), F C exc§G
and G C exc F. But then F CencGNexcG =G and G C enc F Nenc F = F.
O

Theorem CNT.8 (Re-statement of the Jordan Curve Theorem
JCT.1 for simple polygons) If G is a simple polygon in the Pasch plane
P, then

(A) P=GUinsGUout G, where G, insG, and out G are pairwise disjoint
sets;

(B) if P € insG and Q € out G, then Pj—éﬂg +0;

(C) G and ins G are bounded sets, and out G is unbounded; and

(D) ins G and out G are polygonally connected sets.

Proof. Parts (A) and (B) follow immediately from Theorem SEP.12, part (C)
from Theorem CNV.22, and part (D) from Theorem CNT.3. O

There is a more extensive discussion of the Jordan Curve Theorem at the

beginning of this chapter.
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6.6 Exercises for Jordan Curve Theorem

Exercise PLGN.1* Prove part (A) of Theorem PLGN.15; that is, that
an O-ordering of a simple polygon has the trichotomy property.

Exercise SEP.1* Prove Theorem SEP.15 in the case that alternative (3)
is true.

Exercise CNV.1 Prove Theorem CNV.36 by modifying the proof of
Theorem CNV.20.

Exercise CNT.1* Complete the proof of Theorem CNT.6.

6.7 Selected answers for Jordan Curve Theorem

Ezercise PLGN.1 Proof. We show that for any P and Q € G\ {O},
exactly one of P < Q, P =@, or P > @ is true (Trichotomy). In this proof
we will refer to the various parts of Definition PLGN.14 as “rule (A),” “rule

(B),” etc. We will assume that the polygon G consists of n edges [XZ-XZ-H]
where ¢ = a + 1, ... + n, its corners being Xy41, ..., Xo+n = Xq, and that
Oe XoXay1-

By rule (A), if both P and @ are corners of G, their ordering is the same
as the ordering of the integers {a+ 1, + 2, ..., + n}, for which trichotomy
holds; therefore trichotomy holds for P and Q.

If we prove trichotomy in the case where P is not a corner of G, this will
also (by interchanging P and @) show it is true if @ is not a corner of G.
Moreover, it will suffice to prove that if P # @, then exactly one of P < @
or @@ < P is true; for this implies that if neither P < @ nor Q < P, then
P=Q.

(Case 1: P# Q and P € m where a < i < a + n.) Then either

(a) Q € X, Xo11,
(b)Qemwherej;éianda<j<a+n,or
(©) Q € XernXas1 \{O} = XaXar1 (O}
If (a) holds, then since trichotomy holds on X;X; 1, either P < Q or Q < P.
If (b) holds, either
(1) « < i< j < a+n,in which case X; < Q and X;11 < X
and P < X;41 80 P < X;41 < X; <Q and by rule (D) P < Q; or
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(2) a < j <i<a+n,in which case Q@ < X;11 < X; < P so
Q< P.
If (c) holds, either
(1) O—-Q—X 441 0r Q = X441, in which case, since o < i, a+1 < ¢
and Q < X,41 < X; < P so by rule (D) Q < P; or
(2) Xotn—Q-0 or Q = X44n, in which case since i < «a + n,
Xit1 < Xgypnand P< X311 < Xoin <Q and P < Q.
(Case 2: P#Q and P € m \{O}. Then either
(a) Xoqn—P-0 or
(b) O-P-X 1.
If (a) holds, then Xo = Xasn < P; if Q € XoXars \{O} and Q # P then
either
(1) Xo4n—Q-0 or Q = X4ty in which case either P < @ or
Q@ < P, by rule (C); or
(2) O-Q-X,41 or Q = Xy in which case Q < X,41 by rule
(C), and Q < X441 < Xagn < P so that Q < P.
Moreover, if (a) holds, and @ € EXsz-H] where a + 1 < i < «a + n, then
QSXZ'+1§XQ+”<PSOQ<P.
If (b) holds, then P < Xay1; if Q # P and Q € XoXas: \{O} then either
(1) Xo4n—Q-0 or Q@ = X,4p so that Q@ > X4y and Q >
Xotn > Xap1 > P and Q > P; or
(2) O-Q-X441 or Q = X417 in which case either P < @Q or
Q@ < P by rule (C).
Moreover, if (b) holds, and @ € [XZTHE where o« < i < a + n, then P <
Xor1 <X;<QsoP<@Q. O

Ezercise SEP.1 Proof. 1If alternative (3) of Theorem SEP.15 holds, we
assume that G C out F and F C outG. We show that G UinsG is a proper
subset of out F.

First we prove that insG C out F. Let P be any point of insG, and let A
be any point such that ﬁ does not contain a corner of F or G, or intersect
the segment CD. Then by the Lemma in the proof of Theorem SEP.15,
PAng = PAn(g\ CD).

Since P € ins G every ray from P must intersect G at least once. Order ﬂ
with P < A, and let @ be the first point and R the last point of intersection
of PE_1>4 with G. If the ray ﬁ\ﬁ intersects F let S be the first point of
intersection of ﬁ\PHCR with F, otherwise let .S be any point of ﬁ\ﬁ
Then P]—CEQ contains no point of G other than @ so that by Theorem SEP.4(A),
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][3—6[2 C ins G and hence contains no point of F since F C outG. Now QQ € G C
out F, so P € out F by Theorem SEP.4(A), so that P € out F. Therefore
insG C out F.

Finally we show that ins G C out F is a proper inclusion. The segment RS
contains no point of G\ CD since R is the last point of G\ EC'_Dj, and no point
of F\ CD since S is the first point of F \ CD with R < S. By Theorem
SEP.4(A), since R € G C out F, RS C out F; similarly since S € outg,
R]? C out G. Thus points of RJ_Sr are in out F but not in ins G, and hence the
inclusion ins G C out F is proper.

By the same argument, with the roles of F and G interchanged, ins 7 C

out G is also a proper inclusion. O

Ezercise CNT.1 Proof. We prove parts (D), (E), and (F) of Theorem
CNT.6.

(D) Let C € FNnoutG. By Corollary SEP.7.1 there exists a point F such
that CE C out F. Let @ be the first point of intersection of Cﬁ and G (or
if Cﬁ does not intersect G, let @ be any point of the ray.) If E is between
C and @, then CE C outG; if @ is between C and E let P be any point
between C and @; then CP C outG. In either case, CP C out G Nout F,
proving (D).

(E) Let C € FnoutG. By Corollary SEP.7.1 there exists a point E such
that CE Cins F. Let @ be the first point of intersection of ﬁ and G (or if
ﬁ does not intersect G, let @ be any point of the ray.) If £ is between C' and
@, then CE C out G; if @ is between C' and FE let P be any point between C'
and @Q); then CP C out G. In either case, CP C out G Nins F, proving (E).

(F) Let C € FNinsG. By Corollary SEP.7.1 there exists a point E such
that OF C out F. Let @ be the first point of intersection of ﬁ and G; there
must be such a point because C' € insG. If E is between C' and @, then
CE CinsG; if @ is between C' and E let P be any point between C' and Q);
then CP Cins@. In either case, CP CinsG Nout F, proving (F). O



Chapter 7

Property PE on a Pasch Plane with
Property LUB (LUPE)

Dependencies: Chapters 1, 4, 5, and 6 of Euclidean Geometry and its Sub-
geometries (Specht); Aziom LUB
Acronym: LUPE

This chapter might be considered something of a curiosity, or as an ad-
dendum to Chapter 6 of Specht, as the proof depends on ordering. In it we
prove Property PE on a Pasch plane on which the LUB property holds, as de-
fined in Specht Chapter 18. In that work, Property PE is proved as Theorem
NEUT.48(B), part of neutral geometry.

Other than the LUB property, we invoke only the results of Chapters 1,
4,5, and 6 of Specht. All references in this chapter are to Specht, and there
are no references to other chapters of this Supplement. We begin by restating
the LUB and PE properties.

Property LUB: Let P be a Pasch plane, and let £ be a line on P which
is equipped with an ordering < by Specht Ch.6 Definition ORD.1. If £ C L is
a set that is bounded above, then the set of all upper bounds has a minimum,
called the least upper bound of £, and denoted lub(€).

Property PE: Given a Pasch plane P, a line £ on P, for every point )
belonging to P\ L, there exists a line M through @) which is parallel to L.

The designation “Property PE” is so named to suggest “Parallel Exis-
tence.” There is no claim here of uniqueness—PE falls short of Axiom PS,
the “strong form” of the parallel axiom. But if PE is joined with PW (the
“weak form”), then we get PS. We name the single theorem in this chapter
with the acronym LUPFE to suggest both LUB and PE.

189
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Theorem LUPE If P is a Pasch plane on which property LUB holds,
then property PE holds on P.

Proof. We begin with the assumption that property PE is false on P: that
is, there exists a line £ on P and a point @ belonging to P \ £ such that
there is no line M parallel to £ containing (). We prove the theorem by a
construction and a series of claims; the last of these will show a contradiction
with property LUB, thus showing that property PE is true.

The construction: See Figure 7.1 below. Let A and B be distinct points
of £, and order L so that A < B. By Specht Ch.5 Theorem PSH.22 there
exists a point C' € L such that A-C-B. By property B.3 of Specht Ch.4
Definition IB.1, there exists a point 7" such that B-Q-T'.

Using Definition IB.11, since B—@Q-1', T' and B are on opposite sides of
m; since A—-C-B, C and B are on the same side of m; therefore T' and
C' are on opposite sides of m, and by Specht Ch.5 Theorem PSH.12 there
exists a point S such that m NOT = {S}, that is, m N Cﬁ = {S}. Finally,
by property B.3 of Definition IB.1, there exists a point D such that S-T-D,
that is, C—=S-T-D.

Since A # B, the lines m and % are distinct and have only the point
@ in common. The point T" belongs to a side of m so that S, T, and @ are

noncollinear and are the corners of a triangle.

Ordering: Using the machinery of Chapter 6, order line £ so that
A< (C< B, andorderthelineﬁsothatC<S<T<D.

Definition of @: For every X € L such that the line % intersects ST
define ¢(X) so that {P(X)} = % nST. By this definition, #(A) = S and
d(B)=T.

Claim 1: ST C ins ZSQT, and therefore is a subset of both the
T-side of % and the S-side of % This follows immediately from Defi-
nition PSH.36 and Theorem PSH.37.

Claim 2: If X € £ and X < A, the ray QJ—Xk intersects 53—72’ so that
&(X) is defined, S-P(X)-T, and S < (X)) < T.

See Figure 7.1. If X < A, X-A-C-B. Since T-Q-B, Q and B are on the
same side of ﬁ = @; hence X and @) are on opposite sides of ﬁ so by
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Fig. 7.1 For Claim 2 in Theorem LUPE.

Theorem PSH.12 ﬁ N )]R)r # (). This point of intersection belongs to %,
and is therefore @(X), by definition.

Since X-A-C-B, X is on the C-side of ﬁ = %, which by C-S-T is the
S-side. Also, X is on the side opposite the C-side of m = % Since C-S-T',
this means X € the T-side of % By Definition PSH.36, X € ins ZSQT; by
Theorem PSH.39 (Crossbar) Q]_)%ﬂﬁ # (. As observed just above, this
point of intersection is #(X). Then S-¢(X)-T, and S < $(X) < T since
S<T.

Claim 3: If X > B, by property B.3 of Definition IB.1, there
exists a point X’ such that X—Q—-X’'; then the ray QX' intersects
ST, so that &(X)is defined, S—P(X)-T, and S < (X)) < T.

D
%
T

b

A < C < B < N
Fig. 7.2 For Claim 3 in Theorem LUPE.

See Figure 7.2. If X > B, A-C-B-X. Then X is on the B-side (C-side)
of m = % X is also on the side of % = m opposite the A-side (the
S-side since A-S-Q).

Since m intersects m = % at the point @, X’ is on the side of %
opposite the B-side; since B—Q-T this means that X’ € the T-side of %
Since m intersects m = % at the point @, X’ is on the S-side of m



192 7 Property PE on a Pasch Plane with Property LUB (LUPE)

Then by Definition PSH.36, X’ € ins ZSQT; by Theorem PSH.39 (Cross-
IT— — Gy
bar), QX'NST # ), and therefore since QX' C w, ox NST # (. By
definition this point of intersection is ¢(X). Then S-®(X)-T; since S < T,
by Theorem ORD.6 S < &(X) < T.

Since #(A) = S and $(B) =T, it follows from Claims 2 and 3 that
for every X such that X < A or X > B, ¢(X) is defined and belongs
E—3
to ST.

Claim 4: If A~X-B then %HSHJ; = (), so that ¢(X) is not defined.

D
\
T

S
\Y

A<(,/X<B

Fig. 7.3 For Claim 4 in Theorem LUPE.

See Figure 7.3. Since X € ﬁ, by Theorem PSH.37 X € ins ZAQB. By
Theorem PSH.38(B) OX € ins ZAQB, and by Definition PSH.36 OX is a
subset of the A-side of %, and also of the B-side of m Now S € b—/i - m,
T € the T-side of j@, and Sj_lg Cins ZSQT C the T-side of AQ), so that ﬁ
is a subset of AQ) U the A-side of m, this last being the side opposite the
B-side. It follows that Q]7 NST = 0.

Let X’ be a point such that X'-Q—X; since w and % intersect at @,
X'’ belongs to the side of % opposite A, and by Theorem IB.14, this side
contains Q X’. By reasoning similar to that just above, ST - %Uthe A-side
of % Therefore QX' N ST = 0.

—— 3 — e

Now X'X' = OX = OXUQX'U{Q). Since Q ¢ ST it follows that
—— =3
XX'NST =0.

Claim 5: If X and Y are members of £ and X <Y < A, then
S—P(Y)-d(X)-T,and S<P(Y) < P(X) < T.
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First we note that from Claim 2,5-¢(Y)-T and S < ¢(Y) < T, and also
S—&(X)-T and S < &(X) < T.

If, in the statement and proof of Claim 2, we substitute Y for A, so that
S = P(A) becomes ¢(Y), we get a proof that ¢(V)-P(X)-T'; combining this
with S—@(Y)-T yields the desired result.

Claim 6: If X and Y are members of £ and B < X < Y, then
S—B(V)~B(X)-T, and S < B(Y) < B(X) < T.

Again we note that from Claim 3, S-#(Y)-T and S < #(Y) < T; also
S—d(X)-T and S < &(X) < T.

If, in the statement and proof of Claim 3, we substitute Y for X, and
substitute X for B, so that T' = @®(B) becomes (X ), we get a proof that
S—P(Y)-P(X); combining this with S—@(X)-T yields the desired result.

Claim 7: For every X < A and every Y > B, #(X) < #(Y), so that
the set {#(Y) | Y > B} is the set of upper bounds for {?(X) | X < A}.

Fig. 7.4 For Claim 7 in Theorem LUPE.

See Figure 7.4. f X = Aand Y = B, then $(X) =S < T =P(Y).

If X =Aand Y > B then by Claim 3, #(X) = §(A) = S < P(Y).
If Y = B and X < A then by Claim 2, #(X) < T = &(B) = &(Y).

The only case needing more proof is where X < A and B < Y. By Claim
3, (V) is the intersection of &} with ST and S—d(Y)-T; by Claim 2, ¢(X)
is the point of intersection of QJ_X> with ﬁ, and S—-@(X)-T.

Since X-A-C-B-Y, the X-side of Q<7 is also the C-side; by the construc-
tion and Claim 3, C=S-®(Y)-T, so that the C-side is also the S-side of Q<7,
and this is opposite the T-side. Therefore &(X) € the S-side of <Q—}>/ which is
opposite the T-side.
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N e

It follows from Theorem PSH.12 that &(X)T intersects QY and since
&(X)T is a subset of SE‘HT, this point of intersection is @(Y). Therefore
®(X)-®(Y)-T. Combining this with S—&(X)-T we have S—B(X)-B(Y)-T.
Since S < T, by Theorem ORD.6 (X)) < §(Y).

Claim 8: The mapping @ is a bijection of {X | X < A or X > B}
onto S’HT

By Claim 4 every point X for which @(X) is defined must either satisfy
X < Aor X > B. Suppose X # X’ are such points; if both X < A and
X' < A, by Claims 2 and 5 &(X) # &(X'); if both X > B and X’ > B,
by Claims 3 and 6 ¢(X) # #(X'); if X < A and X’ > B, by Claim 7
&(X) # &(X'). Therefore @ is a one-to-one mapping defined on {X | X < A
or X > B}.

Now let Z be any point of ﬁ; then the line % intersects £ at some point,
because, by the negation of property PE, it cannot be parallel to £. By Claim
4 there can be no point X € AB such that &(X) is defined. Therefore every
point of ST is an image point of some X such that either X < A or X > B.

Claim 9: If Axiom LUB holds, the assumption that there is no
line through @ which is parallel to £ yields a contradiction. By Claim
7, {®(Y) | Y > B} is the set of upper bounds for £ = {®(X) | X < A}. Let
U be the least upper bound for £. Since there are upper bounds for £ which
belong to ﬁ, U e ST. Moreover, U # S since L contains a point X < A, for
which @(X) > S; also U # T, because L contains a point Y > B for which
P(Y) < T, so that &(Y) is an upper bound for €.

It follows that either #~1(U) < A or &~ 1(U) > B.

If the former, by property B.3 of Definition IB.1 there exists a point Y
of £ such that Y-¢~1(U)-A, that is, Y < &~1(U) < A. Then by Claim 5,
PY)>U>PA) =85 But &(Y) € {#(X) | X < A} so that U is not an
upper bound for this set, contradicting Axiom LUB.

If B < @ 1(U), by property B.3 of Definition IB.1 there exists a point Y’
of £ such that B-¢~'(U)-Y, that is, B < #~!(U) < Y. Then by Claim 6,
T=&B)>U>®Y). But oY) € {®(X) | X > B} and is therefore an
upper bound for {#(X) | X < A}, and U is not the least upper bound for

this set. Again, this is a contradiction. 0O



Chapter 8

Existence of Midpoints in the Presence
of a Parallel Axiom (NEUTM)

Dependencies: Chapters 1, 4, 5, 6, 7, and 8 from Euclidean Geometry and
its Subgeometries (Specht); Axiom PW
Acronym: NEUTM

Property R.6 of Specht Ch.8 Definition NEUT.2 says that every segment
in a neutral plane has a midpoint. In this short chapter we prove this as a
theorem from the other properties (R.1 through R.5) of this definition, in the
case that one of the parallel axioms holds, either Axiom PW or PS.

If we had been able to prove this without invoking a parallel axiom, we
could have eliminated Property R.6 from Definition NEUT.2.

All references in this chapter of the Supplement are to Specht; many of
them are to Chapter 8 (neutral geometry), but none of them cite anything
in that chapter after Theorem NEUT.48. There are no references to other
chapters of this Supplement.

For the record, we restate Definition NEUT.85 from Specht Chapter 8:
A triangle T is right iff an angle of T is right. In the first theorem below
we provide an alternate characterization of an acute angle, and prove some
preliminary lemmas, some of which duplicate theorems and exercises from
Chapter 8 of Specht.
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Theorem NEUTM.1 An angle ZBAC is acute according to Defini-
tion NEUT.81 iff there exists a point @ such that ZBAQ is right and
C € ins ZBAQ.

Proof. If ZBAC is acute according to Definition NEUT.81, there exist non-
collinear points E, D, and F such that /BAC < /EDF and ZEDF is
right. By Definition NEUT.70 there exists a point P € ins ZEDF such
that /BAC = /FEDP. By Theorem NEUT.38 let « be the isometry such
that a(ZEDP) = /BAC and a(DE) = AB and o(DP) = AC. Then let
Q = «a(F). By Corollary NEUT.44.2 o(ZEDF) = ZBAQ is right, and by
Theorem NEUT.15(11), C' € ins ZBAQ.

Conversely, suppose there exists a point @) such that ZBAQ is right and
C € ins ZBAQ. Since /BAQ = /BAQ and /BAC = /BAC, by Definition
NEUT.70 Z/BAC < ZBAQ. Since ZBAQ is right, by Definition NEUT.81,
/BAC is acute. O

Lemma NEUTM.2 (c¢f Theorem NEUT.84) If A, B, and C are non-
collinear points on a neutral plane, and if ZBAC is right, then ZABC and
LACB are both acute.

Proof. Let P be a point on the C-side of /ﬁ such that ZABP is right, and
let A’ be such that A’~B—A. Then by Theorem NEUT.47(A) BP I AC. Since
C and P are on the same side of ﬁ, by Exercise PSH.32 either C' € Bj? or
C €ins ZABP or C € ins LZA'BP.

If C € ins /A’ BP then by Definition PSH.36 C' € A’-side of BP and by
Theorem PSH.12 (Plane Separation Theorem), AC must intersect ﬁ which
is impossible since BP I 40 1t ¢ ¢ BP then both AC and BP are lines
perpendicular to j@ and containing C, so that by Theorem NEUT.47(B)
these are the same line; then A = B which contradicts the hypothesis that
A, B, and C are noncollinear (and hence distinct). Therefore C' € ins ZABP
and ZABC' is acute. Similar reasoning, interchanging B and C, shows that
ZACB is acute. O

Lemma NEUTM.3 (cf Exercise NEUT.20) Let AABC be a right
triangle where /BAC' is the right angle; then if E € % and Hx L %,
B-E-C. That is, E lies on the hypotenuse, but is not one of its endpoints.

Proof. If the conclusion is false, either E = B, £ = C, B-C—-F or E-B-C.
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If E = B then AB L BC so that by Theorem NEUT.47(A), BC || AC;
this is impossible because a triangle has three corners, so £ # B. A similar
argument shows that £ # C.

If C-B-FE let D be any point on the A-side of % such that ZCBD
is right. Then since ZC'BA is acute (by Lemma NEUTM.2), there exists a
point @ such that ZCBQ is right and A € ins ZC'BQ. Then by Definition
PSH.36 A lies on the @-side of %; by Theorem NEUT.48(A) there is only
one line through B which is perpendicular to % and both @ and D belong
to this line; moreover, both these points are on the A-side of % Therefore
BD = BQ and ZCBQ = /CBD, so by Theorem NEUTM.1 A € ins /CBD,
and A € W .

Now BD L BC and A L BC so that by Theorem NEUT.47(A)
ﬁ I Hzl Since C-B-FE, E is on the side of ﬁ opposite C' so by The-
orem PSH.12 (Plane Separation), FA and @ must intersect, contradicting
their parallelism. Thus C-B-F is false. A similar proof shows that B—-C-F
is false. O

Lemma NEUTM.4 Let ZACB and ZADB be two right angles on a
neutral plane, where C' and D are on the same side of /@ Then neither
Ce€insZADB or D € ins ZACB.

/ADB cannot be a right angle c
if ZACB is right. D

Fig. 8.1 For Lemma NEUTM.4.

Proof. See Figure 8.1. If D € ins ZAC B, by Definition PSH.36, D € A-side
of % and the B-side of % Since D € C-side of @, D € ins ZABC. By
Theorem PSH.40, AC C ins ZABC; by Theorem PSH.39, there exists a point
F of intersection of AC and %, so that A—-F-C. By Corollary 2 of Theorem
PSH.39, C is on the side of ﬁ opposite A. A similar argument will show
that C' is on the side of jﬁ opposite B.
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Let E = ftpr (D, /ﬁ) Apply Lemma NEUTM.3 to AADF; since ZADF
is right, A-E—F and hence A-E-F-C, so E € A-side of % Let E'-D-F;
then £’ € C-side of % Since B-D-F and F' is on the opposite side of ﬁ
to A, B € A-side of ﬁ

Now OB L AC and DE 1 AC so by Theorem NEUT.47(A) OB I DE.
But B and C are on opposite sides of ﬁ, so that C'B intersects ﬁ, con-
tradicting their parallelism. Therefore D ¢ ins ZAC B; interchanging C' and
D in the above argument shows that C & ins ZADB. O

Theorem NEUTM.5 Let C, D, E, F be points on the neutral plane
such that
(1) ZCED and ZCFD are right angles, and EF is the line of sym-
metry for both; and
(2) E and F are on opposite sides of cD.

Then

(A) ZCED = /CFD and CD L EF;

(B) if {H} = CD N EF, EH =~ FH, CH =~ DH, and EC = FC =
== ==
ED =~ FD.

Proof. First note that the first conclusion of (A) follows from Euclid’s fourth
postulate, Theorem NEUT.69, but in this chapter we are not assuming any-
thing from our development after Theorem NEUT.48, so this needs to be
proved.

Since EF is the line of symmetry for both ZCED and ZCF D, Rﬁ(ﬁ) =
ﬁ and Rep (ﬁ) = ﬁ; then by elementary mapping theory

{Ri:2(C)} = Rg(FC N EC) = Rz (FC) N R (EC)
— (FD)n (ED) = {D).
By Theorem NEUT.22(A), ED is a fixed line for Rip and &D L EF. Now
H, E, and F' all belong to H’, so are fixed points for R4z since RE?(O) =
D, by Theorem NEUT.15(5) EC = ED, FC = FD, and HC = HD.

By Theorem NEUT.44, @ is a line of symmetry for ﬁ . Let B =
Rgp(E); then B is a point on EF because EE is a fixed line for Rep-
Then F and B are on the same side of @ because they are both in the side
opposite E, and are both on the same side of H. By Corollary NEUT.44.1
ZCBD is a right angle since it is congruent to ZCED. We prove that B = F'.

Suppose otherwise, that B # F'; by Theorem PSH.38 HJ? = ﬁ By
Definition IB.4 exactly one of H—-F-B, H-B-F, or B = F is true.
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If H-F-B, then F € BH; since H € CD, by Theorem PSH.40 H &
ins ZCBD and hence F € ins ZCBD. By Lemma NEUTM .4, this is impossi-
ble. Likewise, H-B-F"is impossible. Therefore ' = B = R¢&p (E); since H,
C, and D are all fixed points for R=, it follows from Theorem NEUT.15(5)

== = == == =
that EC = FC, ED = FD, and HE = HF. O

Theorem NEUTM.6 If either Aziom PW or PS holds, every segment
AB on a neutral plane has a midpoint; this result is independent of Property
R.6 of Definition NEUT.2.

Fig. 8.2 For Theorem NEUTM.6.

Proof. See Figure 8.2. Let C' and D be points on the same side of @ such
that jﬁ 1 j@ and % 1 /@ Let £ and M be the lines of symmetry of
/BAC and ZABD respectively.

By Theorem NEUT.47(A), ac I BD. If £ does not intersect %, then
the two lines are parallel; both jﬁ and £ contain A and are parallel to @
This is impossible by either Axiom PS or PW. Therefore £ intersects % at
some point X. By Theorem NEUT.20(E) £ contains a point P € ins Z/CAB
and 3@ Cins ZBAC. Since L intersects jﬁ at A, all points of the opposing
ray are on the side of % opposite B so that X € zjﬁ C ins ZBAC'. Therefore
X belongs to the C-side, that is, the D-side of @, and thus X € ]B?

By Theorem PSH.37 XA C ins ZABD; by Corollary PSH.39.2 A and X
are on opposite sides of M; thus by Theorem PSH.12 (Plane Separation)
A]_)C( - iﬁ intersects M at some point E.

Reflect the lines £ and M, and the points C, D, and E in j@ Let
L'=Rgp (L), M' =Rgp(M), and B = Rep(E). Then LZABE' = /ABE,
and by Theorem NEUT.39, ZABE = /EBD; by Theorem NEUT.14,
/EBD = /ABE = /ABE'. By Exercise NEUT.40(A), /EBE' = /ABD,
and therefore ZEBE' is a right angle. Similarly, ZEAFE’ is a right angle, and
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both these angles have j@ as their common line of symmetry. Let H be the
intersection of FE’ with AB. Then by Theorem NEUTM.5, AH = BH, so
that H is a midpoint of AB. O

Remark NEUTM.7 We would be most grateful if a reader with more
perspicacity than we should come up a proof of the existence of midpoints
using only properties R.1 through R.5 of Definition NEUT.2 without invoking
parallelism; this would make it possible, in the main development of Spechit
to dispense with Property R.6 of this definition.



References

1. Jordan, C.: Cours d’analyse de I'Ecole Polytechnique, Cambridge University Press
(Reprint in 3 vols.) (2013) ISBN 978-1108064699, 978-1108064705, 978-1108064712

2. Kelley, J. L.: Algebra: A Modern Introduction, Van Nostrand Reinhold (1965) ISBN
978-0442043001

3. Martin, G. E.: Transformation Geometry, An Introduction to Symmetry, Springer
(1982) ISBN 978-1461256823

4. Whyburn, G. T.: Analytic Topology, AMS Colloquium Publications, Chapter VI
Reprint by Literary Licensing, LLC (2012) ISBN 978-1258240264






Index

ZE, arc subtending ZAOB, 104

fla, b], arc generated by f, 56

C((0,0); 1), unit circle, 79

C((0,0);r), circle with radius r, 79
L(f[a, b]), arc length of f over [a,b], 58

V(gp[ayb]), total variation of ¢ over [a, b], 60

e, inner product of vectors, 19

-, product of complex numbers, 42, 43

Sp(f), summation of f over partition P,
57

absolute value
of a complex number, 50
acronym
AM, angle measure, 104-111
ARC, arc and arc length, 56-67
CNT, connected, 180-185
CNYV, convex, 144-180
CS, cos and sin, 71-99
CX, complex numbers, 42-51
JCT, Jordan Curve Theorem, 114-115

LUPE, parallel lines from LUB, 189-194

PLGN, polygon, 115-130

SEP, separation, 128-144

VEC, vector space, 2—29
addition

of points on a plane, 2—-3
affine mapping

and collineation, 25-29

on a vector space, 25-29

angle

central, of a circle, 104
measure, radian, 104
angle measure, 104-111
is additive, 107
of exterior angle of a triangle, 108
radian, 104
arc, 56
closed, 56
generated by function f, 56
of a circle, 104
rectifiable, 57
subtending angle, 104
arc length, 57
additive property of, 59
integral form for, 64
is bicontinuous bijection, 66
arithmetic
of complex numbers, 42

on a plane, 2—4

basis (of a vector space), 10
bound

least upper, 189
bounded variation

function of, 60

circle, 79
central angle, 104
circumference of, 79
diameter of, 79

enclosure of, 79
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inside of, 79

radius of, 79

unit, 79
circular functions, see cos, sin
cis

definition of mapping, 80

is continuous, 81

maps [0, 27[ onto the unit circle, 81
coh, convex hull (of a set), 162
complex number, 42-51

conjugate, 50

modulus or absolute value, 50

real and imaginary part, 48
congruent (integers) (mod m), 118
conjugate (of a complex number), 50
coordinate, first and second, 6
coordinatization

left-handed, right-handed, 5

map, an isomorphism, 9-10

of a Euclidean/LUB plane, 4-7
corner

of polygon, regular and irregular, 172
cos, sin

basic properties, 75-78

composite argument formulae, 94

definition, 71-75

derivatives, 76

formulas for definition, 75

maxima and minima, 77

periodic of period 27, 80

traditional angle definition, 94
cosine function, see cos, sin

curve, see arc

determinant (of a matrix), 22-23
dimension (of a vector space), 10
divisible, 118

dot (inner) product (of two vectors), 19

enc, enclosure

of a polygon, 130
endpoints

of a polygonal path, 120
entering intersection, 129

exc, exclosure

Index

of a polygon, 130
exiting intersection, 129
extremal corners (of a polygon), 165

extremal points (of a finite set), 178

free segment

identification with a real number, 16
fudge theorem (for simple polygons), 126
function, mapping

circular, see cos, sin

of bounded variation, 60

periodic, 77

total variation of, 60

gauge, of a partition P, 57
group
Euclidean/LUB plane under +, 2
of all bijective linear mappings under
composition, 24
of all collineations of IR? with fixed point
(0,0), 27
of complex numbers over -, 45

vector space under +, 7

homeomorphism, bicontinuous bijection,
56

horizontal line, 12

imaginary part
of a complex number, 48
inner product (of vectors), 19
ins, inside
of a polygon, 123, 130
integral form for arc length, 64
intersection
of angle and segment, 127
of angle with segment, entering and
exiting, 129
of polygon and admissible angle, 144
of segments and rays, 115-118
isometry
preserves angle measure, 105-107
preserves arc length, 86
isomorphism
coordinatization map, 9-10

of real numbers and a line, 15



Index
vector space, 9

Jordan Curve Theorem
for a simple polygon, 114
for simple polygons, 185
introduction, 114
Jordan, Camille, 114

labeling function, 119
least upper bound, 189
left-handed coordinatization, 5
line
horizontal, 12
slope of, 13
vertical, 12
linear
mapping (transformation, operator),
20-25
space, see vector space
transformation (mapping, operator),
20-25
linearly independent (vectors), 10
LUB, least upper bound, 189

matrix (of a linear mapping), 21-23
midpoint
existence without Property R.6 of
Definition NEUT.2, 200
existence without Property R.6 of
Definition NEUTM.2, 195
modular numbering, 118-119
modulus
of a complex number, 50
multiplication

of complex numbers, 42, 43

norm (length) of a vector, 16
properties of, 18

normal
corner of a polygon, 166

point of a finite set, 179

ordered pair, triple
vector space of ordered pairs, 6
vector space of ordered triples, 11

orthogonal vectors, 19

out, outside

of a polygon, 123, 130

parallel

Property PE, parallels exist, 189
parity, odd and even

of a point, 130-138
partition

finite subset of of [a, b], 56

gauge of, 57

refinement of, 57
path, see polygonal path
periodic function, 77
polygon

j-corner of, 119

j-edge of, 119

adjacent corners of, 119

adjacent edges of, 120

admissible angle, 123

admissible ray, 123

corner, regular and irregular, 172

enclosure of, 130

exclosure of, 130

inside of, 130

outside of, 130

simple, 119

simple, separates the plane, 137
polygonal path, 120

connecting two points, 120

endpoints, 120

loop, 122

simple, 120

simplification, 122

subpath, 120
polygonally connected (set), 120
product

of complex numbers, 42, 43
Property PE, parallels exist, 189
Pythagorean theorem, 17

radian angle measure, 104
ray

test, 131
real part

of a complex number, 48
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rectifiable arc, 57

arc length of, 57
right-handed coordinatization, 5
rotation

analytic forms, 95-96

is a rigid motion, 89-91

rotund (polygon), 145

scalar product (multiple)

on a plane, 3
separates (the plane), 137
set

polygonally connected, 120
sides of a line intersecting a circle, 82-86
sin, see cos, sin
sine function, see cos, sin
slope of a line, 13
square root, of a distance, 110
sum

of points on a plane, 2-3
summation

of f over partition P, 57
supporting edge (of a polygon), 145
supporting line

basic, 165

of a finite set, 177

Index

of a polygon, 145

total variation of function, 60
additive property of, 61
continuity, 61
nondecreasing property of, 61

translation
on coordinate plane, 96-99

triangle

sum of angles is m, 108

Ulrich, F. E., 114
unit circle, 79

and cos and sin, 79

variation

total, of function, 60
vector

orthogonal, 19
vector space

basis, 10

dimension, 10

isomorphism, 9

over real numbers, 7-29

scalars, 7

subspace, 8

vertical line, 12
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