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Introduction to Exercises and Answers

This file contains answers (solutions) to exercises in Euclidean Geometry

and its Subgeometries by Specht, Jones, Calkins, and Rhoads (Birkhäuser,

2015).

All references to chapters, theorems, definitions, remarks, and figures refer

to this work. Most exercises are in the form of statements, so that “answers”

are actually proofs, and are labeled as such.

Here we state all the exercises for each chapter, but give solutions only to

those that are starred; most of these are needed for the development of the

book. Thus, a solution is given for Exercise I.13* but not for Exercise I.14.

We encourage you to read each exercise, make a sketch if it helps you to

visualize it, and get in mind how to prove it, even if you don’t actually put

the details together. You can justify skipping an occasional exercise only if

you are quite sure you could construct the proof if you had to, and feel it is

a waste of your time to supply all the details. But beware that supplying all

the details may look deceptively simple when you give a theorem a cursory

glance.

It is possible that you may create new solutions for exercises that are more

elegant than the ones we have given. The authors will appreciate receiving

any such improvements, as well as corrections to errors you may find in the

proofs given.

Chapter 1: Exercises and Answers for

Preliminaries and Incidence Geometry (I)

Exercise I.1* If L and M are distinct lines and if L ∩ M 6= ∅, then

L ∩M is a singleton.

Exercise I.1 Proof. Assume L ∩M has two distinct members A and B;

then each of the points A or B belongs to L and toM. By Axiom I.1 L =M,

contradicting the given fact that L and M are distinct. Hence our assump-

tion that A 6= B is false, and since L ∩M 6= ∅, L ∩M is a singleton. ⊓⊔

Exercise I.2* (A) If A and B are distinct points, and if C and D are

distinct points on
←→
AB, then

←→
CD =

←→
AB.
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(B) If A, B, and C are noncollinear points, and if D, E, and F are non-

collinear points on
←−−→
ABC, then

←−−→
DEF =

←−−→
ABC.

Exercise I.2 Proof. (A) Since C and D are distinct points, by Axiom I.1,
←→
CD =

←→
AB.

(B) Since D, E, and F are noncollinear points on
←−−→
ABC, by Axiom I.2,

←−−→
DEF =

←−−→
ABC. ⊓⊔

Exercise I.3* If L andM are lines and L ⊆M, then L =M.

Exercise I.3 Proof. By Axiom I.5(A) there exist distinct points A and B

on L. Since L ⊆M, A and B are onM. By Axiom I.1 L =M. ⊓⊔

Exercise I.4* Let A and B be two distinct points, and let D, E, and

F be three noncollinear points. If
←→
AB contains only one of the points D, E,

and F , then each of the lines
←→
DE,

←→
EF , and

←→
DF intersects

←→
AB in at most one

point.

Exercise I.4 Proof. We may choose our notation so that
←→
AB contains

the point D. Then if
←→
DE (or

←→
DF ) intersects

←→
AB in two points, by Exercise

I.2(A)
←→
DE =

←→
AB, (or

←→
DF =

←→
AB) and both D and E (D and F ) are members

of
←→
AB, contradicting the assumption that this line contains only one of the

points D, E, or F . Since E and F do not belong to
←→
AB,

←→
EF 6=

←→
AB and by

Exercise I.1, if these intersect they intersect in a singleton. ⊓⊔

Exercise I.5* If E is a plane, L is a line such that E ∩ L 6= ∅, and L is

not contained in E , then E ∩ L is a singleton.

Exercise I.5 Proof. Since E ∩ L 6= ∅, there exists a point A belonging to

E and to L. Assume there exists a point B distinct from A which belongs to

E and to L. By Axiom I.1 L =
←→
AB and by Axiom I.3 L ⊆ E . This contra-

dicts the given fact that L is not contained in E . Hence E∩L is a singleton. ⊓⊔

Exercise I.6 Let D and E be distinct planes such that D∩E 6= ∅, so that

(by Theorem I.4) D ∩ E is a line L; let P be a point on D but not on L; and

let Q be a point on E but not on L. Then
←→
PQ and L are not coplanar.

Exercise I.7* Given a line L and a point A not on L, there exists one

and only one plane E such that A ∈ E and L ⊆ E .
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Exercise I.7 Proof. By Axiom I.5 there are two distinct points on L, and

by assumption these are not collinear with A. By Axiom I.2 there exists ex-

actly one plane E containing all three points. By Axiom I.3 L ⊆ E . ⊓⊔

Exercise I.8* Let A, B, C, and D be noncoplanar points. Then each of

the triples {A,B,C}, {A,B,D}, {A,C,D}, and {B,C,D} is noncollinear.

Exercise I.8 Proof. If one of the triples is collinear, all of its points belong

to a line L. By Exercise I.7 there exists a unique plane E such that L and

the one point among A, B, C, and D which is not in the triple are in that

plane, hence the four points are coplanar. ⊓⊔

Exercise I.9 There exist four distinct planes such that no point is com-

mon to all of them.

Exercise I.10 Every plane E contains at least three lines L,M, and N

such that L ∩M∩N = ∅.

Exercise I.11 Every plane contains (at least) three distinct lines.

Exercise I.12 Space contains (at least) six distinct lines.

Exercise I.13* If L is a line contained in a plane E , then there exists a

point A belonging to E but not belonging to L.

Exercise I.13 Proof. Axiom I.5 says that there exist at least three non-

collinear points on E . Therefore not all of these points can be in any line L;

let A be that point from among these three that is not on this line. ⊓⊔

Exercise I.14 If P is a point in a plane E , then there is a line L such

that P ∈ L and L ⊆ E .

Exercise I.15 If a plane E has (exactly) three points, then each line con-

tained in E has (exactly) two points.

Exercise I.16 If a plane E has exactly four points, and if all of the lines

contained in E have the same number of points, then each line contained in

E has (exactly) two points.
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Exercise I.17 If each line in space has at least three points, then:

(1) Each point of a plane is a member of at least three lines of the plane;

(2) Each plane has at least seven points;

(3) Each plane contains at least seven lines.

Exercise I.18 In this exercise we will use the symbolism “P ‖ Q” to indi-

cate that two planes P and Q do not intersect. Consider what can happen if

the restrictions of P1∩P2, P1∩P3, and P2∩P3 being nonempty are removed

in Theorem I.9. Sketch at least four possibilities (P1 ‖ P2 ‖ P3, P1 = P2 ‖ P3,

P1 = P2 = P3, P1 ∩P2 = ∅, but P1 ∩P3 = L2 and P2 ∩P3 = L1) and deter-

mine if these can be proved within incidence geometry.

Exercise I.19 Count the number of lines in the 8-point model. Compare

this with Tn = n(n+1)
2 , triangular numbers, for n = 7. Compare it also with

nCr = n!
r!(n−r)! , the number of combinations of n items taken r at a time,

where n = 8 and r = 2.

Exercise I.20 Count the number of planes in the 8-point model. Com-

pare this with nCr for n = 8 and r = 3. Note the reduction by a factor of

four due to the fact that each plane has four points. Can you form a similar

argument with r = 4?

Exercise I.21 Consider a 4-point model with the four points configured

like the vertices of a tetrahedron. Label these points A, B, C, and D. Specify

six lines and four planes and verify that this model satisfies the axioms and

theorem of incidence geometry. Compare this with Exercises I.7, I.10, I.12,

and I.13. How does Theorem I.9 apply in this geometry?
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Chapter 2: Exercises and Answers for

Affine Geometry: Incidence with Parallelism (IP)

Exercise IP.1* If L andM are parallel lines, then there is exactly one

plane containing both of them.

Exercise IP.1 Proof. If L ‖ M, by Definition IP.0 there exists a plane E

containing both L andM such that L∩M = ∅. If there is a second plane F

containing both L andM, let A and B both belong to L and C ∈M. Then

A, B, and C are not collinear and by Axiom I.2, F = E . ⊓⊔

Exercise IP.2* Let L,M, and N be distinct lines contained in a single

plane.

(A) If L ‖ M andM ‖ N , then L ‖ N .

(B) If L intersectsM, then N must intersect L orM, possibly both.

Exercise IP.2 Proof. (A) This follows immediately from Theorem IP.6.

However, since all the lines are in a single plane, a simpler proof may be

constructed as follows: if L 6‖ N then L∩N 6= ∅; let L∩N = {A}; then since

L and N are both parallel to M, there are two lines through A parallel to

M, violating the parallel postulate PS.

(B) If N does not intersect either L orM, then it is parallel to both, and

thus, by part (A), L is parallel to M, contradicting the assumption that L

andM intersect. ⊓⊔

Exercise IP.3* Let E be a pencil of lines on the plane P . If L and M

are distinct members of E which intersect at the point O, then the members

of E are concurrent at O.

Exercise IP.3 Proof. By Definition IP.0(D) O belongs to every member of

E, so the members of E are concurrent at O. ⊓⊔

Exercise IP.4* Let L,M, and N be distinct lines in a plane E such that

L ‖ M. Then if L ∩ N 6= ∅,M∩N 6= ∅.

Exercise IP.4 Proof. If L and N intersect, and neither intersectsM, then

both L and N are lines through a point, both parallel toM. By Axiom PS,

this is impossible, so that one of these lines must intersectM. By assumption

L ‖ M so N intersectsM. ⊓⊔
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Exercise IP.5* Let L1, L2,M1, andM2 be lines on the plane P such

that L1 and L2 intersect at a point, L1 ‖ M1, and L2 ‖ M2, then M1 and

M2 intersect at a point.

Exercise IP.5 Proof. AssumeM1 andM2 are parallel, then by Exercise

IP.2(B) L1 ‖ L2. This contradicts the given fact that L1 and L2 intersect

at a point. Hence our assumption is false and soM1 andM2 intersect at a

point. ⊓⊔

Exercise IP.6* Let E and F be planes such that E ‖ F , and let L be a

line in E . Then L ‖ F .

Exercise IP.6 Proof. By Definition IP.0(C), E ‖ F means that E ∩ F = ∅.

Since L ⊆ E , L ∩ E = ∅, and by Definition IP.0(B) L ‖ E . ⊓⊔

Exercise IP.7* Let E , F , and G be planes such that E ‖ F , E ∩ G 6= ∅,

and F ∩ G 6= ∅. Then E ∩ G is a line L, F ∩ G is a lineM, and L ‖ M. See

Figure 2.2 in Chapter 2 (Exercises), reproduced here.

F

E

G
M

L

Figure 2.2 for Exercise IP.7.

Exercise IP.7 Proof. By Theorem I.4 E ∩ G is a line L and F ∩G is a line

M. Since lines L and M are subsets of G, they are coplanar. Since L ⊆ E ,

M⊆ F , and E ∩ F = ∅, L ∩M 6= ∅. By Definition IP.0(A), L ‖ M. ⊓⊔

Exercise IP.8 If E , F , and G are distinct planes such that E ‖ F and

F ‖ G, then E ‖ G.

Exercise IP.9 If E , F , and G are distinct planes such that E ‖ F and

E ∩ G 6= ∅, then F ∩ G 6= ∅.
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Exercise IP.10 If L andM are noncoplanar lines, then there exist planes

E and F such that E ‖ F and L ⊆ E , andM⊆ F .

Exercise IP.11 Let E and F be parallel planes, and let L be a line which

is parallel to E and which is not contained in F . Then L ∩ F = ∅.

Exercise IP.12 Let E and F be parallel planes, and let L be a line which

is not parallel to E and which is not contained in E . Then L ∩ F 6= ∅.

Exercise IP.13 Given a plane E and a line L parallel to E , there exists

a plane F containing L and parallel to E .

Exercise IP.14 Let n be a natural number greater than 1. If there exists

a line which has exactly n points, then:

(1) Every line has exactly n points.

(2) For any point P and any plane E containing P , there are exactly n+1

lines through P and contained in E .

(3) For any line L and any plane E containing L, there exist exactly n− 1

lines L1, . . . ,Ln−1 such that Lk ‖ L for each k in [1;n− 1].

(4) Each plane contains n(n+ 1) lines.

(5) Each plane contains n2 points.

(6) Given any plane E , there exists exactly n− 1 planes E1, . . . , En−1 such

that Ek ‖ E for each k in [1;n− 1].

(7) There are n3 points in space.

(8) There are n2(n2 + n+ 1) lines in space.

(9) There are n2 + n+ 1 lines through each point.

(10) There are n+ 1 planes containing a given line.

(11) There are n2 + n+ 1 planes through each point.

(12) There are n(n2 + n+ 1) planes in space.
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Chapter 3: Exercises and Answers for

Collineations of an Affine Plane (CAP)

Exercise CAP.1* Let P be an affine plane and let L, M, and N be

lines on P . If L PEM andM PE N , then L PE N .

Exercise CAP.1 Proof. There are four cases.

(1) If L ‖ M andM ‖ N , then by Exercise IP.2, L ‖ N , so L PE N .

(2) If L =M andM ‖ N , then L ‖ N , so L PE N .

(3) If L ‖ M andM = N , then L ‖ N , so L PE N .

(4) If L =M andM = N , then L = N , so L PE N . ⊓⊔

Exercise CAP.2* Let P be any plane where the incidence axioms hold,

ϕ be a collineation of P , and A, B, and C be points on P .

(A) If A, B, and C are collinear, then ϕ(A), ϕ(B), and ϕ(C) are collinear.

(B) If A, B, and C are noncollinear, then ϕ(A), ϕ(B), and ϕ(C) are

noncollinear.

(C) A, B, and C are collinear iff ϕ(A), ϕ(B), and ϕ(C) are collinear.

(D) A, B, and C are noncollinear iff ϕ(A), ϕ(B), and ϕ(C) are non-

collinear.

Exercise CAP.2 Proof. (A) If A, B, and C are collinear, by Definition

I.0.1 there exists a line L containing all these points. By elementary map-

ping theory, ϕ(A), ϕ(B), and ϕ(C) all belong to ϕ(L), which by Definition

CAP.0(A) is a line. By Definition I.0.1, these points are collinear.

(B) By Theorem CAP.1(D’) ϕ−1 is a collineation. If ϕ(A), ϕ(B), and ϕ(C)

are collinear. by part (A) and elementary mapping theory, ϕ−1(ϕ(A)) = A,

ϕ−1(ϕ(B)) = B, and ϕ−1(ϕ(C)) = C are collinear. This proves the contra-

positive of the assertion.

(C) Part (A) proves one half of the assertion, and the proof of part (B)

proves the other half.

(D) Each half of this proof is the contrapositive of half of the proof of part

(C).

Note that the proof does not require Axiom PS to be in force. ⊓⊔

Exercise CAP.3* Let ϕ be a collineation of an affine plane P ,M a line

on P such that every point onM is a fixed point of ϕ, and Q a fixed point

of ϕ such that Q ∈ (P \M). Then ϕ = ı.
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Exercise CAP.3 Proof. Let X be any member of P \ (M∪{Q}), R and S

be distinct members ofM, G = par(X,
←→
RQ) and H = par(X,

←→
SQ). By The-

orem CAP.4(A),
←→
QR and

←→
QS are fixed lines of ϕ. By part (A) of Theorem

CAP.26, G and H are fixed lines of ϕ. By Theorem CAP.4(B), X is a fixed

point of ϕ. Since X is any member of P \ (M∪{Q}), and since each member

ofM∪ {Q} is a fixed point of ϕ, the set of fixed points of ϕ is P . But that

means that ϕ = ı. ⊓⊔

Exercise CAP.4* Let P be an affine plane, L1, and L2 be parallel lines

on P , O1 be a member of L1, O2 be a member of L2, and τ be the translation

(cf Theorem CAP.9) of P such that τ(O1) = O2, then τ(L1) = τ(L2).

Exercise CAP.4 Proof. Since τ is a collineation of P , τ(L1) is a line on

P . Since τ(O1) = O2 ∈ L2, O2 ∈ τ(L2). By Definition CAP.6, τ(L1) ‖ L1.

Since L2 ‖ L1, by Axiom PS, L2 = τ(L1). ⊓⊔

Exercise CAP.5* Let P be an affine plane, ϕ be a dilation of P with

fixed point O, and ψ be a stretch of P with axisM through O, then ϕ ◦ψ =

ψ ◦ ϕ. (We take Remark CAP.30 as a definition of a stretch.)

Exercise CAP.5 Proof. Let X be any member of P .

(1) If X ∈ M, then (ϕ ◦ ψ)(X) = ϕ(ψ(X)) = ϕ(X). Since M is a fixed

line of ϕ (cf Theorem CAP.18), ψ(ϕ(X)) = ϕ(X).

(2) Let X ∈ (P \ M) and let L be the fixed line of ψ through X (cf

Theorem CAP.27), then ψ(X) 6= X and ψ(X) ∈ L. Since
←→
OX is a fixed line

of ϕ (cf Theorem CAP.18), ϕ(X) ∈
←→
OX. Furthermore, (cfDefinition CAP.17),

ϕ(
←−−−→
Xψ(X)) = par(ϕ(X),L). Since

←−−−→
Oψ(X) is a fixed line of ϕ, ϕ(ψ(X)) is the

point of intersection of par(ϕ(X),L) and
←−−−→
Oψ(X). Since ψ(

←→
OX) =

←−−−→
Oψ(X) =

ψ(
←−−−→
Oϕ(X)) =

←−−−−−−→
Oψ(ϕ(X)), ψ(ϕ(X)) is the point of intersection of par(ϕ(X),L)

and
←−−−→
Oψ(X). Hence ϕ(ψ(X)) = ψ(ϕ(X)). ⊓⊔
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Chapter 4: Exercises and Answers for

Incidence and Betweenness (IB)

Exercise IB.1 If A and B are distinct points, then there exist points E

and F such that E B A and B A F .

Exercise IB.2* Let A, B, C, and D be distinct collinear points, then

A B C D iff D C B A.

Exercise IB.2 Proof. By Definition IB.2 A B C D means that A B C,

A B D, A C D, and B C D. By property B.1 of Definition IB.1 (Symmet-

ric property for betweenness) C B A, D B A, D C A, and D C B. By

Definition IB.2, D C B A. ⊓⊔

Exercise IB.3 If A and B are any two distinct points, then
px qy

AB =
px qy

BA

and
qy px

AB =
qy px

BA.

Exercise IB.4* If A and B are any two distinct points, then
qy px

AB ⊆
qy qy

AB ⊆
qy→
AB ⊆

←→
AB,

qy px

AB ⊆
px px

AB ⊆
px→
AB ⊆

←→
AB, and

px qy

AB ⊆
px→
AB ⊆

←→
AB.

Exercise IB.4 Proof. The proof is direct from Remark IB.4.1 and Theorem

IB.5. ⊓⊔

Exercise IB.5 If
px→
AB =

px→
CD or

px qy

AB =
px qy

CD, then
←→
AB =

←→
CD.

Exercise IB.6* Prove Corollary IB.5.2: let A and B be distinct points.

Then
px→
AB and

qy→
AB are both proper subsets of

←→
AB,

px qy

AB is a proper subset of
px→
AB, and

qy px

AB and
qy qy

AB are proper subsets of
qy→
AB. (See also Exercise IB.4.)

Exercise IB.6 Proof. By property B.3 of Definition IB.1 there exists a

point X such that X A B; by the third equality of Theorem IB.5, no such

point belongs to
px→
AB so this is a proper subset of

←→
AB.

qy→
AB is a subset of

px→
AB

so is also a proper subset.

Again by property B.3 there exists a point X such that A B X and by

the trichotomy property, this means that A X B is false. By Definition IB.4

X ∈
px→
AB and by Definition IB.3 X 6∈

px qy

AB, which is therefore a proper subset

of
px→
AB. Also X ∈

qy→
AB and X 6∈

qy qy

AB, which is thus a proper subset of
qy→
AB;

since
qy px

AB is a subset of
qy qy

AB it is also a proper subset of
qy→
AB. ⊓⊔
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Exercise IB.7* Prove the Corollary IB.6.1: for any two distinct points

A and B,
px→
AB ∪

px→
BA =

←→
AB.

Exercise IB.7 Proof. Since
px→
AB =

qy→
AB ∪{A} and

px→
BA =

qy→
BA∪{B}, by

Theorem IB.6
px→
AB ∪

px→
BA =

qy→
AB ∪

qy→
BA∪{A,B} =

←→
AB ∪ {A,B} =

←→
AB. ⊓⊔

Exercise IB.8* If A and B are any two distinct points, then

(A)
px→
AB ∩

px→
BA =

px qy

AB,

(B)
qy→
AB ∩

qy→
BA =

qy px

AB,

(C)
px→
AB ∩

qy→
BA =

px px

AB, and

(D)
qy→
AB ∩

px→
BA =

qy qy

AB.

Exercise IB.8 Proof.

(A) By Definition IB.4, X ∈
px→
AB iff X = A or A X B or X = B or

A B X , and X ∈
px→
BA iff X = B or A X B or X = A or B A X . Therefore

X ∈
px→
AB ∩

px→
BA iff X = A or A X B or X = B, which is true iff X ∈

px qy

AB, by

Definition IB.3.

(B) By Definition IB.4, X ∈
qy→
AB iff A X B or X = B or A B X , and

X ∈
qy→
BA iff A X B or X = A or B A X . Therefore X ∈

qy→
AB ∩

qy→
BA iff

A X B, which is true iff X ∈
qy px

AB, by Definition IB.3.

(C) By Definition IB.4, X ∈
px→
AB iff A X B or X = A or X = B or

A B X , and X ∈
qy→
BA iff A X B or X = A or B A X . Therefore X ∈

px→
AB ∩

qy→
BA iff A X B or X = A, which is true iff X ∈

px px

AB, by Definition IB.3.

(D) X ∈
qy qy

AB iff A X B or X = B iff X ∈
px px

BA, which by part (C) is true

iff X ∈
px→
BA∩

qy→
AB. ⊓⊔

Exercise IB.9* Let L be a line, and let A and B be distinct points such

that L 6=
←→
AB. If

qy px

AB ∩L = {R}, then
←→
AB ∩ L = {R}.

Exercise IB.9 Proof. Since
qy px

AB ⊆
←→
AB,

qy px

AB ∩L = {R} ⊆
←→
AB ∩ L. If there

were a second point S in
←→
AB ∩ L, then by Exercise I.2

←→
AB = L which con-

tradicts our assumption that L 6=
←→
AB. ⊓⊔

Exercise IB.10* Prove Corollary IB.14.1: let P , L, P , and Q be as in

Theorem IB.14 (that is, L is a line in plane P , and P and Q are points such

that P ∈ L and Q /∈ L). Then
qy→
PQ∩L = ∅.

Exercise IB.10 Proof. By Theorem IB.14
qy→
PQ is a subset of the Q side of

L. By Definition IB.11 the Q side of L is {X | X = Q or (X ∈ (P \{Q}) and
px qy

XQ∩L = ∅}; so the Q side of L and L are disjoint. Therefore
qy→
PQ∩L = ∅. ⊓⊔
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Exercise IB.11* Prove Corollary IB.14.2: let P , L, P , and Q be as in

Theorem IB.14 (that is, L is a line in plane P , and P and Q are points such

that P ∈ L and Q /∈ L). Then
qy qy

PQ and
qy px

PQ are subsets of the Q side of L.

Exercise IB.11 Proof. By Definitions IB.3 and IB.4
qy px

PQ is a subset of
qy→
PQ.

By Theorem IB.13,
qy→
PQ is a subset of the Q side of L. ⊓⊔

Exercise IB.12 Prove Corollary IB.14.3: for any triangle △ABC, the

edges
qy px

AB and
qy px

AC are subsets of
qy →
BCA,

qy px

AB and
qy px

BC are subsets of
qy →
ACB,

and
qy px

AC and
qy px

BC are subsets of
qy →
ABC.

Exercise IB.13 Space is convex.

Exercise IB.14 Every plane is convex.

Exercise IB.15* If G is any collection of convex sets, and if the inter-

section of the members of G is nonempty, then the intersection is convex.

Exercise IB.15 Proof. Let P and Q be members of the intersection of all

sets in G. This means P and Q belong to every set in G, each of which by

Definition IB.9 contains the segment
qy px

AB. Thus their intersection contains
qy px

AB, and the intersection is convex by Definition IB.9. ⊓⊔

Exercise IB.16 Let L be a line and let E be a nonempty proper subset

of L such that E is not a singleton. Then:

(1) E is not a segment iff for every pair of distinct points A and B on L,

there exists a point U such that A U B and U /∈ E , or there exists a point

V such that A B V and V ∈ E , or there exists a point W such that B A W

and W ∈ E .

(2) E is not a ray iff for every pair of distinct points A and B on L, there

exists a point U such that A U B and U /∈ E , or there exists a point V such

that A B V and V /∈ E , or there exists a point W such that B A W and

W ∈ E .

Exercise IB.17* Let P be an IB plane, L andM be lines on P , and O

be a point such that L ∩M = {O}, then there exist points P and Q on L

such that P and Q are on opposite sides ofM.

Exercise IB.17 Proof. By Axiom I.5, there exists a point P on L distinct

from O. By property B.3 of Definition IB.1 there exists a point Q such that
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P O Q. By property B.0, Q belongs to L. By Definition IB.11, P and Q are

on opposite sides ofM. ⊓⊔

Exercise IB.18 (True or False?) Let P be an IB plane, and let J , K,

and L be distinct lines on P such that J ∩ L 6= ∅ and K ∩ L 6= ∅. Then if U

is a point on J but not on L, there is a point V on K such that U and V are

on opposite sides of L.
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Chapter 5: Exercises and Answers for

Pasch Geometry (PSH)

In the following exercises, all points and lines are in a Pasch plane.

Exercise PSH.0* (A) Let P be a Pasch plane, L andM be lines, O be

a point on P such that L ∩M = {O}. If H is a side of L, thenM∩H 6= ∅.

(B) Let P be a Pasch plane and let J , K, and L be distinct lines on P

such that J ∩ L 6= ∅ and K ∩ L 6= ∅. If U is a point on J but is not on L,

then there is a point V on K such that U and V are on opposite sides of L.

Exercise PSH.0 Proof. (A) By Axiom I.5 there exists a point A on M

distinct from O. Since L ∩M = {O}, by Axiom PSA, A belongs to a side

of L. If A belongs to H1, we are done. If A does not belong to H1, then we

use Theorem PSH.12 (Plane Separation Theorem). It says there exists a side

H2 of L such that H1 ∩ H2 = ∅ and P \ L = H1 ∪ H2. By property B.3 of

Definition IB.1 (Extension Property for betweenness) there exists a point B

such that B O A. By property B.0 B ∈ M. By Definition IB.11 A and B

are on opposite sides of L. Therefore by Theorem PSA.11 B ∈ H1.

(B) Since the lines J , K, and L are distinct lines, J ∩L 6= ∅, and K∩L 6= ∅,

by Exercise I.1 there exist points Q and R such that J ∩ L = {Q} and

K∩L = {R}. By property B.3 of Definition IB.1 there exists a point W such

that U Q W . By property B.0 W ∈ J . By Definition IB.11 U and W are

on opposite sides of L. Let H1 = the U side of L and H2 = the W side of L.

Then by part (A) there exists a point V ∈ K which is on the W -side of L,

and this is opposite the U -side of L. ⊓⊔

Exercise PSH.1* Complete the details of the proof of Theorem PSH.8,

part (B)(1).

Exercise PSH.1 Proof. By Axiom I.5, there exists a point E on P not be-

longing to
←→
AB. By Theorem IB.14,

qy→
BD ⊆ (the D side of

←→
BE). Since B C D,

by Definition IB.4 C belongs to
qy→
BD and hence to the D side of

←→
BE. Since

A B C, the A side and the C side = D side are opposite sides of
←→
BE. There-

fore A and D are on opposite sides of
←→
BE. By Axiom PSA, there exists a

point Q such that
←→
AD∩

←→
BE = {Q} and A Q D. But B ∈

←→
AD and B ∈

←→
BE,

so by Exercise I.1 Q = B and hence A B D. ⊓⊔
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Exercise PSH.2* (A) Prove Corollary PSH.8.3: Let A, B, C, and D

be distinct coplanar points. If A C D and B C D, then exactly one of the

following two statements is true:

(1) A B C and A B D; (2) B A C and B A D.

(B) Prove Corollary PSH.8.4: Let A, B, C, and D be distinct coplanar

points. If A B D and A C D, then exactly one of the following two state-

ments is true:

(1) A B C and B C D; (2) A C B and C B D.

Exercise PSH.2 Proof. (Proofs for Corollaries PSH.8.3 and PSH.8.4.) (A)

If A C D, then by property B.1 of Definition IB.1 D C A and if B C D,

then D C B. By Corollary PSH.8.2 D C A B or D C B A. By property

B.1 of Definition IB.1 either B A C D or A B C D.

(B) By property B.1 of Definition IB.1 D B A and D C A. By Corol-

lary PSH.8.2 D B C A or D C B A. By property B.1 of Definition IB.1

A C B D or A B C D. ⊓⊔

Exercise PSH.3* Let A, B, C, and D be points such that A B C D

and let P and Q be points such that P A B and C D Q. Then:

(A)
←→
AB =

←→
AC =

←→
AD =

←→
BC =

←→
BD =

←→
CD; the points A, B, C, and D are

collinear;

(B)
←→
BC is the union of the disjoint sets {B,C},

qy→
BA,

qy px

BC, and
qy→
CD;

(C)
←→
BC is the union of the disjoint sets {A,B,C,D},

qy→
AP ,

qy px

AB,
qy px

BC,
qy px

CD,

and
qy→
DQ;

(D)
px qy

AD is the union of the disjoint sets {A,B,C,D},
qy px

AB,
qy px

BC, and
qy px

CD;

(E)
←→
AD is the union of the sets {X |X A D},

px qy

AD, and {X |A D X},

which are all disjoint.

Exercise PSH.3 Proof. (A) By property B.0 of Definition IB.1 A, B, and

C are collinear and B, C, and D are collinear and so A, B, C, and D are

collinear. By Exercise I.2
←→
AB =

←→
AC =

←→
AD =

←→
BC =

←→
CD.

(B)
←→
BC = {X | X B C or X = B or B X C or X = C or B C X}. By

Theorem PSH.13 {X | X B C} =
px→
BA and

{X | B C X} = {X | X C B} =
px→
CQ.

Since
px→
BA,

px→
CD and

px qy

BC are disjoint (cf property B.2 of Definition IB.1), the

proof is complete.

(C) By Definitions IB.3 and IB.4
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←→
BC =

←→
AD = {X | X A D} ∪ {A} ∪ {X | A X D} ∪ {D} ∪ {X |A D X}.

By Theorem PSH.13 {X | X A D} =
px→
AD and {X | A D X} =

px→
DQ, so

←→
AB = {A} ∪

qy→
AP ∪

qy px

AD∪{D} ∪
qy→
DQ

= {A,B,C,D} ∪
qy→
AP ∪

px qy

AB ∪
px qy

BC ∪
px qy

CD∪
qy→
DQ.

(D) Since
px qy

AD = {X | X = A or A X B or X = B or

B X C or X = C or C X D or X = D}

= {A,B,C,D} ∪
qy px

AB ∪
qy px

BC ∪
qy px

CD

and {A,B,C,D} ∩
qy px

AB ∩
qy px

BC ∩
qy px

CD = ∅, the proof is complete.

(E) By properties B.0, B.1, and B.2 of Definition IB.1
←→
AD = {X | X A D or X = A or A X D or X = D or A D X}

= {X | X A D} ∪ {X = A or X = D or A X D} ∪ {X | A D X}

= {X | X A D} ∪
px qy

AD∪{X | A D X}.

Moreover the sets forming these unions are all pairwise disjoint. ⊓⊔

Exercise PSH.4* (A) Let A and B be distinct points on the Pasch plane

P and let E be a nonempty subset of
qy px

AB. Then E is not a ray.

(B) Let A and B be distinct points on the Pasch plane P and let E be a

nonempty subset of
px qy

AB. Then E is not a ray.

Exercise PSH.4 Proof. (A) Assume E is a ray; then by Definition IB.4

there exist distinct points D and E belonging to E such that E =
px→
DE or

E =
qy→
DE. If the latter, choose D′ such that D D′ E, so that

qy →
D′E ⊆ E . In

either case we can choose D so that
qy→
DE ⊆ E ⊆

qy px

AB.

By Theorem PSH.13
qy→
DE =

px qy

DE ∪{X | D E X}. Since
px qy

DE is a subset of
qy px

AB, either A D E or A E D. Choose the notation so that A D E. Since

E ∈
qy px

AB, A E B. By Theorem PSH.8 A D E B so D E B. Since
px→
DE

is a ray, by Definition IB.4 B ∈
px→
DE ⊆ E . Since E ⊆

qy px

AB, B /∈ E . This

contradiction proves that our assumption that E is a ray is false.

(B) Assume E is a ray; then by Definition IB.4 there exist distinct points

D and E belonging to E such that E =
px→
DE or E =

qy→
DE. By Theorem PSH.13

E =
px qy

DE ∪{X | D E X}, or E =
qy qy

DE ∪{X | D E X}.

Either D is an endpoint of
px qy

AB or it is not. If D is an endpoint, then choose

the notation so that A = D. Then A E B or B = E. By property B.3 of

Definition IB.1 there exists a point C such that A B C. Then A E C, that

is, D E C so that C ∈
px→
DE ⊆

px qy

AB, a contradiction to A B C.

If D is not an endpoint either A D E B or A E D B. Again choose the

notation so that A D E B, and again by property B.3 let C be a point such
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that D B C and hence A D E B C and A B C. Then C ∈
px→
DE ⊆

px qy

AB, a

contradiction to A B C. Thus our assumption that E is a ray is false. ⊓⊔

Exercise PSH.5* Let A, B, C, D, and E be points on plane P such that

A, B, and C are noncollinear, A B D, and A C E. Then D ∈ ins∠BCE.

Exercise PSH.5 Proof. By Definition IB.11 and the fact (Theorem PSH.12)

that there are exactly two sides to a line, D and E are both on the side of
←→
BC opposite A, so that D is on the E-side of

←→
BC. By Theorem PSH.12 D

and B are on the same side of
←→
AC because A B D so that D is on the B-side

of
←→
AC =

←→
CE, hence by Definition PSH.36 D ∈ ins∠BCE. ⊓⊔

Exercise PSH.6 Let A, B, C, D, and E be as in Exercise PSH.5. Then
←→
AB ∩ (ins∠BCE) =

qy→
BD and

←→
AB ∩ (out∠BCE) =

qy→
BA.

Exercise PSH.7 Let A, B, C, D, and E be as in Exercise PSH.5. Then

there exists a point F such that
qy px

BE ∩
qy px

CD = {F}.

Exercise PSH.8* Let O, A, B, A′, and B′ be points on P such

that O, A, and B are noncollinear, B O B′, and A O A′. Let X be any

member of ins∠AOB, and let X ′ be any point such that X O X ′. Then
←→
OX ∩ ins∠A′OB′ =

qy →
OX ′.

Exercise PSH.8 Proof. Since X ∈ ins∠AOB, by Definition PSH.36 X

and A are on the same side of
←→
OB and X and B are on the same side of

←→
OA.

The lines
←−→
AA′,

←−→
BB′, and

←−→
XX ′ are concurrent at O. Then A′ and A are on

opposite sides of
←→
OB, X ′ and X are on opposite sides of

←→
OB, and X is on

the A-side of
←→
OB. Therefore X ′ is on the A′-side of

←→
OB.

Interchanging A with B and A′ with B′ in this reasoning, we have that

X ′ is on the B′-side of
←→
OA, hence X ′ ∈ ins∠A′OB′ by Definition PSH.36.

By Theorem PSH.38(B)
qy →
OX ′ =

←→
OX ∩ ins∠A′OB′. In this reasoning we have

relied heavily on Theorem PSH.12 (Plane Separation Theorem). ⊓⊔

Exercise PSH.9* Let O, A, B, A′, and B′ be points on the Pasch plane

P such that O, A, and B are noncollinear, B′ O B, and A′ O A, let X be

any member of ins∠AOB and X ′ be any point such that X ′ O X .

(A)
←→
OX∩

qy px

A′B′=
qy →
OX ′ ∩

qy px

A′B′ is a singleton, i.e., there exists a point Y such

that
←→
OX ∩

qy px

A′B′ = {Y }.
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(B) (B) Let X be any point such that X ∈
px qy

AB; if X ∈
qy px

AB define Ω(X) =

Y , where Y is as in part (A); if X = A define Y = A′, and if X = B define

Y = B′. Then the mapping Ω maps
px qy

AB onto
px qy

A′B′ and is one-to-one, hence

is a bijection.

Exercise PSH.9 Proof. (A) By Exercise PSH.8, X ′ ∈ ins∠A′OB′. By

Theorem PSH.39 (Crossbar) there is a point Y such that
←→
OX ∩

qy px

A′B′ = {Y }.

(B) Since Ω maps A to A′ and B to B′, both A′ and B′ belong to Ω(
px qy

AB).

For any point Y ∈
qy px

A′B′, by property B.3 of Definition IB.1 there is some

X such that Y O X . By Exercise PSH.8 X ∈ ins∠AOB, and by Theorem

PSH.39 there is a point X̂ such that {X̂} =
←→
OX ∩

qy px

AB. Then Ω(X̂) = Y so

that Y ∈ Ω(
px qy

AB). This shows that Ω maps
px qy

AB onto
px qy

A′B′.

If W 6= Z are two points of
px qy

AB, then Ω(W ) ∈
←−→
WO, Ω(Z) ∈

←→
ZO,

W O Ω(W ) and Z O Ω(Z). Since W 6= Z
←−→
WO 6=

←→
ZO and by Exercise

I.1 the only point of intersection of these lines is O. Hence Ω(W ) 6= Ω(Z),

and Ω is a bijection. ⊓⊔

Exercise PSH.10 If A and B are distinct points, then {A,B} is non-

convex.

Exercise PSH.11 Let P be a Pasch plane, L be a line on P , and let J

be a side of L. If P ∈ L and Q ∈ J , then
qy px

PQ ⊆ J .

Exercise PSH.12* Let A, B, and C be noncollinear points on a

Pasch plane. If D ∈ ins∠BAC, prove that
qy→
AB ⊆

qy →
ADB,

qy→
AC ⊆

qy →
ADC,

B ∈ out∠CAD, and C ∈ out∠BAD.

Exercise PSH.12 Proof. By Corollary PSH.39.2, B and C are on opposite

sides of
←→
AD, so by Theorem PSH.41(C) B ∈ out∠CAD and C ∈ out∠BAD.

By Theorem IB.14,
qy→
AB ⊆

qy →
ADB and

qy→
AC ⊆

qy →
ADC. ⊓⊔

Exercise PSH.13* Let A, B, and C be noncollinear points on a Pasch

plane, and let P and Q be members of ins∠BAC. Then if P ∈ ins∠BAQ,

Q ∈ ins∠CAP .

Exercise PSH.13 Proof. If P ∈ ins∠BAQ, by Corollary PSH.39.2, B and

Q are on opposite sides of
←→
AP ; hence Q is on the side of

←→
AP opposite B, that

is, on the C-side; we already know that Q is on the B-side of
←→
AC, which is

the same as the P -side; hence Q ∈ ins∠CAP . ⊓⊔
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Exercise PSH.14* (Key exercise) (A) Let E be a convex subset of

plane P and let L be a line on P . If E ∩ L = ∅, then E is a subset of a side

of L.

(B) If a lineM, or a segment or a ray does not intersect L, then that line,

segment, or ray lies entirely on one side of L.

Exercise PSH.14 Proof. (A) Let P be a point of E . If Q is any other point

of E , then
px qy

PQ ⊆ E because E is convex. By Theorem PSH.12 P and Q are

on the same side of L, because
qy px

PQ does not intersect L.

(B) By Theorem IB.10 every line is convex; by Theorem PSH.18 all seg-

ments and rays are convex. Therefore by part (A) if any of these fail to

intersect the line L, they lie entirely on one side of L. ⊓⊔

Exercise PSH.15* Let A, B, and C be noncollinear points on a Pasch

plane P and let L be a line on P . If {A,B,C}∩L = ∅, then either L∩△ABC =

∅ or L intersects two and only two edges of △ABC, in which case L∩△ABC

is a doubleton.

Exercise PSH.15 Proof. If L ∩△ABC 6= ∅, by Theorem PSH.50(B), if L

contains no point of {A,B,C} then alternatives (1) and (3) or that theorem

are ruled out, and L intersects △ABC in exactly two points, which are on

different edges. ⊓⊔

Exercise PSH.16* The inside of every angle is convex and the inside of

every triangle is convex.

Exercise PSH.16 Proof. By Exercise IB.15 any non-empty intersection of

two convex sets is convex. By Theorem PSH.9, every side of a line is convex.

By Definition PSH.36, the inside of an angle and the inside of a triangle are

intersections of sides of lines, hence are convex. ⊓⊔

Exercise PSH.17* Let P be a Pasch plane and let A, B, and C be

noncollinear points on P .

(A) If D ∈ ins∠BAC, then
qy→
AD ⊆ ins∠BAC.

(B) ins∠BAC =
⋃

D∈
qy px

BC

qy→
AD

Exercise PSH.17 Proof. (A) By Theorem IB.14
qy→
AD ⊆ B side of

←→
AC and

qy→
AD ⊆ C side of

←→
AB. By Definition PSH.36

qy→
AD ⊆ ins∠BAC.

(B) Let X be any member of ins∠BAC. By Crossbar (Theorem PSH.39)

there exists a member Y of
qy px

BC such that
qy→
AX ∩

qy px

BC = {Y }. By Theorem
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PSH.16
qy→
AX =

qy→
AY so X ∈

qy→
AY . Therefore X ∈

⋃

Y ∈
qy px

BC

qy→
AY , and

ins∠BAC ⊆
⋃

Y ∈
qy px

BC

qy→
AY . By part (A), for every Y ∈

qy px

BC,
qy→
AY ⊆ ins∠BAC,

so ins∠BAC ⊇
⋃

Y ∈
qy px

BC

qy→
AY . ⊓⊔

Exercise PSH.18* (Angle analog of Exercise PSH.32) Let A, B, and

C be noncollinear points on the Pasch plane P and let D be a member of

ins∠BAC. Then ins∠BAC is the union of the disjoint sets
qy→
AD, ins∠BAD

and ins∠DAC.

Exercise PSH.18 Proof. By Crossbar (Theorem PSH. 39)
qy→
AD and

qy px

BC

intersect at a point E. By Exercise PSH.17(B)

ins∠BAE =
⋃

Y ∈
qy px

BE

qy→
AY , ins∠CAE =

⋃

Y ∈
qy px

CE

qy→
AY .

Moreover,
qy→
AD =

qy→
AE.

Therefore ins∠BAC =
(

⋃

Y ∈
qy px

BE

qy→
AY

)

∪
(

⋃

Y ∈
qy px

CE

qy→
AY

)

∪
qy→
AE. ⊓⊔

Exercise PSH.19* Prove parts (3) and (4) of Theorem PSH.48: if A, B,

and C are noncollinear points and P is a member of ins△ABC, there exists

a point Q ∈
qy px

BC such that

(3)
qy px

AQ ⊆ ins△ABC, and

(4)
qy→
AQ \

px qy

AQ ⊆ out△ABC.

Exercise PSH.19 Proof. We are to show that if A, B, and C be non-

collinear points, P is any member of ins△ABC and Q ∈
qy px

BC that (3)
qy px

AQ ⊆ ins△ABC, and (4)
qy→
AQ \

px qy

AQ ⊆ out△ABC. To show (3), note that

A and Q are not on the same edge of △ABC; the result follows from The-

orem PSH.47. (4) If X ∈
qy→
AQ \

px qy

AQ then A Q X and X is a member of the

side of
←→
BC opposite A, which is a subset of out△ABC by Theorem 46(D). ⊓⊔

Exercise PSH.20* The union of a line L and one of its sides H is convex

(i.e., a halfplane is convex).

Exercise PSH.20 Proof. Let A and B be distinct members of L ∪H.

(Case 1) If A ∈ L and B ∈ L, then by Theorem IB.10
px qy

AB ⊆ L ⊆ L ∪H.

(Case 2) If A ∈ H and B ∈ H, then by Definition IB.11
px qy

AB ⊆ H ⊆ L∪H.

(Case 3) If A ∈ H and B ∈ L, then by Theorem PSH.13
qy px

AB ⊆
qy→
AB, and

by Theorem IB.14
px qy

AB ⊆
px→
AB ⊆ L ∪ H. If A ∈ L and B ∈ H they may be
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relabeled and the same logic applied. ⊓⊔

See also Theorem PSH.9 as used in the proof to Theorem PSH.12.

Exercise PSH.21* Let A be any subset of plane P having at least two

members and let B be the union of all segments
px qy

PQ such that P ∈ A and

Q ∈ A. Is B necessarily convex?

Exercise PSH.21 Proof. No. Let A, B, and C be any noncollinear points.

Then△ABC (which is the union of all the segments connecting these points)

is not convex, by Corollary PSH.47.1. ⊓⊔

Exercise PSH.22* If A, B, and C are noncollinear points, then both

enc∠ABC and enc△ABC are convex sets.

Exercise PSH.22 Proof. By Exercise PSH.16 ins∠ABC is convex and so

is ins△ABC.

(I) Proof that enc∠ABC is convex. Suppose that P and Q are both mem-

bers of ins∠ABC; then
px qy

PQ ⊆ ins∠ABC. Now let P and Q be members of

∠ABC; if both are members of
px→
BA,

px qy

PQ ⊆
px→
BA since this is convex by The-

orem PSH.18. A similar argument shows that if both are members of
px→
BC,

px qy

PQ ⊆
px→
BC.

Finally, suppose P ∈ ∠ABC and Q ∈ ins∠ABC. Then by Theorem

PSH.43 either alternative (2) or (3) holds; if alternative (2) holds, by Theo-

rem PSH.13,
qy qy

PQ ⊆
qy→
PQ ⊆ ins∠ABC so that

px qy

PQ ⊆ enc∠ABC. If alternative

(3) holds, and P ′ is the second point of intersection of
←→
PQ with ∠ABC, then

qy px

PP ′ =
←→
PQ ∩ ins∠ABC and hence Q ∈

qy px

PP ′ and
qy qy

PQ ⊆
qy px

PP ′ ⊆ ins∠ABC so

that
px qy

PQ ⊆ enc∠ABC.

(II) Proof that enc△ABC is convex. Note again that if P and Q are

both members of ins△ABC then by convexity
px qy

PQ ⊆ ins△ABC. If P and

Q are both members of △ABC, either alternative (2) or (3) of Theorem

PSH.50 holds. If alternative (2) holds, then
qy px

PQ =
←→
PQ ∩ ins△ABC so that

px qy

PQ ⊆ enc△ABC. If alternative (3) holds, then
←→
PQ ∩△ABC = ∅ and both

P and Q are members of the same edge of△ABC which by Theorem PSH.18

is convex, so that
px qy

PQ ⊆ enc△ABC.

Finally, if P ∈ △ABC and Q ∈ ins△ABC, only alternative (2) of

Theorem PSH.50 can hold, since it is the only alternative where the line
←→
PQ intersects ins△ABC. Let P ′ be the second point of intersection of
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←→
PQ with △ABC; then

qy px

PP ′ =
←→
PQ ∩ ins△ABC and hence Q ∈

qy px

PP ′ and
qy qy

PQ ⊆
qy px

PP ′ ⊆ ins△ABC so that
px qy

PQ ⊆ enc△ABC.

Part (II) could also be proved by observing that if P and Q are any two

points of enc△ABC, both are points of
←→
PQ ∩ enc△ABC which is a seg-

ment by Theorem PSH.50(A). By Theorem PSH.18 a segment is convex, so
px qy

PQ ⊆ enc△ABC. ⊓⊔

Exercise PSH.23* Without referring to Theorem PSH.43 (that is, us-

ing principally the definitions of inside, outside, and Theorem PSH.41(C)),

construct a proof of part (A) of Theorem PSH.44: Let A, B, C, P , and Q

be distinct points where A, B, and C are noncollinear; if P ∈ ins∠BAC and

Q ∈ out∠BAC, then
qy px

PQ∩∠BAC is a singleton.

Exercise PSH.23 Proof. P ∈ ins∠BAC =
qy →
ABC ∩

qy →
ACB, and Q ∈

out∠BAC = (side of
←→
AB opposite C)∪ (side of

←→
AC opposite B.) We prove

the assertion for the case where Q ∈ side of
←→
AB opposite C. The other case

is similar.

By Theorem IB.12 (or Definition IB.11), there existsR such that
qy px

PQ∩
←→
AB =

{R}, so that P R Q.

(I) If R ∈
px→
AB then by Definition PSH.29 R ∈ ∠BAC and we’re done.

(II) If R A B then R is on the side of
←→
AC opposite B so by Theorem IB.12

(or Definition IB.11) there exists a point S ∈
←→
AC such that

px qy

PR∩
←→
AC = {S}

and P S R Q. Since P ∈
qy →
ABC and R ∈

←→
AB, by Theorem PSH.38(A)

qy→
RP ⊆

qy →
ABC so that S ∈

qy →
ABC and hence S ∈

qy→
AC, and S is the only inter-

section of
←→
PQ with

←→
AC by Exercise I.1. Since

←→
PQ does not intersect

px→
AB, S

is the only point of intersection of
←→
PQ and

qy px

PQ) with ∠BAC. ⊓⊔

Exercise PSH.24* Prove Theorem PSH.47: Let A, B, and C be non-

collinear points, and let P and Q belong to △ABC. If no edge of △ABC

contains both P and Q, then
qy px

PQ ⊆ ins△ABC.

Exercise PSH.24 Proof. Note that only one of the points P and Q can

be a corner. Without loss of generality we may assume that P ∈
qy px

AB and

Q ∈
qy qy

AC.

By Theorem PSH.37,
qy px

PQ ⊆ ins∠BAC. If Q 6= C then
qy px

PQ ⊆
qy →
BCA

because both P and Q ∈
qy →
BCA and

px qy

PQ∩
←→
BC = ∅, and hence

qy px

PQ ⊆

ins∠BAC ∩
qy →
BCA = ins△ABC by Definition PSH.36.
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If Q = C, since P ∈
qy →
BCA, we may apply Theorem IB.13 and find that

qy→
QP ⊆

qy →
BCA, so that again

qy px

PQ ⊆ ins∠BAC ∩
qy →
BCA = ins△ABC. ⊓⊔

Exercise PSH.25* Prove part (2) of Theorem PSH.49, which we restate

here for convenience. Let A, B, and C be noncollinear points and let L be a

line such that L∩ins△ABC 6= ∅ and L∩{A,B,C} = ∅. If P ∈ L∩ins△ABC

and Q 6= P is any point of L, then

(1)
qy→
PQ intersects exactly one of the segments

qy px

AC,
qy px

BC or
qy px

AB in ex-

actly one point,

(2) L =
←→
PQ intersects exactly two of the segments

qy px

AC,
qy px

BC or
qy px

AB,

and thus L intersects △ABC in exactly two points D and E, and

(3)
qy px

DE ⊆ ins△ABC.

Exercise PSH.25 Proof. Let Q′ ∈ L be any point such that Q′ P Q. By

Theorem PSH.15(B), L =
qy →
PQ′ ∪{P}∪

qy→
PQ. By part (1) of Theorem PSH.49,

each of
qy→
PQ and

qy →
PQ′ intersects exactly one of the segments

qy px

AC,
qy px

BC or
qy px

AB

in exactly one point. Since P /∈ △ABC,L intersects △ABC in exactly two

points which we may call D and E, and these points are not on the same

edge of △ABC. ⊓⊔

Exercise PSH.26* Let A, B, and C be noncollinear points, let E be

any member of
qy px

AC, and let F be any member of
qy px

AB. Then
qy px

BE and
qy px

CF

intersect in a point O which belongs to ins△ABC.

Exercise PSH.26 Proof. By Definition IB.11, A and B are on opposite

sides of
←→
CF ; by Theorem IB.14, E ∈

qy→
CA ⊆ the A side of

←→
CF , so that E

and B are on opposite sides of
←→
CF . By Theorem PSH.12 there exists a point

O such that {O} =
←→
CF ∩

qy px

BE. By similar reasoning, there exists a point Q

such that {Q} =
qy px

CF ∩
←→
BE. Both of these points are intersections of

←→
CF and

←→
BE, which by Exercise I.1 is a single point, so O = Q, and {O} =

qy px

CF ∩
qy px

BE.

Now by Theorem PSH.37 both F ∈ ins∠ACB and E ∈ ins∠ABC, and by

Theorem PSH.38, O is a member of both these sets. By Theorem PSH.46(C)

ins△ABC = ins∠ACB ∩ ins∠ABC, so O ∈ ins△ABC. ⊓⊔

Exercise PSH.27* Let A, B, and C be noncollinear points on plane P ,

let Q be a member of ins∠ABC, and R a member of ins∠ACB. Then
qy→
BQ

and
qy→
CR intersect at a point O which belongs to ins∠ABC.

Exercise PSH.27 Proof. By Theorem PSH.39 (Crossbar)
qy→
BQ intersects

qy px

AC at some point E, and
qy→
CR intersects

qy px

AB at some point F . By Exercise
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PSH.26, there exists a point O such that {O} =
qy px

CF ∩
qy px

BE ⊆
qy→
CR∩

qy→
BQ. ⊓⊔

Exercise PSH.28* Let A, B, and C be noncollinear points and suppose

P ∈
qy→
AB and Q ∈ ins∠BAC. Then

qy qy

PQ ⊆ ins∠BAC.

Exercise PSH.28 Proof. Either alternative (2) or (3) of Theorem PSH.43

holds since
←→
PQ ∩ ins∠BAC 6= ∅. If alternative (2) holds,

qy qy

PQ ⊆
qy→
PQ ⊆

ins∠BAC. If alternative (3) holds, let P ′ be the second point of intersection

of
←→
PQ with ∠BAC. Then by Theorem PSH.43 (3)

qy px

PP ′ =
←−→
PP ′ ∩ ins∠BAC.

Since Q ∈ ins∠BAC, Q ∈
qy px

PP ′ ⊆ ins∠BAC and
qy qy

PQ ⊆ ins∠BAC. ⊓⊔

Exercise PSH.29* Let A, B, and C be noncollinear points and suppose

P ∈ △ABC and Q ∈ ins△ABC. Then
qy qy

PQ ⊆ ins△ABC.

Exercise PSH.29 Proof. If P ∈ △ABC and is one of the corners, say

B, then P ∈
qy→
AB and also P ∈

qy→
CB. By Theorem PSH.46 ins△ABC =

ins∠BAC ∩ ins∠BCA, so Q is a member of both ins∠BAC and ins∠BCA.

By Exercise PSH.28
qy qy

PQ ⊆ ins∠BAC and
qy qy

PQ ⊆ ins∠BCA, hence
qy qy

PQ ⊆

ins△ABC.

On the other hand, if P is not one of the corners, then it belongs to

one of the segments
qy px

AB,
qy px

BC, or
qy px

AC. Without loss of generality assume

that P ∈
qy px

AB. Then P ∈
qy→
AB and also P ∈

qy→
BA. By Theorem PSH.46

ins△ABC = ins∠BAC ∩ ins∠ABC, so Q is a member of both ins∠BAC

and ins∠ABC. By Exercise PSH.28
qy qy

PQ ⊆ ins∠BAC and
qy qy

PQ ⊆ ins∠ABC,

hence
qy qy

PQ ⊆ ins△ABC. ⊓⊔

Exercise PSH.30* Prove Theorem PSH.42: Let P and Q be distinct

points, and let H be a side of
←→
PQ. Let A and B be members of H∪

←→
PQ such

that A, B, and P are noncollinear. Then ins∠APB ⊆ H. See figure below.

Q

P

A

B

Q

P

A

B

Case 1): A and B ∈
qy →

PQA Case 2): A ∈
qy →

PQA and B ∈
←→
PQ

Line
←→
PQ Line

←→
PQ

Figure 5.4 for Theorem PSH.42.
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Exercise PSH.30 Proof. There are three possibilities: 1) both A and B ∈

H; 2) A ∈ H and B ∈
←→
PQ, and 3) A ∈

←→
PQ and B ∈ H. (It is not possible for

both A and B to belong to
←→
PQ, for then A, B, and P would be collinear.)

Clearly if we can prove the theorem in case 2), case 3) is also proved.

In either case 1) or 2), H =
qy →
PQA is the A-side of

←→
PQ by Definition IB.11.

In case 1), B ∈
qy →
PQA and by Definition IB.11

qy px

AB ⊆
px qy

AB ⊆
qy →
PQA. In case 2),

B ∈
←→
PQ so by Theorem IB.13,

qy px

AB ⊆
qy→
BA ⊆

qy →
PQA.

In either case, let R ∈ ins∠APB. By the Crossbar Theorem PSH.39
qy→
PR∩

qy px

AB = {S} for some point S. Since in either case
qy px

AB ⊆ H, S ∈ H.

Now
px→
PR∩

←→
PQ = {P} (because

←→
PR ∩

←→
PQ = {P} by Exercise I.1) so that

qy→
PR∩

←→
PQ = ∅. Since R and S both belong to

qy→
PR,

qy px

RS ⊆
qy→
PR so that

qy px

RS ∩
←→
PQ = ∅. Thus by Definition IB.11 R and S belong to the same side

of
←→
PQ, and since S ∈ H, R ∈ H. ⊓⊔

Exercise PSH.31* Let P and Q be distinct points on plane P , let H be

a side of
←→
PQ in P , and let A and B be members of H such that A, B, and P

are noncollinear. Then either B ∈ ins∠APQ or A ∈ ins∠BPQ.

Exercise PSH.31 Proof. Since B ∈
qy →
PQA, if B ∈

qy →
PAQ then by Definition

PSH.36(A) B ∈ ins∠APQ. If B is on the side of
←→
PA opposite Q then by

Theorem PSH.38(C), A ∈ ins∠BPQ. To see this, in the statement of Theo-

rem PSH.38(C) substitute P for A, Q for B, A for P , and B for C; then the

theorem reads: If A is on the B-side of
←→
PQ, and if Q and B are on opposite

sides of
←→
PA, then A ∈ ins∠QPB, thus proving the second alternative. ⊓⊔

Exercise PSH.32 (Side analog for Exercise PSH.18) Let P , O, and Q

be points such that P O Q, and let R be a point off of
←→
OP . Then

qy →
OPR is

the union of the disjoint sets ins∠POR,
qy→
OR, and ins∠QOR.

Exercise PSH.33 Let A, B, and C be noncollinear points and let B′

and C′ be points such that B A B′ and C A C′. Then out∠BAC is the

union of the disjoint sets
qy →
AB′,

qy →
AC′, ins∠BAC′, ins∠CAB′, and ins∠B′AC′.

Exercise PSH.34 Let A, B, and C be noncollinear points and let E be

a member of out∠BAC. Then
qy→
AE is a subset of out∠BAC.

Exercise PSH.35 Let A, B, and C be noncollinear points and let P and

Q be members of (enc∠BAC \ {A}) such that P , Q, and A are noncollinear.
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Then ins∠PAQ ⊆ ins∠BAC. Note: try solving this before reading the proof

of Theorem PSH.41(D).

Exercise PSH.36* Let L be a line and let H be a side of L. If A, B,

and C are noncollinear members of H, then enc△ABC ⊆ H.

Exercise PSH.36 Proof. By Theorem PSH.9, H is convex. Each of A, B,

and C is a member of H, so the segments
px qy

AB,
px qy

BC, and
px qy

AC are all subsets

of H, and by Definition IB.7 △ABC ⊆ H.

Now let X be any point of ins△ABC, and let P ∈ △ABC. Then alter-

native (2) of Theorem 50 applies to
←→
PX, since this is the only alternative

where a line intersects the inside of the triangle. There exists a point Q 6= P

such that Q ∈ △ABC and
qy px

PQ =
←→
PX ∩ ins△ABC, hence P X Q. By the

convexity of H, X ∈ H. Therefore enc△ABC ⊆ H. ⊓⊔

Exercise PSH.37 Let A, B, C, R, and S be points such that A, B,

and C are noncollinear, R ∈
qy px

AB, and S ∈
qy px

AC. Then
←→
RS ∩

px qy

BC = ∅ and
px qy

RS ∩
←→
BC = ∅.

Exercise PSH.38 Let T be a triangle, let P be a member of ins T , and

let Q be a point distinct from P . Then there exists a point R such that

T ∩
px→
PQ = {R}, ins T ∩

px→
PQ =

px px

PR, and out T ∩
px→
PQ =

px→
PQ \

px qy

PR.

Exercise PSH.39 Let A, B, and C be noncollinear points on plane P ,

let P be a member of △ABC, let Q be a member of ins△ABC, and let R

be a point such that Q P R. Then R ∈ out△ABC,
qy→
QP ∩ ins△ABC =

px px

QP ,

and
qy→
QP ∩ out△ABC =

qy→
QP \

px qy

PQ.

Exercise PSH.40 Let T be a triangle, let P be a member of ins T and Q

be a member of out T . Then there exists a point R such that
←→
PQ∩T = {R},

px px

PR =
px qy

PQ∩ ins T , and
qy qy

RQ =
px qy

PQ∩ out T .

Exercise PSH.41 Let T be a triangle and let P , Q, and R be non-

collinear members of enc T . Then ins△PQR ⊆ ins T .

Exercise PSH.42* Let A, B, and C be noncollinear points and let

P , Q, and R be noncollinear members of ins△ABC. Then enc△PQR ⊆

ins△ABC.
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Exercise PSH.42 Proof. Since P , Q, and R are members of ins△ABC =
qy →
ABC ∩

qy →
ACB ∩

qy →
BCA, all these points belong to each of the sets

qy →
ABC,

qy →
ACB,

and
qy →
BCA. By Exercise PSH.36, enc△ABC is a subset of each of these sets,

so that it is a subset of their intersection, that is, of ins△ABC. ⊓⊔

Exercise PSH.43 Let A, B, and C be noncollinear points on Pasch plane

P , let O be a member of ins△ABC, let A′ be any point between O and A,

let B′ be any point between O and B, and let C′ be any point between O

and C. Then O ∈ ins△A′B′C′, and enc△A′B′C′ ⊆ ins△ABC.

Exercise PSH.44 Let A, B, and C be noncollinear points. Then:

(a) There exist points P and Q such that A is between P and Q, ∠BAC ∩
px qy

PQ = {A}, and P and Q are both members of out∠BAC.

(b) If P and Q are any points satisfying the conditions in (a) above, then

B and C are on the same side of
←→
PQ.

Exercise PSH.45* Let E be a nonempty convex subset of the plane P ,

and let A, B, and C be noncollinear members of E . Then enc△ABC ⊆ E .

Exercise PSH.45 Proof. Since E is convex, △ABC ⊆ E . Let X ∈

ins△ABC, and let L be any line containing X . Referring to Theorem

PSH.50(B), we observe that only part (2) can apply, since this is the only

case in which L intersects ins△ABC. Then by part (2)(b), there are exactly

two points P and Q in L∩△ABC, so that X ∈
qy px

PQ ⊆
px qy

PQ; since E is convex,

X ∈ E , and enc△ABC ⊆ E . ⊓⊔

Exercise PSH.46 Let A, B, and C be noncollinear points and let O be

a member of ins△ABC. Then

ins△ABC =
px px

OA∪
qy px

OB ∪
qy px

OC ∪ ins△OAB ∪ ins△OAC ∪ ins△OBC.

Exercise PSH.47* Let P be a Pasch plane and A, B, and U be non-

collinear points. Then for every point V in P ,

(A)
qy→
UV is not a subset of

←→
AB; and

(B)
qy px

UV is not a subset of
←→
AB.

Exercise PSH.47 Proof. Since A, B, and U are noncollinear, U /∈
←→
AB.

(A) Let V be any point on P distinct from U . By property B.3 of Definition

IB.1 there exists a point W such that U V W . Then by Definition IB.4
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W ∈
qy→
UV . By Exercise I.2, if

qy→
UV ⊆

←→
AB, both V and W are in

←→
AB so that

←→
AB =

←→
UV ⊇

qy→
UV , and A, B, and U are collinear, a contradiction.

(B) Let V be any point on P distinct from U . By two successive appli-

cations of Theorem PSH.22 (Denseness) there exist distinct points X and Y

belonging to
qy px

UV . If
qy px

UV ⊆
←→
AB, both X and Y are in

←→
AB so that by Exercise

I.2
←→
UV =

←→
AB. Then A, B, and U are collinear, a contradiction. ⊓⊔

Exercise PSH.48* Prove parts 4–6 of Theorem PSH.18: Let A and B

be distinct points on the Pasch plane P . Then each of the following sets is

convex: (4)
px px

AB, (5)
qy qy

AB, and (6)
px qy

AB.

Exercise PSH.48 Proof. (4) By Exercise IB.8
px px

AB =
px→
AB ∩

qy→
BA, both of

which are convex by parts (1) and (2) of Theorem PSH.18. Both these sets

contain the point A so are not disjoint, and by Exercise IB.14 their intersec-

tion
px px

AB is convex.

(5)
qy qy

AB =
px px

BA is convex by part (4) proved just above.

(6) By Exercise IB.8
px qy

AB =
px→
AB ∩

px→
BA, both of which are convex by part

(2) of Theorem PSH.18. They both contain the point A so are not disjoint,

and by Exercise IB.14 their intersection
px px

AB is convex. ⊓⊔

Exercise PSH.49* Prove Theorem PSH.46(B): Let A, B, and C be

noncollinear points. Then ins△ABC ∪ △ABC ∪ out△ABC = P and the

sets in this union are pairwise disjoint.

Exercise PSH.49 Proof. That ins△ABC ∪ △ABC ∪ out△ABC = P is

immediate from Definition PSH.36(B). We examine each pair of sets to see

that the pair is disjoint:

(1) △ABC ∩ ins△ABC = ∅ since △ABC ⊆
←→
AB ∪

←→
BC ∪

←→
CA which is

disjoint from ins△ABC by part (A).

(2) By Definition PSH.36(B), out△ABC ∩ (△ABC ∪ ins△ABC) = ∅ and

therefore out△ABC ∩△ABC = ∅ and out△ABC ∩ ins△ABC = ∅. ⊓⊔

Exercise PSH.50* Prove Theorem PSH.46(C): Let A, B, and C be

noncollinear points. Then ins△ABC = ins∠BAC∩ins∠ABC = ins∠BAC∩
qy →
BCA.

Exercise PSH.50 Proof. By Definition PSH.36(B),

ins△ABC =
qy →
ABC ∩

qy →
BCA∩

qy →
CAB = ins∠BAC ∩

qy →
BCA

since ins∠BAC =
qy →
ABC ∩

qy →
ACB =

qy →
ABC ∩

qy →
CAB by part (A) of the Defini-

tion. Also, ins∠ABC =
qy →
ABC ∩

qy →
BCA by the same definition, so that
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ins∠BAC ∩ ins∠ABC =
qy →
ABC ∩

qy →
ACB ∩

qy →
ABC ∩

qy →
BCA

=
qy →
ABC ∩

qy →
ACB ∩

qy →
BCA =

qy →
ABC ∩

qy →
BCA∩

qy →
CAB = ins△ABC. ⊓⊔

Exercise PSH.51* Let P be a Pasch plane, O, B, and R be noncollinear

points on P , C be a member of ins∠ROB and B′ be a point on
←→
OB such

that B O B′, then R ∈ ins∠COB′.

Exercise PSH.51 Proof. Since C ∈ ins∠ROB, by Definition PSH.36 C is

on the R-side, that is, R is on the C-side of
←→
OB =

←−→
OB′ =

←−→
BB′. By Corollary

PSH.39.2 B and R are on opposite sides of
←→
OC. Since B and B′ also are on

opposite sides of
←→
OC (cf Definition IB.11), R is on the B′-side of

←→
OC. By

Definition PSH.36 R ∈ ins∠COB′. ⊓⊔

Exercise PSH.52* (A) Let X be any point on the Pasch plane P , then

there exists a triangle T such that X ∈ ins T .

(B) Let P and Q be distinct points on plane P . Then there exist triangles

T and U such that P ∈ ins T , Q ∈ insU , enc T ⊆ outU , and encU ⊆ out T .

Exercise PSH.52 Proof. (A) By Axiom I.5 there exists a point U on P

distinct from X . By property B.3 of Definition IB.1 there is a point B such

that B X U . By Axiom I.5 there exists a point A not belonging to
←→
BU .

By property B.3 of Definition IB.1 there exists a point C such that A U C.

By Theorem PSH.37
qy px

BU ⊆ ins∠BAC and
qy px

BU ⊆ ins∠BCA. By Theorem

PSH.46(C)
qy px

BU ⊆ (ins∠BAC ∩ ins∠BCA) = ins△ABC. Let T = △ABC.

Then X ∈ insT .

(B) We first construct a triangle △ABC with P ∈ ins△ABC, then we

construct a second triangle △DEF with Q ∈ ins△DEF , in such a way that

the enclosures of the triangles are disjoint.

By repeated applications of property B.3 of Definition IB.1 and Theorem

PSH.22, there exist points T , A, D, and U such that T P A D Q U . As in

part (A), let B be a point not on
←→
PQ, and let C and C′ be points such that

C T B C′, and by the argument in part (A), P ∈ ins△ABC.

Then T A D and T B C′; applying Exercise PSH.5 we have D ∈

ins∠ABC′. Then by Theorem PSH.38
qy→
BD ⊆ ins∠ABC′. By property B.3

there is a point E such that B D E and E ∈ ins∠ABC′. By Theorem IB.14
qy→
AD is a subset of the side of

←→
AB opposite T , which is the C′-side, and hence

both Q and U are on the C′-side of
←→
AB. They are also on the A-side of

←−→
BC′

and therefore belong to ins∠ABC′.
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Now by Exercise PSH.16 ins∠ABC′ is convex, and since both E and U

are in ins∠ABC′,
px qy

EU ⊆ ins∠ABC′.

By Theorem PSH.43 either the intersection of
←→
EU with ∠ABC′ is a single

point (alternative (2)) or exactly two points (alternative (3)). In the first

case, either
px→
EU intersects ∠ABC′ (in which case we define F to be any point

with E U F ) or it intersects it at some point G. G 6∈
px qy

EU , so by Theorem

PSH.22 let F be a point such that E U F G.

In the second case there are two points G and H which are the points of

intersection of
←→
EU with ∠ABC′. Then if G E U H let F be a point such

that U F H ; if H E U G then let F be a point such that U F G. In all

cases E U F and F ∈ ins∠ABC′.

As in part (A), Q ∈ ins△DEF . By Exercise PSH.36 enc△DEF is a

subset of the C′-side of
←→
AB. Now C is in the side of

←→
AB opposite C′, and

by Definition PSH.36 ins△ABC ⊆
qy →
ABC. Also both

qy→
AC and

qy→
BC are subsets

of
qy →
ABC by Theorem IB.14, and

px qy

AB ⊆
←→
AB, so that △ABC ⊆ (

qy →
ABC ∪

←→
AB)

which by Theorem PSH.12 is disjoint from
qy →
ABC′ and thus from △DEF .

If we let T = △ABC and U = △DEF , P ∈ ins T , Q ∈ insU , and

enc T is disjoint from encU . By Definition PSH.36, if T is any triangle in

P , out T = P \ enc T , so that by elementary set theory enc T ⊆ outU , and

encU ⊆ outT . ⊓⊔

The reader might try constructing a simpler proof of the above showing

only that enc T ∩ insU = encU ∩ ins T = ∅. This would not require that

T ∩ U = ∅.

Exercise PSH.53* Let P be a Pasch plane, L and L′ be distinct lines

on P , O be a member of P \ (L∪L′), A, B, and C be points on L such that

A B C and A′, B′, and C′ be points on L′ such that A O A′, B O B′, and

C O C′, then A′ B′ C′.

Exercise PSH.53 Proof. Since A B C, by Theorem PSH.37B ∈ ins∠AOC.

By Exercise PSH.8B′ ∈ ins∠A′OC′. By Theorem PSH.37
qy px

C′A′ ⊆ ins∠C′OA′.

Therefore B′ ∈
qy px

C′A′ and A′ B′ C′. ⊓⊔

Exercise PSH.54* Let A, B, and C be points on the Pasch plane P

such that A B C. Then
qy→
AB ∩

qy→
CB =

qy px

AC.
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Exercise PSH.54 Proof. By Theorem PSH.16
qy→
AB =

qy→
AC and

qy→
CB =

qy→
CA

so
qy→
AB ∩

qy→
CB =

qy→
AC ∩

qy→
CA. The result is immediate from Exercise IB.8(B). ⊓⊔

Exercise PSH.55 (Sets bounded by two parallel lines.) Let P be the

plane containing parallel lines L1 and L2, let P1 and P2 be points on L1 and

L2, respectively, and let Q1 and Q2 be points on
←−→
P1P2 such that Q1 P1 P2

and P1 P2 Q2, Q1 be the Q1 side of L1, let Q
∗
1 be the P2 side of L1, let Q2

be the Q2 side of L2, let Q∗2 be the P1 side of L2, and let Q = Q∗1∩Q
∗
2. Then

Q1 ∩Q2 = Q1 ∩Q = Q2 ∩Q = ∅; each of the sets Q1, Q∗1, Q2, Q∗2, and Q is

convex; and Q1 ∪ Q2 ∪ Q = P \ (L1 ∪ L2).

Exercise PSH.56* See Figure 5.13 from Chapter 5, reproduced below.

Let O, A, B, A′, and B′ be distinct points on the Pasch plane P such that
←→
AB ∩

←−→
A′B′ = {O} and

←−→
AA′ ‖

←−→
BB′, then

(I) O A B iff O A′ B′,

(II) O B A iff O B′ A′, and

(III) A O B iff A′ O B′.

O A′ B′

A

B

Figure 5.13 for Exercise PSH.56(I).

Exercise PSH.56 Proof. (1) If O A B, then O A′ B′. Since O A B, then

by Definition IB.11 O and B are on opposite sides of
←−→
AA′. Since

←−→
AA′ ‖

←−→
BB′,

by Exercise PSH.14 B′ is on the B side of
←−→
AA′. Since O and B′ are on

opposite sides of
←−→
AA′, by Axiom PSA there exists a unique point Q such

that
←−→
AA′ ∩

←−→
OB′ = {Q} and O Q B′. Since

←−→
AA′ ∩

←−→
OB′ = {A′}, Q = A′, and

O A′ B′.

(2) If O A′ B′, then O A B. In (1) interchange “A” and “A′ ” and inter-

change “B” and “B′ .”

(3) If O B A, then O B′ A′. In (1) interchange “A” and “B” and inter-

change “A′ ” and “B′ .”

(4) If O B′ A′, then O B A. In (1) interchange “A” and “B′ ” and inter-

change “B” and “A′ .”
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(5) If A O B, then A′ O B′. By Theorem IB.5 B′ ∈
←−→
OA′ iff B′ O A′ or

B′ = O or O B′ A′ or B′ = A′ or O A′ B′.

If B′ = O then
←−→
BB′ =

←→
BA and

←−→
BB′ intersects

←−→
AA′ so that

←−→
BB′ 6‖

←−→
AA′,

which contradicts our hypothesis. Similarly, if B′ = A′ then
←−→
AA′ 6‖

←−→
BB′,

again a contradiction.

If O B′ A′ then since O, A, and A′ are noncollinear they form a triangle

△OAA′; by Theorem PSH.6
←−→
BB′ must intersect either

qy px

OA, in which case
←→
AB =

←−→
A′B′ which is impossible by hypothesis, or it must intersect

qy px

AA′ and
←−→
AA′ 6‖

←−→
BB′, again a contradiction.

If O A′ B′, then
←−→
BB′ contains points on opposite sides of

←−→
AA′ so by

Axiom PSA must intersect
←−→
AA′, and again

←−→
AA′ 6‖

←−→
BB′ which contradicts the

hypothesis. Therefore B′ O A′, that is A′ O B′.

(6) If A′ O B′, then A O B. In (5) interchange “A” and “A′ ” and inter-

change “B” and “B′ ”. ⊓⊔

Exercise PSH.57* Let L andM be distinct lines in a Pasch plane, let

A, B, and C be points of L, and let D, E, and F be points ofM such that
←→
AD ‖

←→
BE ‖

←→
CF . Then A B C iff D E F .

Exercise PSH.57 Proof. By Exercise PSH.14, A and D are on the same

side of
←→
BE and C and F are on the same side of

←→
BE; by Definition IB.11,

if A B C then A and C are on opposite sides of
←→
BE and hence D and F

are on opposite sides of the same line, so again by Definition IB.11, D E F .

Interchanging the roles of A with D and C with F shows the converse. ⊓⊔

Exercise PSH.58* Prove Theorem PSH.34 using the result of Theorem

PSH.32. That is, show that if A, B, and C are noncollinear points on a Pasch

plane P , then the set of corners of △ABC is {A,B,C}.

Exercise PSH.58 Proof. The points A, B, and C are all corners of△ABC,

by Definition IB.7. By the same definition, a corner is a point of the tri-

angle. So to prove this theorem we need only prove that no member of
qy px

AB ∪
qy px

BC ∪
qy px

AC can be a corner of △ABC.

We may choose the notation so that U ∈
qy px

AB, that is, A U B, and assume

U is a corner of △ABC. By Theorem PSH.32 there exist points V and V ′

such that
px qy

UV ⊆ △ABC and
qy px

UV ′ ∩△ABC = ∅ where U , V , and V ′ are

collinear, and since U and V ∈
qy px

AB, U , V , V ′, A, and B are all collinear. By

property B.2 of Definition IB.1 exactly one of V ′ A B, A V ′ B, or A B V ′

is true.
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A V ′ B is impossible for then
qy px

UV ′ ⊆
qy px

AB contrary to
qy px

UV ′ ∩△ABC = ∅.

If V ′ A B, then since A U B, by Corollary PSH.8.1, V ′ A U . By Theorem

PSH.22 (denseness) let X be such that A X U and by the same corollary,

V ′ A X U . Then X ∈
qy px

AB and X ∈
qy px

UV ′ so that X /∈
qy px

AB, a contradiction.

A similar argument shows a contradiction in the case that A B V ′. There-

fore U /∈
qy px

AB, and it follows that every corner of △ABC must be either A,

B, or C. ⊓⊔

Exercise PSH.59* Let A, B, C, and D be points on the Pasch plane

P such that
px qy

AB ∪
px qy

BC ∪
px qy

CD∪
px qy

DA is a quadrilateral; then if
←→
AB ‖

←→
CD, this

quadrilateral is rotund.

Exercise PSH.59 Proof. By Exercise PSH.14 both C and D are on the

same side of
←→
AB and both A and B are on the same side of

←→
CD. If the quadri-

lateral ⊔⊓ABCD is not rotund, by Theorem PSH.53 one of the corners belongs

to the inside of the triangle formed by the remaining three corners. Suppose

A ∈ ins△BCD; then by Theorem PSH.46 A ∈ ins∠DBC and by Theorem

PSH.39,
qy→
BA ⊆

←→
AB intersects

qy px

CD ⊆
←→
CD, which contradicts the parallelism

of
←→
AB and

←→
CD. Similar proofs will hold for the other cornersB, C, andD. ⊓⊔

Exercise PSH.60 Consult a book on projective geometry and com-

pare/contrast those axioms of separation with those involving the open sets

used to classify topological spaces.
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Chapter 6: Exercises and Answers for

Ordering a Line in a Pasch Plane (ORD)

Exercise ORD.1* Let A, B, C, and D be points such that A B C D.

If the points on
←→
AD are ordered so that A < D, then A < B < C < D.

Exercise ORD.1 Proof. By Theorem ORD.6, A B D implies that either

A < B < D or D < B < A; by hypothesis A < D so A < B < D. It follows,

since B < D, that B < C < D, hence A < B < C < D. ⊓⊔

Exercise ORD.2 Let O and P be distinct points, and let E be a

nonempty finite subset of
←→
OP which has n elements. Then there exists a

mapping θ of [1;n] onto E such that for every member k of [1;n − 1],

θ(k) < θ(k + 1), and every member of {θ(j)|j ∈ [1; k]} is less than every

member of E \ {θ(j)|j ∈ [1; k]}.

Exercise ORD.3 Let D be the field of dyadic rational numbers1, let D′

be equal to D∩ [0; 1], and let A and B be distinct points on the Pasch plane

P . Then there exists a mapping θ of D into
px qy

AB such that, for all members r

and s of D, r < s iff θ(r) < θ(s).

Exercise ORD.4* Let E be a convex subset of a line M. If E is not a

singleton, then E is infinite.

Exercise ORD.5 Let E be an infinite convex subset of a lineM. If A is

a member of E , B is a member ofM\E , and C is a point such that A B C,

then
px→
BC is a subset ofM\ E .

Exercise ORD.6* Prove Theorem ORD.7 part (II): let O and P be

distinct points on the Pasch plane P and suppose the points of
←→
OP are

ordered so that O < P . If A and B are points on
←→
OP such that A < B, then

qy px

AB = {X |A < X < B} = {X |B > X > A},
px px

AB = {X |A ≤ X < B} = {X |B > X ≥ A},
qy qy

AB = {X |A < X ≤ B} = {X |B ≥ X > A},
px qy

AB = {X |A ≤ X ≤ B} = {X |B ≥ X ≥ A},
qy→
AB = {X |A < X} = {X |X > A},

1 Dyadic Rationals are rational numbers with integer numerators but denominators of

the form 2n where n is a natural number, and the greatest common divisor (gcd) of the

numerator and denominator is 1.
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px→
AB = {X |A ≤ X} = {X |X ≥ A};

while if A and B are points on
←→
OP such that B < A, then

qy px

AB = {X |A > X > B} = {X |B < X < A},
px px

AB = {X |A ≥ X > B} = {X |B < X ≤ A},
qy qy

AB = {X |A > X ≥ B} = {X |B ≤ X < A},
px qy

AB = {X |A ≥ X ≥ B} = {X |B ≤ X ≤ A},
qy→
AB = {X |A > X} = {X |X < A},
px→
AB = {X |A ≥ X} = {X |X ≤ A}.

Exercise ORD.6 Proof. Let A and B be points on
←→
OP . We will use The-

orem ORD.6 repeatedly without further reference.

By Definition IB.3, X ∈
qy px

AB iff A X B. If A < B, this is A < X < B. If

A > B, this is A > X > B.

X ∈
px px

AB iff A X B or X = A. If A < B, this is A < X < B or X = A,

that is, A ≤ X < B. If A > B, this is A > X > B or X = A, that is,

A ≥ X > B.

X ∈
qy qy

AB iff A X B or X = B. If A < B, this is A < X < B or X = B,

that is, A < X ≤ B. If A > B, this is A > X > B or X = B, that is,

A > X ≥ B.

X ∈
px qy

AB iff A X B or X = A or X = B. If A < B, this is A < X < B

or X = A or X = B, that is, A ≤ X ≤ B. If A > B, this is A > X > B or

X = A or X = B, that is, A ≥ X ≥ B.

By Definition IB.4 X ∈
qy→
AB iff A X B or X = B or A B X . If A < B,

this is A < X < B or X = B or A < B < X , that is, A < X . If A > B, this

is A > X > B or X = B or A > B > X , that is, A > X .

X ∈
px→
AB iff X = A or A X B or X = B or A B X . If A < B, this is

X = A or A < X < B or X = B or A < B < X , that is, A ≤ X . If A > B,

this is X = A or A > X > B or X = B or A > B > X , that is, A ≥ X . ⊓⊔

Exercise ORD.7* Let A and B be distinct points on the Pasch plane P

and let C and D be distinct members of
px qy

AB, then
qy px

CD ⊆
qy px

AB and
px qy

CD ⊆
px qy

AB.

Exercise ORD.7 Proof. Using Definition ORD.1, we order the points on
←→
AB so that A < B and we choose the notation so that C < D. By Theorem

ORD.7(II), A ≤ C ≤ B and A ≤ D ≤ B so that A ≤ C < D ≤ B. Let

X be any member of
qy px

CD, then by Definition IB.3, C X D. By Theorem

ORD.6, C < X < D. By Theorem ORD.4, A ≤ C < X < D ≤ B, so that

A < X < B. By Theorem ORD.7(II), X ∈
qy px

AB. Since X is any member of
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qy px

CD,
qy px

CD ⊆
qy px

AB. Since {C,D} ⊆
px qy

AB and
px qy

CD =
qy px

CD∪{C,D},
px qy

CD ⊆
px qy

AB. ⊓⊔

Exercise ORD.8* Let O, A, B, and C be collinear points on the Pasch

plane P such that O < A < B and O < A < C; then there exists a point D

such that D > max{B,C}.

Exercise ORD.8 Proof. We order the points on
←→
OA so that O < A.

(Case 1: A B C.) By property B.3 of Definition IB.1 there exists a point

D such that B C D. By Theorem PSH.8(B) A B C D. By Theorem ORD.6

O < A < B < C < D.

(Case 2: A C B.) By property B.3 there exists a point D such that

C B D. By Theorem PSH.8(B) A C B D. By Theorem ORD.6 O < A <

C < B < D. ⊓⊔

Exercise ORD.9* Let P be a Pasch plane, and let L and L′ be distinct

lines on P , O be a member of P\(L∪L′). Suppose further that a line through

O intersects L iff it intersects L′, and that each of the intersections of every

such line with L or L′ is a singleton.

Let A and B be distinct points on L, A′ be the point such that
←→
OA∩L′ =

{A′} and B′ be the point such that
←→
OB ∩ L′ = {B′}. Order the points on L

so that A < B, and order the points on L′ so that A′ < B′.

For everyX ∈ L let ϕ(X) be the point on L′ such that
←→
OX∩L′ = {ϕ(X)}.

(A) ϕ is a bijection of L onto L′.

Let X , Y , and Z be any distinct points on L.

(B) X Y Z iff ϕ(X) ϕ(Y ) ϕ(Z).

(C) ϕ(
px qy

XY ) =
px qy

ϕ(X)ϕ(Y ).

(D) ϕ(
px →
XY ) =

px →
ϕ(X)ϕ(Y ).

(E) ϕ(L) = ϕ(
←→
XY ) =

←−−−−−−→
ϕ(X)ϕ(Y ) = L′.

(F) If X < Y , then ϕ(X) < ϕ(Y ).

Exercise ORD.9 Proof. (A) The mapping ϕ is onto because every line

through O intersecting L also intersects L′. If X and Y are members of L,

and ϕ(X) = ϕ(Y ) then
←→
OX =

←→
OY and X = Y because each line through O

that intersects L′ has only one point of intersection with L. Therefore ϕ is

one-to-one, hence is a bijection.

(B) Suppose X Y Z; since ϕ(X) =
←→
XO ∩ L′, ϕ(Y ) =

←→
Y O ∩ L′, and

ϕ(Z) =
←→
ZO ∩ L′, by Exercise PSH.53, ϕ(X) ϕ(Y ) ϕ(Z). To prove the con-

verse, interchange L with L′, ϕ with ϕ−1, X with ϕ(X), Y with ϕ(Y ), and

Z with ϕ(Z).
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(C) Let X and Y be distinct points on L. By Definition IB.4
px qy

XY = {T |

T = X or X T Y or T = Y }. By part (B) X T Y iff ϕ(X) ϕ(T ) ϕ(Y ) so

ϕ(
px qy

XY ) consists of exactly the points ϕ(X), ϕ(Y ), and all the points ϕ(T )

where ϕ(X) ϕ(T ) ϕ(Y ). Therefore ϕ(
px qy

XY ) =
px qy

ϕ(X)ϕ(Y ).

(D) Let X and Y be distinct points on L. By Definition IB.4
px →
XY =

{T | T = X or X T Y or T = Y or X Y T }. By part (B) X T Y iff

ϕ(X) ϕ(T ) ϕ(Y ) and X Y T iff ϕ(X) ϕ(Y ) ϕ(T ) so ϕ(
px qy

XY ) consists of ex-

actly the points ϕ(X), ϕ(Y ), and all the points ϕ(T ) where ϕ(X) ϕ(T ϕ(Y )

together with all the points ϕ(T ) where ϕ(X) ϕ(Y ) ϕ(T ). Therefore ϕ(
px →
XY ) =

px →
ϕ(X)ϕ(Y ).

(E) By part (A) ϕ maps
←→
AB = L onto

←−→
A′B′ = L′.

(F) By Definition ORD.1 X < Y iff
px →
XY ∩

px→
AB is a ray. By the fact

that ϕ is a bijection and elementary set theory, together with part (D)

ϕ(
px →
XY ∩

px→
AB) =

px →
ϕ(X)ϕ(Y )∩

px →
ϕ(A)ϕ(B). Since

px →
XY ∩

px→
AB is a ray, by part

(D)
px →
ϕ(X)ϕ(Y )∩

px →
ϕ(A)ϕ(B) is a ray. By Definition ORD.1 ϕ(X) < ϕ(Y ). ⊓⊔
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Chapter 7—has no Exercises (COBE)

Chapter 8: Exercises and Answers for

Neutral Geometry (NEUT)

Strictly speaking, Exercise NEUT.0 is out of place in Chapter 8, because

it refers to the coordinate plane, and the development to this point does not

show that the incidence, betweenness, and Plane Separation axioms hold on

the coordinate plane. This is done in Chapter 21.

Exercise NEUT.0* There can be more than one mirror mapping over

a line in the (real) coordinate plane R2. More specifically, if for each pair

(u1, u2) of real numbers on the plane, we define Φ(u1, u2) = (u1,−u2) and

Ψ(u1, u2) = (u1 − u2,−u2), both Φ and Ψ are mirror mappings over the

x-axis.

Exercise NEUT.0 Proof. Refer to the figure below. It is quite easy to see

that Φ is a mirror mapping over L. We give a detailed proof that Ψ is a mirror

mapping over the line L.

(A) If (u1, u2) ∈ L then u2 = 0 and Ψ(u1, 0) = (u1 − 0, 0) = (u1, 0). Thus

Ψ satisfies Property (A) of Definition NEUT.1.

(0,−1)

(0, 0)

(0, 1)

(1,−1) (2,−1)

(1, 1) (2, 1) (3, 1)

L

Showing action of the mirror mappings Φ (solid arrows) and Ψ (dashed arrows).

(B) Ψ(u1, u2) = (u1 − u2,−u2) is on the opposite side of L from (u1, u2)

because the midpoint of the segment
px qy

(u1, u2)Ψ(u1, u2) is (
u1−u2+u1

2 , u2−u2

2 ) =

(u1 −
u2

2 , 0) ∈ L. Thus Ψ satisfies Property (B) of Definition NEUT.1.

(C) Ψ(Ψ(u1, u2)) = Ψ(u1−u2,−u2) = (u1−u2−(−u2),−(−u2)) = (u1, u2).

Thus Ψ satisfies Property (C) of Definition NEUT.1.
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(D) Let (u1, u2) and (v1, v2) be points of R2, and let (x1, x2) be a point

between them so that (u1, u2) (x1, x2) (v1, v2). There exists a real number t

such that 0 < t < 1 such that
(

x1

x2

)

=

(

u1 + t(v1 − u1)

u2 + t(v2 − u2)

)

.

Then

Ψ

(

u1 + t(v1 − u1)

u2 + t(v2 − u2)

)

=

(

u1 + t(v1 − u1)− (u2 + t(v2 − u2))

−u2 − t(v2 − u2)

)

=

(

(u1 − u2) + t(v1 − v2 − u1 + u2)

−u2 − t(v2 − u2)

)

=

(

u1 − u2

−u2

)

+ t

((

v1 − v2

−v2

)

−

(

u1 − u2

−u2

))

= Ψ(u1, u2) + t(Ψ(v1, v2)− Ψ(u1, u2)),

so that Ψ(u1, u2) Ψ(x1, x2) Ψ(v1, v2). Thus Ψ satisfies Property (D) of Defi-

nition NEUT.1, and Ψ is a mirror mapping over L. ⊓⊔

From this point on, the symbol RL will denote a reflection over the line L

as defined in Definitions NEUT.1 and NEUT.2.

Exercise NEUT.1* Let P be a neutral plane and let L and M be

parallel lines on P , then RL(M) is a line which is contained in the side of L

opposite the side containingM andM ‖ RL(M).

Exercise NEUT.1 Proof. By Theorem NEUT.15,RL(M) is a line. By The-

orem IB.10M is a convex subset of P ; by Exercise PSH.14,M is a subset of

a side H of L. By Definition NEUT.1(B), RL(M) is a subset of the side K of

L oppositeH. Hence RL(M)∩L = ∅ and by Definition IP.1,RL(M) ‖ L. ⊓⊔

Exercise NEUT.2* LetM be any line on the neutral plane P . If X is

any point on P such that RM(X) = X , then X ∈M.

Exercise NEUT.2 Proof. If X were a point off of M, then by Defini-

tion NEUT.1(B), X and RM(X) would be on opposite sides ofM and thus

RM(X) would not be equal to X . ⊓⊔

Exercise NEUT.3* Let P be a neutral plane and let L andM be lines

on P . If RL = RM, then L =M. This may be restated in its contrapositive

form as follows: If L 6=M, then RL 6= RM.
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Exercise NEUT.3 Proof. Let X be any member of L. By Definition

NEUT.1(A), RL(X) = X . Since RM(X) = RL(X) = X , by Exercise

NEUT.2 X ∈ M, so that L ⊆ M. By reversing the roles of L and M in

this reasoning we getM⊆ L so L =M. ⊓⊔

Exercise NEUT.4* Let A, B, and C be noncollinear points on the

neutral plane P , then neither
←→
AB nor

←→
AC is a line of symmetry of ∠BAC.

Exercise NEUT.4 Proof. (I) By Theorem NEUT.15,

R←→
AB

(
px→
AC) =

px →
R←→

AB
(A)R←→

AB
(C) =

px →
AR←→

AB
(C).

By Definition NEUT.1(B), C and R←→
AB

(C) are on opposite sides of
←→
AB. By

Theorem IB.14
qy→
AC ⊆

qy →
ABC and

qy →
AR←→

AB
(C) is a subset of the R←→

AB
(C)-side of

←→
AB. By Theorem PSH.12 (plane separation)

qy→
AC and

qy →
AR←→

AB
(C) are disjoint.

Hence R←→
AB

(∠BAC) 6= ∠BAC so that by Definition NEUT.4
←→
AB is not a

line of symmetry of ∠BAC.

(II) By interchanging “B” and “C” in the reasoning in (I), we get that
←→
AC is not a line of symmetry of ∠BAC. ⊓⊔

Exercise NEUT.5* Let S be a nonempty subset of P which has a line

M of symmetry, H1 and H2 be the sides ofM, S1 = S∩H1 and S2 = S∩H2,

then RM(S2) = S1.

Exercise NEUT.5 Proof. (I) Let Y be any member of RM(S2), then there

exists a member X of S2 such that Y = RM(X). By Definition NEUT.1(B)

X and Y are on opposite sides ofM. Since M is a line of symmetry for S,

Y = RM(X) ∈ S, and hence Y ∈ S1. Since Y is arbitrary RM(S2) ⊆ S1.

(II) Let X be any member of S1. By Definition NEUT.1(C) X =

RM(RM(X)). By Definition NEUT.1(B) X and RM(X) are on opposite

sides ofM. Thus RM(X) belongs to S2 and X ∈ RM(S2). Since X is arbi-

trary S1 ⊆ RM(S2).

By (I) and (II) S1 = RM(S2). ⊓⊔

Exercise NEUT.6* (A) Let α be an isometry of the neutral plane P

and let L be a line on P such that every point on L is a fixed point of α and

no point off of L is a fixed point of α, then α = RL.

(B) Let α be an isometry of the neutral plane P which is also an axial

affinity with axis L. Then α = RL.

Exercise NEUT.6 Proof. (A) By Theorem NEUT.37 either α = ı or α =

RL. Since no point off of L is a fixed point of α, α 6= ı. Hence α = RL.
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(B) Let A and B be distinct points of L; by Definition CAP.25, these

points are fixed points of α, and α is not the identity map ı. By the contra-

positive of Theorem NEUT.24, there can be no fixed point of α that is not

on L; by part (A), α = RL. ⊓⊔

Exercise NEUT.7* Let L andM be distinct lines on the neutral plane

P , then RM ◦ RL 6= ı (the identity mapping of P onto itself).

Exercise NEUT.7 Proof. If RM ◦RL were equal to ı, then RM = R−1L =

RL and by Exercise NEUT.3 L would be equal to M, contrary to the fact

that L andM are distinct. Hence RM ◦ RL 6= ı. ⊓⊔

Exercise NEUT.8* If L andM are distinct lines on the neutral plane

P , then there exists a unique line J such that RL ◦RM ◦RL = RJ . In fact,

J = RL(M).

Exercise NEUT.8 Proof. (I: Existence.) Let α = RL ◦ RM ◦ RL. If α

were equal to ı (the identity mapping of P onto itself), then RL ◦ RM

would be equal to RL, and RM would be equal to ı, contrary to Defini-

tion NEUT.1(B)). Hence α 6= ı. Let X be any point on RL(M), then there

exists a point Y on M such that X = RL(Y ). By Definition NEUT.1(C)

Y = RL(X). Thus α(X) = RL(RM(RL(RL(Y )))) = RL(RM(Y )) =

RL(Y ) = X . Hence every point of RL(M) is a fixed point of α. By The-

orem NEUT.37 α = RRL(M).

(II: Uniqueness.) If K is a line on P such that α = RK, then by Exercise

NEUT.3, K = J . ⊓⊔

Exercise NEUT.9* Let O, A, and B be noncollinear points on the

neutral plane P and let L be a line such that RL(
px→
OA) =

px→
OB. By Remark

NEUT.6(B), L is a line of symmetry of ∠AOB, RL is an angle reflection

for ∠AOB, and by Theorem NEUT.20, RL(O) = O. Construct a proof that

RL(O) = O, using Theorem NEUT.15, but not Theorem NEUT.20 or The-

orem PSH.33 (uniqueness of corners).

Exercise NEUT.9 Proof. If RL(O) 6= O, then for someX ∈
qy→
OB,RL(O) =

X , and
←→
OB =

←→
OX. From Definition NEUT.1(C) RL(X) = RL(RL(O)) = O

and RL(
px→
OB) = RL(RL(

px→
OA)) =

px→
OA. By Definition NEUT.1(D) RL is

a belineation as well as a collineation. By Theorem COBE.3 or Theorem

NEUT.15, RL(
←→
OX) =

←−−−−−−−−→
RL(O)RL(X) =

←→
XO =

←→
OX , so that

←→
OX =

←→
OB is

a fixed line for RL. Then since
px→
OA = RL(

px→
OB) ⊆

←→
OB which is a fixed line,
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A ∈
←→
OB and O, A, and B are collinear, contradicting our hypothesis. ⊓⊔

Exercise NEUT.10* Let A, B, and C be noncollinear points on the

neutral plane P , B′ and C′ be points such that B A B′, C A C′, and M

be a line of symmetry of ∠BAC, thenM is a line of symmetry of ∠B′AC′.

Exercise NEUT.10 Proof. By Theorem NEUT.20, A ∈ M, RM(
px→
AB) =

px→
AC and RM(

px→
AC) =

px→
AB so that RM(B) ∈

qy→
AC and RM(C) ∈

qy→
AB. By

Theorem NEUT.15 and Definition NEUT.1(A)

RM(
←→
AB) =

←−−−−−−−−−−→
RM(A)RM(B) =

←→
AC

and

RM(
←→
AC) =

←−−−−−−−−−→
RM(A)RM(C) =

←→
AB.

By Theorem PSH.15
←→
AB is the union of the disjoint sets

qy→
AB, {A}, and

qy →
AB′

and
←→
AC is the union of the disjoint sets

qy→
AC, {A}, and

qy →
AC′. By elemen-

tary set theory and the fact that RM is one-to-one, RM(
px →
AB′) =

px →
AC′ and

RM(
px →
AC′) =

px →
AB′. By Definition NEUT.3(D) M is a line of symmetry of

∠B′AC′. ⊓⊔

Exercise NEUT.11* Let O, P , and Q be noncollinear points on the

neutral plane P such that
←→
OP is a line of symmetry of

←→
OQ and let Q′ be

a point such that Q′ O Q. If we let L =
←→
OP , then RL(

px→
OQ) =

px →
OQ′ and

RL(Q) ∈
qy →
OQ′.

Exercise NEUT.11 Proof. By set theory and TheoremNEUT.15,RL(
←→
OQ∩

qy →
OPQ) = (

←→
OQ ∩

qy →
OPQ′). By Theorem PSH.38

←→
OQ ∩

qy →
OPQ =

qy→
OQ and

←→
OQ ∩

qy →
QPQ′ =

qy →
OQ′. By Definition NEUT.1(A) RL(O) = O. ThusRL(

px→
OQ) =

px →
OQ′.

By Theorem NEUT.15 and Definition NEUT.1(A)RL(
px→
OQ) =

px →
RL(O)RL(Q) =

px →
ORL(Q). By Theorem PSH.24 RL(Q) ∈

qy →
OQ′. ⊓⊔

Exercise NEUT.12* Let P be a neutral plane and let O, A, A′, B,

and B′ be points such that: (1) A O A′, (2) B and B′ are on opposite

sides of
←→
OA, (so that {A,O,B} and {A′, O,B′} are noncollinear), and (3)

∠AOB ∼= ∠A′OB′. Then B O B′.

Exercise NEUT.12 Proof. By Property B.3 of Definition IB.1 there exists

a point B′′ such that B′ O B′′, and B′ and B′′ are on opposite sides of
←→
OA;

by Theorem PSH.12 (plane separation), B and B′′ are on the same side of
←→
OA.

By Theorem NEUT.42 (vertical angles) ∠A′OB′ ∼= ∠AOB′ ′. By Theo-

rem NEUT.14 (congruence is an equivalence relation), ∠AOB ∼= ∠A′OB′ ∼=
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∠AOB′′. By Theorem NEUT.36
px→
OB =

px →
OB′′. By Theorem PSH.24, B ∈

qy →
OB′′. In Theorem PSH.13, substitute B′ for A, O for B, and B′′ for C; by

part (A), B O B′. ⊓⊔

Exercise NEUT.13* Let A, B, C, D, A′, B′, C′, and D′ be points on

the neutral plane P such that A, B, and C are noncollinear, A′, B′, and

C′ are noncollinear, D ∈ ins∠BAC, D′ ∈
qy →
B′A′C′, ∠BAC ∼= ∠B′A′C′, and

∠BAD ∼= ∠B′A′D′; then
qy →
A′D′ ⊆ ins∠B′A′C′.

Exercise NEUT.13 Proof. By Theorem NEUT.38 there exists an isometry

α of P such that α(
px→
AB) =

px →
A′B′, α(

px→
AC) =

px →
A′C′, and α(∠BAC) = ∠B′A′C′.

By Theorem NEUT.15 α(
px→
AB) =

px →
α(A)α(B). Since

px →
α(A)α(B) =

px →
A′B′, by

Theorem PSH.24 α(A) = A′ and α(B) ∈
qy →
A′B′. By Theorem NEUT.15 and

Definition PSH.29,

α(∠BAD) = ∠α(B)α(A)α(D) =
px →
α(A)α(B)∪

px →
α(A)α(D)

=
px →
A′B′ ∪

px →
A′α(D) = ∠B′A′α(D).

By Definition NEUT.3(B) ∠BAD ∼= ∠B′A′α(D). Since ∠BAD ∼= ∠B′AD′,

by Theorem NEUT.14 ∠B′A′α(D) ∼= ∠B′AD′. By Theorem NEUT.15

α(D) ∈ α(ins∠BAC) = ins∠α(B)α(A)α(C) = ins∠B′A′C′. By Defini-

tion PSH.36 α(D) ∈
qy →
A′B′C′. By assumption, D′ ∈

qy →
B′A′C′. By Theorem

NEUT.36
px →
A′α(D) =

px →
A′D′. By Theorem PSH.24 D′ ∈

qy →
A′α(D). By Exercise

PSH.17
qy →
A′α(D) ⊆ ins∠B′A′D′. Hence

qy →
A′D′ ⊆ ins∠B′A′C′. ⊓⊔

Exercise NEUT.14* Let A, B, C, D, A′, B′, C′, and D′ be points on

the neutral plane P such that A, B, and C are noncollinear, A′, B′, and

C′ are noncollinear, B ∈ ins∠CAD (so that by Corollary PSH.39.2 C and

D are on opposite sides of
←→
AB), B′ ∈

qy →
C′A′D′, ∠CAB ∼= ∠C′A′B′, and

∠CAD ∼= ∠C′A′D′. Then B′ ∈ ins∠C′A′D′ (so that C′ and D′ are on

opposite sides of
←−→
A′B′.

Exercise NEUT.14 Proof. In Exercise NEUT.13, replace D with B, B

with C, C with D; also replace D′ with B′, B′ with C′, C′ with D′; then

B′ ∈ ins∠C′A′D′. ⊓⊔

Exercise NEUT.15* Let A and B be distinct points on the neutral

plane P , M be the midpoint of
px qy

AB, C and D be points on the same side

of
←→
AB such that

←→
AC ⊥

←→
AB and

←→
BD ⊥

←→
AB and M be the perpendicular

bisector of
px qy

AB, then RM(
←→
AC) =

←→
BD and RM(

←→
BD) =

←→
AC.
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Exercise NEUT.15 Proof. By Theorem NEUT.52 RM(A) = B and

RM(B) = A. By Theorem NEUT.44 ∠MAC and ∠MBD are right an-

gles. By Theorem NEUT.69 ∠MAC ∼= ∠MBD. By Theorem NEUT.15

and Definition NEUT.1(A) RM(∠MAC) = ∠RM(M)RM(A)RM(C) =

∠MBRM(C). By Definition NEUT.3(B) ∠MAC ∼= ∠MBRM(C). By Corol-

lary NEUT.44.2 ∠MBRM(C) is a right angle. By Theorem NEUT.45
←−−−−−→
BRM(C) ⊥

←→
AB. Since

←→
BD ⊥

←→
AB, by the uniqueness part of Theorem

NEUT.48
←−−−−−→
BRM(C) =

←→
BD. By Theorem NEUT.15

RM(
←→
AC) =

←−−−−−−−−−→
RM(A)RM(C) =

←−−−−−→
BRM(C).

Thus RM(
←→
AC) =

←→
BD. By Definition NEUT.1(C)

RM(
←→
BD) = RM(RM(

←→
AC)) =

←→
AC

completing the proof. ⊓⊔

Exercise NEUT.16* Let O, P , Q, and R be points on the neutral plane

P such that ∠POQ is right, ∠ROQ is right, and P and R are on opposite

sides of
←→
OQ, then P , O, and R are collinear.

Exercise NEUT.16 Proof. Using Property B.3 of Definition IB.1 let

R′ be a point such that P O R′. Since ∠POQ is right, by Definition

NEUT.41(C) ∠POQ ∼= ∠R′OQ and ∠R′OQ is right. By Theorem NEUT.69

∠R′OQ ∼= ∠ROQ. By Definition IB.11 P and R are on opposite sides of
←→
OQ.

By Theorem PSH.12 (plane separation),R and R′ are on the same side of
←→
OQ.

By Theorem NEUT.36,
px→
OR =

px →
OR′. By Theorem PSH.24 R ∈

qy →
OR′ ⊆

←→
PO.

Thus P , O, and R are collinear. ⊓⊔

Exercise NEUT.17* Let A, B, and C be noncollinear points on the

neutral plane P . If ∠ACB is right or is obtuse, then
px qy

AC <
px qy

AB and
px qy

BC <
px qy

AB.

Exercise NEUT.17 Proof. By Theorem NEUT.84, ∠BAC and ∠ABC are

acute angles; by Definition NEUT.81 and transitivity for angles, these angles

are both smaller than a right angle, hence smaller than ∠ACB. By Theorem

NEUT.91,
px qy

BC <
px qy

AB and
px qy

AC <
px qy

AB. ⊓⊔

Exercise NEUT.18* Let O, P , and S be noncollinear points on the

neutral plane P such that ∠POS is acute, U be a member of
qy→
OP , and

V = ftpr(U,
←→
OS), then V ∈

qy→
OS.

Exercise NEUT.18 Proof. Using Property B.3 of Definition IB.1 let S′

be a point such that S′ O S. By Theorem NEUT.82 ∠S′OP is obtuse. By
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Theorem NEUT.44 ∠OV U is right. If V were to belong to
qy →
OS′, then △OV U

would have a right angle and an obtuse angle. By Theorem NEUT.84, this is

impossible. Hence V ∈
qy→
OS. ⊓⊔

Exercise NEUT.19* Let A, B, and C be noncollinear points on the

neutral plane P ; by Definition NEUT.2 (property R.5) there exists an angle

reflection RM for ∠BAC, and by Theorem NEUT.20(E) a point P ∈ M

such that
qy→
AP ⊆ ins∠BAC. By Definition NEUT.3(D)

px→
AP is a bisecting ray

for ∠BAC. Show that ∠BAP is acute.

Exercise NEUT.19 Proof. Using Corollary NEUT.46.1 let L be the line

such that A ∈ L and L ⊥
←→
AP . Using Exercise PSH.0 let Q be a point on

L which is on the the B side of
←→
AP and let R be a point on L which is

on the C side of
←→
AP . If ∠BAP were right, then by Definition NEUT.41(C)

∠CAP would be a right angle and by Exercise NEUT.16, B, A, and C would

be collinear, contrary to the given fact that B, A, and C are noncollinear.

Hence ∠BAP is not a right angle. If ∠BAP were obtuse, then by Defini-

tions NEUT.70 and NEUT.81 Q would belong to ins∠BAP . By Corollary

PSH.39.2 B and P would be on opposite sides of
←→
AQ. Similar reasoning

shows that C and P would be on opposite sides of
←→
AQ =

←→
AR. Since B and C

would both be on the side E of
←→
AQ opposite the P -side, by Theorem PSH.42

ins∠BAC would be a subset of the side of
←→
AQ opposite to the P side . This

would contradict the fact that P ∈ ins∠BAC. Hence ∠BAP is not obtuse. By

Theorem NEUT.75 (trichotomy for angles) and Definition NEUT.81 ∠CAP

is acute. ⊓⊔

Exercise NEUT.20* Let A, B, and C be noncollinear points on the neu-

tral plane P . If ∠BAC and ∠ABC are both acute, and if D = ftpr(C,
←→
AB),

then D ∈
qy px

AB.

Exercise NEUT.20 Proof. If D were equal to either A or B, then by Theo-

rem NEUT.44, ∠BAC or ∠ABC would be right. Both of these are impossible

by assumption. By Property B.2 of Definition IB.1 there are exactly three

mutually exclusive possibilities: (1) B A D, (2) A B D, and (3) A D B.

If A were between B and D, then by Theorem NEUT.80 (outside angles)

applied to △ACD, ∠BAC would be obtuse contrary to the given fact that

∠BAC is acute. Hence A is not between B and D. If B were between A and

D then by interchanging “A” and “B” in the above reasoning we would get
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that ∠ABC is obtuse. Since B A D and A B D are both false, A D B. ⊓⊔

Exercise NEUT.21* Let A, B, and C be noncollinear points on the

neutral plane P , if
px qy

AB is the maximal edge of△ABC and ifD = ftpr(C,
←→
AB),

then D ∈
qy px

AB.

Exercise NEUT.21 Proof. If ∠BAC were not acute, then by Definition

NEUT.81 it would either be right or obtuse and by Exercise NEUT.17
px qy

BC

would be larger than
px qy

AB contrary to the given fact that
px qy

AB ≥
px qy

BC. Hence

∠BAC is acute. If ∠ABC were not acute, then by interchanging “A” and

“B” in the reasoning above we would get that
px qy

AC is larger than
px qy

AB con-

trary to the given fact that
px qy

AB ≥
px qy

AC. Hence ∠ABC is acute. By Exercise

NEUT.20 D ∈
qy px

AB. ⊓⊔

Exercise NEUT.22* Let L be a line on the neutral plane P and let P

be a point such that P 6∈ L.

(I) Let Q = ftpr(P,L); if X is any point on L distinct from Q, then
px qy

PQ <
px qy

PX.

(II) If Q is a point on L with the property that for every point X on L

which is distinct from Q,
px qy

PQ <
px qy

PX, then Q = ftpr(P,L).

Exercise NEUT.22 Proof. (I) By Theorem NEUT.44 ∠PQX is right. By

Exercise NEUT.17
px qy

PQ <
px qy

PX.

(II) Assume ∠PQX is not right, then by Theorem NEUT.44,
←→
PQ and L

are not perpendicular to each other. Using Theorem NEUT.48(A), let M

be the line such that P ∈ M and M ⊥ L. By Theorem NEUT.44 there

exists a point R such thatM∩L = {R}, and by the same theorem ∠PRQ

is a right angle. By Part I above,
px qy

PR <
px qy

PQ, i.e.,
px qy

PQ >
px qy

PR. This contra-

dicts the given fact that for every point X on L distinct from Q,
px qy

PQ <
px qy

PX.

Hence the assumption that ∠PQX is not right is false, so ∠PQX is right. ⊓⊔

Exercise NEUT.23* Let P be a neutral plane, A, B, and C be non-

collinear points on P , P be a member of ins∠BAC, Q = ftpr(P,
←→
AB), and

R = ftpr(P,
←→
AC).

(1) If
px→
AP is the bisecting ray of ∠BAC, then

px qy

PQ ∼=
px qy

PR.

(2) If Q ∈
qy→
AB, R ∈

qy→
AC, and

px qy

PQ ∼=
px qy

PR, then
px→
AP is the bisecting ray of

∠BAC.

Exercise NEUT.23 Proof. We will use Theorem NEUT.15 several times

without further reference. (1) If
px→
AP is the bisecting ray, then R←→

AP
(
←→
AB) =
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←→
AC by Theorem NEUT.39. Then R←→

AP
(Q) ∈

←→
AC and R←→

AP
(∠AQP ) =

∠(R←→
AP

(A))(R←→
AP

(Q))(R←→
AP

(P )) = ∠A(R←→
AP

(Q))P which is a right angle by

Corollary NEUT.44.2.

Therefore by TheoremNEUT.47(B),
←→
PR =

←−−−−−−−→
P (R←→

AP
(Q)) so thatR←→

AP
(Q) =

R. Thus R←→
AP

(
px qy

PQ) =
px qy

(R←→
AP

(P ))(R←→
AP

(Q)) =
px qy

PR and
px qy

PQ ∼=
px qy

PR.

(2) Since
px qy

AP ∼=
px qy

AP and
px qy

PQ ∼=
px qy

PR and both ∠PQA and ∠PRA are

right, by Theorem NEUT.96 (hypotenuse-leg) ∠PAQ ∼= ∠PAR. By Theo-

rem NEUT.39
px→
AP is the bisecting ray of ∠BAC. ⊓⊔

Exercise NEUT.24* Let P be a neutral plane and let A, B, C, and

D be points on P such that
px qy

AB ∪
px qy

BC ∪
px qy

CD∪
px qy

DA is a quadrilateral, and

suppose that
←→
AB ⊥

←→
AD and

←→
AB ⊥

←→
BC. Then

(1) ⊔⊓ABCD is rotund;

(2)
px qy

BC ∼=
px qy

AD iff ∠ADC ∼= ∠BCD; and

(3)
px qy

BC <
px qy

AD iff ∠ADC < ∠BCD.

Exercise NEUT.24 Proof. (1) By Theorem NEUT.47
←→
AD ‖

←→
BC. Thus

by Theorem IB.9 and Exercise PSH.14 every point of
←→
AD is on the A-side

of
←→
BC and every point of

←→
BC is on the B-side of

←→
AD. By Theorem IB.14

qy→
CD ⊆

qy →
BCA and

qy→
DC ⊆

qy →
ADB so that by Exercise IB.8

qy px

CD ⊆
qy →
BCA∩

qy →
ADB.

Then if D and C are on opposite sides of
←→
AB, by Theorem PSH.11 (PSA)

qy px

CD∩
←→
AB 6= ∅ and this point of intersection must lie between A and B,

that is,
qy px

CD∩
px qy

AB 6= ∅ which contradicts the assumption that ⊔⊓ABCD is a

quadrilateral (cf Definition PSH.31).

Therefore both C and D are on the same side of
←→
AB. By interchanging

“A” with “C” and “B” with “D” in the above argument, we see that A and

B must be on the same side of
←→
CD. Since

←→
AD and

←→
BC are parallel, A is on

the D-side of
px qy

BC and C is on the B-side of
px qy

AD, so that by Definition PSH.31

⊔⊓ABCD is rotund.

Part (2) follows from (A) and (D) below; part (3) follows from (B) and

(E) below:

(A) By Theorem NEUT.44 both ∠BAD and ∠ABC are right. By Theo-

rem NEUT.69, ∠BAD ∼= ∠ABC. If
px qy

AD ∼=
px qy

BC, then by Theorem NEUT.64

(EAE) applied to △BAD and △ABC
px qy

AC ∼=
px qy

BD. Hence by Theorem

NEUT.62 (EEE) applied to △ADC and △BCD ∠ADC ∼= ∠BCD.

(B) If
px qy

BC <
px qy

AD, then by Definition NEUT.70 there exists a point P

such that A P D and
px qy

BC ∼=
px qy

AP . By part (A) ∠APC ∼= ∠BCP . By The-
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orem NEUT.80 (outside angles) ∠ADC < ∠APC. By Theorem NEUT.76

(transitivity for angles) ∠ADC < ∠BCD.

(C) If
px qy

BC >
px qy

AD, then by Definition NEUT.70
px qy

AD <
px qy

BC. Interchanging

A and B, and interchanging C and D in part (B), ∠BCD < ∠ADC.

(D) Suppose ∠ADC ∼= ∠BCD. By Theorem NEUT.72 (trichotomy for

segments) one and only one of the following statements holds:
px qy

AD ∼=
px qy

BC,
px qy

AD <
px qy

BC, or
px qy

AD >
px qy

BC. If
px qy

AD <
px qy

BC, then by part (C) ∠BCD < ∠ADC

contrary to the given fact that ∠ADC ∼= ∠BCD. If
px qy

AD >
px qy

BC, then by

part (B) ∠BCD > ∠ADC contrary to the given fact that ∠ADC ∼= ∠BCD.

Hence
px qy

AD ∼=
px qy

BC.

(E) If ∠ADC < ∠BCD, again, as in part (D) we use trichotomy for seg-

ments.
px qy

AD ∼=
px qy

BC is ruled out by part (A), and
px qy

AD <
px qy

BC is ruled out by

part (C). Therefore
px qy

BC <
px qy

AD. ⊓⊔

Exercise NEUT.25* Let A, B, C, A′, B′, and C′ be points on the

neutral plane P such that A, B, and C are noncollinear, A′, B′, and C′ are

noncollinear, both ∠ACB and ∠A′C′B′ are right,
px qy

BC ∼=
px qy

B′C′ and
px qy

AC <
px qy

A′C′, then ∠ABC < ∠A′B′C′,
px qy

AB <
px qy

A′B′, and ∠B′A′C′ < ∠BAC.

Exercise NEUT.25 Proof. Using Theorem NEUT.67 (segment construc-

tion) let A′′ be the point on
qy→
CA such that

px qy

CA′′ ∼=
px qy

C′A′.

By Theorem NEUT.73 (transitivity for segments)
px qy

CA <
px qy

CA′′. In Theorem

NEUT.74, substitute C for O, A for X , and A′′ for Q to get C A A′′. By

Definition IB.3 A ∈
qy px

CA′′. By Theorem PSH.37 A ∈ ins∠CBA′′. By Theorem

NEUT.69 ∠A′′CB ∼= ∠A′C′B′. By Theorem NEUT.64 (EAE) △A′′BC ∼=

△A′B′C′ so that ∠A′′BC ∼= ∠A′B′C′, ∠BA′′C ∼= ∠B′A′C′ and
px qy

A′′B ∼=
px qy

A′B′.

By Definition NEUT.70 ∠ABC < ∠A′′BC; by transitivity for angles (The-

orem NEUT.76), ∠ABC < ∠A′B′C′.

Applying Theorem NEUT.80 (outside angles) to △ABA′′, ∠BA′′C <

∠BAC, so by transitivity for angles ∠B′A′C′ < ∠BAC.

By Theorem NEUT.93
px qy

A′′B >
px qy

BC; by Theorem NEUT.95
px qy

AB <
px qy

A′′B so

by transitivity for segments (Theorem NEUT.73)
px qy

AB <
px qy

A′B′. ⊓⊔

Exercise NEUT.26* Let A, B, C, A′, B′, and C′ be points on the

neutral plane P such that A, B, and C are noncollinear, A′, B′, and C′ are

noncollinear, ∠ACB and ∠A′C′B′ are both right,
px qy

BC <
px qy

B′C′ and
px qy

AC >
px qy

A′C′, then ∠ABC > ∠A′B′C′ and ∠BAC < ∠B′A′C′.
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Exercise NEUT.26 Proof. Using Theorem NEUT.67 (Segment Construc-

tion) let A′′ be the member of
qy→
CA such that

px qy

CA′′ ∼=
px qy

C′A′ and let B′′ be

the member of
qy →
C′B′ such that

px qy

CB′′ ∼=
px qy

C′B′. By Theorem NEUT.64 (EAE)

△A′′B′′C ∼= △A′B′C′. By Theorem NEUT.73 (transitivity for segments)
px qy

A′′C <
px qy

AC and
px qy

BC <
px qy

B′′C. Again, substituting appropriately in Theorem

NEUT.74, we get A A′′ C and B′′ B C. By Theorem IB.14
qy→
AC ⊆

qy →
ABC so

that A′′ ∈
qy →
ABC. By Definition IB.11 B′′ and C are on opposite sides of

←→
AB.

By Theorem PSH.12 (plane separation) B′′ and A′′ are on opposite sides of
←→
AB. By Axiom PSA

qy px

A′′B′′ and
←→
AB intersect at a point D. Similar reasoning

shows A and B are on opposite sides of
←−−→
A′′B′′. By Axiom PSA

qy px

AB and
←−−→
A′′B′′

intersect at a point D′. By Corollary IB.5.2
px qy

AB ⊆
←→
AB and

qy px

A′′B′′ ⊆
←−−→
A′′B′′.

Hence by Exercise I.1 D′ = D. By Theorem NEUT.80 (outside angles) ap-

plied to △ADA′′ we get ∠BAC < ∠B′′A′′C. By the same theorem applied

to △BDB′′ we get ∠ABC > ∠A′′B′′C. By Theorem NEUT.76 (transitivity

for angles) ∠ABC > ∠A′B′C′ and ∠BAC < ∠B′A′C′. ⊓⊔

Exercise NEUT.27* Let A, B, C, A′, B′, and C′ be points on the

neutral plane P such that A, B, and C are noncollinear, A′, B′, and C′ are

noncollinear, both ∠ACB and ∠A′C′B′ are right,
px qy

BC <
px qy

B′C′, and
px qy

AC <
px qy

A′C′, then
px qy

AB <
px qy

A′B′.

Exercise NEUT.27 Proof. Using Theorem NEUT.67 (segment construc-

tion) let B′′ be the point on
qy→
CB such that

px qy

B′′C ∼=
px qy

B′C′. Applying Exercise

NEUT.25 to △ABC and △AB′′C, since
px qy

AC ∼=
px qy

AC and
px qy

BC <
px qy

B′′C, we get
px qy

AB <
px qy

AB′′. Applying Exercise NEUT.25 to △AB′′C and △A′B′C′, since
px qy

B′′C ∼=
px qy

B′C′ and
px qy

AC <
px qy

A′C′, we get
px qy

AB′′ <
px qy

A′B′. By Theorem NEUT.73

(transitivity for segments)
px qy

AB <
px qy

AB′′ <
px qy

A′B′. ⊓⊔

Exercise NEUT.28* Let A, B, C, A′, B′, and C′ be points on the

neutral plane P such that A, B, and C are noncollinear, A′, B′, and C′ are

noncollinear, both ∠ACB and ∠A′C′B′ are right,
px qy

BC <
px qy

B′C′ and
px qy

AB ∼=
px qy

A′B′, then
px qy

A′C′ <
px qy

AC, ∠BAC < ∠B′A′C′ and ∠ABC > ∠A′B′C′.

Exercise NEUT.28 Proof. If
px qy

A′C′ were larger than or were congruent

to
px qy

AC, then by Exercise NEUT.27 or Exercise NEUT.25
px qy

A′B′ would be

larger than
px qy

AB, contrary to the given fact that
px qy

AB ∼=
px qy

A′B′. Hence by Theo-

rem NEUT.72 (trichotomy for segments)
px qy

A′C′ <
px qy

AC. By Exercise NEUT.26

∠BAC < ∠B′A′C′ and ∠ABC > ∠A′B′C′. ⊓⊔
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Exercise NEUT.29* Let A, B, C, A′, B′, and C′ be points on the neu-

tral plane P such that both ∠ACB and ∠A′C′B′ are right,
px qy

AB ∼=
px qy

A′B′ and

∠A′B′C′ < ∠ABC, then
px qy

A′C′ <
px qy

AC,
px qy

BC <
px qy

B′C′ and ∠BAC < ∠B′A′C′.

Exercise NEUT.29 Proof. Using Theorem NEUT.67 (segment construc-

tion) let C′′ be the point on
qy →
B′C′ such that

px qy

B′C′′ ∼=
px qy

BC. Using Theorem

NEUT.48 let L be the line such that C′′ ∈ L and L ⊥
←−→
B′C′. Using Ex-

ercise PSH.0 let T be a member of L ∩
qy →
B′C′A′. Using Theorem NEUT.67

(segment construction) let A′′ be the point on
qy →
C′′T such that

px qy

C′′A′′ ∼=
px qy

CA.

By Theorem NEUT.44 ∠A′′C′′B′ is right. By Theorem NEUT.69 ∠ACB ∼=

∠A′′C′′B′. By Theorem NEUT.64 (EAE) △B′A′′C′′ ∼= △BAC and thus

∠B′A′′C′′ ∼= ∠BAC, ∠A′′B′C′′ ∼= ABC, and
px qy

A′′B′ ∼=
px qy

AB. By the assump-

tion that ∠A′B′C′ < ∠ABC and Theorem NEUT.76 (transitivity for angles),

∠A′B′C′ < ∠A′′B′C′′ = ∠A′′B′C′.

By Theorem NEUT.78 A′ ∈ ins∠A′′B′C′. By Theorem PSH.39 (Cross-

bar),
qy →
B′A′ and

qy →
A′′C′′ intersect at a point S such that A′′ S C′′, that is,

C′′ S A′′. By Theorem NEUT.74
px qy

C′′S′ <
px qy

C′′A′′. By Theorem NEUT.93

and Theorem NEUT.95 (applied to △A′′B′C′′),
px qy

B′S <
px qy

B′A′′. By Theorem

NEUT.73 (transitivity for segments),
px qy

B′S <
px qy

B′A′. By Theorem NEUT.74

B′ S A′. By Definition IB.11 B′ and A′ are on opposite sides of
←−−→
C′′A′′. By

Theorem NEUT.44
←−→
C′A′ ⊥

←−→
B′C′. By Theorem NEUT.47(A)

←−→
C′A′ ∩

←−−→
C′′A′′ =

∅. By Theorem IB.10 and Exercise PSH.14
←−→
C′A′ ⊆

qy →
C′′A′′A′, so that C′ and

A′ are on the same side of
←−−→
C′′A′′. By Theorem PSH.12 (plane separation)

B′ and C′ are on opposite sides of
←−−→
C′′A′′. By Axiom PSA, Exercise I.1, and

Corollary IB.5.2 B′ C′′ C′. By Theorem NEUT.74
px qy

B′C′′ <
px qy

B′C′. By Theo-

rem NEUT.73 (transitivity for segments)
px qy

BC <
px qy

B′C′. By Exercise NEUT.28
px qy

A′C′ <
px qy

AC, ∠ABC > ∠A′B′C′, and ∠BAC < ∠B′A′C′. ⊓⊔

Exercise NEUT.30* Let A, B, C, A′, B′, and C′ be points on the

neutral plane P such that A, B, and C are noncollinear, A′, B′, and C′ are

noncollinear, both ∠ACB and ∠A′C′B′ are right,
px qy

BC ∼=
px qy

B′C′, and ∠ABC <

∠A′B′C′, then
px qy

AC <
px qy

A′C′,
px qy

AB <
px qy

A′B′, and ∠B′A′C′ < ∠BAC.

Exercise NEUT.30 Proof. If
px qy

AC ∼=
px qy

A′C′, by Theorem NEUT.64 (EAE)

∠ABC ∼= ∠A′B′C′. By Theorem NEUT.75 (trichotomy for angles) this is

contrary to the assumption that ∠ABC < ∠A′B′C′. Also, if
px qy

A′C′ <
px qy

AC,

it follows from Exercise NEUT.25 that ∠A′B′C′ < ∠ABC, again contrary

to this assumption. Hence by Theorem NEUT.72 (trichotomy for segments)
px qy

AC <
px qy

A′C′. Applying Exercise NEUT.25, we have ∠ABC < ∠A′B′C′,
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px qy

AB <
px qy

A′B′, and ∠B′A′C′ < ∠BAC. ⊓⊔

Exercise NEUT.31* Let P , O, and T be noncollinear points on the

neutral plane P , let S be a member of ins∠POT such that ∠POS < ∠TOS,

and let M be a member of ins∠POT such that
px →
OM is the bisecting ray of

∠POT , then M ∈ ins∠TOS.

Exercise NEUT.31 Proof. (I) IfM were a member of
qy→
OS, then by Theorem

PSH.16
px →
OM would be equal to

px→
OS and by Definition PSH.29 ∠POM would

be equal to ∠POS. By Theorem NEUT.39 ∠POS would be congruent to

∠TOS. By Theorem NEUT.75 (trichotomy for angles) this would contradict

the given fact that ∠POS < ∠TOS. Hence M 6∈
qy→
OS.

(II) If M were a member of ins∠POS, by Definition NEUT.70 ∠POM <

∠POS. By Exercise PSH.13, S ∈ ins∠TOM , and hence by Definition

NEUT.70 ∠TOS < ∠TOM By hypothesis ∠POS < ∠TOS. Putting

this all together by Theorem NEUT.76 (transitivity for angles) we have

∠POM < ∠POS < ∠TOS < ∠TOM which contradicts the given fact

that ∠POM ∼= ∠TOM . Hence M 6∈ ins∠POS, and by part (I) M 6∈
qy→
OS, so

by Exercise PSH.18, M ∈ ins∠TOS. ⊓⊔

Exercise NEUT.32* Let P , O, and T be noncollinear points on the

neutral plane P , S and V be members of ins∠POT such that ∠POS <

∠TOS and ∠POV ∼= ∠TOS, and M be a member of ins∠POT such that
px →
OM is the bisecting ray of ∠POT . Then

(1) S ∈ ins∠POV and V ∈ ins∠TOS,

(2)
px →
OM is the bisecting ray of ∠SOV ,

(3) ∠TOV ∼= ∠POS, and

(4) M ∈ ins∠TOS ∩ ins∠POV .

Exercise NEUT.32 Proof. Since both S and V are members of ins∠POT ,

by Definition PSH.36 S ∈
qy →
OPT and V ∈

qy →
OPT . By Definition IB.11 S ∈

qy →
OPV . Since ∠POS < ∠TOS by Exercise NEUT.31 M ∈ ins∠TOS.

By Theorem NEUT.39 L =
←−→
OM is the line of symmetry of ∠POT , so that

RL(
px→
OT ) =

px→
OP . By Theorem NEUT.15

RL(∠TOS) = ∠RL(T )RL(O)RL(S) = ∠PORL(S),

so that ∠TOS ∼= ∠PORL(S). By hypothesis, ∠POV ∼= ∠TOS, so by The-

orem NEUT.76 (transitivity for angles) ∠POV ∼= ∠PORL(S). Since RL(S)

and V are on the same side of
←→
OP , by Theorem NEUT.36,

px→
OV =

px →
ORL(S).

This shows that L is the line of symmetry for ∠SOV , and hence
px →
OM
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is its bisecting ray, proving (2). Also RL(∠POS) = ∠TOV and hence

∠TOV ∼= ∠POS, proving (3).

To prove (1), note that ∠POS < ∠TOS ∼= ∠POV so that by Theo-

rem NEUT.78, S ∈ ins∠POV . Since
px →
ORL(S) =

px→
OV ,

px →
ORL(T ) =

px→
OP , and

px →
ORL(P ) =

px→
OT , we have RL(∠POS) = ∠RL(P )RL(O)RL(S) = ∠TOV and

RL(∠TOS) = ∠POV . Thus ∠TOV ∼= ∠POS < ∠POV ∼= ∠TOS so that by

Theorem NEUT.78, V ∈ ins∠TOS; this proves (1).

Since by hypothesis ∠TOS ∼= ∠POV and ∠POS < ∠TOS we have

∠TOV ∼= ∠POS < ∠TOS ∼= ∠POV , or ∠TOV < ∠POV . Again by Exer-

cise NEUT.31, M ∈ ins∠POV . Thus M ∈ ins∠TOS ∩ ins∠POV , proving

(4). ⊓⊔

Exercise NEUT.33* Let P be a neutral plane and let A1, B1, M1, A2,

B2, and M2 be points on P such that A1 6= B1 and A2 6= B2, M1 is the

midpoint of
px qy

A1B1 and M2 is the midpoint of
px qy

A2B2, then
px qy

A1B1
∼=

px qy

A2B2 iff
px qy

A1M1
∼=

px qy

A2M2.

Exercise NEUT.33 Proof. (I: If
px qy

A1B1
∼=

px qy

A2B2, then
px qy

A1M1
∼=

px qy

A2M2.)

Using Theorem NEUT.56 let α be an isometry of P such that α(
px qy

A1B1) =
px qy

A2B2, α(A1) = A2, and α(B1) = B2. By Definition NEUT.3(C)
px qy

A1M1
∼=

px qy

M1B1. By Theorem NEUT.13 α(
px qy

A1M1) ∼= α(
px qy

M1B1).

By Theorem NEUT.15

α(
px qy

A1M1) =
px qy

α(A1)α(M1) =
px qy

A2α(M1) and

α(
px qy

M1B1) =
px qy

α(M1)α(B1) =
px qy

α(M1)B2

so that
px qy

A2α(M1) ∼=
px qy

α(M1)B1. By Definition NEUT.3(C) A1 M1 B1.

By Definition NEUT.1(D) α(A1) α(M1) α(B1), i.e., A2 α(M1) B2. By

the uniqueness part of Theorem NEUT.50 α(M1) = M2. Thus α(
px qy

A1M1) =
px qy

A2M2. By Definition NEUT.3(B)
px qy

A1M1
∼=

px qy

A2M2.

(II: If
px qy

A1M1
∼=

px qy

A2M2), then
px qy

A1B1
∼=

px qy

A2B2. Using Theorem NEUT.56

let γ be the isometry of P such that γ(
px qy

A1M1) =
px qy

A2M2, γ(A1) = A2,

and γ(M1) = M2. By Definition NEUT.3(C)
px qy

A1M1
∼=

px qy

M1B1. By Theorem

NEUT.13 γ(
px qy

A1M1) ∼= γ(
px qy

M1B1). By Theorem NEUT.15

γ(
px qy

A1M1 =
px qy

γ(A1)γ(M1) =
px qy

A2M2 and

γ(
px qy

M1B1) =
px qy

γ(M1)γ(B1) =
px qy

M2γ(B1).

By Theorem NEUT.14 and Definition NEUT.3(B)
px qy

A2M2
∼=

px qy

M2γ(B1).

By Definition NEUT.3(C)
px qy

A2M2
∼=

px qy

M2B2. It follows from Theorem

NEUT.14 that
px qy

M2γ(B1) ∼=
px qy

M2B2. By Definition NEUT.3(C) A1 M1 B1. By

Definition NEUT.1(D) γ(A1) γ(M1) γ(B1), that is to say, A2 M2 γ(B1).
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By Theorem PSH.13 γ(B1) ∈
qy →
M2B2. By Property R.4 of Definition NEUT.2,

γ(B1) = B2. Thus by Theorem NEUT.15 γ(
px qy

A1B1) =
px qy

γ(A1)γ(B1) =
px qy

A2B2.

By Definition NEUT.3(B)
px qy

A1B1
∼=

px qy

A2B2. ⊓⊔

Exercise NEUT.34* Let P be a neutral plane, O and P be distinct

points on P , let the points on
←→
OP be ordered so that O < P , and let A and

B be distinct points on
qy→
OP . Let M be the midpoint of

px qy

OA and N be the

midpoint of
px qy

OB, then A < B iff M < N .

Exercise NEUT.34 Proof. (I: If M < N , then A < B.). If M < N , then

in Theorem NEUT.74 substitute M for X and N for Q to get
px qy

OM <
px qy

ON .

By Definition NEUT.3(C) O N B; by Theorem ORD.6 O M N so that

O M N B, and hence B N M . Again in Theorem NEUT.74 substitute B

for O, N for X , and M for Q to get
px qy

BN <
px qy

BM .

By Definition NEUT.3(C)
px qy

OM ∼=
px qy

MA and
px qy

ON ∼=
px qy

NB.
px qy

MA ∼=
px qy

OM <
px qy

ON ∼=
px qy

NB, so by Theorem NEUT.73 (transitivity for segments),
px qy

MA <
px qy

NB,

and since
px qy

NB <
px qy

MB,
px qy

MA <
px qy

MB. Then by Theorem NEUT.74, A < B.

(II: If A < B, then M < N .) If N = M , then by Exercise NEUT.33
px qy

OA ∼=
px qy

OB and by Property R.4 of Definition NEUT.2, A = B, contrary to

the given fact that A < B (see Theorem ORD.5). If N < M , then by part

(I) B < A contrary to the given fact that A < B. Hence N < M is false. By

Theorem ORD.5 (trichotomy for ordering) M < N . ⊓⊔

Exercise NEUT.35* Let P be a neutral plane, O and P be distinct

points on P , A and B be distinct members of
qy→
OP , M be the midpoint of

px qy

OA, and N be the midpoint of
px qy

OB, then O A B iff O M N .

Exercise NEUT.35 Proof. By Theorem ORD.6 O < A < B iff O A B and

O < M < N iff O M B. Hence by Exercise NEUT.34 O A B iff O M N .

⊓⊔

Exercise NEUT.36* Let P be a neutral plane and let A1, B1, M1,

A2, B2, and M2 be points on P such that A1 6= B1, A2 6= B2, M1 be the

midpoint of
px qy

A1B1 and M2 be the midpoint of
px qy

A2B2, then
px qy

A1B1 <
px qy

A2B2 iff
px qy

A1M1 <
px qy

A2M2.

Exercise NEUT.36 Proof. By Theorem NEUT.67 (segment construction)

there exists a point S such that S ∈
qy →
A2B2 and

px qy

A2S ∼=
px qy

A1B1. Let M be

the midpoint of
px qy

A2S. By Definition NEUT.70 A2 S B2 iff
px qy

A2S <
px qy

A2B2 and

A1 M M2 iff
px qy

A2M <
px qy

A2M2. By Exercise NEUT.35 A2 S B2 iff A2 M M2.



54

Hence
px qy

A2S <
px qy

A2B2 and
px qy

A2M <
px qy

A2M2. Since
px qy

A1B1
∼=

px qy

A2S and
px qy

A1M1
∼=

px qy

A2M by Theorem NEUT.73 (transitivity for segments)
px qy

A1B1 <
px qy

A2B2 iff
px qy

A1M2 <
px qy

A2M2. ⊓⊔

Exercise NEUT.37* Let A1, B1, A2, and B2 be points on the neutral

plane P such that A1 6= B1, A2 6= B2, and
px qy

A1B1
∼=

px qy

A2B2 and let C1 and

C2 be points such that A1 C1 B1, C2 ∈
qy →
A2B2 and

px qy

A1C1
∼=

px qy

A2C2, then

A2 C2 B2.

Exercise NEUT.37 Proof. By Theorem NEUT.56 there exists an isometry

α of P such that α(
px qy

A1B1) =
px qy

A2B2, α(A1) = A2 and α(B1) = B2. By Defini-

tion NEUT.1(D) α(A1) α(C1) α(B1) i.e., A2 α(C1) B2. By Definition IB.4

α(C1) ∈
qy →
A2B2. By Theorem NEUT.15 α(

px qy

A1C1) =
px qy

α(A1)α(C1) =
px qy

A2α(C1).

By Definition NEUT.3(B)
px qy

A1C1
∼=

px qy

A2α(C1). Since
px qy

A1C1
∼=

px qy

A2C2, by The-

orem NEUT.14,
px qy

A2α(C1) ∼=
px qy

A2C2. By Property R.4 of Definition NEUT.2,

α(C1) = C2, so A2 C2 B2. ⊓⊔

Exercise NEUT.38* Let A1, B1, A2, B2, C1, and C2 be points on the

neutral plane P such that A1 6= B1, A2 6= B2, C1 ∈
qy px

A1B1, and C2 ∈
px qy

A2B2.

(A) If
px qy

A1C1
∼=

px qy

A2C2 and
px qy

C1B1
∼=

px qy

C2B2, then
px qy

A1B1
∼=

px qy

A2B2.

(B) If
px qy

A1C1
∼=

px qy

A2C2 and
px qy

A1B1
∼=

px qy

A2B2, then
px qy

C1B1
∼=

px qy

C2B2.

Exercise NEUT.38 Proof. (A) Since
px qy

A1C1
∼=

px qy

A2C2 by Theorem NEUT.56

there exists an isometry α of P such that α(
px qy

A1C1) =
px qy

A2C2, α(A1) = A2,

and α(C1) = C2. By Definition IB.3 A1 C1 B1. By Definition NEUT.1(D)

α(A1) α(C1) α(B1), i.e., A2 C2 α(B1). By Theorem PSH.13 α(B1) ∈
qy →
C2B2.

By Theorem NEUT.15 α(
px qy

C1B1) =
px qy

α(C1)α(B1) =
px qy

C2α(B1). By Defini-

tion NEUT.3(B)
px qy

C1B1
∼=

px qy

C2α(B1). Since
px qy

C1B1
∼=

px qy

C2B2, by Theorem

NEUT.14 (congruence is an equivalence relation),
px qy

C2α(B1) ∼=
px qy

C2B2. Since

α(B1) ∈
qy →
C2B2 by Property R.4 of Definition NEUT.2, α(B1) = B2. By The-

orem NEUT.15 α(
px qy

A1B1) =
px qy

α(A1)α(B1) =
px qy

A2B2. By Definition NEUT.3(B)
px qy

A1B1
∼=

px qy

A2B2.

(B) Since
px qy

A1C1
∼=

px qy

A2C2 by Theorem NEUT.56 there exists an isometry

γ of P such that γ(
px qy

A1C1) =
px qy

A2C2, γ(A1) = A2, and γ(C1) = C2. By Def-

inition IB.3 A1 C1 B1. By Definition NEUT.1(D) γ(A1) γ(C1) γ(B1), i.e.,

A2 C2 γ(B1). By Definition IB.4 γ(B1) ∈
qy →
A2B2. By Theorem NEUT.15

γ(
px qy

A1B1) =
px qy

γ(A1)γ(B1) =
px qy

A2γ(B1). By Definition NEUT.3(B)
px qy

A1B1
∼=

px qy

A2γ(B1). Since
px qy

A1B1
∼=

px qy

A2B2, by Theorem NEUT.14 (congruence is an

equivalence relation)
px qy

A1B1
∼=

px qy

A2γ(B1). By Definition NEUT.3(B)
px qy

A2γ(B1) ∼=
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px qy

A2B2. Since γ(B1) ∈
px qy

A2B2, by Property R.4 of Definition NEUT.2, γ(B1) =

B2. By Theorem NEUT.15 γ(
px qy

C1B1) =
px qy

γ(C1)γ(B1) =
px qy

C2B2. By Definition

NEUT.3(B)
px qy

C1B1
∼=

px qy

C2B2. ⊓⊔

Exercise NEUT.39* Let P be a neutral plane and let A, B, C, D, A′,

B′, C′, and D′ be points on P such that: (1) A, B, and C are noncollinear,

(2) A′, B′, and C′ are noncollinear, (3)
px→
AD is the bisecting ray of ∠BAC, (4)

px →
A′D′ is the bisecting ray of ∠B′A′C′. Then ∠BAC ∼= ∠B′A′C′ iff ∠BAD ∼=

∠B′A′D′.

Exercise NEUT.39 Proof. (I: If ∠BAC ∼= ∠B′A′C′, then ∠BAD ∼=

∠B′A′D′.) By Theorem NEUT.38 there exists an isometry α of P such

that α(∠BAC) = ∠B′A′C′, α(
px→
AB) =

px →
A′B′, and α(

px→
AC) =

px →
A′C′. By The-

orem NEUT.15 α(
px→
AB) =

px →
α(A)α(B) and α(

px→
AC) =

px →
α(A)α(C). By Theo-

rem PSH.24 α(A) = A′, α(B) ∈
qy →
A′B′, and α(C) ∈

qy →
A′C′. By Definition

NEUT.3(D) D ∈ ins∠BAC and D′ ∈ ins∠B′A′C′. By Theorem NEUT.15

α(D) ∈ insα(∠BAC) = ins∠B′A′C′. By the same theorem

α(∠BAD) = α(
px→
AB ∪

px→
AD) = α(

px→
AB) ∪ α(

px→
AD)

=
px →
A′B′ ∪

px →
A′α(D) = ∠B′A′α(D).

By Definition NEUT.3(B) ∠BAD ∼= ∠B′A′α(D). By similar reasoning

∠CAD ∼= ∠C′A′α(D). Since ∠BAD ∼= ∠CAD by Theorem NEUT.14 (con-

gruence is an equivalence relation) ∠B′A′α(D) ∼= ∠C′A′α(D). By Theorem

NEUT.39 and Definition NEUT.3(D)
px →
A′α(D) is a bisecting ray of ∠B′A′C′,

and hence by Theorem NEUT.26,
px →
A′α(D) =

px →
A′D′. By Theorem PSH.24

α(D) ∈
qy →
A′D′. Since ∠BAD ∼= ∠B′A′α(D), ∠BAD ∼= ∠B′A′D′.

(II: If ∠BAD ∼= ∠B′A′D′, then ∠BAC ∼= ∠B′A′C′.) By Theorem

NEUT.38 there exists an isometry γ of P such that γ(∠BAD) = ∠B′A′D′,

γ(
px→
AB) =

px →
A′B′, and γ(

px→
AD) =

px →
A′D′. By Theorem NEUT.15

γ(∠BAD) = γ(
px→
AB ∪

px→
AD) = γ(

px→
AB) ∪ γ(

px→
AD)

=
px →
γ(A)γ(B)∪

px →
γ(A)γ(D) = ∠γ(B)γ(A)γ(D).

Since
px →
γ(A)γ(B) =

px →
A′B′ and

px →
γ(A)γ(D) =

px →
A′D′, by Theorem PSH.24 γ(A) =

A′, γ(B) ∈
qy →
AB′ and γ(D) ∈

qy →
A′D′. By Theorem NEUT.15

γ(∠CAD) = γ(
px→
AC ∪

px→
AD) = γ(

px→
AC) ∪

px→
AD)

=
px →
γ(A)γ(C)∪

px →
γ(A)γ(D) =

px →
A′γ(C)∪

px →
A′D′ = ∠γ(C)A′D′.

By Definition NEUT.3(B) ∠CAD ∼= ∠γ(C)A′D′. By Theorem NEUT.39

∠BAD ∼= ∠CAD and ∠B′A′D′ ∼= ∠C′A′D′. Since ∠BAD ∼= ∠B′A′D′,

by Theorem NEUT.14 (congruence is an equivalence relation), ∠γ(C)A′D′

∼= ∠C′A′D′. Since D ∈ ins∠BAC, by Theorem NEUT.15
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γ(D) ∈ ins γ(∠BAC) = ins∠B′A′γ(C).

Since γ(D) ∈
qy →
A′D′, D′ ∈ ins∠B′A′γ(C). By Definition PSH.36 D′ and γ(C)

are on the same side of
←−→
A′B′. By Theorem NEUT.36

px →
A′γ(C) =

px →
A′C′. By

Theorem PSH.24 γ(C) ∈
qy →
A′C′. By Theorem NEUT.15

γ(∠BAC) = γ(
px→
AB ∪

px→
AC) = γ(

px→
AB) ∪ γ(

px→
AC)

=
px →
γ(A)γ(B)∪

px →
γ(A)γ(C) =

px →
A′B′ ∪

px →
A′C′ = ∠B′A′C′.

By Definition NEUT.3(B) ∠BAC ∼= ∠B′A′C′. ⊓⊔

Exercise NEUT.40* Let P be a neutral plane and let A, B, C, D, A′,

B′, C′, and D′ be points on P such that: (1) A, B, and C are noncollinear, (2)

A′, B′, and C′ are noncollinear, (3) D ∈ ins∠BAC and D′ ∈ ins∠B′A′C′.

(A) If ∠BAD ∼= ∠B′A′D′ and ∠CAD ∼= ∠C′A′D′, then ∠BAC ∼=

∠B′A′C′.

(B) If ∠BAD ∼= ∠B′A′D′ and ∠BAC ∼= ∠B′A′C′, then ∠CAD ∼=

∠C′A′D′.

Exercise NEUT.40 Proof. (A) By Theorem NEUT.38 there exists an

isometry α of P such that α(∠BAD) = ∠B′A′D′, α(
px→
AB) =

px →
A′B′ and

α(
px→
AD) =

px →
A′D′. By Definition PSH.29, Theorem NEUT.15, and elementary

mapping theory

α(∠BAD) = α(
px→
AB ∪

px→
AD) = α(

px→
AB) ∪ α(

px→
AD) =

px →
α(A)α(B)∪

px →
α(A)α(D).

By Theorem PSH.24 α(A) = A′, α(B) ∈
qy →
A′B′ and α(D) ∈

qy →
A′D′. By Defini-

tion PSH.29, Theorem NEUT.15, and elementary mapping theory,

α(∠CAD) = α(
px→
AC ∪

px→
AD) = α(

px→
AC) ∪ α(

px→
AD)

=
px →
α(A)α(C)∪

px →
α(A)α(D) =

px →
A′α(C)∪

px →
A′D′ = ∠α(C)A′D′.

By Definition NEUT.3(B) ∠CAD ∼= ∠α(C)A′D′. Since ∠CAD ∼= ∠C′A′D′,

by Theorem NEUT.14 (congruence is an equivalence relation), α(C)A′D′ ∼=

∠C′A′D′. Since α(D) ∈
qy →
A′D′, by Theorem PSH.16

px →
A′α(D) =

px →
A′D′. Since

D ∈ ins∠BAD, by Theorem NEUT.15 α(D) ∈ ins∠α(B)α(A)α(C) =

ins∠B′A′α(C). By Corollary PSH.39.2 B′ and α(C) are on opposite sides

of
←−−−→
A′α(D) =

←−→
A′D′.

Since D′ ∈ ins∠B′A′C′, B′ and C′ are on opposite sides of
←−→
A′D′. By

Theorem PSH.12 (plane separation), C′ and α(C) are on the same side of
←−→
A′D′. By Theorem NEUT.36

px →
A′C′ =

px →
A′α(C). By Definition PSH.29, Theo-

rem NEUT.15, and elementary mapping theory

α(∠BAC) = α(
px→
AB ∪

px→
AC) = α(

px→
AB) ∪ α(

px→
AC)

=
px →
α(A)α(B)∪

px →
α(A)α(C) =

px →
A′B′ ∪

px →
A′C′ = ∠B′A′C′.

By Definition NEUT.3(B) ∠BAC ∼= B′A′C′.
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(B) By Theorem NEUT.38 there exists an isometry γ of P such that

γ(∠BAD) ∼= ∠B′A′D′, γ(
px→
AB) =

px →
A′B′ and γ(

px→
AD) =

px →
A′D′. Reasoning

as in part (A) we get γ(∠BAD) =
px →
γ(A)γ(B)∪

px →
γ(A)γ(D), γ(A) = A′,

γ(B) ∈
qy →
A′B′, and γ(D) ∈

qy →
A′D′. Furthermore γ(∠BAC) = ∠B′A′γ(C).

So that ∠BAC ∼= ∠B′A′γ(C) and thus, ∠B′A′γ(C) ∼= ∠B′A′C′, and so

∠B′A′γ(C) ∼= ∠B′A′C′. Since D ∈ ins∠BAC, by Theorem NEUT.15

γ(D) ∈ ins γ(∠BAC) = ins∠B′A′γ(C) = ins∠B′A′C′.

Since D′ ∈ ins∠B′A′C′ and γ(D) ∈ ins∠B′A′C′ and γ(D) ∈
qy →
A′D′ so that

by Theorem PSH.16
px →
A′γ(D) =

px →
A′D′. By Definition PSH.36 D′ and C′ are

on the same side of
←−→
A′B′ and γ(D) and C′ are on the same side of

←−→
A′B′.

Thus by Theorem PSH.12 (plane separation) C′ and γ(C) are on the same

side of
←−→
A′B′. By Theorem NEUT.36

px →
A′C′ =

px →
A′γ(C). By Definition PSH.29,

Theorem NEUT.14, and elementary mapping theory

γ(∠CAD) = γ(
px→
AC ∪

px→
AD) = γ(

px→
AC) ∪ γ(

px→
AD) =

px →
A′C′ ∪

px →
A′D′ = ∠C′A′D′.

By Definition NEUT.3(B) ∠CAD ∼= ∠C′A′D′. ⊓⊔

Exercise NEUT.41* Let P be a neutral plane and let A1, B1, C1,

D1, A2, B2, C2, and D2 be points on P such that: (1) A1, B1, and C1 are

noncollinear, (2) D1 ∈ ins∠B1A1C1, (3) A2, B2, and C2 are noncollinear,

(4) D2 ∈ ins∠B2A2C2, and (5) ∠B1A1D1
∼= ∠B2A2D2. Then ∠B1A1C1 <

∠B2A2C2 iff ∠D1A1C1 < ∠D2A2C2.

Exercise NEUT.41 Proof. (I: If ∠B1A1C1 < ∠B2A2C2, then ∠D1A1C1 <

∠D2A2C2.) By Definition NEUT.70 ∠B1A1D1 < ∠B1A1C1, ∠B2A2D2 <

∠B2A2C2 and there exists a point S belonging to ins∠B2A2C2 such that

∠B1A1C1
∼= ∠B2A2S. Since ∠B1A1D1 < ∠B1A1C1, ∠B1A1D1

∼= ∠B2A2D2,

and ∠B1A1C1
∼= ∠B2A2S, by Theorem NEUT.76 (transitivity for angles),

∠B2A2D2 < ∠B2A2S. By Definition NEUT.70 D2 ∈ ins∠B2A2S. Since

∠B1A1C1 < ∠B2A2C2 and ∠B1A1C1
∼= ∠B2A2S, by Theorem NEUT.76

(transitivity for angles) ∠B2A2S < ∠B2A2C2. By Theorem NEUT.78 S ∈

ins∠B2A2C2. By Exercise PSH.18 ins∠B2A2C2 is the union of the disjoint

sets
qy →
A2D2, ins∠B2A2D2, and ins∠D2A2C2. Since D2 ∈ ins∠B2A2S, by

Exercise PSH.12 S ∈ out∠B2A2D2, so that S ∈ ins∠D2A2C2. By Defini-

tion NEUT.70 ∠D2A2S < ∠D2A2C2. We know that ∠B1A1C1
∼= ∠B2A2S

and ∠B1A1D1
∼= ∠B2A2D2, so that by Exercise NEUT.40, ∠D1A1C1

∼=

∠D2A2S. Since ∠D2A2S < ∠D2A2C2 by Theorem NEUT.76 (transitivity

for angles), ∠D1A1C1 < ∠D2A2C2.
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(II: If ∠D1A1C1 < ∠D2A2C2, then ∠B1A1C1 < ∠B2A2C2.) By Def-

inition NEUT.70 there exists a point T belonging to the ins∠D2A2C2

such that ∠D1A1C1
∼= ∠D2A2T . By Exercise PSH.18 ins∠B2A2C2 is the

union of the disjoint sets
qy →
A2D2, ins∠B2A2D2, and ins∠D2A2C2, so that

T ∈ ins∠B2A2C2. By Definition NEUT.70 ∠B2A2T < ∠B2A2C2. Since

∠B1A1D1
∼= ∠B2A2D2 and ∠D1A1C1

∼= ∠D2A2T by Exercise NEUT.40

∠B1A1C1
∼= ∠B2A2T .

Since ∠B2A2T < ∠B2A2C2 and ∠B1A1C1
∼= ∠B2A2T , by Theorem

NEUT.76 (transitivity for angles) ∠B1A1C1 < ∠B2A2C2. ⊓⊔

Exercise NEUT.42* Let P be a neutral plane and let A1, B1, C1,

D1, A2, B2, C2, and D2 be points on P such that: (1) A1, B1, and C1 are

noncollinear, (2) D1 ∈ ins∠B1A1C1, (3) A2, B2, and C2 are noncollinear,

and (4) D2 ∈ ins∠B2A2C2. Then if ∠B1A1D1 < ∠B2A2D2 and ∠D1A1C1 <

∠D2A2C2, ∠B1A1C1 < ∠B2A2C2.

Exercise NEUT.42 Proof. Let A3 and B3 be distinct points on P and let

H be a side of
←−−→
A3B3. By Theorem NEUT.68 (angle construction) there exists

a point D3 belonging to H such that ∠B3A3D3
∼= ∠B1A1D1. By the same

theorem there exists a point C3 on the side of
←−−→
A3D3 opposite the B2 side

such that ∠D3A3C3
∼= ∠D2A2C2.

Since ∠B3A3D3
∼= ∠B1A1D1 and ∠C1A1D1 < ∠C3A3D3, by Exercise

NEUT.41 ∠B1A1C1 < ∠B3A3C3.

Since ∠D3A3C3
∼= ∠D2A2C2 and ∠B3A3D3 < ∠B2A2D2, by the same

exercise ∠B3A3C3 < ∠B2A2C2.

Then ∠B1A1C1 < ∠B3A3C3 < ∠B2A2C2 so that by Theorem NEUT.76

(transitivity for angles) ∠B1A1C1 < ∠B2A2C2. ⊓⊔

Exercise NEUT.43* Let P be a neutral plane and let A1, B1, C1,

D1, A2, B2, C2, and D2 be points on P such that: (1) A1, B1, and C1 are

noncollinear, (2)
px →
A1D1 is the bisecting ray of ∠B1A1C1, (3) A2, B2, and

C2 are noncollinear, and (4)
px →
A2D2 is the bisecting ray of ∠B2A2C2. Then

∠B1A1C1 < ∠B2A2C2 iff ∠B1A1D1 < ∠B2A2D2.

Exercise NEUT.43 Proof. By Theorem NEUT.39

∠B1A1D1
∼= ∠D1A1C1 and ∠B2A2D2

∼= ∠D2A2C2.

(I) If ∠B1A1D1 < ∠B2A2D2, then by Theorem NEUT.76 (transitiv-

ity of angles) ∠D1A1C1 < ∠D2A2C2. By Exercise NEUT.42, ∠B1A1C1 <

∠B2A2C2.
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(II) Conversely, suppose that ∠B1A1C1 < ∠B2A2C2. By TheoremNEUT.75

(trichotomy for angles), exactly one of ∠B1A1D1 < ∠B2A2D2, ∠B1A1D1
∼=

∠B2A2D2, or ∠B1A1D1 > ∠B2A2D2 holds.

If ∠B1A1D1
∼= ∠B2A2D2, then by Exercise NEUT.39 ∠B1A1C1

∼=

∠B2A2C2, which is contrary to our assumption.

If ∠B1A1D1 > ∠B2A2D2, then by part (I) (interchanging the subscripts

1 and 2) ∠B1A1C1 > ∠B2A2C2, which is contrary to our assumption.

Therefore ∠B1A1D1 < ∠B2A2D2, completing the proof. ⊓⊔

Exercise NEUT.44* Let P be a neutral plane and let A, B, C, P ,

and Q be points on P such that: (1) A, B, and C are noncollinear, (2)

P ∈ ins∠BAC, and (3) Q ∈ ins∠BAP . Then ∠QAP < ∠BAC.

Exercise NEUT.44 Proof. Since P ∈ ins∠BAC by Definition NEUT.70

∠BAP < ∠BAC. By the same definition ∠QAP < ∠BAP . By Theorem

NEUT.76 (transitivity for angles) ∠QAP < ∠BAC. ⊓⊔

The reader will note that the next exercise is identical to Exercise NEUT.42,

although somewhat disguised by the use of different notation. At one point

we thought to eliminate it. We decided to leave it in, since the method of

proof is different from that for Exercise NEUT.42.

Exercise NEUT.45* Use Exercise NEUT.44 to prove the following: Let

P be a neutral plane and let A, B, C, D, A′, B′, C′, and D′ be points

on P such that: (1) A, B, and C are noncollinear, (2) A′, B′, and C′ are

noncollinear, (3) D ∈ ins∠BAC and (4) D′ ∈ ins∠B′A′C′. If ∠BAD <

∠B′A′D′ and ∠CAD < ∠C′A′D′, then ∠BAC < ∠B′A′C′.

Exercise NEUT.45 Proof. By Definition NEUT.70 there exist points P

and Q such that P ∈ ins∠C′A′D′, Q ∈ ins∠B′A′D′, ∠D′A′Q ∼= ∠BAD and

∠D′A′P ∼= ∠DAC.

By Exercise PSH.18, P , Q, and D′ are members of ins∠B′A′C′. Since P ∈

ins∠C′A′D′, by Exercise PSH.13 D′ ∈ ins∠B′A′P ; then Q ∈ ins∠B′A′D′ ⊆

ins∠B′A′P ′, again by Exercise PSH.18.

We may now apply Exercise NEUT.44 to get ∠QA′P < ∠B′A′C′. By Ex-

ercise NEUT.40 ∠QA′P ∼= ∠BAC. By Theorem NEUT.76 (transitivity for

angles) ∠BAC < ∠B′A′C′. ⊓⊔
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Exercise NEUT.46* Let A and B be distinct points on the neutral

plane P , L be the perpendicular bisector of
px qy

AB, and α be an isometry of P

such that α(
px qy

AB) =
px qy

AB, then one and only one of the following statements

is true: (A) α is the identity mapping ı of P onto itself, (B) α = R←→
AB

, (C)

α = RL, or (D) α = RL ◦ R←→
AB

.

Exercise NEUT.46 Proof. By Theorem NEUT.15 α(
px qy

AB) =
px qy

α(A)α(B) and

α(
qy px

AB) =
qy px

α(A)α(B). Thus {α(A), α(B)} = {A,B}, so that either α(A) = A

and α(B) = B, or α(A) = B and α(B) = A. If α(A) = A and α(B) = B,

then by Theorem NEUT.37 either α = ı (the identity mapping of P onto

itself) or α = R←→
AB

. If α(A) = B and α(B) = A let γ = RL ◦ α, then by

Theorem NEUT.11 α is an isometry of P . Moreover γ(A) = A and γ(B) = B

so by Theorem NEUT.37 either γ = ı or γ = R←→
AB

. If γ = RL ◦ α = ı, then

by Definition NEUT.1(C) α = RL. If γ = RL ◦α = R←→
AB

, α = RL ◦R←→AB
. ⊓⊔

Exercise NEUT.47* Let A, B, and C be distinct points on the neutral

plane P and let α be an isometry of P such that A is a fixed point of α and

B is not a fixed point of α. Then A is the midpoint of
px qy

BC iff B A C and

α(B) = C.

Exercise NEUT.47 Proof. (I: If A is the midpoint of
px qy

BC, then B A C

and α(B) = C.) By Definition NEUT.3(C) B A C and
px qy

BA ∼=
px qy

CA. By

Definition NEUT.1(D) α(B) α(A) α(C), i.e., α(B) A α(C). By Property

B.0 of Definition IB.1 α(B) 6= A. By Theorem PSH.15
←→
AB \ {A} is the

union of the disjoint rays
qy→
AB and

qy→
AC. By Theorem NEUT.15 α(

px qy

AB) =
px qy

α(A)α(B) =
px qy

Aα(B) so that by Definition NEUT.3(B)
px qy

AB ∼=
px qy

Aα(B). If α(B)

were a member of
qy→
AB, then by Property R.4 of Definition NEUT.2 α(B)

would equal B, i.e., B would be a fixed point of α. This would contradict the

given fact that B is not a fixed point of α. Hence α(B) ∈
qy→
AC. Since

px qy

AB ∼=
px qy

AC

by Theorem NEUT.14 (congruence is an equivalence relation)
px qy

AC ∼=
px qy

Aα(B).

By Property R.4 of Definition NEUT.2, α(B) = C.

(II: If B A C and α(B) = C, then A is the midpoint of
px qy

BC.) By Theorem

NEUT.15 α(
px qy

BA) =
px qy

α(B)α(A) =
px qy

CA. By Definition NEUT.3(B)
px qy

BA ∼=
px qy

CA.

By Definition NEUT.3(C) A is the midpoint of
px qy

BC. ⊓⊔

Exercise NEUT.48* Let P be a neutral plane, let L andM be distinct

lines on P through the point O, and let L1 andM1 be lines on P such that

L1 ⊥ L andM1 ⊥M, then L1 andM1 are distinct.
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Exercise NEUT.48 Proof. If L1 andM1 were equal then there would exist

distinct lines (namely L and M) through O each of which is perpendicular

to L1, contrary to Theorem NEUT.47(B). Hence L1 6=M1. ⊓⊔

Exercise NEUT.49* Let P , O, and T be noncollinear points on the

neutral plane P and let S and V be members of ins∠POT such that

∠POS < ∠TOS and ∠POV ∼= ∠TOS. Furthermore, let X be any mem-

ber of ins∠TOV and let W be a point such that ∠POW < ∠POX and

∠XOW ∼= ∠POS, then W ∈ ins∠POV .

Exercise NEUT.49 Proof. By Exercise NEUT.32 S ∈ ins∠POV , V ∈

ins∠TOS, and ∠TOV ∼= ∠POS. Since ∠XOW ∼= ∠POS and ∠POS ∼=

∠TOV , by Theorem NEUT.14 ∠XOW ∼= ∠TOV . Since ∠POS < ∠TOS,

by Theorem NEUT.76 (transitivity for angles) ∠TOV < ∠TOS. Since

S ∈ ins∠POV by Definition NEUT.70 ∠POS < ∠POV . By Definition

PSH.36 V and S are on the same side of
←→
OT and V and S are on the same

side of
←→
OP . By Theorem NEUT.78 V ∈ ins∠TOS and S ∈ ins∠POV . If W

were to belong to
qy→
OV or to ins∠TOV , then by Exercise NEUT.44 ∠XOW

would be smaller than ∠TOV . By Theorem NEUT.75 (trichotomy for an-

gles), this contradicts the established fact that ∠XOW ∼= ∠TOV . Hence

W 6∈ (
qy→
OV ∪ ins∠TOV ). By Exercise PSH.18 W ∈ ins∠POV . ⊓⊔

Exercise NEUT.50* Let P be a neutral plane, L andM be lines on P

such that L ⊥M, and E be a side of L. ThenM is a line of symmetry of E .

Exercise NEUT.50 Proof. By Theorem NEUT.10 we need only show that

if X is any member of E , then RM(X) = X . If X ∈ M, then by Definition

NEUT.1(A) RM(X) ∈ E . If X ∈ (P \M), then by Theorem NEUT.48(A)
px qy

XRM(X) ⊥ M. By Theorem NEUT.47(A)
px qy

XRM(X) ‖ L. By Theorem

IB.10 and Exercise PSH.14 RM(X) ∈ E . ⊓⊔

Exercise NEUT.51* Let P be a neutral plane and let A, B, and C be

noncollinear points on P such that ∠ACB is a maximal angle of △ABC.

(A) If D is any member of
qy px

BC, then
px qy

AD <
px qy

AB.

(B) If ∠ACB is acute, there exists a point D ∈
qy px

BC such that
px qy

AC >
px qy

AD.

(C) If ∠ACB is right or obtuse then for every D ∈
qy px

BC,
px qy

AC <
px qy

AD.

Exercise NEUT.51 Proof. (A) By Theorem NEUT.92
px qy

AC ≤
px qy

AB. By

Theorem NEUT.95
px qy

AD <
px qy

AB.
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(B) By Theorem NEUT.86 ∠ABC is acute. By assumption ∠ACB is

acute. Let D = ftpr(A,
←→
BC). By Exercise NEUT.20, D ∈

qy px

BC. Then △ADC

is right and ∠ADC is a right angle, hence by Theorem NEUT.93
px qy

AC >
px qy

AD.

(C)(1) If ∠ACB is right then for any D ∈
qy px

BC, ∠ACD is right and by

Theorem NEUT.93
px qy

AD >
px qy

AC.

(C)(2) If ∠ACB is obtuse, then let E = ftpr(A,
←→
CB). Then △AED is a

right triangle, and ∠AEB is maximal by Theorem NEUT.84 so that by part

(A) above,
px qy

AD >
px qy

AC. ⊓⊔

Exercise NEUT.52* Let P be a neutral plane, A, B, and C be points

on P such that B A C, and D be a member of P \
←→
AB such that ∠BAD <

∠CAD, then ∠BAD is acute and ∠CAD is obtuse.

Exercise NEUT.52 Proof. By Corollary NEUT.46.1 there exists a point

P such that P ∈
qy →
ABD and ∠BAP is right. If D were a member of

qy→
AP , then

by Theorem NEUT.44, ∠BAD and ∠CAD would be congruent. By Theorem

NEUT.75 (trichotomy for angles) this would contradict the given fact that

∠BAD < ∠CAD. Hence D ∈ (
qy →
ABP \

qy→
AP ).

By Exercise PSH.31 either D ∈ ins∠BAP or D ∈ ins∠CAP . If D were

a member of ins∠CAP , then by Definition NEUT.70 ∠CAD < ∠CAP .

By Exercise PSH.51 P is a member of ins∠BAD and thus by Definition

NEUT.70 ∠BAP < ∠BAD. Since ∠BAP is right, by Definition NEUT.41(C)

∠BAP ∼= ∠CAP . By Theorem NEUT.76 (transitivity for angles) ∠CAD <

∠BAD, contrary to the given fact that ∠BAD < ∠CAD.

Hence D ∈ ins∠BAP . By Definition NEUT.70 ∠BAD < ∠BAP . By Def-

inition NEUT.81 ∠BAD is acute. By Exercise PSH.51 P ∈ ins∠CAD. By

Definition NEUT.70 ∠CAP < ∠CAD. By Definition NEUT.81 ∠CAD is

obtuse. ⊓⊔

Exercise NEUT.53* Let P be a neutral plane, A, B, and C be non-

collinear points on P such that
px qy

AC <
px qy

AB and D be the point of intersection

of the bisecting ray of ∠BAC and
px qy

BC (so ∠BAD ∼= ∠CAD), then ∠ADC

is acute, ∠ADB is obtuse, and
px qy

DC <
px qy

DB.

Exercise NEUT.53 Proof. (A) By Definition NEUT.70 there exists a point

E belonging to
px qy

AB such that
px qy

AE ∼=
px qy

AC. By Theorem NEUT.64 (EAE)

applied to △ADE and △ADC, ∠ADE ∼= ∠ADC, ∠AEC ∼= ∠ACD, and
px qy

DE ∼=
px qy

DC. By Theorem PSH.37 E ∈ ins∠ADB. By Definition NEUT.70
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∠ADE < ∠ADB. By Theorem NEUT.76 (transitivity for angles) ∠ADC <

∠ADB. By Exercise NEUT.52 ∠ADC is acute and ∠ADB is obtuse.

By Property B.3 of Definition IB.1 there exists a point F ′ such that

A C F ′. By Theorem NEUT.67 (segment construction) there exists a point

F belonging to
qy →
CF ′ such that

px qy

CF ∼=
px qy

EB. By Theorem NEUT.43 ∠DEB ∼=

∠DCF . By Theorem NEUT.65 (AEA) applied to △DEB and △DCF ,

∠EDB ∼= ∠CDF . By Exercise NEUT.12 E D F . By Exercise NEUT.38
px qy

AB ∼=
px qy

AF . By Theorem NEUT.64 (EAE) applied to △ABC and △AFE,

∠ACB ∼= ∠AEF , ∠ABC ∼= ∠AFE. By Theorem NEUT.80 (outside an-

gles) applied to △ABC, ∠ABC < ∠BCF . By Theorem NEUT.91 applied

to △DCF
px qy

DC <
px qy

DF . By Theorem NEUT.73 (transitivity for segments)
px qy

DC <
px qy

DB. ⊓⊔

Exercise NEUT.54* Let P be a neutral plane and let A, B, and M be

distinct collinear points on P such that
px qy

AM ∼=
px qy

BM , then M is the midpoint

of
px qy

AB.

Exercise NEUT.54 Proof. By Property B.2 of Definition IB.1 one and

only one of the following statements is true: A M B; M A B; A B M .

If M A B were true, then by Definition NEUT.70
px qy

AM would be smaller

than
px qy

BM . If M B A were true, then by the same definition
px qy

BM would be

smaller than
px qy

AM . Each of these situations contradicts Theorem NEUT.72

(trichotomy for segments). Hence A M B. By Definition NEUT.3(C) M is

the midpoint of
px qy

AB. ⊓⊔

Exercise NEUT.55* Let P be a neutral plane, A and B be distinct

points on P , M be the midpoint of
px qy

AB, and C be a member of
qy px

AB. Then

C ∈
qy px

AM iff
px qy

AC <
px qy

BC.

Exercise NEUT.55 Proof. (I: If C ∈
qy px

AM , then
px qy

AC <
px qy

BC.) By Definition

NEUT.70
px qy

AC <
px qy

AM . By Definition NEUT.3(C)
px qy

AM ∼=
px qy

BM . By Theorem

NEUT.73 (transitivity for segments)
px qy

AC <
px qy

BM . By Definition NEUT.70
px qy

BM <
px qy

BC. By Theorem NEUT.73
px qy

AC <
px qy

BC.

(II: If
px qy

AC <
px qy

BC, then C ∈
qy px

AM .) By Theorem PSH.15(D) one and only

one of the following possibilities is true: C = M ; C ∈
qy px

BM ; C ∈
qy px

AM . If C

were equal to M , then by Definition NEUT.3(C)
px qy

AC would be congruent

to
px qy

CB. If C were a member of
qy px

MB, then by part (I)
px qy

BC would be smaller

than
px qy

AC. By Theorem NEUT.72 (trichotomy for segments) each of these two
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possibilities contradicts the given fact that
px qy

AC <
px qy

BC. Hence C ∈
qy px

AM . ⊓⊔

Exercise NEUT.56* Let P be a neutral plane, A, B, and C be non-

collinear points on P , P be a member of ins∠BAC such that
px→
AP is the

bisecting ray of ∠BAC, and let Q also be a member of ins∠BAC. Then

Q ∈ ins∠BAP iff ∠BAQ < ∠CAQ.

Exercise NEUT.56 Proof. (I: If Q ∈ ins∠BAP , then ∠BAQ < ∠CAQ.)

By Definition NEUT.70 ∠BAQ < ∠BAP . By Theorem NEUT.39 ∠BAP ∼=

∠CAP . By Theorem NEUT.76 (transitivity for angles) ∠BAQ < ∠CAP .

By Exercise PSH.13, since Q ∈ ins∠BAP , P ∈ ins∠CAQ. By Definition

NEUT.70 ∠CAP < ∠CAQ. By Theorem NEUT.76 (transitivity for angles)

∠BAQ < ∠CAQ.

(II: If ∠BAQ < ∠CAQ, then Q ∈ ins∠BAP .) By Exercise PSH.18 one

and only one of the following possibilities holds: Q ∈
qy→
AP ; Q ∈ ins∠BAP ;

Q ∈ ins∠CAP . If Q were a member of
qy→
AP , then by Theorem PSH.16

qy→
AQ would be equal to

qy→
AP and by Definition NEUT.39 ∠BAQ and ∠CAQ

would be congruent. If Q were a member of ins∠CAP , then by part (I)

∠CAQ would be smaller than ∠BAQ. By Theorem NEUT.72 (trichotomy

for segments), each of these two possibilities contradicts the given fact that

∠BAQ < ∠CAQ. Hence Q ∈ ins∠BAP . ⊓⊔

Exercise NEUT.57* Let P be a neutral plane, A, B, and C be non-

collinear points on P such that
px qy

AC <
px qy

AB, and D be the midpoint of
px qy

BC.

(A) ∠ADC is acute and ∠ADB is obtuse.

(B) If E is the point of intersection of the bisecting ray of ∠BAC and

segment
qy px

BC, then C E D B and ∠BAD < ∠CAD.

Exercise NEUT.57 Proof. (A) By Theorem NEUT.98 (Hinge) applied to

△DAB and △DAC, ∠ADC < ∠ADB. By Exercise NEUT.52 ∠ADC is

acute and ∠ADB is obtuse.

(B) By Exercise NEUT.53
px qy

EC <
px qy

EB. By Exercise NEUT.55 E ∈
qy px

DC.

By Definition IB.3 C E D. By Definition NEUT.3(C) C D B. By Theo-

rem PSH.8 C E D B. By Theorem PSH.37 D ∈ ins∠BAE, so by Exercise

NEUT.56 ∠BAD < ∠CAD. ⊓⊔

Exercise NEUT.58* Let P be a neutral plane and let A, B, C, D, E,

and F be points on P such that: (1) A, B, and C are noncollinear, (2) D, E,
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and F are noncollinear, (3) ∠BAC ∼= ∠EDF and ∠CBA ∼= ∠FED, and (4)
px qy

AB <
px qy

DE. Then
px qy

AC <
px qy

DF and
px qy

BC <
px qy

EF .

Exercise NEUT.58 Proof. By Definition NEUT.70 there exists a point

B′ belonging to
qy px

DE such that
px qy

DB′ ∼=
px qy

AB. By Theorem NEUT.68 (an-

gle construction) there exists a point U on the F side of
←→
DE such that

∠DB′U ∼= ∠ABC. Let V be a point such that V B′ U . Then by The-

orem NEUT.42 (vertical angles) ∠DB′U ∼= ∠V B′E. Since by assumption

∠ABC ∼= ∠DEF , by Theorem NEUT.14 (congruence is an equivalence re-

lation) ∠DEF ∼= ∠ABC ∼= ∠DB′U ∼= ∠V B′E. Thus by Theorem NEUT.87

(alternate interior angles)
←→
UV ‖

←→
FE.

By the Postulate of Pasch
←→
UV intersects either

qy px

DF or
px qy

EF ; the lat-

ter can’t be true because
←→
UV ‖

←→
FE, so there is a point C′ such that

qy px

DF ∩
←→
UV = {C′}, and since C′ ∈

qy px

DF , F C′ D. By Theorem NEUT.65

(AEA) △DB′C′ ∼= △ABC hence
px qy

DC′ ∼= AC and from Definition NEUT.70
px qy

AC ∼=
px qy

DC′ <
px qy

DF . Interchanging “A” with “B” and interchanging “D” with

“E” in the above argument shows that
px qy

BC <
px qy

EF . ⊓⊔

Exercise NEUT.59* Let P be a neutral plane, A, B, and C be non-

collinear points on P , F be the midpoint of
px qy

AB, E be the midpoint of
px qy

AC, and

O be the point of intersection of
qy px

BE and
qy px

CF . If
px qy

AB ∼=
px qy

AC, then
px qy

BE ∼=
px qy

CF ,

∠CBE ∼= ∠BCF , ∠ABE ∼= ∠ACF ,
←→
AO is the perpendicular bisector of

px qy

BC

and
px→
AO is the bisecting ray of ∠BAC.

Exercise NEUT.59 Proof. By Exercise NEUT.33
px qy

BF ∼=
px qy

CE. By Theorem

NEUT.40(A) (Pons Asinorum) ∠ABC ∼= ∠ACB. By Theorem NEUT.64

(EAE)
px qy

BE ∼=
px qy

CF and ∠BCF ∼= ∠CBE. By Theorem NEUT.40(B) (the

converse of Pons Asinorum)
px qy

OB ∼=
px qy

OC. Let L be the perpendicular bisec-

tor (See Definition NEUT.51) of
px qy

BC. By definition L intersects
px qy

BC at its

midpoint. By Theorem NEUT.52 RL(B) = C; by Theorem NEUT.55 L is

identical with the line of symmetry of ∠BAC. By Theorem NEUT.20 A ∈ L.

Since RL(B) = C and A ∈ L, RL(
px qy

AB) =
px qy

AC and by Exercise NEUT.33

RL(E) = F , so that RL(
qy px

BE) =
qy px

CF . Let Q be the point of intersection of L

and
qy px

BE; since Q ∈ L, RL(Q) = Q ∈ RL(
qy px

BE) =
qy px

CF , so that Q is the point

of intersection of these two segments, that is, Q = O; therefore O ∈ L, and

L =
←→
AO. We defined L to be the perpendicular bisector of

px qy

BC, and since

O ∈ ins∠BAC,
px→
AO is its bisecting ray. ⊓⊔
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Exercise NEUT.60* Let P be a neutral plane and let A, B, and C be

noncollinear points on P , E be the midpoint of
px qy

AC and F be the midpoint

of
px qy

AB. If
px qy

AC <
px qy

AB, then ∠ABE < ∠ACF .

Exercise NEUT.60 Proof. By Definition NEUT.70 there exists a point B′

belonging to
qy px

AB such that
px qy

AB′ ∼=
px qy

AC. Let F ′ be the midpoint of
px qy

AB′. By Ex-

ercise NEUT.59 ∠ACF ′ ∼= ∠AB′E. By Theorem NEUT.80 (outside angles)

applied to △EB′B, ∠ABE < ∠AB′E. By Exercise NEUT.36
px qy

AF ′ <
px qy

AF

because
px qy

AB′ <
px qy

AB. By Exercise NEUT.55 F ′ ∈
qy px

AF ; by Theorem PSH.37

F ′ ∈ insACF and by Definition NEUT.70 ∠ACF ′ < ∠ACF . By Theorem

NEUT.76 ∠ABE < ∠AB′E ∼= ∠ACF ′ < ∠ACF . ⊓⊔

Exercise NEUT.61* Let P be a neutral plane and let A, B, C, E,

and F be points on P such that: (1) A, B, and C are noncollinear, (2) E is

the point where the bisecting ray of ∠ABC and
qy px

AC intersect, (3) F is the

point where the bisecting ray of ∠ACB and
qy px

AB intersect. If
px qy

AB <
px qy

AC, then
px qy

BE <
px qy

CF .

Exercise NEUT.61 Proof. In this proof a carefully sketched and labeled

figure will be of great assistance in keeping things straight.

Since
px qy

AB <
px qy

AC, by Theorem NEUT.90 ∠ACB < ∠ABC. By Exercise

NEUT.43 ∠ACF < ∠ABE and ∠BCF < ∠CBE. By Theorem NEUT.68

(angle construction) there exists a point U on the A side of
←→
BE such that

∠EBU ∼= ∠ECF = ∠ACF . Since ∠ACF < ∠ABE by Theorem NEUT.76

(transitivity for angles) ∠EBU < ∠ABE.

By Theorem NEUT.78 U ∈ ins∠ABE. By Theorem PSH.39 (Crossbar)
qy→
BU and

qy px

AE intersect at a point A′. Let O be the point (See Exercise PSH.26)

of intersection of
qy px

BE and
qy px

CF . Since U ∈ ins∠OBF , by Theorem PSH.39

(Crossbar)
qy→
BU and

qy px

OF intersect at a point F ′; F ′ ∈
qy px

OF ⊆
qy px

CF , so that

C F ′ F , and by Definition NEUT.70,
px qy

CF ′ <
px qy

CF .

Then ∠A′CF ′ = ∠ACF ∼= ∠EBU = ∠EBA′ and again by Exercise

NEUT.43 ∠BCF ′ < ∠EBC. By Theorem NEUT.76 (transitivity for angles)

∠A′CB < ∠A′BC, and by Theorem NEUT.91
px qy

A′B <
px qy

A′C.

Now compare △A′BE and △A′CF ′, where A′ corresponds to A′, B cor-

responds to C, and E corresponds to F ′. We see that

(1) ∠CA′B = ∠EA′B = ∠F ′A′C is common to both triangles,

(2) ∠A′CF ′ ∼= ∠A′BE, and

(3)
px qy

A′B <
px qy

A′C.
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Hence by Exercise NEUT.58
px qy

BE <
px qy

CF ′ <
px qy

CF , so that
px qy

BE <
px qy

CF . ⊓⊔

Exercise NEUT.62* (Steiner-Lehmus) Let P be a neutral plane and

let A, B, C, E, and F be points on P such that:

(1) A, B, and C are noncollinear,

(2) E is the point of intersection of the bisecting ray of ∠ABC, and
qy px

AC,

and

(3) F is the point of intersection of the bisecting ray of ∠ACB and
qy px

AB.

If
px qy

BE ∼=
px qy

CF , then
px qy

AB ∼=
px qy

AC.

Exercise NEUT.62 Proof. We prove the contrapositive, which is equiva-

lent. If
px qy

AB and
px qy

AC are not congruent, then
px qy

BE and
px qy

CF are not congruent.

By Theorem NEUT.72 (trichotomy for segments) we can choose the notation

so that
px qy

AB <
px qy

AC. By Exercise NEUT.61
px qy

BE <
px qy

CF . By Theorem NEUT.72
px qy

BE and
px qy

CF are not congruent. ⊓⊔

Exercise NEUT.63* (A) Let P be a neutral plane and let A, B, C, and

D be points on P such that:

(1) A, B, and C are noncollinear,

(2) ∠BAC is acute,

(3) B and D are on opposite sides of
←→
AC,

(4) ∠CAD ∼= ∠CAB.

Then D is on the C side of
←→
AB.

(B) Let P be a neutral plane and let A, B, C, and D be points on P such

that:

(1) A, B, and C are noncollinear,

(2) ∠BAC is acute,

(3) B and D are on opposite sides of
←→
AC,

(4) ∠CAD is acute or right.

Then D is on the C side of
←→
AB.

Exercise NEUT.63 Proof. (A) Using Property B.3 of Definition IB.1 let

B′ be a point such that B′ A B. By Theorem NEUT.83 ∠CAD is acute. By

Theorem NEUT.82 ∠CAB′ is obtuse. By Definition IB.11 B and B′ are on

opposite sides of
←→
AC. By Theorem PSH.12 (plane separation)B′ andD are on

the same side of
←→
AC. Since ∠CAD is acute and ∠CAB′ is obtuse, by Theorem

NEUT.83 ∠CAD < ∠CAB′. By Theorem NEUT.78 D ∈ ins∠CAB′. By

Definition PSH.36 C and D are on the same side of
←→
AB, i.e., D is on the

C side of
←→
AB.
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(B) Using Property B.3 of Definition IB.1 let B′ be a point such that

B′ A B. Let E be a point on the C-side of
←→
AB such that

←→
AE ⊥

←→
AB. Since

it is acute, ∠BAC < ∠BAE which is right, and since E and C are on the

same side of
←→
AB, by Theorem NEUT.78, C ∈ ins∠BAE.

By Corollary PSH.39.2 E and B are on opposite sides of
←→
AC. D and B are

on opposite sides of
←→
AC, soD and E are on the same side of

←→
AC. Now ∠B′AC

is obtuse because it is a supplement of ∠BAC (cf Theorem NEUT.82).

If ∠CAD is either a right or an acute angle, ∠CAD < ∠B′AC, and by

Definition NEUT.70, D ∈ ins∠B′AC. By Definition PSH.36 D is on the C-

side of
←−→
AB′ =

←→
AB. ⊓⊔

Exercise NEUT.64* Let P be a neutral plane and let A1, B1, C1, D1,

A2, B2, C2, and D2 be points on P such that:

(1) A1, B1, and C1 are noncollinear,

(2) A2, B2, and C2 are noncollinear,

(3) B1 and D1 are on opposite sides of
←−−→
A1C1,

(4) B2 and D2 are on opposite sides of
←−−→
A2C2,

(5) ∠D1A1C1
∼= ∠B1A1C1,

(6) ∠D2A2C2
∼= ∠B2A2C2,

(7) ∠B1A1C1 < ∠B2A2C2, and ∠B2A2C2 is acute.

Then ∠B1A1D1 < ∠B2A2D2.

Exercise NEUT.64 Proof. By Theorem NEUT.83 ∠B1A1C1 is acute.

By Theorem NEUT.76 (transitivity for angles) ∠D1A1C1
∼= ∠B1A1C1 <

∠B2A2C2
∼= ∠D2A2C2. By Exercise NEUT.63 C1 and D1 are on the same

side of
←−−→
A1B1 and C2 and D2 are on the same side of

←−−→
A2B2. By Exercise

NEUT.42 ∠B1A1D1 < ∠B2A2D2. ⊓⊔

Exercise NEUT.65* Let P be a neutral plane and let A, B, and C

be noncollinear points on P such that each angle of △ABC is acute, D =

ftpr(B,
←→
AC) and E = ftpr(C,

←→
AB), then

qy px

BD and
qy px

CE intersect at a point O

which belongs to ins△ABC.

Exercise NEUT.65 Proof. By Exercise NEUT.20 D ∈
qy px

AC and E ∈
qy px

AB.

By Exercise PSH.26
qy px

BD and
qy px

CE intersect at a point O which belongs to

ins△ABC. ⊓⊔

Exercise NEUT.66* Let P be a neutral plane and let A, B, C, D, E,

and F be points on P such that: (1) A, B, and C are noncollinear, ∠ABC
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and ∠ACB are both acute, and
px qy

AC <
px qy

AB, (2) D is the midpoint of
px qy

BC,

E is the point of intersection of the bisecting ray of ∠BAC and
qy px

BC, and

F = ftpr(A,
←→
BC). If the points on

←→
BC are ordered so that B < C, then

B < D < E < F < C. Moreover,
px qy

AF <
px qy

AE <
px qy

AD <
px qy

AB.

Exercise NEUT.66 Proof. By Exercise NEUT.57 and Theorem ORD.6

B < D < E < C. By Exercise NEUT.53 ∠AEB is obtuse so that by Theorem

NEUT.44
←→
AE and

←→
BC are not perpendicular to each other and thus F 6= E.

By Theorem NEUT.82 ∠AEC is acute. By Exercise NEUT.20 F ∈
qy px

EC.

By Theorem ORD.6 B < D < E < F < C. By Exercise NEUT.22
px qy

AF <
px qy

AB. Applying Exercise NEUT.51(C) successively to △ABF and

△ABE we have
px qy

AF <
px qy

AE <
px qy

AD <
px qy

AB. ⊓⊔

Exercise NEUT.67* Let P be a neutral plane and let A, B, C, D, E,

and F be points on P such that: (1) A, B, and C are noncollinear, (2) D is

the midpoint of
px qy

BC, (3) E is the point of intersection of the bisecting ray of

∠BAC and
qy px

BC, and (4) F = ftpr(A,
←→
BC). If

px qy

AB ∼=
px qy

AC, then D = E = F .

Exercise NEUT.67 Proof. Let L =
←→
AE. Then RL(B) is a point on

px→
AC

and RL(
px qy

AB) ∼=
px qy

AB ∼=
px qy

AC so that by Property R.4 of Definition NEUT.2,

RL(B) = C. By Theorem NEUT.20, D = E and by Theorem NEUT.48(A)

L ⊥
px qy

BC so that E = F . ⊓⊔

The following exercise will strike the reader as decidedly odd, because we

can hardly imagine a triangle such that the perpendicular bisectors of the

sides do not intersect. But this is all we can prove at this stage of our devel-

opment. The issue is resolved in Chapter 11, Theorem EUC.9.

Exercise NEUT.68* Let P be a neutral plane, A, B, and C be non-

collinear points on P . Let L, M, and N be the perpendicular bisectors of
px qy

AB,
px qy

AC, and
px qy

BC respectively. Then either (1) L,M, and N are concurrent

at a point O, or (2) L ‖ M, L ‖ N , andM ‖ N .

Exercise NEUT.68 Proof. (Case 1: Two of the three lines intersect at a

point O) We choose the notation so that L andM intersect at O. Both O ∈ L

andO ∈M, so by Theorem NEUT.53
px qy

OA ∼=
px qy

OB and
px qy

OA ∼=
px qy

OC. By Theorem

NEUT.14 (congruence is an equivalence relation)
px qy

OB ∼=
px qy

OC. By Theorem

NEUT.55 the line of symmetry of ∠BOC is the line of symmetry, hence the

perpendicular bisector of
px qy

BC, which is N . Thus O ∈ N . By Exercise I.1

L ∩M∩N = {O}.
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(Case 2: L ‖ M) If any two of the lines L, M, and N were concurrent,

then by Case 1 L,M, and N would all be concurrent. Hence L ‖ M, L ‖ N ,

andM ‖ N . ⊓⊔

Exercise NEUT.69* Let L be a line on a neutral plane P ; let A, B,

and C be points on L such that B A C, and let M be the line such that

A ∈ M andM⊥ L. We order the points on L such that A < B. Let X and

Y be points on L. Then X < Y iff RM(Y ) < RM(X).

Exercise NEUT.69 Proof. Since A < B and B A C, by Theorem ORD.6

C < A < B. By Theorem PSH.38
qy→
AB =

←→
AB ∩ the B side of M and

qy→
AC =

←→
AB∩ the C side ofM. By Definition NEUT.1(D) RM(C) RM(A) RM(B).

By Definition NEUT.1(A) RM(A) = A. Now assume that X < Y . (Case

1: Y = A). Since RM(A) = A, RM(C) A RM(B). Since X < A < B by

Theorem ORD.8 X ∈
qy→
AC. By Definition NEUT.1(B) X and RM(X) are on

opposite sides of M, thus RM(X) ∈
qy→
AB. By Theorem ORD.8 RM(X) >

A = RM(Y ). By Definition ORD.1 RM(Y ) < RM(X).

(Case 2: Y < A). Since X < Y by Theorem ORD.4 X < Y < A.

By Theorem ORD.8 Y ∈
qy→
AC and X ∈

qy→
AC. By Definition NEUT.1(B)

Y and RM(Y ) are on opposite sides of M, so that RM(Y ) ∈
qy→
AB and

RM(X) ∈
qy→
AB. Since X < Y < A, by Theorem ORD.6 X Y A. By Defini-

tions NEUT.1(A) and (D) RM(X) RM(Y ) A. Since RM(Y ) > A, by The-

orem ORD.6 RM(X) > RM(Y ). By Definition ORD.1 RM(Y ) < RM(X).

(Case 3: X = A). The proof is similar to Case 1.

(Case 4: A < Y and X < A) X ∈
qy→
AC and Y ∈

qy→
AB, so that X and Y are

on opposite sides ofM. Since X and RM(X) are on opposite sides ofM and

Y and RM(Y ) are on opposite sides ofM, RM(X) ∈
qy→
AB and RM(Y ) ∈

qy→
AC

and thus by Theorem ORD.8 RM(Y ) < RM(X).

(Case 5: A < X < Y ) By Theorem ORD.6 A X Y . By Definition

NEUT.1(A) and (D) A RM(X) RM(Y ). Since X and Y are both members

of
qy→
AB by Definition NEUT.1(B) RM(X) and RM(Y ) are both members of

qy→
AC and by Theorem ORD.8 RM(Y ) < RM(X).

This shows that if X < Y , RM(Y ) < RM(X). The converse follows im-

mediately from Definition NEUT.1(C), which says that RM = R−1M . ⊓⊔

Exercise NEUT.70* Let P be a neutral plane, L andM be lines on P

which intersect at the point O, A be a point on L distinct from O, and X

and Y be points onM distinct from O such that X and Y are on the same
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side of L. Let the points onM be ordered so that O < X . Then O < X < Y

iff ∠OAX < ∠OAY .

Exercise NEUT.70 Proof. (I) If O < X < Y , then by Theorem ORD.6

O X Y . By Definition IB.3 X ∈
qy px

OY . By Theorem PSH.37 X ∈ ins∠OAY .

By Definition NEUT.70 ∠OAX < ∠OAY .

(II) Since X and Y are on the same side of L, O < Y . Now suppose

∠OAX < ∠OAY . By Theorem ORD.5 (trichotomy for ordering) one and

only one of the following statements is true: X = Y ; X < Y ; Y < X . By

Theorem NEUT.75 (trichotomy for angles), one and only one of the following

statements is true: ∠OAX ∼= ∠OAY ; ∠OAX < ∠OAY ; ∠OAY < ∠OAX . If

X were equal to Y , then ∠OAX would be equal (and therefore congruent) to

∠OAY . This contradicts the fact that ∠OAX < ∠OAY . If Y were less than

X , then by Part I, ∠OAY would be smaller than ∠OAX . This contradicts

the fact that ∠OAX < ∠OAY . Hence X < Y . ⊓⊔

Exercise NEUT.71* Let P be a neutral plane, A, B, and C be non-

collinear points on P , and D be a member of
←→
BC \ {B,C}. Then B D C iff

∠ACB < ∠ADB and ∠ABC < ∠ADC.

Exercise NEUT.71 Proof. (I: If B D C, then ∠ACB < ∠ADB and

∠ABC < ∠ADC.) By Theorem NEUT.80 (outside angles) applied to

△ADC, ∠ACB < ∠ADB. By the same theorem applied to△ABD ∠ABC <

∠ADC.

(II: If ∠ACB < ∠ADB and ∠ABC < ∠ADC, then B D C.) Suppose

∠ACB < ∠ADB and ∠ABC < ∠ADC. By Property B.2 of Definition IB.1

(trichotomy for betweenness) one and only one of the following statements is

true: C B D; B C D; B D C. By Theorem NEUT.75 (trichotomy for an-

gles) one and only one of the following statements is true: ∠ACB ∼= ∠ADB;

∠ACB < ∠ADB; ∠ADB < ∠ACB, and one and only one of the following

statements is true: ∠ABC ∼= ∠ADC; ∠ABC < ∠ADC; ∠ADC < ∠ABC.

If C B D were true, then by Theorem NEUT.80 (outside angles) applied to

△ADB, ∠ADC would be smaller than ∠ABC, contrary to the given fact

that ∠ABC < ∠ADC. If B C D were true, then by Theorem NEUT.80

(outside angles) applied to △ADC, ∠ADB would be smaller than ∠ACB,

contrary to the given fact that ∠ACB < ∠ADB. Hence B D C. ⊓⊔
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Exercise NEUT.72* Let A, B, C, andM be points on the neutral plane

P such that A 6= B, A 6= C, M is the midpoint of
px qy

AB andM is the midpoint

of
px qy

AC. Then B = C.

Exercise NEUT.72 Proof. Since
px qy

AM ∼=
px qy

AM , by Exercise NEUT.33
px qy

AB ∼=
px qy

AC. By Definition NEUT.3(C) A M B and A M C. By Theorem

PSH.16
px →
AM =

px→
AB =

px→
AC. By Theorem PSH.24 C ∈

qy→
AB. By Property R.4

of Definition NEUT.2, B = C. ⊓⊔

Exercise NEUT.73* Let A and M be distinct points on the neutral

plane P . Then there exists a unique point B such that M is the midpoint of
px qy

AB.

Exercise NEUT.73 Proof. (I: Existence.) By Property B.3 of Definition

IB.1 there exists a point D such that A M D. By Theorem NEUT.67 (seg-

ment construction) there exists a unique point B belonging to
qy →
MD such that

px qy

MB ∼=
px qy

AM . By Theorem PSH.13 {X | A M X} =
qy →
MD. Hence A M B.

By Definition NEUT.3(C) M is the midpoint of
px qy

AB.

(II: Uniqueness.) This is Exercise NEUT.72 above. ⊓⊔

Exercise NEUT.74* Let P be a neutral plane, L be a line on P , and

θ be the mapping of P into P such that: (1) For every member X of L,

θ(X) = X . (2) For every member X of P \ L, θ(X) is the point such that .

Then θ = RL.

Exercise NEUT.74 Proof. (Case 1: X ∈ (P \ L)) By Theorem NEUT.55

ftpr(X,L) is the midpoint of
px qy

XRL(X); by hypothesis it is also the midpoint

of
px qy

Xθ(X). By Exercise NEUT.72, θ(X) = RL(X).

(Case 2: X ∈ L) By Property (A) of Definition NEUT.1, RL(X) = X =

θ(X). Hence θ = RL. ⊓⊔

Exercise NEUT.75* Let P be a neutral plane and let θ be an isometry

of P . Then:

(A) If A and B are distinct points of P and if M is the midpoint of
px qy

AB,

then θ(M) is the midpoint of
px qy

θ(A)θ(B).

(B) Let A, B, and C be noncollinear points on P . If H is a member of

ins∠BAC such that
px→
AH is the bisecting ray of ∠BAC, then

px →
θ(A)θ(B) is the

bisecting ray of ∠θ(B)θ(A)θ(C) and if D is the point of intersection of
qy→
AH

and
qy px

BC, then θ(D) is the point of intersection of
qy →
θ(A)θ(H) and

qy px

θ(B)θ(C).
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(C) If L is line on P , Q is a member of P \ L, M = pr(Q,L), and F =

ftpr(Q,L), then θ(M) = pr(θ(Q), θ(L)) and θ(F ) = ftpr(θ(Q), θ(L)).

Exercise NEUT.75 Proof. (A) By Definition NEUT.3(C) A M B and
px qy

AM ∼=
px qy

BM . By Definition NEUT.1(D) θ(A) θ(M) θ(B). By Theorem

NEUT.13 θ(
px qy

AM) ∼= θ(
px qy

BM). By Theorem NEUT.15 θ(
px qy

AM) =
px qy

θ(A)θ(M)

and θ(
px qy

BM) =
px qy

θ(B)θ(M). Hence
px qy

θ(A)θ(M) ∼=
px qy

θ(B)θ(M). By Definition

NEUT.3(C) θ(M) is the midpoint of
px qy

θ(A)θ(B).

(B) By Theorem NEUT.39 ∠BAH ∼= ∠CAH . By Theorem NEUT.13

θ(∠BAH)∼= θ(∠CAH). By TheoremNEUT.15 θ(∠BAH) = ∠θ(B)θ(A)θ(H)

and θ(∠CAH) = ∠θ(C)θ(A)θ(H). By Theorem NEUT.39 and Theorem

NEUT.15
px →
θ(A)θ(H) is the bisecting ray of ∠θ(B)θ(A)θ(C). By Theorems

NEUT.11 and NEUT.15 θ is a bijection of
qy→
AH onto

qy →
θ(A)θ(H) and is

also a bijection of
qy px

BC onto
qy px

θ(B)θ(C). By Theorem NEUT.15 θ(H) ∈

ins∠θ(B)θ(A)θ(C). By Theorem PSH.39 (Crossbar)
qy →
θ(A)θ(H)∩

qy px

θ(B)θ(C)

is a singleton. Since θ(D) is a member of both
qy →
θ(A)θ(H) and

qy px

θ(B)θ(C),
qy →
θ(A)θ(H)∩

qy px

θ(B)θ(C) = {θ(D)}.

(C) Let G and K be points on L such that G F K. By Definition

NEUT.1(D) θ(G) θ(F ) θ(K). By Theorem NEUT.11 and NEUT.15 θ is a

bijection of L onto θ(L) and ofM onto θ(M). By Corollary NEUT.44.1, since

L ⊥ M, θ(L) ⊥ θ(M). By elementary set theory θ(L) ∩ θ(M) = {θ(F )}, so

that θ(F ) = ftpr(θ(Q), θ(L)). ⊓⊔

Exercise NEUT.76* Let P be a neutral plane and let A1, B1, C1, D1,

E1, F1, A2, B2, C2, D2, E2, and F2 be points on P such that:

(1) A1, B1, and C1 are noncollinear; A2, B2, and C2 are noncollinear; and

△A1B1C1
∼= △A2B2C2.

(2) θ is an isometry of P such that θ(△A1B1C1) = △A2B2C2, θ(A1) = A2,

θ(B1) = B2, and θ(C1) = C2.

(3) D1 is the midpoint of
px qy

B1C1 and D2 is the midpoint of
px qy

B2C2.

(4) E1 is the point of intersection of the bisecting ray of ∠B1A1C1 and
qy px

B1C1; and E2 is the point of intersection of the bisecting ray of ∠B2A2C2

and
qy px

B2C2.

(5) F1 = ftpr(A1,
←−−→
B1C1) and F2 = ftpr(A2,

←−−→
B2C2).

Then θ(D1) = D2, θ(E1) = E2, and θ(F1) = F2.

Exercise NEUT.76 Proof. By Exercise NEUT.75(A) θ(D1) is the mid-

point of
px qy

B1C1 and so by Theorem NEUT.50 θ(D1) = D2. By Exercise

NEUT.75(B) θ(E1) is the point of intersection of the bisecting ray of
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∠B2A2C2 and
qy px

BC so θ(E1) = E2. By Exercise NEUT.75 part (C), θ(F1) =

ftpr(θ(A1),
←−−−−−−→
θ(B1)θ(C1)) = F2. ⊓⊔

Exercise NEUT.77* Let A, B, C, D, and E be points on the neutral

plane P such that A B C, A B D, A D E, and
px qy

BC ∼=
px qy

DE, then A C E.

Exercise NEUT.77 Proof. Since A B C and A B D, by Corollary

PSH.8.2 exactly one of C = D, B D C, or B C D holds. In the the rest of

the proof we may invoke Theorem PSH.8 and its corollaries without further

citation.

(Case 1: D = C). A D E yields A C E.

(Case 2: B C D). Since A B C and B C D, A B C D so that A C D.

Since A D E, we have A C D E, so that A C E.

(Case 3: B D C). Since A B C, A B D C, and hence A D C. Since

A D E, by Corollary PSH.8.2, either E = C, D E C, or D C E. In the

first two of these alternatives, E ∈
px qy

AC; if this were true, by Definition

NEUT.70
px qy

DE would be smaller than
px qy

BC. By Theorem NEUT.72 (trichotomy

for segments) this would contradict the fact that
px qy

DE ∼=
px qy

AC. Therefore

A B D C E, hence A C E. ⊓⊔

Exercise NEUT.78* Let P be a neutral plane and let F , G, and H be

distinct lines on P concurrent at the point O such that no two of them are

perpendicular to each other, Q be a member of F \ {O}, R = ftpr(Q,G),

S = ftpr(R,H) and T = ftpr(Q,H). Then S 6= T .

Exercise NEUT.78 Proof. If S = T then
←→
TQ =

←→
SR because there is only

one perpendicular to a line at a point on that line, by Theorem NEUT.47(B);

R ∈
←→
TQ, and hence

←→
TQ =

←→
RQ. Then both G ⊥

←→
TQ and H ⊥

←→
TQ so that by

Theorem NEUT.47(A) G ‖ H which is impossible because G and H intersect

at the point O. ⊓⊔

Exercise NEUT.79* Let A, B, and C be noncollinear points on the neu-

tral plane P and Q be a member of ins∠BAC. Then
px→
AQ is the bisecting ray

of ∠BAC iff for every member T of
qy→
AQ,

px qy

TD ∼=
px qy

TE, where D = ftpr(T,
←→
AB)

and E = ftpr(T,
←→
AC).

Exercise NEUT.79 Proof. (I: If
px→
AQ is the bisecting ray of ∠BAC, then

px qy

TD ∼=
px qy

TE.) By Exercise NEUT.19, ∠BAT and ∠CAT are acute, and by

Exercise NEUT.18, D ∈
qy→
AB and E ∈

qy→
AC. By Theorem PSH.16,

px→
AB =

px→
AD

and
px→
AC =

px→
AE so that ∠TAB = ∠TAD and ∠TAC = ∠TAE.
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By Definition NEUT.99 ∠ADT and ∠AET are right. Then by Theorem

NEUT.69 ∠ADT ∼= ∠AET . By Theorem NEUT.39 ∠TAD ∼= ∠TAE. By

Theorem NEUT.60 (Kite)
←→
AT is the line of symmetry of ∠DAE, ∠DTE,

px qy

DE, and ⊔⊓ADTE so thatR←→
AT

(D) = E. By Theorem NEUT.15,R←→
AT

(
px qy

TD) =
px qy

R←→
AT

(T )R←→
AT

(D) = (
px qy

TE) so that
px qy

TD ∼=
px qy

TE.

(II: If
px qy

TD ∼=
px qy

TE, then
px→
AT =

px→
AQ is the bisecting ray of ∠BAC) Since

px qy

AT =
px qy

AT and
px qy

TD ∼=
px qy

TE, by Theorem NEUT.96 there exists an isometry α

such that α(A) = A, α(T ) = T , and α(D) = E. Then by Theorem NEUT.15

α(∠DAT ) = ∠α(D)α(A)α(T ) = ∠EAT so that by Theorem NEUT.39,
px→
AQ

is the bisecting ray of ∠BAC. ⊓⊔

Exercise NEUT.80* Prove parts (B), (C), and (D) in TheoremNEUT.83:

Let P be a neutral plane; then

(B) every angle on P congruent to an obtuse angle is obtuse;

(C) every angle on P smaller than an acute angle is acute; and

(D) every acute angle on P is smaller than every obtuse angle on P .

Exercise NEUT.80 Proof. (B) Suppose ∠BAC is obtuse and ∠BAC ∼=

∠B′A′C′. By Theorem NEUT.38 there exists an isometry α such that

α(∠BAC) = ∠B′A′C′, α(
px→
AB) =

px →
A′B′, and α(

px→
AC) =

px →
A′C′. Let D be a

point such that D A C; then ∠BAD is supplementary to ∠BAC and thus

by Theorem NEUT.82 ∠BAD is acute.

Let D′ = α(D); by Theorem NEUT.15, α(
px→
AD) =

px →
α(A)α(D) =

px →
A′D′.

Then

α(∠BAD) = α(
px→
AB ∪

px→
AD) = α(

px→
AB) ∪ α(

px→
AD) =

px →
A′B′ ∪

px →
A′D′ = ∠B′A′D′.

Also,

α(∠BAC) = α(
px→
AB ∪

px→
AC) = α(

px→
AB) ∪ α(

px→
AC) =

px →
A′B′ ∪

px →
A′C′ = ∠B′A′C′.

By Definition NEUT.1(D), α(D) α(A) α(C); since α(
px→
AC) =

px →
A′C′,D′ A′ C′.

Thus ∠B′A′C′ and ∠B′A′D′ are supplements. By part (A), ∠B′A′D′ is acute;

therefore ∠B′A′C′ is obtuse.

(C) Let A be an acute angle and let C be a right angle. Then by Definition

NEUT.81, A < C. If B is an angle and B < A, B < A < C so by Theorem

NEUT.76 (transitivity for angles), B < C and B is acute.

(D) Let A be an acute angle and B an obtuse angle. Let C be a right an-

gle. Then by Definition NEUT.81 A < C < B so that by Theorem NEUT.76

A < B. ⊓⊔
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Exercise NEUT.81* Without invoking Theorem NEUT.15 parts (4)

through (7), prove that if A 6= B are points in a neutral plane,

(A)
px qy

AB 6∼=
px px

AB and
px qy

AB 6∼=
qy qy

AB;

(B)
px qy

AB 6∼=
qy px

AB; and

(C)
qy px

AB 6∼=
px px

AB and
qy px

AB 6∼=
qy qy

AB.

Exercise NEUT.81 Proof. We may invoke the fact that an isometry is a

belineation, that is, preserves betweenness.

(A) We show that
px qy

AB 6∼=
px px

AB. Suppose α is an isometry such that α(
px px

AB) =
px qy

AB. α(A) is either A or B, for if A α(A) B then α−1(A) A α−1(B) which

is impossible since both α−1(A) and α−1(B) are members of
px px

AB.

If α(A) = B then there exists a point C ∈
px px

AB such that α(C) = A.

By Theorem PSH.22 we may pick D such that C D B; then A C D and

since α preserves betweenness, α(A) α(C) α(D), that is, B A α(D), so that

α(D) 6∈
px qy

AB. But α maps
px px

AB onto
px qy

AB, so that α(D) ∈
px qy

AB, a contradiction.

If α(A) = A then there exists a point C ∈
px px

AB such that α(C) = B.

Since A C B, by Theorem PSH.22 we may pick D such that C D B so

that A C D; then since α preserves betweenness, α(A) α(C) α(D), that

is, A B α(D), so that α(D) 6∈
px qy

AB. But α maps
px px

AB onto
px qy

AB, so that

α(D) ∈
px qy

AB, a contradiction.

A similar proof shows that
px qy

AB 6∼=
qy qy

AB.

(B) We show that
px qy

AB 6∼=
qy px

AB. Suppose α is an isometry such that

α(
qy px

AB) =
px qy

AB. Then there exists a point C ∈
qy px

AB such that α(C) = A.

Since A C B, α(A) α(C) α(D), that is to say, α(A) A α(D), where both

α(A) and α(D) are members of
px qy

AB, and α(A) 6= A 6= α(D) (betweenness

implies distinctness).

Neither α(A) nor α(D) can equal A, for this would contradict distinctness.

Suppose α(A) = B; we know already that α(D) ∈
px qy

AB and that α(D) 6= A;

by distinctness α(D) 6= B = α(A). Thus A α(D) B and α(A) A α(D) B,

that is B A α(D) B which is impossible.

If α(D) = B then by similar reasoning, A α(A) B and A α(A) A B

which is impossible.

If neither α(A) or α(D) is B, then both A α(A) B and A α(D) B so

that A α(A) A α(D) B which again is impossible.

(C) We show that
qy px

AB 6∼=
px px

AB. Suppose α is an isometry such that

α(
qy px

AB) =
px px

AB. Then there exists a point C ∈
qy px

AB such that α(C) = A.

Since A C B, α(A) α(C) α(D), that is to say, α(A) A α(D), where both
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α(A) and α(D) are members of
px px

AB, and α(A) 6= A 6= α(D) (betweenness

implies distinctness).

Then both A α(A) B and A α(D) B so that A α(A) A α(D) B which

is impossible. A similar proof shows that
qy px

AB 6∼=
qy qy

AB. ⊓⊔

Exercise NEUT.82* Let A, B, and C be points on a neutral plane

such that A 6= B, C ∈
qy→
AB, and

px qy

AB ∼=
px qy

AC. Let ϕ be the isometry such that

ϕ(
px qy

AB) =
px qy

AC. (A) Using only NEUT.1 through NEUT.20, show that if ϕ

is its own inverse, then B = C. (B) Discuss why this type of proof will not

work in the general case, where ϕ is not necessarily its own inverse. If it did,

we could prove Property R.4 of Definition NEUT.2 as a theorem.

Exercise NEUT.82(A) Proof. Assume that B 6= C. Then either A B C

or A C B. If A B C, then ϕ−1(
px qy

AC) =
px qy

AB. Let us assume that A C B.

By Remark NEUT.16 either ϕ(A) = A and ϕ(B) = C, or ϕ(A) = C and

ϕ(B) = A.

If ϕ(A) = A and ϕ(B) = C, then since ϕ is its own inverse, ϕ(C) = B.

Since ϕ preserves betweenness, ϕ(A) ϕ(C) ϕ(B), which is to say A B C

which contradicts our assumption.

If ϕ(A) = C and ϕ(B) = A, then since ϕ is its own inverse, ϕ(C) = A,

which contradicts the assumption that ϕ is a 1-1 mapping. ⊓⊔

Exercise NEUT.83* Let L be a line on a neutral plane P . Let ϕ be a

mapping obeying properties (B) through (D) of Definition NEUT.1. Then if

every point O of L is contained in some line
←−−−→
Aϕ(A), where A 6∈ L, Property

(A) of Definition NEUT.1 holds for ϕ.

Exercise NEUT.83 Proof. By Property (B), ϕ(A) is on the opposite side of

L from A, so the point O of intersection of L and
←−−−→
Aϕ(A) satisfies A O ϕ(A).

By Property (D) ϕ(A) ϕ(O) ϕ(ϕ(A)), that is, ϕ(A) ϕ(O) A. If ϕ(O) 6= O,

ϕ(O) 6∈ L, so ϕ(ϕ(O)) = O 6∈ L, a contradiction. Therefore ϕ(O) = O. ⊓⊔

The following scrap came from some attempts to show that there is a

Pasch plane in which there is a line over which there exists no reflection. It

seemed, somehow, worth saving, as it gives some insight into the structure of

fixed lines.
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Exercise NEUT.84* Let L be a line in a neutral plane P , and let A

and B be distinct points on the same side of L. Then if ϕ is a reflection over

L, the lines
←−−−→
ϕ(A)B and

←−−−→
Aϕ(B) intersect at a point P ∈ L.

Exercise NEUT.84 Proof. (A) By Theorem NEUT.15 ϕ is a collineation,

so maps lines into lines. By Theorem NEUT.22 the lines
←−−−→
Aϕ(A) and

←−−−→
Bϕ(B)

do not intersect. By Property (B) of Definition NEUT.1, A and ϕ(B) are on

opposite sides of L, so by Axiom PSA the segment
qy px

Aϕ(B) intersects L at

some point P .

It follows from Theorem NEUT.15 and Property (A) of Definition NEUT.1

that ϕ(
qy px

Aϕ(B)) =
qy px

ϕ(A)B and thus P ∈
qy px

ϕ(A)B. Since these two segments are

distinct, they have only one point of intersection, which must be P . ⊓⊔
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Chapter 9: Exercises and Answers for 9

Free Segments of a Neutral Plane (FSEG)

Exercise FSEG.1* Let A, B, C, and D be points on the neutral plane

P such that A 6= B and C 6= D. Then [
px qy

AB ] = [
px qy

CD ] iff
px qy

AB ∼=
px qy

CD.

Exercise FSEG.1 Proof. (I: If
px qy

AB ∼=
px qy

CD, then [
px qy

AB ] = [
px qy

CD ].) (A) Let

[
px qy

AB ] be a free segment; using Definition FSEG.2, let
px qy

XY ∈ [
px qy

AB ]; then
px qy

XY ∼=
px qy

AB. Since
px qy

AB ∼=
px qy

CD, by Theorem NEUT.14
px qy

XY ∼=
px qy

CD, and by Def-

inition FSEG.2,
px qy

XY ∈ [
px qy

CD ]. Therefore [
px qy

AB ] ⊆ [
px qy

CD ]. (B) If we interchange

“A” with “C” and “B” with “D” in part (A) we get [
px qy

CD ] ⊆ [
px qy

AB ]. Thus

[
px qy

AB ] = [
px qy

CD ].

(II: Conversely, if [
px qy

AB ] = [
px qy

CD ], then
px qy

AB ∼=
px qy

CD.) Since [
px qy

AB ] = [
px qy

CD ],
px qy

AB ∈ [
px qy

CD ], and thus
px qy

AB ∼=
px qy

CD. ⊓⊔

Exercise FSEG.2* Let A, B, C, and D be points on the neutral plane

P such that A 6= B and C 6= D. Then [
px qy

AB ] < [
px qy

AB ]⊕ [
px qy

CD ].

Exercise FSEG.2 Proof. By Theorem FSEG.1 there exists a point E on

P such that A B E and
px qy

BE ∼=
px qy

CD. By Definition NEUT.70,
px qy

AB <
px qy

AE, so

that by Definition FSEG.3 [
px qy

AB ] < [
px qy

AE ] = [
px qy

AB ]⊕ [
px qy

CD ]. ⊓⊔

Exercise FSEG.3* Let A and B be distinct points on the neutral plane

P and let m and n be natural numbers. For the purposes of this exercise, we

define certain rational multiples of free segments, using induction, as follows:

Definition (1): Define 1[
px qy

AB ] = [
px qy

AB ]. For any n, if a point C has been

determined so that n[
px qy

AB ] = [
px qy

AC ] define (n+ 1)[
px qy

AB ] = [
px qy

AC ]⊕ [
px qy

AB ].

Definition (2): Using Theorem NEUT.50, let M be the midpoint of
px qy

AB.

Then define 1
2 [

px qy

AB ] = [
px qy

AM ]. If for any m, C has been determined so that

1
2m [

px qy

AB ] = [
px qy

AC ], let D be the midpoint of
px qy

AC and define 1
2m+1 [

px qy

AB ] = [
px qy

AD ].

Definition (3): For any n and m, define n

2m [
px qy

AB ] = 1
2m

(

n[
px qy

AB ]
)

.

Let A, B, C, and D be points on the neutral plane such that A 6= B and

C 6= D; use the definitions above to show the following:

(I) If [
px qy

AB ] < [
px qy

CD ], then for any natural numbers n and m,

(A) n[
px qy

AB ] < n[
px qy

CD ],

(B) 1
2m [

px qy

AB ] < 1
2m [

px qy

CD ], and

(C) n

2m [
px qy

AB ] < n

2m [
px qy

CD ].

(II) n

2m ([
px qy

AB ]⊕ [
px qy

CD ]) = n

2m [
px qy

AB ]⊕ n

2m [
px qy

CD ].
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Exercise FSEG.3 Proof. (I) (A) The proof is by induction. First, (A) is

trivially true for n = 1. Assume that for some n > 1 we have shown that

(n − 1)[
px qy

AB ] < (n − 1)[
px qy

CD ]; by hypothesis [
px qy

AB ] < [
px qy

CD ]; using Definition

(1), Theorem FSEG.9(II), and Definition (1) again,

n[
px qy

AB ] = (n− 1)[
px qy

AB ]⊕ [
px qy

AB ] < (n− 1)[
px qy

CD ]⊕ [
px qy

CD ] = n[
px qy

CD ],

proving assertion (A).

(B) Again using induction, (B) is trivially true for m = 0. Assume that for

somem ≥ 1 it has been shown that 1
2m−1 [

px qy

AB ] < 1
2m−1 [

px qy

CD ]. Using Definition

(2) above, let E be the point on
qy→
AB such that [

px qy

AE ] = 1
2m−1 [

px qy

AB ], F be the

point on
qy→
CD such that [

px qy

CF ] = 1
2m−1 [

px qy

CD ], G be the midpoint of
px qy

AE, and H

be the midpoint of
px qy

CF . Then 1
2m [

px qy

AB ] = [
px qy

AG ] and 1
2m [

px qy

CD ] = [
px qy

CH ]. Since
px qy

AE <
px qy

CF , by Exercise NEUT.36
px qy

AG <
px qy

CH so 1
2m [

px qy

AB ] < 1
2m [

px qy

CD ].

(C) By part (A) n[
px qy

AB ] < n[
px qy

CD ] so by part (B) n

2m [
px qy

AB ] < n

2m [
px qy

CD ].

(II) (a) n([
px qy

AB ] ⊕ [
px qy

CD ]) = n[
px qy

AB ] ⊕ n[
px qy

CD ] is trivially true for n = 1.

Assume that for some n > 1,

(n− 1)([
px qy

AB ]⊕ [
px qy

CD ]) = (n− 1)[
px qy

AB ]⊕ (n− 1)[
px qy

CD ];

then

n([
px qy

AB ]⊕ [
px qy

CD ]) = (n− 1)([
px qy

AB ]⊕ [
px qy

CD ])⊕ ([
px qy

AB ]⊕ [
px qy

CD ])

= ((n− 1)[
px qy

AB ]⊕ [
px qy

AB ])⊕ ((n− 1)[
px qy

CD ]⊕ [
px qy

CD ])

= n[
px qy

AB ]⊕ n[
px qy

CD ].

(b) For m = 1, 1
2m−1 ([

px qy

AB ]⊕ [
px qy

CD ]) = 1
2m−1 [

px qy

AB ]⊕ 1
2m−1 [

px qy

CD ] is trivially

true. Assume that for some m ≥ 1, it has been shown that 1
2m−1 ([

px qy

AB ] ⊕

[
px qy

CD ]) = 1
2m−1 [

px qy

AB ]⊕ 1
2m−1 [

px qy

CD ]. Let J be the point such that 1
2m−1 [

px qy

AB ] =

[
px qy

AJ ], K be the point such that 1
2m−1 [

px qy

CD ] = [
px qy

CK ], L be the midpoint of
px qy

AJ , and M be the midpoint of
px qy

CK. Then
1
2m ([

px qy

AB ]⊕ [
px qy

CD ]) =
(

1
2

)(

1
2m−1

)

([
px qy

AB ]⊕ [
px qy

CD ])

= 1
2

((

1
2m−1 ([

px qy

AB ]
)

⊕
(

1
2m−1 ([

px qy

CD ]
))

= 1
2

(

1
2m−1 [

px qy

AB ]
)

⊕ 1
2

(

1
2m−1 [

px qy

CD ]
)

= 1
2 [

px qy

AJ ]⊕ 1
2 [

px qy

CK ] = [
px qy

AL ]⊕ [
px qy

CM ]

= 1
2m [

px qy

AB ]⊕ 1
2m [

px qy

CD ].

(c) Using parts (a) and (b) above,
n

2m ([
px qy

AB ]⊕ [
px qy

CD ]) = 1
2m (n([

px qy

AB ]⊕ [
px qy

CD ])) = 1
2m (n[

px qy

AB ]⊕ n[
px qy

CD ])

= n

2m [
px qy

AB ]⊕ n

2m [
px qy

CD ]. ⊓⊔
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Exercise FSEG.4* If S and T are any free segments of the neutral plane

P such that S < T , then (T ⊕ S)⊖ S = T and (T ⊖ S)⊕ S = T .

Exercise FSEG.4 Proof. By Definition FSEG.11 (T ⊕ S) ⊖ S is the free

segment of P which when added to S yields T ⊕ S so this free segment is T .

By the same definition, T ⊖ S is the free segment of P which when added to

S yields T . So if it is added to S the result is T . ⊓⊔

Exercise FSEG.5* Let S, T , and U be free segments of the neutral plane

P .

(A) If U < S and U < T , then (S ⊕ T )⊖ U = (S ⊖ U)⊕ T = (T ⊖ U)⊕ S.

(B) If T ⊕ U < S, then S ⊖ (T ⊕ U) = (S ⊖ T )⊖ U = (S ⊖ U)⊖ T .

Exercise FSEG.5 Proof. (A) By Definition FSEG.11 (S⊕T )⊖U is the free

segment of P which when added to U yields S⊕ T . By Theorem FSEG.8 and

Exercise FSEG.4 ((S ⊖ U)⊕ T )⊕ U = (S⊖ U)⊕ (T ⊕ U) = (S⊖ U)⊕ (U ⊕ T ) =

((S⊖U)⊕U)⊕T = S⊕T . Similarly ((S⊖U)⊕T )⊕U = S⊕T and ((T⊖U)⊕S)⊕U =

S ⊕ T . Hence (S ⊕ T )⊖ U = (S ⊖ U)⊕ T = (T ⊖ U)⊕ S.

(B) Using Definition FSEG.11, S⊖ (T ⊕ U) is the free segment of P which

when added to T ⊕ U yields S.

Using the commutative and associative properties of the operation ⊕ we

get ((S ⊖ T ) ⊖ U) ⊕ (T ⊕ U) = S and (T ⊖ U) ⊖ T = T . Hence S ⊖ (T ⊕ U) =

(S ⊖ T )⊖ U = (S ⊖ U)⊖ T . ⊓⊔

Exercise FSEG.6* Let S, T , and U be free segments of the neutral plane

P such that U < S and U < T . If S < T , then S ⊖ U < T ⊖ U.

Exercise FSEG.6 Proof. There exists a free segment V such that T = S⊕V,

(cf. Theorem FSEG.9) so that T ⊖ U = (S ⊕ V) ⊖ U. By Exercise FSEG.4

T ⊖ U = S ⊕ V ⊖ U = (S ⊖ U)⊕ V. By Exercise FSEG.2 S ⊖ U < T ⊖ U. ⊓⊔

Exercise FSEG.7* Let S, T , and U be free segments of the neutral plane

P such that S ⊕ U < T ⊕ U, then S < T .

Exercise FSEG.7 Proof. By Exercise FSEG.2 S < S ⊕ U and T < T ⊕ U.

By Exercise FSEG.6 S ⊕ U < T ⊕ U implies that (S ⊕ U) ⊖ U < (T ⊕ U) ⊖ U,

so that S < T . ⊓⊔

Exercise FSEG.8* Let S, T , U, and V be free segments of the neutral

plane P such that T < S and V < U, then (S⊖T )⊕(U⊖V) = (S⊕U)⊖(T ⊕V).
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Exercise FSEG.8 Proof. By Exercise FSEG.5(A) (S ⊖ T ) ⊕ (U ⊖ V) =

((S⊖U)⊕T )⊖V = ((S⊕U)⊖T )⊖V. By Exercise FSEG.5(B)((S⊕U)⊖T )⊖V =

S ⊕ U ⊖ (T ⊕ V). ⊓⊔

Exercise FSEG.9* Let S, T , U, and V be free segments of the neutral

plane P such that T < S and V < U, then S ⊖ T = U ⊖ V iff S ⊕ V = T ⊕ U.

Exercise FSEG.9 Proof. (I: If S ⊖ T = U ⊖ V, then S ⊕ V = T ⊕ U.) If

S ⊖ T = U ⊖ V, then using Exercise FSEG.4 and Exercise FSEG.5(A) S =

(S⊖T )⊕T = (U⊖V)⊕T = (U⊕T )⊖V, so that S⊕V = ((U⊕T )⊖V)⊕V = U⊕T .

(II: If S⊕V = T⊕U, then S⊖T = U⊖V.) If S⊕V = T⊕U, by Exercise FSEG.4

S = (S⊕V)⊖V = (T⊕U)⊖V. Consequently, S⊖T = (T⊕U)⊖V)⊖T . By Exercise

FSEG.5(A) and (B) this becomes (T⊕U)⊖T )⊖V = ((T⊖T )⊕U)⊖V = U⊖V. ⊓⊔

Exercise FSEG.10* If S and T are free segments of the neutral plane

P such that T < S, then S ⊖ T < S and S ⊖ (S ⊖ T ) = T .

Exercise FSEG.10 Proof. (I) By Exercise FSEG.2 S < S⊕ T . By Exercise

FSEG.6 S⊖T < (S⊕T )⊖T . By Exercise FSEG.4 (S⊕T )⊖T = S, so S⊖T < S.

(II) By Definition FSEG.11 T ⊕ (S ⊖ T ) = S. By Exercise FSEG.4

(T ⊕ (S ⊖ T ))⊖ (S ⊖ T ) = T so T = S ⊖ (S ⊖ T ). ⊓⊔

Exercise FSEG.11 If S, T and U are any free segments of the neutral

plane P , then (S⊕T )⊕U=S⊕(T ⊕S) (the operation ⊕ is associative on the set F

of free segments.

Exercise FSEG.12 Construct a theory FANG of free angles analogous

to that developed in this chapter for free segments, based on the following

definition: the free angle FA(∠BAC) = {∠XY Z|∠XYZ ∼= ∠BAC}.



Chapter 10: Rotations about a Point of a Neutral Plane (ROT) 83

Chapter 10: Exercises and Answers for

Rotations about a Point of a Neutral Plane (ROT)

Exercise ROT.1* Let P be a neutral plane.

(A) If O is a point on P , and RO is the point reflection about O, then

RO(O) = O and RO ◦ RO = ı.

(B) If L andM are distinct lines on P and if α = RM ◦ RL, then α−1 =

RL ◦ RM.

(C) If G and H are points on P and if θ = RH ◦RG, then θ
−1 = RG ◦RH .

Exercise ROT.1 Proof. (A) By Definition ROT.1 there exist lines L and

M on P such that L∩M = {O}, L ⊥M, and RO = RM◦RL. By Definition

NEUT.1(A) elementary theory of functions

RO(O) = (RM ◦ RL)(O) = RM(RL(O)) = RM(O) = O.

By Corollary ROT.5 and Definition NEUT.1(C)

RO ◦ RO = (RM ◦ RL) ◦ (RM ◦ RL) = (RM ◦ RL) ◦ (RL ◦ RM)

= (RM ◦ (RL ◦RL))◦RM = (RM ◦ ı)◦RM = RM ◦RM = ı.

(B) If L and M are distinct lines on P , and if α = RM ◦ RL, then by

Definition NEUT.1(C) and elementary theory of functions

(RM ◦ RL) ◦ (RL ◦ RM) = (RM ◦ (RL ◦ RL)) ◦ RM

= (RM ◦ ı) ◦ RM = RM ◦ RM = ı.

(C) By Part (A) and elementary theory of functions,

(RH ◦ RG) ◦ (RG ◦ RH) = (RH ◦ (RG ◦ RG)) ◦ RH

= (RH ◦ ı) ◦ RH = RH ◦ RH = ı. ⊓⊔

Exercise ROT.2* Let P be a neutral plane, O be a point on P and α be

a rotation of P about O which is not a point reflection. If X is any member

of P \ {O}, then X , α(X), and O are noncollinear.

Exercise ROT.2 Proof. Let X be any member of P \ {O}, and K =
←→
OX .

By Theorem ROT.13 there exists a unique line J such that O ∈ J and α =

RJ ◦ RK. Thus α(X) = RJ (RK(X)) = RJ (X) (cf Definition NEUT.1(A)).

By Theorem ROT.2 O is the only fixed point of α, so α(X) 6= O. By Def-

inition NEUT.1(B) α(X)(that is, RJ (X)) and X are on opposite sides of

J . If O, α(X) and X are collinear then K =
←−−−−−→
XRJ (X), and by Theorem

NEUT.48(A) K =
←−−−−−→
XRJ (X) ⊥ J so that α is a point reflection, in contra-

diction to our assumption. ⊓⊔
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Exercise ROT.3* Let P be a neutral plane, O be a point on P , and

α and β be rotations of P about O. If X is any member of P \ {O}, then
px qy

Oα(X) ∼=
px qy

Oβ(X).

Exercise ROT.3 Proof. Since α and β are isometries of P , by Theo-

rem NEUT.15 α(
px qy

OX) =
px qy

Oα(X) and β(
px qy

OX) =
px qy

Oβ(X) so by Definition

NEUT.3(B)
px qy

OX ∼=
px qy

Oα(X) and
px qy

OX ∼=
px qy

Oβ(X). Since by Theorem NEUT.14

congruence is transitive,
px qy

Oα(X) ∼=
px qy

Oβ(X). ⊓⊔

The following exercise shows that rotations (and half rotations, which we

will meet in Chapter 13) behave as we expect them to—all points “rotate in

the same direction.”

Exercise ROT.4* Let O, X , and Y be noncollinear points on the neutral

plane P and let α be a rotation of P about O which is not a point reflection;

we note that α cannot be the identity, as was proved in Theorem ROT.2.

(A1) α rotatesX and Y through congruent angles: ∠XOα(X) ∼= ∠Y OαY .

(A2) Let α and β be rotations of P about O which are not point reflections.

Let X be a point of P \ {O} such that

α(X) ∈ ins∠XO(β ◦ α(X)).

Then for any point U ∈ P \ {O},

∠UOα(U) ∼= ∠XOα(X);

∠α(U)O(β ◦ α)(U) ∼= ∠α(X)O(β ◦ α)(X);

∠UO(β ◦ α)(U) ∼= ∠XO(β ◦ α)(U); and

α(U) ∈ ins∠UO(β ◦ α)(U).

(B) It cannot be true that both α(X) ∈ Y -side
←→
OX and α(Y ) ∈ X-side

←→
OY .

(C) It cannot be true that both α(X) is on the side of
←→
OX opposite Y and

α(Y ) is on the side of
←→
OY opposite X .

(D) α(X) ∈ Y -side of
←→
OX iff α(Y ) is in the side of

←→
OY opposite X ;

equivalently, α(Y ) ∈ X-side of
←→
OY iff α(X) is in the side of

←→
OX opposite Y .

(E) Let W = α(X), and Z = α(Y ); let E be a point on the bisecting ray

of ∠XOW and F a point on the bisecting ray of ∠Y OZ. Then ∠EOX ∼=

∠EOW ∼= ∠FOY ∼= ∠FOZ.

(F) E ∈ Y -side of
←→
OX iff F is in the side of

←→
OY opposite X ; equivalently,

F ∈ X-side of
←→
OY iff E is in the side of

←→
OX opposite Y .

Exercise ROT.4 Proof. (A1) This is Theorem ROT.22. We repeat es-

sentially the same proof with the current notation. Let γ be the rota-
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tion (see Theorem ROT.15) such that γ(X) ∈
qy→
OY . γ(∠XO(α(X))) =

∠γ(X)Oγ(α(X)) = ∠Y Oγ(α(X)). (cf Theorem NEUT.15). By Theorem

ROT.21 γ(α(X)) = α(γ(X)) ∈ α(
px→
OY ), and thus γ(∠XOα(X)) = ∠Y Oα(Y )

and ∠XOW = ∠XOα(X) ∼= ∠Y Oα(Y ) = ∠Y OZ (cf Definition NEUT.6(B)

(Congruence)).

(A2) From part (A1) we already know that ∠XOα(X) ∼= ∠UOα(U) and

∠α(X)O(β ◦ α)(X) ∼= α(U)O(β ◦ α)(U).

In the following we repeatedly use Theorem ROT.21 (commutativity of

rotations about a point). Let γ be the rotation such that γ(X) ∈
qy→
OU . Without

loss of generality we may pick U so that γ(X) = U ; then

(γ ◦ α)(X) = (α ◦ γ)(X) = α(U)

and

(γ ◦ β ◦ α)(X) = (β ◦ γ ◦ α)(X) = (β ◦ α ◦ γ)(X) = (β ◦ α)(U).

Now γ is an isometry, so by Theorem NEUT.15, α(U) = (γ ◦ α)(X) is a

member of

γ(ins∠XO(β ◦ α)(X)) = ins∠γ(X)O((γ ◦ β ◦ α)(X))

= ins∠UO(β ◦α◦γ)(X) = ins∠UO(β ◦α(U))

and hence by Exercise NEUT.40(A), ∠UO(β◦α)(U) ∼= ∠XO(β◦α)(X). This

completes the proof of part (A2).

We consider parts (B) and (C) together.

Let
px→
OD be the bisecting ray of ∠XOα(X) and

px →
OD′ the bisecting ray of

∠Y Oα(Y ). Let D′, X ′, and Y ′ be a points such that D O D′, X O X ′,

and Y O Y ′. Without loss of generality, we may assume that
px qy

OX ∼=
px qy

OX ′ ∼=
px qy

OY ∼=
px qy

OY ′ ∼=
px qy

OD ∼=
px qy

OD′. We will be referring a great deal to α(X) and

α(Y ), and since α is an isometry it will follow that
px qy

OX ∼=
px qy

Oα(X) ∼=
px qy

Oα(Y ).

In all that follows we will use Theorem PSH.16 and Definition NEUT.70

repeatedly without further reference. We will assume the negations of (B)

and (C) and eventually show contradictions in all cases.

(B) Assume the contrary, that α(X) ∈ Y -side
←→
OX and α(Y ) ∈ Y -side

←→
OY .

We know from part (A) that ∠XOα(X) ∼= ∠Y Oα(Y ). Since D is on the

line of symmetry for ∠XOY , by Theorem NEUT.39 ∠DOX ∼= ∠DOY . By

Theorem NEUT.75 (trichotomy for angles) (or Exercise PSH.32) there are

three cases:

(Case B1: ∠XOα(X) < ∠XOD) Then α(X) ∈ ins∠XOD, so

∠Y Oα(Y ) ∼= ∠XOα(X) < ∠XOD ∼= ∠Y OD
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and hence α(Y ) ∈ ins∠Y OD. By Exercise NEUT.40(B) ∠DOα(X) ∼=

∠DOα(Y ).

(Case B2: ∠XOα(X) ∼= ∠XOD) Then by Theorem NEUT.36 α(X) ∈
qy→
OD

and ∠Y OD ∼= ∠XOD = ∠XOα(X) ∼= ∠Y Oα(Y ). Now by assumption D

and α(Y ) are on the same side of
←→
OY so by Theorem NEUT.36 α(Y ) ∈

qy→
OD,

and since
px qy

OD ∼=
px qy

Oα(Y ) it follows from Property R.4 of Definition NEUT.2

that α(Y ) = D = α(X). But this is impossible because α is one-to-one.

(Case B3: ∠XOα(X) > ∠XOD) Then D ∈ ins∠XOα(X) and ∠Y OD ∼=

∠XOD < ∠XOα(X) ∼= ∠Y Oα(Y ), and D ∈ ins∠Y Oα(Y ). Then by Exer-

cise NEUT.40(B) ∠DOα(X) ∼= ∠DOα(Y ).

(C) Assume the contrary, that both α(X) is on the side of
←→
OX opposite

Y and α(Y ) is on the side of
←→
OY opposite X , ∠DOα(X) ∼= ∠DOα(Y ). In

this part we will use Theorem NEUT.43 (supplements of congruent angles

are congruent) repeatedly without further reference.

By Theorem NEUT.75 (trichotomy for angles) there are three cases:

(Case C1: ∠XOα(X) < ∠XOD′) Then α(X) ∈ ins∠XOD′; it follows

that ∠Y Oα(Y ) ∼= ∠XOα(X) < ∠XOD′ ∼= ∠Y OD′ (the last congruence is

by supplements) and hence α(Y ) ∈ ins∠Y OD′. By Exercise NEUT.40(B)

∠D′Oα(X) ∼= ∠D′Oα(Y ), so that ∠DOα(X) ∼= ∠DOα(Y ), again by supple-

ments.

(Case C2: ∠XOα(X) ∼= ∠XOD′) Then by Theorem NEUT.36 α(X) ∈
qy →
OD′. Since ∠Y OD ∼= ∠XOD, by supplements ∠Y OD′ ∼= ∠XOD′ =

∠XOα(X) ∼= ∠Y Oα(Y ). Now by assumption D and α(Y ) are on opposite

sides of
←→
OY , so that D′ and α(Y ) are on the same side of

←→
OY . By Theorem

NEUT.36 α(Y ) ∈
qy →
OD′, and since

px qy

OD′ ∼=
px qy

Oα(Y ) it follows from Property

R.4 of Definition NEUT.2 that α(Y ) = D′ = α(X). But this is impossible

because α is one-to-one.

(Case C3: ∠XOα(X) > ∠XOD′) Then D′ ∈ ins∠XOα(X). Since

∠Y OD ∼= ∠XOD, by supplements ∠Y OD′ ∼= ∠XOD′. Then ∠Y OD′ ∼=

∠XOD′ < ∠XOα(X) ∼= ∠Y Oα(Y ), and D′ ∈ ins∠Y Oα(Y ). By Ex-

ercise NEUT.40(B) ∠D′Oα(X) ∼= ∠D′Oα(Y ), and again by supplements

∠DOα(X) ∼= ∠DOα(Y ).

We have now shown that in all the cases where we do not already have

a contradiction (that is, B1, B3, C1, and C3) ∠DOα(X) ∼= ∠DOα(Y ), and

hence
←→
OD (the line of symmetry for ∠XOY ) is the line of symmetry for

∠α(X)Oα(Y ).
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Let M be the midpoint of
px qy

XY . By Exercise NEUT.76(A) α(M) is

the midpoint of
px qy

α(X)α(Y ). By Theorem NEUT.55, M ∈
←→
DO, and since

px qy

Oα(X) ∼=
px qy

Oα(Y ), α(M) ∈
←→
DO.

Either α(M) = O or M O α(M) or α(M) ∈
qy →
OM =

qy→
OD.

The first case gives us a contradiction immediately, because α(O) = O and

α is one-to-one.

In the second case, since both M and α(M) are in
←→
OD, α is a point

reflection which is ruled out by hypothesis.

In the third case, α(M) ∈
qy →
OM so that by Property R.4 of Definition

NEUT.2 α(M) =M and α is the identity, which is ruled out by hypothesis.

This completes the proof of parts (B) and (C).

(D) By parts (B) and (C), if α(X) ∈ Y -side of
←→
OX then α(Y ) cannot be

in X-side of
←→
OY so must be in the side opposite X ; conversely, if α(Y ) is in

the side of
←→
OX opposite X then α(X) cannot be in the side of

←→
OX opposite

Y hence must be in the Y -side. Similar reasoning shows the other assertion.

(E) We know from Theorem NEUT.20(E) (also from Theorem NEUT.39)

that ∠EOX ∼= ∠EOX and ∠FOY ∼= ∠FOZ. By part (A) ∠XOW ∼=

∠Y OZ. By Exercise NEUT.39 ∠EOX ∼= ∠FOY .

(F) If ∠BAC is any angle and D is a point in its bisecting ray, D is on

the B-side of
←→
AC and D is on the A-side of

←→
AB. From part (D),

E ∈ Y -side of
←→
OX iff α(X) ∈ Y -side of

←→
OX) iff α(Y ) is in the side of

←→
OY

opposite X iff F is in the side of
←→
OY opposite X ;

F ∈ X-side of
←→
OY iff α(Y ) ∈ X-side of

←→
OY iff α(X) is in the side of

←→
OX

opposite Y iff E is in the side of
←→
OX opposite Y . ⊓⊔

Exercise ROT.5* Let P be a neutral plane, O be a point on P , L and

M be lines on P through O which are not perpendicular to each other, Q

and R be points on L such that Q O R, S and T be points on M such

that S O T and ρ be the rotation RM ◦ RL about O. If we choose the

notation (using Theorem NEUT.82) so that ∠QOS is acute, then ρ(Q) is

the member of ins∠ROS such that Q and ρ(Q) are on opposite sides ofM,

∠SOρ(Q) ∼= ∠QOS and
px qy

Oρ(Q) ∼=
px qy

OQ.

Exercise ROT.5 Proof. Since ρ(Q) = RM(Q) and M ⊥
px qy

QRM(Q) (cf

Theorem NEUT.48(A)), by Definition NEUT.1(B) Q and RM(Q) are on

opposite sides ofM. Hence, by Axiom PSA, there exists a point G such that

M∩
qy px

QRM(Q) = {G}. Since Q and R are on opposite sides of M , RM(Q)

and R are on the same side ofM (cf Theorem PSH.12 and Definition IB.11).
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Since ∠SOQ is acute, by Exercise NEUT.18 G ∈
qy→
OS so that by Theorem

IB.14
qy→
QG =

qy →
QRM(Q) ⊆ S-side of L. Hence RM(Q) and S are on the same

side of L. Then RM(Q) ∈ ins∠ROS (cf Definition PSH.36), and by Theo-

rem NEUT.15 and Definition NEUT.1(A) RM(∠QOS) = ∠RM(Q)OS and

RM(
px qy

OQ) =
px qy

ORM(Q). By Definition NEUT.3(B) (congruence) ∠QOS ∼=

∠RM(Q)OS = ∠ρ(Q)OS and
px qy

OQ ∼=
px qy

ORM(Q) =
px qy

Oρ(Q). ⊓⊔

Exercise ROT.6* Let A, B, and C be noncollinear points on the neutral

plane P and let L =
←→
AB,M =

←→
AC, and N =

←→
BC. Then there exists a unique

point G and a unique line J such that C ∈ J and RN ◦RM◦RL = RJ ◦RG.

Exercise ROT.6 Proof. Let K = pr(C,
←→
AB), and G = ftpr(C,

←→
AB).

By Theorem ROT.13 there exists a unique line J through C such that

RJ ◦ RK = RN ◦ RM. Then RN ◦ RM ◦ RL = RJ ◦ RK ◦ RL. By Def-

inition ROT.1 RK ◦ RL = RG, so that RN ◦ RM ◦ RL = RJ ◦ RG. ⊓⊔

Exercise ROT.7* Let A and B be distinct points on the neutral plane

P . If M is the midpoint of
px qy

AB, then RM (A) = B.

Exercise ROT.7 Proof. Let L =
←→
AB and M = pr(M,L). By Definition

ROT.1 RM = RM ◦ RL. Hence RM (A) = RM(RL(A)) = RM(A) so that

RM(
px qy

AM) =
px qy

RM(A)RM(M) =
px qy

RM(A)M , and
px qy

AM ∼=
px qy

RM(A)M . Since M

is the midpoint of
px qy

AB,
px qy

MB ∼=
px qy

AM ∼=
px qy

RM(A)M ; by Theorem NEUT.14,

congruence is transitive, and
px qy

RM(A)M ∼=
px qy

MB. Now RM and B are on

the same side of L so RM ∈
qy →
MB. By Property R.4 of Definition NEUT.2,

RM (A) = RM(A) = B. ⊓⊔

Exercise ROT.8* Let P be a neutral plane, α be an isometry of P

such that α has one and only one fixed point O, and for every member X of

P \ {O}, X O α(X) and
px qy

OX ∼=
px qy

Oα(X). Then α is the point reflection RO.

Exercise ROT.8 Proof. SinceX O α(X),X O RO(X),
px qy

OX ∼=
px qy

ORO(X),

and congruence is transitive (cf Theorem NEUT.14)
px qy

OX ∼=
px qy

Oα(X) and
px qy

Oα(X) ∼=
px qy

ORO(X). By Theorem PSH.13 α(X) ∈
qy →
ORO(X). Hence by Prop-

erty R.4 of Definition NEUT.2 α(X) = RO(X), and α = RO. ⊓⊔

Exercise ROT.9* Let P be a neutral plane, O be a point on P , ρ be the

point reflection of P about O, L be a line on P through O which is ordered

according to Definition ORD.1, and let X and Y be points on L. Then X < Y

iff ρ(Y ) < ρ(X).
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Exercise ROT.9 Proof. Let M = pr(O,L). By Definition ROT.1 ρ =

RL ◦ RM. Hence ρ|L (the restriction of ρ to L) is equal to RM|L. Since

RM|L = RO|L, by Exercise NEUT.69 X < Y iff ρ(Y ) < ρ(X). ⊓⊔

Exercise ROT.10* Let P be a neutral plane, A, B, and O noncollinear

points on P . Then there exists a unique rotation α of P about O such that

∠AOα(A) = ∠AOB.

Exercise ROT.10 Proof. By Theorem ROT.15 there exists a unique ro-

tation α such that α(
px→
OA) =

px→
OB. Then by Theorem NEUT.15 ∠AOα(A) =

px→
OA∪

px →
Oα(A) =

px→
OA∪α(

px→
OA) =

px→
OA∪

px→
OB = ∠AOB. ⊓⊔
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Chapter 11: Exercises and Answers for

Euclidean Geometry Basics (EUC)

Exercise EUC.1* Prove Corollary EUC.4, using Theorem EUC.3: let

L, M, and N be distinct lines on the Euclidean plane P such that M and

N intersect at a point O,M and N are not perpendicular to each other, and

L ⊥ N ; then L andM intersect at a point Q.

Exercise EUC.1 Proof. The contrapositive of Theorem EUC.3 says that if

M and N are not perpendicular, then either L 6⊥ N or L 6‖ M. By hypothesis

L ⊥ N so L 6‖ M and hence L intersectsM. ⊓⊔

Exercise EUC.2* Using Definition PSH.31 and Remark PSH.12.1, prove

Theorem EUC.6: A parallelogram is a rotund quadrilateral.

Exercise EUC.2 Proof. Let ⊔⊓ABCD be a parallelogram; by Definition

EUC.5
←→
AB ‖

←→
CD and

←→
AD ‖

←→
BC. By Remark PSH.12.1

A and B are on the same side of
←→
DC,

D and C are on the same side of
←→
AB,

A and D are on the same side of
←→
BC, and

B and C are on the same side of
←→
AD.

By Definition PSH.31 ⊔⊓ABCD is rotund. ⊓⊔

Exercise EUC.3* Prove Corollary EUC.8: let L,M, J , and K be dis-

tinct lines on the Euclidean plane P such that L andM intersect at the point

O, L ⊥ J , andM⊥ K; then J and K intersect at a point Q.

Exercise EUC.3 Proof. This is essentially the contrapositive of Theorem

EUC.7. If J and K were parallel, then by Theorem EUC.7 L andM would

be parallel, contrary to the given fact that L and M intersect at the point

O. Hence J and K are not parallel, and so intersect at a point Q. ⊓⊔

Exercise EUC.4* Complete the proof of Theorem EUC.22: let A, B,

and C be noncollinear points on the Euclidean plane P ; letM be the midpoint

of
px qy

AB, and let N ∈
qy px

AC and Q ∈
qy px

BC be points such that
←−→
MN ‖

←→
BC and

⊔⊓BMNQ is a parallelogram. Then N is the midpoint of
px qy

AC.

Exercise EUC.4 Proof. Since ⊔⊓MNQB is a parallelogram, by Theo-

rem EUC.12(A)
px qy

BQ ∼=
px qy

MN ,
px qy

BM ∼=
px qy

QN , and ∠NMB ∼= ∠NQB. By

Definition NEUT.3(C) and Theorem NEUT.14 (congruence is transitive),
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px qy

AM ∼=
px qy

MB ∼=
px qy

QN . By Theorem NEUT.43 (supplements of congruent

angles) ∠AMN ∼= ∠NQC. By Theorem EUC.11(4) ∠NAM ∼= ∠CNQ.

Then by Theorem NEUT.65 (AEA) there exists an isometry α such that

α(△NQC) = △AMN where α(Q) =M , α(N) = A, and α(C) = N , so that

△NQC ∼= △AMN and
px qy

AN ∼=
px qy

CN ; thus N is the midpoint of
px qy

AC. ⊓⊔

Exercise EUC.5* Prove Corollary EUC.23: let P be a Euclidean plane

and A, B, and C be noncollinear points on P . If M is the midpoint of
px qy

AB

and N is the midpoint of
px qy

AC, then
←−→
MN ‖

←→
BC. Moreover, if L is the midpoint

of
px qy

BC, then
px qy

BL ∼=
px qy

MN .

Exercise EUC.5 Proof. Let L = par (M,
←→
BC). By Theorem EUC.22 L

and
←→
AC intersect at the midpoint N of

px qy

AC. By Axiom I.1 L =
←−→
MN . Let

M = par (N,
←→
AB); by similar reasoning, L ∈ M. By Definition EUC.5(B)

⊔⊓NMBL is a parallelogram and by Theorem EUC.12(A)
px qy

BL ∼=
px qy

MN . ⊓⊔

Exercise EUC.6* Prove Theorem EUC.32: complements of acute con-

gruent angles are congruent.

Exercise EUC.6 Proof. Let E , F , E ′, and F ′ be acute angles where E is a

complement of F , E ′ is a complement of F ′, and E ∼= E ′. We need to prove

that F ∼= F ′.

By Definition EUC.30, there exist points A, B, C, and D such that D ∈

ins∠BAC and E ∼= ∠BAD, F ∼= ∠CAD and ∠BAC is right; also there exist

points A′, B′, C′, and D′ such that D′ ∈ ins∠B′A′C′ and E ′ ∼= ∠B′A′D′,

F ′ ∼= ∠C′A′D′ and ∠B′A′C′ is right.

By Theorem NEUT.14 (congruence is transitive), since E ∼= E ′, ∠BAD ∼=

E ∼= E ′ ∼= ∠B′A′D′. To show F ∼= F ′ it is sufficient to show ∠CAD ∼=

∠C′A′D′. By Theorem NEUT.38, there exists an isometry α such that

α(
px→
AB) =

px →
A′B′ and α(

px→
AD) =

px →
A′D′. Since D ∈ ins∠BAC by Definition

PSH.36, C ∈ D-side of
←→
AB and hence D ∈ C-side of

←→
AB; by a similar argu-

ment D′ ∈ C′-side of
←−→
A′B′. By Theorem NEUT.15, α(C-side of

←→
AB) = the

α(C) = C′-side of
←−→
A′B′ and since D ∈ C-side of

←→
AB then α(D) ∈ C′-side

←−→
A′B′, as does D′, as we have already seen.

By Corollary NEUT.44.2, α(∠BAD) = ∠B′A′α(D) is right. By Theo-

rem NEUT.69 ∠BAD ∼= ∠B′A′D′ ∼= ∠B′A′α(D). By Theorem NEUT.36,

α(
px→
AD) =

px →
A′α(D) =

px →
A′D′, so that α(∠CAD) = ∠C′A′D′, and F ∼=

∠CAD ∼= ∠C′A′D′ ∼= F ′. ⊓⊔
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Exercise EUC.7* Prove Corollary EUC.3.1: let RM be the line reflec-

tion overM, and let L be a fixed line for RM. Then N ‖ L iff N is a fixed

line for RM.

Exercise EUC.7 Proof. If N is a fixed line for RM then by Theorem

NEUT.44 N ⊥ M and by Theorem NEUT.48 N ‖ L. Conversely, if N ‖ L,

since we know L ⊥ M, by Theorem EUC.3 N ⊥ M, and by Theorem

NEUT.44, N is a fixed line for RM. ⊓⊔
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Chapter 12: Exercises and Answers for

Isometries of a Euclidean Plane (ISM)

Exercise ISM.1* Let P be a Euclidean plane.

(A) There is no translation τ of P such that τ ◦ τ = ı.

(B) For any translation τ of P , τ ◦ τ is a translation.

Exercise ISM.1 Proof. Let τ be any translation of P .

(A) By Theorem ISM.5 there exist parallel lines L andM on P such that

τ = RL ◦RM. If τ ◦ τ were equal to ı, then we would have RL ◦RM ◦RL =

RM. By Exercise NEUT.8 RL ◦RM ◦RL = RRL(M). Hence we would have

RRL(M) = RM. By Remark NEUT.1.2(B) RL(M) would be equal to M.

But L ‖ M, so by Exercise NEUT.1,M and RL(M) are subsets of opposite

sides of L, a contradiction. Thus τ ◦ τ 6= ı.

(B) By Theorem ISM.8(A) τ ◦ τ is either a translation or ı. By part (A)

τ ◦ τ is not ı so it must be a translation, having no fixed point by Definition

CAP.6. ⊓⊔

Exercise ISM.2* Let P be a Euclidean plane, σ and τ be translations

of P such that L is a fixed line of σ,M is a fixed line of τ , L andM are not

parallel, and let Q be any point on P . Then ⊔⊓Q(σ(Q))(τ(σ(Q)))(τ(Q)) is a

parallelogram.

Exercise ISM.2 Proof. Since L and M are not parallel, by Theorem

CAP.8(C)
←−−−→
Qσ(Q) ‖

←−−−−−−−→
τ(Q)τ(σ(Q)) and

←−−−→
Qτ(Q) ‖

←−−−−−−−−→
σ(Q)σ(τ(Q)). By Theorem

ISM.7(B) τ(σ(Q)) = σ(τ(Q)). By Definition EUC.5(B) ⊔⊓Qσ(Q)τ(σ(Q))τ(Q)

is a parallelogram. ⊓⊔

Exercise ISM.3* Let P be a Euclidean plane, A and B be distinct points

on P , and τ be a translation of P such that
←→
AB is not a fixed line of τ . Then

px qy

Aτ(A) and
px qy

Bτ(B) are opposite edges of a parallelogram.

Exercise ISM.3 Proof. By Theorem ISM.5 there exists a unique transla-

tion σ of P such that σ(A) = B, and its fixed line
←→
AB is not parallel to a

fixed line of τ , so τ(B) = τ(σ(A)) = (τ ◦ σ)(A). By Exercise ISM.2
px qy

Aτ(A)

and
px qy

Bτ(B) are opposite edges of the parallelogram ⊔⊓Aσ(A)τ(σ(A))τ(A). ⊓⊔

Exercise ISM.4* Let P be a Euclidean plane, L1 and L2 be parallel

lines on P , A1 be a point on L1, A2 be the point of intersection of pr (A1,L1)
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and L2, and τ be the translation of P such that τ(A1) = A2 (cf Theorem

ISM.5). Then τ(L1) = L2.

Exercise ISM.4 Proof. By Definition CAP.6 either τ(L1) ‖ L1 or τ(L1) =

L1 that is τ(L1) PE L1. Since τ(A1) = A2, τ(L1) 6= L1. Therefore by Axiom

PS, τ(L1) is the line through A2 which is parallel to L, i.e. τ(L1) = L2. ⊓⊔

Exercise ISM.5* Let M be a line on a Euclidean plane P and let σ

be a translation along M; that is, M is a fixed line for σ. Let RM be the

reflection with axisM. Then RM ◦ σ = σ ◦ RM.

Exercise ISM.5 Proof. Case 1. Let X be any member of M. Since M

is a fixed line of σ and is point-wise fixed for RM, RM(σ(X)) = σ(X) =

σ(RM(X)).

Case 2. (I) Let X be any member of P \M. By Definition CAP.6 transla-

tions have no fixed points, so σ(X) 6= X ; by Theorem CAP.8 the lines
←−−−→
Xσ(X)

and
←−−−−−−−−−−−−→
RM(X)σ(RM(X)) are fixed lines for σ and are parallel toM.

(II) By Theorem CAP.3, since
←−−−→
Xσ(X) ‖ M,

RM(
←−−−→
Xσ(X)) =

←−−−−−−−−−−−−→
RM(X)RM(σ(X))

is also parallel toM. (Here we have used Theorem NEUT.15.) Since RM(X)

is a member of both
←−−−−−−−−−−−−→
RM(X)σ(RM(X)) and

←−−−−−−−−−−−−→
RM(X)RM(σ(X)), and both

these lines are parallel toM, by Axiom PS they are the same.

(III) By Theorem NEUT.22
←−−−−−→
XRM(X) and

←−−−−−−−−−−→
σ(X)RM(σ(X)) are fixed lines

for RM and are parallel; by Theorem NEUT.44 they are perpendicular to

(and intersect)M; they are distinct lines because X does not belong to both

of them.

(IV) By Theorem NEUT.15, σ(
←−−−−−→
XRM(X)) =

←−−−−−−−−−−→
σ(X)σ(RM(X)); by Defini-

tion CAP.6,
←−−−−−→
XRM(X) ‖

←−−−−−−−−−−→
σ(X)σ(RM(X)). Since σ(X) is a member of both

←−−−−−−−−−−→
σ(X)σ(RM(X)) and

←−−−−−−−−−−→
σ(X)RM(σ(X)), and both these lines are parallel to

←−−−−−→
XRM(X), by Axiom PS they are the same. Thus both the points RM(σ(X))

and σ(RM(X)) belong to
←−−−−−−−−−−→
σ(X)RM(σ(X)) ∩

←−−−−−−−−−−−−→
RM(X)σ(RM(X))

which intersection, by Exercise I.1, contains exactly one point; thusRM(σ(X)) =

σ(RM(X)). ⊓⊔

Exercise ISM.6 Prove, disprove, or improve: let P be a Euclidean plane,

τ a translation, and L a line on P . Then Rτ(L) ◦ τ = τ ◦ RL.
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Exercise ISM.7 In Theorem ISM.23 Case 2, create a simpler proof of

the fact that X < τA(X).

Exercise ISM.8* Let P be a Euclidean plane, and let α = RL ◦ τ be a

glide reflection, where τ is a translation and L is the single fixed line for α

according to Theorem ISM.13.

(A) If N ‖ L then α(N ) ‖ L.

(B) If N ⊥ L then α(N ) ⊥ L and α(N ) ‖ N .

Exercise ISM.8 Proof. (A) By Definition CAP.6, τ(N ) ‖ N ; by Exercise

NEUT.1, α(N ) = RL(τ(N )) ‖ N ‖ L.

(B) If N ⊥ L, then by Definition CAP.6 τ(N ) ‖ N and by Theorem

EUC.3 τ(N ) ⊥ L. By Theorem NEUT.44 τ(N ) is a fixed line for RL; hence

α(N ) = RL(τ(N )) = τ(N ) is both parallel to N , and perpendicular to L.

⊓⊔
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Chapter 13: Exercises and Answers for

Dilations of a Euclidean Plane (DLN)

Exercise DLN.1* Let O be a point on a Euclidean plane P , and let α

be a half-rotation of P about O. If X and Y are members of P \ {O} such

that O, X , and Y are noncollinear, then ∠XOα(X) ∼= ∠Y Oα(Y ).

Exercise DLN.1 Proof. Let ρα be the rotation of P about O associated

with α. Let L be the line of symmetry of ∠XOρα(X) and letM be the line

of symmetry of ∠Y Oρα(Y ). Then by Theorem DLN.2(E) α(X) = ftpr (X,L)

and α(Y ) = ftpr (X,M). By Theorem NEUT.39
px →
Oα(X) is the bisecting ray

of ∠XOρα(X) and
px →
Oα(Y ) is the bisecting ray of ∠Y Oρα(Y ). The result then

follows immediately from Exercise ROT.4(E). ⊓⊔

Exercise DLN.2* Let O be a point on a Euclidean plane P , and let

α and β be half-rotations of P about O; let R, S, and T be members of

P \ {O} such that α(R) = S, β(S) = T , and S ∈ ins∠ROT . Then for every

member U of P \ {O} ∠UOα(U) ∼= ∠ROS, ∠α(U)O(β ◦ α)(U) ∼= ∠SOT

∠UO(β ◦ α)(U) ∼= ∠ROT , and α(U) ∈ ins∠UO(β ◦ α)(U).

Exercise DLN.2 Proof. By Theorem ROT.15(A) let α′ and β′ be rotations

such that α′(R) ∈
←→
OS and β′(S) ∈

←→
OT . Then the result follows immediately

from Exercise ROT.4(A2). ⊓⊔

Exercise DLN.3* Let O be a point on a Euclidean plane P , and let δ1

and δ2 be dilations of P with fixed point O. Then δ1 ◦ δ2 = δ2 ◦ δ1, i.e. the

composition of dilations with a common fixed point is commutative.

Exercise DLN.3 Proof. By Theorem DLN.7 there exist half-rotations α1,

β1, γ1, α2, β2, and γ2 of P about O such that δ1 = γ−11 ◦ β1 ◦ α1 and

δ2 = γ−12 ◦ β2 ◦ α2 so that δ2 ◦ δ1 = (γ−12 ◦ β2 ◦ α2) ◦ (γ
−1
1 ◦ β1 ◦ α1).

By Theorem DLN.6, the composition of half-rotations is commutative;

using this fact repeatedly, along with associativity, we can “pull” each factor

of the second set of parentheses “through” the first set of parentheses so that

δ2 ◦ δ1 = (γ−11 ) ◦ (γ−12 ◦ β2 ◦ α2) ◦ (β1 ◦ α1)

= (γ−11 ◦ β1) ◦ (γ
−1
2 ◦ β2 ◦ α2) ◦ (α1)

= (γ−11 ◦ β1 ◦ α1) ◦ (γ
−1
2 ◦ β2 ◦ α2) = δ1 ◦ δ2. ⊓⊔
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Exercise DLN.4* Let O be a point on a Euclidean plane P , and let

D = {α | α be a dilation of P with fixed point O, or α = ı}. Then under

composition of mappings D is an abelian group.

Exercise DLN.4 Proof. By Theorem CAP.21 D is a group under compo-

sition of mappings. By Exercise DLN.3 that group is Abelian. ⊓⊔

Exercise DLN.5* Let O be a point on a Euclidean plane P , and let δ

be a dilation of P with fixed point O.

(I) If X and Y are members of P \ {O} such that O, X , and Y are

noncollinear, then δ(X) and δ(Y ) are on the same side of
←→
XY .

(II) Let A be any member of P \ {O} and let X be any member of P \

{O,A}.

(A) If O A δ(A), then O X δ(X).

(B) If O δ(A) A, then O δ(X) X .

(C) If δ(A) O A, then δ(X) O X .

(III) Let A be any member of P \ {O} and let X be any member of

P \ {O,A}.

(A) If δ(A) ∈
qy→
OA, then δ(X) ∈

qy →
OX .

(B) If A′ is a point such that A′ O A, X ′ is a point such that X ′ O X ,

and if δ(A) ∈
qy →
OA′, then δ(X) ∈

qy →
OX ′.

(IV) Let A be any member of P \{O} and let C be any member of P \
←→
OA.

(A) If δ(A) ∈
qy→
OA, then δ(C) is on the C side of

←→
OA.

(B) If δ(A) O A, then δ(C) is on the side of
←→
OA opposite the C side.

Exercise DLN.5 Proof. (I) By Theorem CAP.1(A) δ(
←→
XY ) =

←−−−−−→
δ(X)δ(Y ).

By Theorem CAP.18(C) and Definition CAP.17
←→
XY ‖ δ(

←→
XY ) so that

←→
XY ‖

←−−−−−→
δ(X)δ(Y ). By Theorem IB.10 and Exercise PSH.14, δ(X) and δ(Y ) are on

the same side of
←→
XY .

(II) Let X be any member of P \ {O,A}. Then by Definition CAP.10
←→
AX PE

←−−−−−→
δ(A)δ(X).

(Case 1: X ∈ (P \
←→
OA).) By Theorem DLN.9(A), δ(X) is the point of

intersection of
←→
OX with par (δ(A),

←→
AX), so that the lines

←−−→
Aδ(A) and

←−−−→
Xδ(X)

are parallel. Conclusions (A), (B), and (C) are then immediate consequences

of Exercise PSH.56.

(Case 2: X ∈ (
←→
OA \ {O,A}).) Following the construction of Theorem

DLN.9(B), we let Q be any point not on
←→
OA. Part (A) locates δ(Q) as a point

of
←→
OQ. Since A 6∈

←→
OQ we may apply Theorem DLN.9(A) again, locating δ(X)
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as the point of intersection of
←→
OA with par (δ(Q),

←→
QX), and the lines

←→
QX and

←−−−−−→
δ(Q)δ(X) are parallel.

(A) If O A δ(A), then by Case 1, O Q δ(Q). By another application

of Case 1 we get O X δ(X).

(B) If O δ(A) A, then by Case 1 O δ(Q) Q. Another application of

Case 1 yields O δ(X) X .

(C) If A O δ(A), then by Case 1, Q O δ(Q). Another application of

Case 1 yields X O δ(X).

(III)(A) This is an immediate consequence of (A), (B), and Definition IB.4.

(B) This is an immediate consequence of (C) and Definition IB.4.

(IV) (A) By Part (II)(A) and (B) of this theorem, δ(A) ∈
qy→
OA and δ(C) ∈

qy→
OC. Hence by Theorem IB.14 δ(C) ∈ C side of

←→
OA.

(B) By part (III)(B) of this theorem, δ(C) O C and by Definition IB.11

δ(C) and C are on opposite sides of
←→
OA. ⊓⊔

Exercise DLN.6* Let O be a point on a Euclidean plane P ; let δ be a

dilation of P with fixed point O and let ρ be a rotation of P about O. Then

ρ−1 ◦ δ ◦ ρ = δ and δ−1 ◦ ρ ◦ δ = ρ.

Exercise DLN.6 Proof. By Theorem DLN.7(E) and associativity,

ρ−1 ◦ (δ ◦ ρ) = ρ−1 ◦ (ρ ◦ δ) = (ρ−1 ◦ ρ) ◦ δ = ı ◦ δ = δ and

δ−1 ◦ (ρ ◦ δ) = δ−1 ◦ (δ ◦ ρ) = (δ−1 ◦ δ) ◦ ρ = ı ◦ ρ = ρ. ⊓⊔

Exercise DLN.7* Let O be a point on a Euclidean plane P ; let δ be a

dilation on P with fixed point O, and let L be any line on P . Then

RL ◦ δ = δ ◦ Rδ−1(L).

Exercise DLN.7 Proof. By Theorem CAP.21 δ−1 is a dilation of P with

fixed point O. By Theorem DLN.15 δ ◦ Rδ−1(L) = Rδ(δ−1(L)) ◦ δ = RL ◦ δ.

⊓⊔

Exercise DLN.8* Let O be a point on a Euclidean plane P , and let δ

be a dilation of P with fixed point O. Let L,M, and N be distinct lines on

P . Then δ ◦ (RN ◦ RM ◦ RL) = (Rδ(N ) ◦ Rδ(M) ◦ Rδ(L)) ◦ δ.

Exercise DLN.8 Proof. By Theorem DLN.15

δ ◦ (RN ◦ RM ◦ RL) = (δ ◦ RN ) ◦ (RM ◦RL) = (Rδ(N ) ◦ δ) ◦ (RM ◦ RL)

= (Rδ(N ) ◦ (δ ◦ RM)) ◦ RL

= (Rδ(N ) ◦ (Rδ(M) ◦ δ)) ◦ RL

= (Rδ(N ) ◦ Rδ(M)) ◦ (δ ◦ RL)
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= (Rδ(N ) ◦ Rδ(M)) ◦ (Rδ(L) ◦ δ)

= (Rδ(N ) ◦ Rδ(M) ◦ Rδ(L)) ◦ δ. ⊓⊔

Exercise DLN.9* Let O be a point on a Euclidean plane P ; let δ be a

dilation of P with fixed point O, and let θ be an isometry of P . Then there

exists an isometry ψ of P such that θ ◦ δ = δ ◦ ψ.

Exercise DLN.9 Proof. By elementary mapping theory, we know that

(θ◦δ)−1 = δ−1 ◦θ−1. By Theorem NEUT.11 θ−1 is an isometry. By Theorem

CAP.21 δ−1 is a dilation of P . By Theorem DLN.16, there exists an isometry

ϕ of P such that δ−1 ◦ θ−1 = ϕ ◦ δ−1. Taking inverses, we have

θ ◦ δ = (δ−1 ◦ θ−1)−1 = (ϕ ◦ δ−1)−1 = δ ◦ ϕ−1.

Let ψ = ϕ−1; by Theorem NEUT.11 this is an isometry; then θ◦δ = δ◦ψ. ⊓⊔

Exercise DLN.10 Using the construction of Theorem DLN.4, prove that

for any half-rotation α, if A B C, then α(A) α(B) α(C).
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Chapter 14: Exercises and Answers for

A Line as an Ordered Field (OF)

Exercise OF.1* Let P be a Euclidean plane; let L be an ordered field on

P with origin O, and τA be the translation of P such that τA(O) = A, where

A is any member of L\{O}. Then for every member X of L, τA(X) = X⊕A.

Exercise OF.1 Proof. This is an immediate consequence of Definition

OF.1(A) and (C). ⊓⊔

Exercise OF.2* Let P be a Euclidean plane; let L be an ordered field on

P with origin O and unit U , (where U ∈ (L\{O})) and let δA be the dilation

of P with fixed point O such that δA(U) = A. Then for every member X of

L \ {O}, δA(X) = X ⊙A.

Exercise OF.2 Proof. This is an immediate consequence of Definition

OF.1(B) and (D). ⊓⊔

Exercise OF.3* (A) If A, B, and C are members of the ordered field L

(cf. Definition OF.1) such that A⊕ C = B ⊕ C, then A = B.

(B) If A and B are members of L and if C is a member of L \ {O} such

that A⊙ C = B ⊙ C, then A = B.

Exercise OF.3 Proof. (A) By Theorem OF.2 there exists a member D of

L such that C⊕D = O. Since (A⊕C)⊕D = (B⊕C)⊕D, by the associative

property for addition A⊕ (C ⊕D) = B ⊕ (C ⊕D), that is A⊕ O = B ⊕O,

or A = B.

(B) There exists a member D of L \ {O}, such that C ⊙ D = U . Since

by the associative property for multiplication (A ⊙ C) ⊙ D = A ⊙ (C ⊙D)

and (B ⊙ C) ⊙D = B ⊙ (C ⊙ D) and since (A ⊙ C) ⊙ D = (B ⊙ C) ⊙ D,

A⊙ (C ⊙D) = B ⊙ (C ⊙D), that is A⊙ U = B ⊙ U . Thus A = B. ⊓⊔

Exercise OF.4* (A) If A, B, and C are members of the field L such

that A⊕B = A⊕ C, then B = C.

(B) If A is a member of L \ {O}, and if B and C are members of L such

that A⊙B = A⊙ C, then B = C.

Exercise OF.4 Proof. (A) By the commutative property for addition B⊕

A = C ⊕A, so by Exercise OF.3 B = C.
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(B) By the commutative property for multiplication B ⊙ A = C ⊙ A, so

by Exercise OF.3 B = C. ⊓⊔

Exercise OF.5* Let A, B, and C be members of the field L; then (B ⊖

A)⊙ C = (B ⊙ C)⊖ (A⊙ C).

Exercise OF.5 Proof. Using Definition OF.8, the commutative property

of multiplication, and Theorem OF.6 (distributive property),

(B ⊖A)⊙ C = (B ⊕ (⊖A))⊙ C = C ⊙ (B ⊕ (⊖A))

= (C ⊙B)⊕ (C ⊙ (⊖A)) = (B ⊙ C)⊕ ((⊖A)⊙ C).

By Theorem OF.10(D) (⊖A)⊙ C = ⊖(A⊙ C) so that this becomes

(B ⊙ C)⊕⊖ (A⊙ C) = (B ⊙ C)⊖ (A⊙ C),

as required. ⊓⊔

Exercise OF.6* Let δ be a dilation of the Euclidean plane P with fixed

point O, and let L be an ordered field with origin O and unit U . If K and T

are any members of L, then δ(K ⊙ T ) = K ⊙ δ(T ).

Exercise OF.6 Proof. By Definition OF.1 and Exercise DLN.3

δ(K ⊙ T ) = δ(δK(T )) = (δ ◦ δK)(T ) = (δK ◦ δ)(T )

= δK(δ(T )) = K ⊙ δ(T ). ⊓⊔

Exercise OF.7* Let A and B be members of L. Complete the proof of

Theorem OF.11(A) by showing that B ⊖A > O iff (⊖B) < (⊖A).

Exercise OF.7 Proof. By Theorem OF.10(A)(3) and (D) O < B ⊖ A =

(⊖(⊖B)) ⊖ A = (⊖A) ⊖ (⊖B). By the part of Theorem OF.11(A) already

proved, this is true iff (⊖A) > (⊖B). ⊓⊔

Exercise OF.8* Prove part D of Theorem OF.11: if A < B and C < O,

then B ⊙ C < A⊙ C.

Exercise OF.8 Proof. If A < B, then by Theorem OF.11(A) B ⊖A > O.

Since C < O by Theorem OF.10(E) C ⊙ (B ⊖A) < O. By Exercise OF.5

O > C ⊙ (B ⊖A) = (C ⊙B)⊖ (C ⊙A);

by Theorem OF.11(A) C ⊙A > C ⊙B. ⊓⊔

Exercise OF.9* Let A and B be negative members of L. Then A < B

iff |B| < |A|.
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Exercise OF.9 Proof. By Definition OF.13, |A| = ⊖A and |B| = ⊖B.

Then by Theorem OF.11(A) A < B iff |B| = ⊖B < |A| = ⊖A. ⊓⊔

Exercise OF.10 (A) Let T = {τA|A ∈ L}; then the mapping α:A→ τA

is a bijection of L onto T.

(B) Let M = {δA|A ∈ L}; then the mapping µ:A→ δA is a bijection of L

onto M; furthermore µ maps L \ {O} onto M \ {O}.

Exercise OF.11* (This result is analogous to Theorem CAP.23) Let

P be a Euclidean plane, and let L1 and L2 be parallel lines on P , where

L1 has been built into an ordered field with origin O1 and unit U1. Let O2

be a point of L2, and let σ be the translation of P such that σ(O1) = O2.

(The existence and uniqueness of this translation is guaranteed by Theorem

ISM.5.) Let A ∈ L1 \ {O1, U1}. Then σ ◦ δA ◦σ−1 is a dilation of P with fixed

point O2. In fact, σ ◦ δA ◦ σ−1 = δσ(A) so that σ ◦ δA = δσ(A) ◦ σ.

Exercise OF.11 Proof. The statement of this exercise assumes that δA is

the dilation with fixed point O1 such that δA(U1) = A, and that δσ(A) is the

dilation with fixed point O2 such that δσ(A)(U2) = σ(A), where U2 = σ(U1).

By Definition CAP.6, σ(L1) ‖ L1, and since O2 ∈ L2 and σ(O1) = O2, by

the Parallel Axiom PS, σ(L1) = L2. Since σ
−1 is a translation taking O2 to

O1, it follows immediately from Theorem CAP.23(C) that σ ◦ δA ◦ σ−1 is a

dilation of P with fixed point O2. Moreover, σ(δA(σ
−1(U2))) = σ(δA(U1)) =

σ(A).

By Theorem CAP.24, δσ(A) is the only dilation with O2 as a fixed point

which maps U2 to σ(A), so that σ◦δA◦σ
−1 = δσ(A), and σ◦δA = δσ(A)◦σ. ⊓⊔

Exercise OF.12* Let P be a Euclidean plane; let L be an ordered field

on P with origin O and unit U , A be a member of L\ {O,U}, and let τA and

δA be as in Definition OF.1. Then δA ◦ τA = τδA(A) ◦ δA.

Exercise OF.12 Proof. By Theorem CAP.13 δA ◦ τA ◦ δ
−1
A

is a translation

of P . Then since O is a fixed point for δ−1
A

,

(δA ◦ τA ◦ δ
−1
A

)(O) = δA(τA(δ
−1
A

(O))) = δA(τA(O)) = δA(A).

The translation τδA(A) maps O to δA(A), and by Theorem CAP.9 is the only

translation doing so. Therefore δA ◦ τA ◦ δ
−1
A

= τδA(A). ⊓⊔
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Chapter 15: Exercises and Answers for

Similarity on a Euclidean Plane (SIM)

Exercise SIM.1* Let P be a Euclidean plane and let A and B be free

segments of P .

(I) If A < B, then A2 < B2.

(II) If A > B, then A2 > B2.

Exercise SIM.1 Proof. (I) If A < B, then by Theorem SIM.9 and Definition

SIM.10 A2 < A ⊙ B and A ⊙ B < B2. By Theorem FSEG.7 (Transitivity for

Free Segments), A2 < B2.

(II) If A > B, then by Definition FSEG.3 B < A. By part (I) B2 < A2, that

is, A2 > B2. ⊓⊔

Exercise SIM.2* Let P be a Euclidean plane and let A and B be free

segments of P . If A2 = B2, then A = B.

Exercise SIM.2 Proof. We prove the contrapositive: If A 6= B, then

A
2 6= B

2. If A 6= B, then by Theorem FSEG.5 (Trichotomy for Free Seg-

ments), either A < B, or B < A. If A < B, then by Exercise SIM.1 A2 < B2. If

B < A, then by the same exercise, B2 < A2. ⊓⊔

Exercise SIM.3* Let P be a Euclidean plane and let A, B, and C be free

segments of P such that C < B. Then A⊙ (B ⊖ C) = (A⊙ B)⊖ (A⊙ C).

Exercise SIM.3 Proof. By Theorem SIM.9 A ⊙ C < A ⊙ B. By Theorem

FSEG.10 (A ⊙ B) ⊖ (A ⊙ C) exists. By Definition FSEG.11 B ⊖ C is the free

segment D of P such that C⊕D = B. By Theorem SIM.8 A⊙B = A⊙(C⊕D) =

(A⊙ C)⊕ (A⊙D). By Definition FSEG.11 A⊙D = (A⊙ B)⊖ (A⊙ C), that is,

A⊙ (B ⊖ C) = (A⊙ B)⊖ (A⊙ C). ⊓⊔

Exercise SIM.4* Let P be a Euclidean plane and let A, B, C, and D

be free segments on P . Then the following statements are equivalent to each

other.

(1) A⊙ D = B ⊙ C.

(2) A©÷B = C ©÷D.

(3) A©÷ C = B©÷D.

(4) B©÷A = D©÷ C.

(5) (A⊕ B)©÷B = (C ⊕ D)©÷D.
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Exercise SIM.4 Proof. We use Theorem SIM.8 and Definition SIM.12 in

the following reasoning:

A⊙D = B⊙ C iff (A⊙D)⊙ (C−1⊙D−1) = (B⊙ C)⊙ (C−1⊙D−1); (A⊙D)⊙

(C−1 ⊙ D−1) = (B ⊙ C)⊙ (C−1 ⊙ D−1) iff A⊙ C−1 = B ⊙ D−1.

Also, A ⊙ C−1 = B ⊙ D−1 iff A©÷C = B©÷D. A ⊙ D = B ⊙ C iff (A ⊙ D) ⊙

(C−1 ⊙ D−1) = (B ⊙ C)⊙ (C−1 ⊙ D−1).

(A⊙ D)⊙ (C−1 ⊙ D−1) = (B⊙ C)⊙ (C−1 ⊙ D−1) iff A⊙ C−1 = B⊙ D−1 and

A⊙ C−1 = B⊙ D−1 iff A©÷ C = B©÷D.

A⊙ D = B⊙ C iff (A⊙ D)⊙ (A−1 ⊙ C−1) = (B ⊙ C)⊙ (A−1 ⊙ C−1);

(A ⊙ D) ⊙ (A−1 ⊙ C−1) = (B ⊙ C) ⊙ (A−1 ⊙ C−1) iff D ⊙ C−1 = B ⊙ A−1 iff

B©÷A = D©÷C.

A©÷B = C ©÷D iff (A⊙ B−1)⊕ U = (C ⊙ D−1)⊕ U;

(A⊙B−1)⊕U = (C⊙D−1)⊕U iff (A⊙B−1)⊕(B⊙B−1) = (C⊙D−1)⊕(D⊙D−1);

(A⊙B−1)⊕(B⊙B−1) = (C⊙D−1)⊕(D⊙D−1) iff (A⊕B)⊙B−1 = (C⊕D)⊙D−1;

and

(A⊕ B)⊙ B−1 = (C ⊕ D)⊙ D−1 iff (A⊕ B)©÷B = (C ⊕ D)©÷D. ⊓⊔

Exercise SIM.5* Let P be a Euclidean plane and let A, B, C, and D

be free segments on P such that A < C, B < D, and A©÷B = C ©÷D. Then

A©÷B = (C ⊖ A)©÷(D ⊖ B).

Exercise SIM.5 Proof. Since A < C and B < D, by Theorem SIM.9

U = A−1⊙A < A−1⊙C = C ©÷A and U = B−1⊙B < B−1⊙D = D©÷B. By Exercise

SIM.4 C ©÷A = D©÷B, so (C ©÷A)⊖U = (D©÷B)⊖U. That is, (C ©÷A)⊖ (A©÷A) =

(D©÷B) ⊖ (B©÷B), so that (C ⊖ A)©÷A = (D ⊖ B)©÷B. In Exercise SIM.4(4)

substitute C − A for B, D − B for D, A for A, and B for C; reading the equiva-

lent formulation from Exercise SIM.4(3) we have A©÷B = (C⊖A)©÷(D⊖B). ⊓⊔

Exercise SIM.6* Let P be a Euclidean plane and let A1, B1, C1, A2,

B2, and C2, be points on P such that A1, B1, and C1 are noncollinear and

A2, B2, and C2 are noncollinear. Furthermore, let A1 = [
px qy

B1C1 ], B1 = [
px qy

A1C1 ],

C1 = [
px qy

A1B1 ], A2 = [
px qy

B2C2 ], B2 = [
px qy

A2C2 ], and C2 = [
px qy

A2B2 ]. Then:

∠B1A1C1
∼= ∠B2A2C2 and ∠C1B1A1

∼= ∠C2B2A2 iff A1©÷B1 = A2©÷B2,

A1©÷C1 = A2©÷C2, and B1©÷C1 = B2©÷C2.

Exercise SIM.6 Proof. By Theorem SIM.16 ∠B1A1C1
∼= ∠B2A2C2

and ∠C1B1A1
∼= ∠C2B2A2 iff A1©÷A2 = B1©÷B2, A1©÷A2 = C1©÷C2, and

B1©÷B2 = C1©÷C2. However, by Exercise SIM.4 A1©÷A2 = B1©÷B2 iff A1©÷B1 =

A2©÷B2; A1©÷A2 = C1©÷C2 iff A1©÷C1 = A2©÷C2; and B1©÷B2 = C1©÷C2 iff
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B1©÷C1 = B2©÷C2. Hence ∠B1A1C1
∼= ∠B2A2C2 and ∠C1B1A1

∼= ∠C2B2A2

iff A1©÷B1 = A2©÷B2, A1©÷C1 = A2©÷C2, and B1©÷C1 = B2©÷C2. ⊓⊔

Exercise SIM.7* Let O be a point on a Euclidean plane P , and let δ be

a dilation of P with fixed point O, such that for every X 6= O, δ(X) ∈
qy →
OX .

Let X and Y be distinct members of P \ {O} such that O, X , and Y are

collinear. Then [
px qy

OX ]©÷ [
px qy

Oδ(X) ] = [
px qy

OY ]©÷ [
px qy

Oδ(Y ) ].

Exercise SIM.7 Proof. Let X ′ be any member of P \
←→
OX , and let Y ′ =

δ(X ′). By Theorem CAP.18 Y ′ ∈
←−→
OX ′. Then by Theorem DLN.9(B) δ(X)

is the point such that par (Y ′,
←−→
X ′X) ∩

←→
OX = {δ(X)} and δ(Y ) is the point

such that par (Y ′,
←−→
X ′Y ) ∩

←→
OX = {δ(Y )}. That is to say,

←−→
X ′X ‖

←−−−→
Y ′δ(X), and

←−→
X ′Y ‖

←−−−→
Y ′δ(Y ).

Applying Theorem SIM.13 to
←−→
X ′X ‖

←−−−→
Y ′δ(X), we have [

px qy

OX ′ ]©÷ [
px qy

OX ] =

[
px qy

OY ′ ]©÷ [
px qy

Oδ(X) ]; by Exercise SIM.4 [
px qy

OX ′ ]©÷ [
px qy

OY ′ ] = [
px qy

OX ]©÷ [
px qy

Oδ(X) ]. Ap-

plying the same reasoning to
←−→
X ′Y ‖

←−−−→
Y ′δ(Y ), we have [

px qy

OX ′ ]©÷ [
px qy

OY ′ ] =

[
px qy

OY ]©÷ [
px qy

Oδ(Y ) ]. Therefore

[
px qy

OX ]©÷ [
px qy

Oδ(X) ] = [
px qy

OX ′ ]©÷ [
px qy

OY ′ ] = [
px qy

OY ]©÷ [
px qy

Oδ(Y ) ]. ⊓⊔
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Chapter 16: Exercises and Answers for

Axial Affinities of a Euclidean Plane (AX)

Exercise AX.1* LetM be a line on a Euclidean plane P ; let A and B

be distinct points such that
←→
AB ‖ M. By Theorem AX.2 there exists a shear

ψ with axisM such ψ(A) = B. Let L be a line parallel toM; either L =
←→
AB

or L ‖
←→
AB. Let C = ftpr(A,M), let D be the point of intersection of

←→
AC and

L, and let E be the point of intersection of
←→
BC and L. Then by Theorem

AX.2 ψ(D) = E. Using Theorem ISM.5 let τ be the translation of P such

that τ(D) = E. Show that for every X ∈ L, ψ(X) = τ(X). This shows that

the action of a shear on a line parallel to its axis is the same as that of a

translation.

Exercise AX.1 Proof. Note first that
←→
AC =

←→
DC ⊥M. Let X be any point

on L and let T be the point of intersection of pr(X,L) andM. By Theorem

NEUT.47(A)
←→
XT ‖

←→
DC. Then again by Theorem AX.2 ψ(X) is the point of

intersection of par(T,
←→
CE) and L, that is, par(T,

←→
CE) = par(T,

←−−−→
Cψ(D)). We

have already defined τ so that τ(D) = E.

Let F = ftpr(E,M); by Theorem NEUT.47(A)
←→
FE ‖

←→
DC. By Theorem

ISM.23 τ(X) is the point of intersection of L and par(F,
←→
CX). Using Theorem

ISM.5 construct a translation σ such that σ(D) = X . Then by Theorem

ISM.7 σ ◦ τ = τ ◦ σ. By Definition CAP.6 σ(
←→
DC) ‖

←→
DC, which is parallel to

←→
XT . Since X ∈ σ(

←→
DC) by Axiom PS σ(

←→
DC) =

←→
XT . By Theorem NEUT.15

←−−−−−→
σ(D)σ(C) = σ(

←→
DC) =

←→
XT . Since both T and σ(C) belong toM, T = σ(C).

By similar reasoning, σ(
←→
EC) ‖

←−−−→
ψ(X)T ,

←−−−−−→
σ(E)σ(C) = σ(

←→
EC) =

←−−−→
ψ(X)T ,

and σ(E) = ψ(X), because both σ(E) and ψ(X) belong to L. Then

τ(X) = τ(σ(D)) = σ(τ(D)) = σ(E) = ψ(X). ⊓⊔

Exercise AX.2* Let P be a Euclidean plane, and let ϕ be an axial

affinity with axisM on P , and let L be a line distinct fromM. Then L is a

fixed line for ϕ iff for some Q 6∈ M, L =
←−−−→
Qϕ(Q).

Exercise AX.2 Proof. If L is a fixed line, by Theorem CAP.27(A) L =
←−−−→
Qϕ(Q) for any point Q ∈ L \M.

Conversely, suppose that L =
←−−−→
Qϕ(Q) for some Q 6∈ M. By Theorem

AX.3(A) ϕ is either a stretch or a shear. If it is a stretch, by Definition AX.0

there exists a fixed line N which intersectsM. If Q ∈ N then ϕ(Q) ∈ N so

that by Axiom I.1 N = L; thus L is a fixed line. If Q 6∈ N then by Axiom PS

there exists a line L′ such that Q ∈ L′ and L′ ‖ N ; by Theorem CAP.27(B)
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L′ is a fixed line, and by part (A) of the same theorem, L′ =
←−−−→
Qϕ(Q) = L, so

that L is a fixed line.

If ϕ is a shear, by Axiom PS there exists a line L′ such that L′ ‖ M and

Q ∈ L′. By Definition AX.0 L′ is a fixed line, and by Theorem CAP.27(A)

and Axiom I.1 L′ =
←−−−→
Qϕ(Q) = L, and L is a fixed line. ⊓⊔
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Chapter 17: Exercises and Answers for

Rational Points on a Line (QX)

Exercise QX.1* Let r be a nonzero rational number, and let A ∈ L\{O}.

(A) If A is positive, then rA is positive iff r is positive.

(B) If A is negative, then rA is negative iff r is positive.

Exercise QX.1 Proof. (A) If A is positive, then by Theorem QX.13(A) rA

is positive if r is positive. If r is not positive, it is negative, because r 6= 0.

Then by Theorem QX.13(B), rA is negative, that is, not positive. This is the

contrapositive of the converse of the first statement.

(B) If A is negative, then by Theorem QX.13(C) rA is negative if r is

positive. If r is not negative, it is positive. Then by Theorem QX.13(D), rA

is positive, that is, not negative. This is the contrapositive of the converse of

the first statement. ⊓⊔

Exercise QX.2* Let A be a positive member of L and r and s be rational

numbers. Then rA < sA iff r < s.

Exercise QX.2 Proof. (I) If r < s, then s − r > 0 so by Theorem QX.13

(or Exercise QX.1) (s − r)A > O. Since by Theorem QX.11(A) (s − r)A =

(s+(−r))A = sA⊕ (⊖rA) = sA⊖ rA, and this is positive, then by Theorem

OF.11(A) rA < sA.

(II) If rA < sA, then by Theorem OF.11(A) sA ⊖ rA = (s − r)A is pos-

itive. If s − r were negative, then r − s would be positive and rA > sA by

part (I), contradicting the assumption. Hence s−r is positive and so r < s. ⊓⊔

Exercise QX.3* Let A be a negative member of L and r and s be

rational numbers. Then rA > sA iff r < s.

Exercise QX.3 Proof. (I) If r < s, then s − r > 0 so by Theorem QX.13

(or Exercise QX.1) (s − r)A < O. Since by Theorem QX.11(A) (s − r)A =

(s+(−r))A = sA⊕ (⊖rA) = sA⊖ rA, and this is negative, then by Theorem

OF.11(A) rA > sA.

(II) If rA > sA, then by Theorem OF.11(A) sA ⊖ rA = (s − r)A is neg-

ative. If s − r were positive, then r − s would be negative and rA < sA by

part (I), a contradiction. Hence s− r is negative and so r > s. ⊓⊔



Chapter 17: Rational Points on a Line (QX) 109

Exercise QX.4* Let P be a Euclidean plane, L be an ordered field on

P (cf Theorem Q.13), T be a member of L and r be a rational number. Then

(−r)T = ⊖(rT ).

Exercise QX.4 Proof. By Theorem QX.11(A), (−r)T ⊕ rT = (−r+ r)T =

0T = O. By Definition OF.4, (−r)T = ⊖(rT ). ⊓⊔

Exercise QX.5* Let L be an ordered field with origin O on a Euclidean

plane P , and let X and Y be positive members of L. Then there exist non-

collinear points A, B, and C on P such that 1
2X ⊙ Y is the area of △ABC.

Exercise QX.5 Proof. Let C and E be distinct points on P . By Theorem

NEUT.67 (segment construction) there exists a unique point B on
qy→
CE such

that [
px qy

CB ] = [
px qy

OX ]. Let L = pr(B,
←→
BC) (cf Definition NEUT.99(A)). Then

by Theorem NEUT.67 there exists a point A ∈ L such that [
px qy

BA ] = [
px qy

OY ].

Then
px qy

CB is an altitude of △ABC,
px qy

AB is the base for that altitude, and by

Definition QX.22 the area of this triangle is 1
2X ⊙ Y . ⊓⊔
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Chapter 18: Exercises and Answers for

A Line as Real Numbers (REAL); Coordinatization of

a Plane (RR)

Exercise REAL.1* Let A, B, C, and D be points on the Euclidean

plane P such that A 6= B and C 6= D. Then there exists a natural number n

such that [
px qy

AB ]
2n < [

px qy

CD ].

Exercise REAL.1 Proof. By Theorem REAL.5 there exists a natural num-

ber n such that n[
px qy

CD ] > [
px qy

AB ]. Since for every natural number n, 2n > n,

2n[
px qy

CD ] > n[
px qy

CD ], 2n[
px qy

CD ] > [
px qy

AB ] so that [
px qy

AB ]
2n < [

px qy

CD ]. ⊓⊔

Exercise REAL.2* Let P be a Euclidean/LUB plane, and let L be a

line in P having origin O and unit U . Then if T and V are positive members

of L, there exists a natural number n such that 1
n
T < V .

Exercise REAL.2 Proof. Since by Theorem REAL.9 the set {nV | n ∈ N}

is unbounded above, there exists a natural number n such that nV > T . But

then 1
n
T < V . ⊓⊔

Exercise REAL.3* Let P be a Euclidean/LUB plane, and let L be a

line in P having origin O and unit U . Then if T is a positive member of L,

{s | s ∈ Q and sU < T } is bounded above.

Exercise REAL.3 Proof. Since by Corollary REAL.9.1 {tU | t ∈ Q} is

unbounded above there exists a rational number h such that hU > T . Let s

be any member of {t | t ∈ Q and tU < T }. Then sU < T < hU so that by

Exercise QX.2 s < h and h is an upper bound of {s | s ∈ Q and sU < T }. ⊓⊔

Exercise REAL.4* Prove Lemma REAL.4: let P be a Euclidean/LUB

plane, and let L be an ordered field on P with origin O and unit U . If E is

a subset of L which is bounded above, and T > O is a member of L, then

(lub E)⊙ T = lub(E ⊙ T ).

Exercise REAL.4 Proof. Suppose B is any upper bound for E ; then for

every A ∈ E , B ≥ A. By Theorem OF.11(C), B ⊙ T ≥ A⊙ T so that B ⊙ T

is an upper bound for the set E ⊙ T . Since lub E is an upper bound for E ,

(lub E)⊙ T is an upper bound for E ⊙ T , hence (lub E)⊙ T ≥ lub(E ⊙ T ).

By Theorem OF.10(E), T−1 > O, so that substituting E ⊙ T for E and

T−1 for T in the calculation just above,
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(lub(E ⊙ T ))⊙ T−1 ≥ lub((E ⊙ T )⊙ T−1) = lub E ,

and multiplying on the right by T we have

lub(E ⊙ T ) = (lub(E ⊙ T ))⊙ T−1 ⊙ T ≥ (lub E)⊙ T ;

therefore (lub E)⊙ T = lub(E ⊙ T ). ⊓⊔

Exercise REAL.5* Prove Lemma REAL.24: let P be a Euclidean/LUB

plane, and let L be an ordered field on P with origin O and unit U . Let S

be a subset of L which is bounded above, and suppose A is an upper bound

for S. Then A = lubS iff the following property holds: for every ǫ > O in L,

there exists x ∈ L such that x > A⊖ ǫ.

Exercise REAL.5 Proof. Assume that A = lubS, and that the property

does not hold; then there exists ǫ > O such that for all X ∈ S, X ≤ A ⊖ ǫ.

Then A ⊖ ǫ < A is an upper bound for S, so that A is not the least upper

bound.

Conversely, if the property holds and A 6= lubS, since A is an upper bound,

A ≥ lubS. Since A is not the least upper bound, there exists an upper bound

B such that A > B. Let ǫ = A ⊖ B; then there exists X ∈ S such that

X > A ⊖ ǫ = A ⊖ (A ⊖ B) = B. Then X is not an upper bound for S, a

contradiction. ⊓⊔

Exercise REAL.6* Complete the proof of Case 4 of Theorem REAL.23:

let P be a Euclidean/LUB plane, and let L an ordered field on P with origin

O and unit U . Let S > O be a member of L. Then if x < 0 and y > 0 are

irrational numbers, x(yS) = (xy)S.

Exercise REAL.6 Proof. Using, in succession, arithmetic, Theorem REAL.21(A),

Case 2 of the proof of Theorem REAL.23, arithmetic, Theorem REAL.21(A),

and Theorem OF.10(A), we have

x(yS) = (−(−x))(yS) = ⊖((−x)(yS)) = ⊖(((−x)y)S)

= ⊖((−(xy))S) = ⊖(⊖((xy))S) = (xy)S. ⊓⊔

Exercise REAL.7* Complete the proof of Theorem REAL.25, Case 3:

let P be a Euclidean/LUB plane, and let L an ordered field on P with origin

O and unit U . Let S < O and T > O be members of L. If x is an irrational

number, then (xS)⊙ T = x(S ⊙ T ).

Exercise REAL.7 Proof. Using, in succession, Theorem REAL.21(C),

Theorem OF.10(D), Case 1 of the proof of Theorem REAL.25, Theorem

OF.10(D), and Theorem REAL.21(C), we have
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(xS)⊙ T = (⊖(x(⊖S)))⊙ T = ⊖((x(⊖S))⊙ T )

= ⊖(x((⊖S)⊙ T )) = ⊖(x(⊖(S ⊙ T )))

= x(S ⊙ T ). ⊓⊔

Exercise REAL.8* Complete the proof of Case 5 of Theorem REAL.31:

let P be a Euclidean/LUB plane, and let L an ordered field on P with origin

O and unit U . If x < 0 and y < 0 are irrational numbers, and H is any

member of L, then (x+ y)H = xH ⊕ yH .

Exercise REAL.8 Proof. Applying, in order, Theorem REAL.21(A),

arithmetic, Cases 3 and 4 of the proof of Theorem REAL.31, Theorem

REAL.21(A), and Theorem OF.10(F), we have, since −x > 0 and −y > 0,
⊖(x+ y)H = −(x+ y)H = ((−x) + (−y))H = (−x)H ⊕ (−y)H

= ⊖(xH)⊕ ⊖(yH) = ⊖(xH ⊕ yH).

The result follows from Theorem OF.10(A). ⊓⊔

Exercise REAL.9* (Alternative proof of Theorem REAL.32) Let

x be any real number, and let S and T be members of L. Prove, using

Definition REAL.19 and other theorems from this chapter and previous ones,

including Theorem REAL.21, that x(S ⊕ T ) = xS ⊕ xT .

Exercise REAL.9 Proof. (Case 0: x = 0 or S = O or T = 0.) If x = 0 then

x(S ⊕ T ) = O = xS ⊕ xT . If S = O then xS = O and (x(S ⊕ T ) = xT =

xS⊕xT . Similarly for T = O. Here we have used Definition REAL.19(A)(1).

(Case 1: x is a rational number.) This is Theorem QX.11(B).

(Case 2: x is irrational, S > O and T > O.) Applying, in order, Defini-

tion REAL.19(A)(3), Theorem QX.11(A), Definition REAL.27(A), Theorem

R.28(A), and Definition REAL.19(A)(3), we have

x(S ⊕ T ) = lub{r(S ⊕ T ) | r < x}

= lub{rS ⊕ rT | r < x}

= lub({rS | r < x} ⊕ {rT ) | r < x})

= lub{rS | r < x} ⊕ lub{rT ) | r < x}

= xS ⊕ xT .

(Case 3: x is irrational, S < O and T < O.) Applying, in order, Theorem

REAL.21(C), Theorem OF.10(F), Case 2 above, Theorem REAL.21(C), and

Theorem OF.10(F), we have
⊖(x(S ⊕ T )) = x(⊖(S ⊕ T ))

= x((⊖S)⊕ (⊖T ))

= x(⊖S)⊕ x(⊖T ))
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= ⊖(xS)⊕ ⊖(xT )

= ⊖(xS ⊕ xT ).

By Theorem OF.10(A), x(S ⊕ T ) = xS ⊕ xT .

(Case 4: x is irrational, one of S or T is a positive member of L, and the

other is negative.) Without loss of generality, we assume that S > O and

T < O.

(Subcase A: S ⊕ T > O and T < O.) Then ⊖T > O. Applying Case 2 and

Theorem REAL.21(C), we have

xS = x(S ⊕ T ⊕ (⊖T )) = x(S ⊕ T )⊕ x(⊖T ) = x(S ⊕ T )⊕ ⊖(xT ).

Adding xT to both sides, xS ⊕ xT = x(S ⊕ T ).

(Subcase B: S ⊕ T < O and T > O.) Then ⊖S < O. Applying Case 3 and

Theorem REAL.21(C), we have

xT = x(⊖S ⊕ S ⊕ T ) = x(⊖S)⊕ x(S ⊕ T ) = ⊖(xS) ⊕ x(S ⊕ T ).

Adding xS to both sides, xS ⊕ xT = x(S ⊕ T ). ⊓⊔

Exercise RR.1* Complete the computations necessary to prove Remark

RR.2(A) from Theorem ISM.8(A), that is, show that a Euclidean/LUB plane

P is an abelian group under the operation +.

Exercise RR.1 Proof. Let A, B, and C be any points of P , and let τA,

τB, and τC be the translations in T such that τA(O) = A, τB(O) = B, and

τC(O) = C. We will freely use, without reference, the fact that the set of

all such translations forms an abelian group under composition, as shown in

Theorem ISM.8(A).

A+ B = (τA ◦ τB)(O) ∈ P since τA ◦ τB is a mapping of P to P , so that

P is closed under addition.

A+ (B + C) = (τA ◦ (τB ◦ τC))(O) = ((τA ◦ τB) ◦ τC)(O) = (A+ B) + C

so that addition is associative.

A+B = (τA ◦τB)(O) = (τB ◦τA)(O) = B+A, so addition is commutative.

A + O = (τA ◦ τO)(O) = (τA ◦ ı)(O) = τA(O) = A so O is the additive

identity.

For any translation τA which maps O to A, there exists an inverse transla-

tion τA
−1. If we define −A = τA

−1(O), then A+ (−A) = (τA(τA
−1(O)) = O

so that −A is the additive inverse of A. ⊓⊔

Exercise RR.2* Prove Theorem RR.4: (A) For every A ∈ P \ {O},
←→
OA = {xA ∈ P | x ∈ R}. That is, every line through the origin is the set of

all scalar multiples of any point in that line which is distinct from O.
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Moreover, if A and B are any points in P and x and y are any real numbers,

(B) x(yA) = (xy)A, (C) x(A+B) = xA+ xB, (D) (x+ y)A = xA+ yA, (E)

1A = A, (F) xA = O iff x = 0 or A = O (or both).

Exercise RR.2 Proof. (A)
←→
OA is a line through the origin O and therefore

is a fixed line for the dilation δx, and hence if x 6= 0, xA ∈
←→
OA. By Theorem

REAL.35(A), for every A′ ∈
←→
OA \ {O}, there exists a real number t 6= 0 such

that tU1 = A′ and a real number s 6= 0 such that sU1 = A, so that A′ = t

s
A.

(B) This is Theorem REAL.23.

(C) If A, B, and O are collinear points, then (C) is Theorem REAL.32.

If they are non-collinear, let δx be the dilation with fixed point O such that

for every A ∈ P \ {O}, δx(A) = xA. Then both δx(B) = xB and δx(A +

B) = x(A + B) (cf Theorem REAL.42). By Remark RR.2 and Exercise

ISM.2, A + B is the fourth corner of the parallelogram whose other corners

are A, O, and B, that is, ⊔⊓AOB(A + B) is a parallelogram. Since all the

lines
←→
OA,

←→
OB, and

←−−−−−→
O(A +B) are fixed lines for δx, δx(∠AOB) = ∠AOB,

δx(∠AO(A +B)) = ∠AO(A +B), and δx(∠(A +B)OB) = ∠(A+B)OB.

By Theorem DLN.14,

δx(∠OA(A +B)) ∼= ∠OA(A +B) and

δx(∠O(A +B)A) ∼= ∠O(A +B)A.

By Theorem SIM.18

△OA(A +B) ∼ △O(δx(A))(δx(A+B))

and hence by Definition CAP.17,
←−−−−−−−−−−−−−→
(δx(A))(δx(A+B)) ‖

←−−−−−→
A(A+B) and

←−−−−−−−−−→
x(A)x(A +B) ‖

←−−−−−→
A(A+B).

By similar reasoning
←−−−−−−−−−−−−−→
(δx(B))(δx(A+B)) ‖

←−−−−−→
B(A+B) and

←−−−−−−−−−→
x(B)x(A +B) ‖

←−−−−−→
B(A +B).

Since ⊔⊓AOB(A+B) is a parallelogram, so is ⊔⊓(xA)O(xB)(x(A+B)). Again

by Remark RR.2, xA+xB is the fourth corner of this parallelogram, that is,

xA+ xB = x(A+B).
(D) (x+ y)A= (x+ y)(U · A)

= ((x+ y)U) ·A by Theorem REAL.25

= (xU + yU) ·A by Theorem REAL.31

= xU · A+ yU · A by Theorem OF.6

= xA+ yA by Theorem REAL.25.

(E) 1A = A is immediate from Definition QX.1(C).

(F) If x = 0 or A = O (or both), xA = O by Definition REAL.19(A)(1).

If xA = O, then by Theorem REAL.25 xA = x(U · A) = xU · A = O and by

Theorem OF.10(H), xU = O or A = O. If xU = O then x = 0 by Corollary

REAL.34(B). ⊓⊔
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Chapter 19—has no Exercises (AA)

Chapter 20: Exercises and Answers for

Ratios of Sensed Segments (RS)

Exercise RS.1* If a, b, and x are real numbers, and a 6= b,
x− a

b− x
6= −1.

Exercise RS.1 Proof. If
x− a

b− x
= −1 then x− a = x− b so that a = b. ⊓⊔

Exercise RS.2* Let a, b, x, and y be real numbers, and let a 6= b. Then

if
x− a

b− x
=
y − a

b− y
, x = y.

Exercise RS.2 Proof. If
x− a

b− x
=
y − a

b − y
then (x−a)(b−y) = (y−a)(b−x)

and bx − xy − ab + ay = by − xy − ab + ax or bx + ay = by + ax, so that

b(x−y) = bx−by = ax−ay = a(x−y) and (b−a)(x−y) = 0. Since b−a 6= 0,

x− y = 0 and x = y. ⊓⊔

Exercise RS.3 Let A, B, and X be points on a line L in the Eu-

clidean/LUB plane P , where A 6= B. Make a graph of the function f(X) =
[AX〉

[XB〉
.

Exercise RS.4* If statement (2) of Ceva’s theorem is true, that is if
[AF 〉

[FB〉
·
[BD〉

[DC〉
·
[CE〉

[EA〉
= 1, then the number of exterior Cevians is either zero

or two, the other Cevians being interior.

Exercise RS.4 Proof. Let A and B be two corners of a triangle, and

suppose that
←→
CF is the Cevian through C, the third corner, where F ∈

←→
AB.

Then by Remark RS.7(B)(3)
←→
CF is exterior iff F 6∈

px qy

AB iff F A B or A B F

iff
[AF 〉

[FB〉
< 1, and

←→
CF is interior iff F ∈

qy px

AB iff A F B iff
[AF 〉

[FB〉
> 1.

Assume now that
[AF 〉

[FB〉
·
[BD〉

[DC〉
·
[CE〉

[EA〉
= 1. Then either

(i) all the lines
←→
AD,

←→
BE, or

←→
CF are interior Cevians (none are exterior),

in which case the product is positive, or

(ii) two are exterior and one is interior, in which case the product is posi-

tive.

If two of the Cevians are interior and one is exterior, then the product is

negative which contradicts our assumption. ⊓⊔
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Chapter 21: Exercises and Answers for

Consistency and Independence of Axioms (LM)(MLT)

Exercise LM.1 Using Definition LA.1(2) prove that
←−−→
ABC =

←−−→
CAB =

←−−→
BCA =

←−−→
CBA.

Exercise LM.1 Proof. Prove that
←−−→
ABC =

←−−→
CAB =

←−−→
BCA =

←−−→
CBA.

←−−→
ABC =

←−−→
CAB =

←−−→
BCA =

←−−→
CBA

(A)
←−−→
ABC = {A+ s(B −A) + t(C −A) | (s, t) ∈ F2}

= {C + (1− s− t)(A− C) + s(B − C) | (s, t) ∈ F2}

= {C + u(A−B) + v(C −B) | (u, v) ∈ F2} =
←−−→
CAB;

(B)
←−−→
ABC = {A+ s(B −A) + t(C −A) | (s, t) ∈ F2}

= {B + (1− s− t)(A −B) + t(C −B) | (s, t) ∈ F2}

= {B + v(C −B) + u(A−B) | (v, u) ∈ F2} =
←−−→
BCA;

(C)
←−−→
ABC = {A+ s(B −A) + t(C −A) | (s, t) ∈ F2}

= {C + s(B − C) + (1− s− t)(A− C) | (s, t) ∈ F2}

= {C + u(B − C) + v(A− C) | (u, v) ∈ F2} =
←−−→
CBA. ⊓⊔

Exercise LM.2* Prove Theorem LA.3: distinct points A, B, and C are

collinear iff B −A and C −A are linearly dependent.

Exercise LM.2 Proof. (I) If A, B, and C are collinear, then by Definition

LA.1(1) there exists a number u such that C = A + u(B − A), that is,

u(B − A) − (C − A) = O. This means that B − A and C − A are linearly

dependent.

(II) If B − A, and C − A are linearly dependent, then there exists

(r, s) ∈ (F2 \ {(0, 0)}) such that r(B − A) + s(C − A) = O. If r 6= 0, then

B = A − s

r
(C − A), i.e. B ∈

←→
AC. If s 6= 0, then C = A− r

s
(B − A), that is,

C ∈
←→
AB. ⊓⊔

Exercise LM.3* Prove Theorem LA.4: distinct points A, B, C, and D

in F3 are coplanar iff B −A, C −A, and D −A are linearly dependent.

Exercise LM.3 Proof. (I) If A, B, C, and D are coplanar, then by Defi-

nition LA.1(2) there exist numbers r and s such that D = A + r(B − A) +

s(C − A), i.e., r(B − A) + s(C − A) − (D − A) = O. Since 1 6= 0, not all of

1, r, and s are 0, so that B −A, C −A, and D −A are linearly dependent.

(II) If B −A, C −A, and D−A are linearly dependent, then there exists

(u, v, w) ∈ (F3 \ {(0, 0, 0)} such that u(B − A) + v(C −A) + w(D − A) = 0̄.
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If u 6= 0, then B = A − v

u
(C − A) − w

u
(D − A), i.e., B ∈

←−−→
ACD. If v 6= 0,

then C = A − u

v
(B − A) − w

v
(D − A), i.e., C ∈

←−−→
ABD. If w 6= 0, then

D = A− u

w
(B−A)− v

w
(C −A), i.e., D ∈

←−−→
ABC. In each case, all of A, B, C,

and D are members of a single plane. ⊓⊔

Exercise LM.4* Prove Theorem LA.5: if A and B are distinct points in

F3, define, for each real number t, ϕ(t) = A+t(B−A). Then ϕ is a one-to-one

mapping of F onto
←→
AB.

Exercise LM.4 Proof. (A) If t = 0, then ϕ(0) = A. If t 6= 0, then ϕ(t)−A−

t(B −A) = O, so ϕ(t)−A and (B −A) are linearly dependent. By Theorem

LA.3, ϕ(t), A, and B are collinear, so ϕ(t) ∈
←→
AB.

(B) Note that

ϕ(t)− ϕ(s) = A+ t(B −A)− (A+ s(B −A)) = (t− s)(B −A).

Since A and B are distinct, B −A 6= O. Thus, if t− s 6= 0, ϕ(t)− ϕ(s) 6= O,

so ϕ(t) 6= ϕ(s) and ϕ is one-to-one.

(C) To show that ϕ is onto, let X be any member of
←→
AB. If X = A, let

t = 0. Then ϕ(0) = A+ 0(B −A) = A.

If X 6= A, then X−A 6= O and so by Theorem LA.3, X−A and B−A are

linearly dependent. Hence there exists a member (u, v) of F2 \ {(0, 0)} such

that u(X −A) + v(B −A) = O, or v(B −A) = −u(X −A).

If u were equal to 0, then v(B −A) = O. Since B−A 6= O, v would equal

0. This would contradict the fact that at least one of the members u or v of

the field F is different from 0. Hence u 6= 0, and

ϕ(−v
u
) = A− v

u
(B −A) = A− −u

−u
(X −A) = X . ⊓⊔

Exercise LM.5 (A) Prove Theorem LA.15: (A) Two points A = (a1, a2)

and B = (b1, b2) of F2 are linearly dependent iff

∣

∣

∣

∣

∣

a1 b1

a2 b2

∣

∣

∣

∣

∣

= 0. A solution is

provided for this part.

(B) Three points A = (a1, a2, a3), B = (b1, b2, b3), and C = (c1, c2, c3) of

F3 are linearly dependent iff

∣

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

= 0.

Exercise LM.5 Proof. (A) Suppose A = (a1, a2) and B = (b1, b2) are

linearly dependent; if aA + bB = 0 where not both a = 0 and b = 0, and

a = 0, then bB = O and B = (0, 0) so the determinant is zero; likewise if

b = 0.
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Suppose both a and b are non-zero; then let c = a

b
6= 0, so that B = cA,

b1 = ca1 and b2 = ca2; then the determinant
∣

∣

∣

∣

∣

a1 b1

a2 b2

∣

∣

∣

∣

∣

= a1b2 − a2b1 = a1ca2 − a2ca1 = 0.

On the other hand, if 0 = a1b2 − a2b1, then a1b2 = a2b1; if a1 6= 0,

b2 = b1

a1
a2. Since b1 = b1

a1
a1, A and B are linearly dependent. Similar proofs

hold if a2 6= 0, b1 6= 0, or b2 6= 0.

(B) The proof is left to the reader. ⊓⊔

Exercise LM.6* Prove Theorem LA.17: let a, b, c and d be members

of F, where at least one of a, b, c is non-zero; let E be the set of all points

(x1, x2, x3) ∈ F3 such that ax1 + bx2 + cx3 + d = 0, as defined in Remark

LA.16.

(A) E is a proper subset of F3.

(B) If X = (x1, x2, x3) ∈ E , there exist two other points Y = (y1, y2, y3)

and Z = (z1, z2, z3) in E such that X , Y , and Z are noncollinear, which is

to say (by Theorem LA.4) that the vectors Y − X and Z − X are linearly

independent.

Exercise LM.6 Proof. (A) If d 6= 0, (0, 0, 0) 6∈ E ; if d = 0, and (1) a 6= 0,

then (1, 0, 0) 6∈ E ; if (2) b 6= 0, (0, 1, 0) 6∈ E , and if (3) c 6= 0, then (0, 0, 1) 6∈ E .

Thus E is a proper subset of F3.

(B) If a 6= 0 and b = c = 0, let Y = (y1, y2, y3) = X + (0, 1, 0) and

Z = (z1, z2, z3) = A+(0, 0, 1); then a·0+0·1+0·0 = 0 and a·0+0·0+0·1 = 0

so that ay1 + by2 + cy3 + d = 0 and az1 + bz2 + cz3 + d = 0. Thus both Y

and Z belong to E , and Y −X = (0, 1, 0) and Z −X = (0, 0, 1), which are

linearly independent, and X , Y , and Z are noncollinear. Similar arguments

will show the result in case b 6= 0 and a = c = 0, and c 6= 0 and a = b = 0.

If a 6= 0 and b 6= 0 and c = 0, let Y = (y1, y2, y3) = X + (1,−a

b
, 0)

and Z = (z1, z2, z3) = X + (0, 0, 1); then a · 1 + b(−a

b
) + 0 · 0 = 0 and

a·0+b·0+0·1 = 0, so that ay1+by2+cy3+d = 0 and az1+bz2+cz3+d = 0, and

both Y and Z belong to E . Then Y −X = (1,−a

b
, 0) and Z −X = (0, 0, 1),

which are linearly independent, so that again by Theorem LA.3 (Exercise

LM.2), X , Y , and Z are noncollinear. Similar arguments will show the result

in case a 6= 0 and c 6= 0 and b = 0, and b 6= 0 and c 6= 0 and a = 0.

If a, b, and c are all non-zero, again let X = (x1, x2, x3) ∈ E so

that ax1 + bx2 + cx3 + d = 0; let Y = (y1, y2, y3) = X + (1,−a

b
, 0)

and Z = (z1, z2, z3) = X + (1, 0,−a

c
); then a · 1 + b(−a

b
) + 0 · 0 = 0

and a · 1 + b · 0 + c(−a

c
) = 0, so that ay1 + by2 + cy3 + d = 0 and
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az1+bz2+cz3+d = 0 and both Y and Z belong to E . Then Y −X = (1,−a

b
, 0)

and Z − X = (1, 0,−a

c
), which are linearly independent, and X , Y , and Z

are noncollinear. ⊓⊔

Exercise LM.7* Prove Theorem LA.18: let X = (x1, x2, x3), Y =

(y1, y2, y3), and Z = (z1, z2, z3) be noncollinear points in F3, so that
←−−→
XY Z is

a plane as in Definition LA.1(2). Then there exist numbers a, b, c and d in

F, where not all of a, b, or c are zero, such that
←−−→
XY Z = {(w1, w2, w3) | aw1 + bw2 + cw3 + d = 0}.

Exercise LM.7 Proof. By Definition LA.1(2) W = (w1, w2, w3) is a point

on
←−−→
XY Z iff there exist numbers s and t such thatW = X+s(Y−X)+t(Z−X)

i.e. (W −X)− s(Y −X)− t(Z −X) = O. By Theorem LA.4 and Theorem

LA.15 (Exercises LM.3 and LM.5) this equality holds iff
∣

∣

∣

∣

∣

∣

∣

w1 − x1 y1 − x1 z1 − x1

w2 − x2 y2 − x2 z2 − x2

w3 − x3 y3 − x3 z3 − x3

∣

∣

∣

∣

∣

∣

∣

= 0.

Define det1 =

∣

∣

∣

∣

∣

y2 − x2 z2 − x2

y3 − x3 z3 − x3

∣

∣

∣

∣

∣

, det2 =

∣

∣

∣

∣

∣

y1 − x1 z1 − x1

y3 − x3 z3 − x3

∣

∣

∣

∣

∣

, and

det3 =

∣

∣

∣

∣

∣

y1 − x1 z1 − x1

y2 − x2 z2 − x2

∣

∣

∣

∣

∣

.

Expanding the first determinant by its first column, we have

(w1 − x1)det1 − (w2 − x2)det2 + (w3 − x3)det3

= w1det1 − w2det2 + w3det3 − x1det1 + x2det2 − x3det3

= aw1 + bw2 + cw3 + d = 0,

where a = det1, b = −det2, c = det3, and d = −x1det1+x2det2−x3det3. Since

these implications are all reversible, they show that (w1, w2, w3) ∈
←−−→
XYZ iff

aw1 + bw2 + cw3 + d = 0, that is to say
←−−→
XY Z = {(w1, w2, w3) | aw1 + bw2 + cw3 + d = 0}. ⊓⊔

Exercise LM.8* Prove Theorem LA.19: let a, b, c, and d be numbers in

F, where not all of a, b, or c are zero. Then the set

E = {(x1, x2, x3) | ax1 + bx2 + cx3 + d = 0}

is a plane in F3 as defined by Definition LA.1(2).

Exercise LM.8 Proof. Let W = (w1, w2, w3) be any member of E so

that aw1 + bw2 + cw3 + d = 0. For any X = (x1, x2, x3) ∈ E , X −W =

(x1−w1, x2−w2, x3−w3) satisfies a(x1−w1)+b(x2−w2)+c(x3−w3)+d−d = 0;
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and if this is satisfied, thenX = X−W+W ∈ E . Thus, E−W = {(x1, x2, x3) |

ax1 + bx2 + cx3 = 0.

We show that E −W is a vector space. If (x1, x2, x3) and (y1, y2, y3) are

members of this set, then ax1+bx2+cx3 = 0 and ay1+by2+cy3 = 0, so that

a(x1 + y1) + b(x2 + y2) + c(x3 + y3) = 0, so is a member of E −W . Likewise,

if z is any number, zax1 + zbx2 + zcx3 = 0 so that z(x1, x2, x3) ∈ E −W .

Therefore E −W is a vector space.

By Theorem LA.17(B) (Exercise LM.6) there exist vectors D and E in

this space which are linearly independent, so that its dimension is ≥ 2. By

Theorem LA.17(A), E −W is a proper subset of F3; by the Dimension Cri-

terion of Chapter 1 Section 1.5, the dimension is 2; by Remark LA.9(C) it

is a plane, and by part (D) of the same remark E = E −W +W is a plane. ⊓⊔

Exercise LM.9* Prove Theorem LB.4: for any numbers a, b, c, a′, b′,

and c in F, where at least one of a or b, and at least one of a′ or b′ is non-zero,

then

(A) L = {(x1, x2) | ax1 + bx2 + c = 0} 6= F2;

(B) there exist at least two distinct points in L; and

(C) both ax1 + bx2 + c = 0 and a′x1 + b′x2 + c′ = 0 are equations for L iff

there exists a number k 6= 0 such that a′ = ka, b′ = kb, and c′ = kc.

Exercise LM.9 Proof. (A) If c 6= 0, (0, 0) 6∈ E ; if c = 0 and a 6= 0, then

(1, 0) 6∈ E ; if c = 0, and b 6= 0, then (0, 1) 6∈ E . Thus L is a proper subset of

F2.

(B) Suppose X = (x1, x2) ∈ E ; we show that there exists another point

Y = (y1, y2) ∈ L.

(1) If a 6= 0 and b 6= 0, let

Y = (y1, y2) = X + (− b

a
, 1) = (x1 −

b

a
, x2 + 1);

then

ay1 + by2 + c = a(x1 −
b

a
) + b(x2 + 1) + c

= ax1 + bx2 + c+ a(− b

a
) + b · 1

= ax1 + bx2 + c+ (−b+ b) = 0 + 0 = 0.

Thus Y ∈ L, and Y 6= X .

(2) If a 6= 0 and b = 0, let Y = (y1, y2) = X+(0, 1); then a ·0+0 ·1 = 0 so

that ay1 + by2 + c = 0. Thus Y ∈ E , and Y −X = (0, 1) so these are distinct

points.
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(3) If a = 0 and b 6= 0, let Y = (y1, y2) = X+(1, 0); then 0 ·1+ b ·0 = 0 so

that ay1 + by2 + c = 0. Thus Y ∈ E , and Y −X = (1, 0) so these are distinct

points.

(C) If for some k 6= 0 such that a′ = ka, b′ = kb, and c′ = kc, and

ax1 + bx2 + c = 0, then clearly a′x1 + b′x2 + c′ = 0.

Conversely, suppose both ax1 + bx2 + c = 0 and a′x1 + b′x2 + c′ = 0.

(1) If c = 0 then (0, 0) ∈ L and hence c′ = 0; also not both a and b can

be zero. If a 6= 0 and b = 0, L = {(0, x2) | x2 ∈ F}. Choose x2 = 1; then

a′ · 0 + b′ = 0, so b′ = 0 and a′ can be any non-zero number.

Similarly, if a = 0 and b 6= 0 then a′ = 0 and b′ can be any non-zero

number. If a 6= 0 and b 6= 0, the point (− b

a
, 1) ∈ L so that a′(− b

a
) + b′ = 0,

and a
′

a
= b

′

b
; we may let k = a

′

a
.

(2) If c 6= 0 then c′ 6= 0. If a 6= 0 and b = 0, (− c

a
, 0) ∈ L so that Then

a′(− c

a
) + b′ · 0 + c′ = 0, and a

′

a
(−c) + c′ = 0, or a

′

a
= c

′

c
; also, (− c

a
, 1) ∈ L so

that a′(− c

a
) + b′ + c′ = 0 and hence a

′

a
+ ( b

′

−c
)− c

′

c
= 0, and b′ = 0. We may

let k = a
′

a
.

Similarly, if c 6= 0 and a = 0 and b 6= 0, then a′ = 0 and b
′

b
= c

′

c
, and we

may let k = b
′

b
.

Finally, if c 6= 0, a 6= 0, and b 6= 0, (0,− c

b
) ∈ L; then a′ ·0+b′(− c

b
)+c′ = 0,

and b
′

b
= c

′

c
. Likewise, (− c

a
, 0) ∈ L and a′(− c

a
)+b′ ·0+c′ = 0, so that a

′

a
= c

′

c
.

In this case we can let k = c
′

c
. ⊓⊔

Exercise LM.10* Prove Theorem LB.5: let X = (x1, x2) and Y =

(y1, y2) be distinct points in F2, and let
←→
XY be the line containing bothX and

Y according to Definition LA.1(1). Then
←→
XY = {(w1, w2) | aw1 + bw2 + c =

0}, where a = y2 − x2, b = x1 − y1, and c = x2(y1 − x1)− x1(y2 − x2).

Exercise LM.10 Proof. W = (w1, w2) is a point on
←→
XY iff there exists a

number s such that W = X + s(Y −X) i.e. (W −X)− s(Y −X) = O. By

Theorem LA.3 and Theorem LA.15 (Exercise LM.2 and Exercise LM.5) this

equality holds iff
∣

∣

∣

∣

∣

w1 − x1 y1 − x1

w2 − x2 y2 − x2

∣

∣

∣

∣

∣

= (w1 − x1)(y2 − x2)− (w2 − x2)(y1 − x1)

= (y2 − x2)w1 − x1(y2 − x2)− (y1 − x1)w2 + x2(y1 − x1)

= (y2 − x2)w1 + (x1 − y1)w2 + (x2(y1 − x1)− x1(y2 − x2)) = 0.

This is true iff aw1 + bw2 + c = 0, where a = y2 − x2, b = x1 − y1, and

c = x2(y1 − x1)− x1(y2 − x2). Since the implications are all reversible, they

show that (w1, w2) ∈
←→
XY iff aw1 + bw2 + c = 0. Therefore
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←→
XY = {(w1, w2) | aw1 + bw2 + c = 0}. ⊓⊔

Exercise LM.11 Prove Theorem LB.6: let a, b, and c be numbers in F,

where at least one of a or b is non-zero. Then the set

E = {(x1, x2) | ax1 + bx2 + c = 0}

is a line in F2 as defined by Definition LA.1(1).

Exercise LM.11 Proof. Let W = (w1, w2) be any member of E so that

aw1 + bw2 + c = 0. For any X = (x1, x2) ∈ E , X −W = (x1 − w1, x2 − w2)

satisfies a(x1 − w1) + b(x2 − w2) + c− c = 0 so that

E −W ⊆ {(x1, x2) | ax1 + bx2 = 0}.

Conversely, if Z = (z1, z2) ∈ {(z1, z2) | az1 + bz2 = 0}, Z = Z +W −W =

(z1 + w1 − w1, z2 + w2 − w2) satisfies

0 = a(z1 + w1 − w1) + b(z2 + w2 − w2)

= a(z1 + w1)− aw1 + b(z2 + w2)− bw2

= a(z1 + w1) + b(z2 + w2)− aw1 − bw2

= a(z1 + w1) + b(z2 + w2)− (aw1 + bw2)

= a(z1 + w1) + b(z2 + w2)− (−c)

so that a(z1+w1)+b(z2+w2)+c = 0 and Z+W ∈ E . Thus Z = Z+W−W ∈

E −W , and E −W = {(x1, x2) | ax1 + bx2 = 0}.

If X = (x1, x2) and Y = (y1, y2) are members of E−W , then ax1+bx2 = 0

and ay1 + by2 = 0, so that a(x1 + y1) + b(x2 + y2) = 0 and hence X + Y

is a member of E − W . Likewise, if X ∈ E − W , and z is any number,

zax1 + zbx2 = 0 so that z(x1, x2) ∈ E −W .

According to the criterion in Chapter 1 Section 1.5 under the heading

Vector spaces, E −W is a vector space. By Theorem LB.4(A), E −W is a

proper subset of F2; by the Dimension Criterion of Chapter 1 Section 1.5,

its dimension is 1; by Remark LA.8(C) it is a line according to Definition

LA.1(1), and by part (D) of the same remark E = E −W +W is a line. ⊓⊔

Exercise LM.12 Prove Theorem LB.10: let

L = {(x1, x2) | a1x1 + b1x2 + c1 = 0} and

M = {(x1, x2) | a2x1 + b2x2 + c2 = 0}

be two lines in F2. Then if they are c-perpendicular, they must intersect.

Exercise LM.12 Proof. By Theorem LB.8, L ⊥ M iff a1a2 + b1b2 =

0. The two lines intersect iff there exists a point (x1, x2) such that both

a1x1 + b1x2 + c1 = 0 and a2x1 + b2x2 + c2 = 0; by Cramer’s Rule such a

solution exists iff the determinant a1b2 − a2b1 6= 0.
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Therefore, we need to show that if a1a2 + b1b2 = 0, then a1b2 − a2b1 6= 0.

There are three cases:

Case 1: a1 = 0; then b1 6= 0; since a1a2 = −b1b2 = 0, b2 = 0 so that a2 6= 0;

in this case a1b2− a2b1 = 0+ a2b1 6= 0. Interchanging a1 with a2 and b2 with

b1, if a2 = 0, a1b2 − a2b1 = a1b2 + 0 6= 0.

Case 2: b1 = 0; then a1 6= 0; since a1a2 = −b1b2 = 0, a2 = 0 so that b2 6= 0;

in this case a1b2 − a2b1 = a1b2 + 0 6= 0. Again, interchanging a1 with a2 and

b2 with b1, if b2 = 0, a1b2 − a2b1 = 0− a2b1 6= 0.

Case 3: none of the coefficients a1, a2, b1 and b2 is zero. From a1a2+b1b2 =

0 we get a1a2 = −b1b2, or
a1

b1
= − b2

a2
. If a1b2 − a2b1 = 0, a1b2 = a2b1, and

a1

b1
= a2

b2
, so that a2

b2
= a1

b1
= − b2

a2
.

Therefore −b2
2 = a2

2; since b2
2 ≥ 0 and a2

2 ≥ 0 this is true iff b2 = a2 = 0

which is a contradiction to our original assumption that none of the coeffi-

cients is zero. Therefore a1b2 − a2b1 6= 0. ⊓⊔

Exercise LM.13* Show that the line L on R2 through the distinct points

(u1, u2) and (v1, v2) is

{(x1, x2) | (x1, x2) ∈ R2 and (v2 − u2)(x1 − u1)− (v1 − u1)(x2 − u2) = 0}.

Exercise LM.13 Proof. (I) By Remark LA.1(1), (x1, x2) belongs to the

line in Model LM2 containing both (u1, u2) and (v1, v2) iff for some t,

(x1, x2) = (u1, u2) + t((v1, v2)− (u1, u2)).

Suppose that this holds, and v1 6= u1; then t = x1−u1

v1−u1
and x2 = u2 +

x1−u1

v1−u1
(v2 − u2) so that (v1 − u1)(x2 − u2) − (v2 − u2)(x1 − u1) = 0, that

is,

(v2 − u2)(x1 − u1)− (v1 − u1)(x2 − u2) = 0.

A similar argument holds if v2 6= u2. Then ax1+bx2+c = 0, where a = v2−u2,

b = −(v1 − u1) and c = (−u1)(v2 − u2) + u2(v1 − u1).

Now suppose that ax1 + bx2 + c = 0, where a, b, and c are defined as

just above. By Theorem LB.6, we know that this is the formula of a line.

We verify that it contains the points (u1, u2) and (v1, v2) by the following

calculations:

(u1, u2) ∈ L, since (v2 − u2)(u1 − u1)− (v1 − u1)(u2 − u2) = 0, and

(v1, v2) ∈ L, since (v2 − u2)(v1 − u1)− (v1 − u1)(v2 − u2) = 0.

Since by Axiom I.1 there is only one line containing both these points, this

line must be the one with formula ax1 + bx2 + c = 0. ⊓⊔
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Exercise LM.14* Show that for every member (x1, x2) on the line

L = (x1, x2) | (x1, x2) ∈ R2 and ax1 + bx2 + c = 0,

the formula for Φ(x1, x2) given in Definition LB.16 yields Φ(x1, x2) = (x1, x2).

For a coordinate-free proof, see Theorem LC.23(A).

Exercise LM.14 Proof. If ax1 + bx2 + c = 0, then (b2−a2)x1−2abx2−2ac
a2+b2

=
(b2−a2)x1−2a(−ax1−c)−2ac

a2+b2
= b

2
x
2−a2

x1+2a2
x1+2ac−2ac

a2+b2
= (a2+b

2)x1

a2+b2
= x1 and

−2abx1+(a2−b2)x2−2bc
a2+b2

= −2b(−bx2−c)+(a2−b2)x2−2bc
a2+b2

= (a2+b
2)x2

a2+b2
= x2. ⊓⊔

Exercise LM.15* In the plane F, if a line L is c-perpendicular to a line

M and if line M and line N are parallel, then L is c-perpendicular to line

N .

Exercise LM.15 Proof.

Let L = {(x1, x2) | (x1, x2) ∈ R2 and a1x1+b1x2+c1 = 0}; sinceM ‖ N ,

there exist numbers a2, b2, c2 and c3 such that

M = {(x1, x2) | (x1, x2) ∈ R2 and a2x1 + b2x2 + c2 = 0}, and

N = {(x1, x2) | (x1, x2) ∈ R2 and a2x1 + b2x2 + c3 = 0},

where (a1, b1) 6= (0, 0) and (a2, b2) 6= (0, 0).

By Theorem LB.8, L is c-perpendicular to M iff a1a2 + b1b2 = 0, which

is true iff L is c-perpendicular to N . ⊓⊔

Exercise LM.16* Let F be an ordered field, and let RL = Φ be the

mapping defined by Definition LB.16 and Definition LC.25 over the line

L = {(x1, x2) | (x1, x2) ∈ F2 and ax1 + bx2 + c = 0}.

where (a, b) 6= (0, 0). Define Γ1 and Γ2 to be the mappings such that

RL(x1, x2) = (Γ1(x1, x2), Γ2(x1, x2)). Then if X = (x1, x2) and Y = (y1, y2)

are any points of F2,
(

Γ1(x1, x2)− Γ1(y1, y2))
2 +

(

Γ2(x1, x2)− Γ2(y1, y2))
2

= (x1 − y1)2 + (x2 − y2)2.

In case F is algebraically closed, so that distance is defined, this says that

dis2(RL(X),RL(Y )) = dis2(X,Y ).

Exercise LM.16 Proof. For any (x1, x2) and (y1, y2) in F2,
(

Γ1(x1, x2)− Γ1(y1, y2)
)2

=
(

b
2−a2

a2+b2
x1 −

2ab
a2+b2

x2 −
2ac

a2+b2
− b

2−a2

a2+b2
y1 +

2ab
a2+b2

y2 +
2ac

a2+b2

)2

=
(

b
2−a2

a2+b2
(x1 − y1)−

2ab
a2+b2

(x2 − y2)
)2

=
(

b
2−a2

a2+b2

)2
(x1 − y1)2 +

(

2ab
a2+b2

)2
(x2 − y2)2

+2
(

b
2−a2

a2+b2

)(

−2ab
a2+b2

)

(x1 − y1)(x2 − y2), (*)
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and
(

Γ2(x1, x2)− Γ2(y1, y2)
)2

=
(

−2ab
a2+b2

x1 +
a
2−b2

a2+b2
x2 −

2bc
a2+b2

+ 2ab
a2+b2

y1 −
a
2−b2

a2+b2
y2 +

2bc
a2+b2

)2

=
(

−2ab
a2+b2

(x1 − y1) +
a
2−b2

a2+b2
(x2 − y2)

)2

=
(

−2ab
a2+b2

(x1 − y1)
)2

+
((

a
2−b2

a2+b2

)

(x2 − y2)
)2

+2
(

−2ab
a2+b2

)

(x1 − y1)
(

a
2−b2

a2+b2

)

(x2 − y2). (**)

Now add (*) and (**); their last terms are negatives of each other, so we have
(

Γ1(x1, x2)− Γ1(y1, y2))
2 +

(

Γ2(x1, x2)− Γ2(y1, y2))
2

= b
4−2b2a2+a

4+4a2
b
2

(a2+b2)2 (x1 − y1)2 +
4a2

b
2+(a2−b2)2

(a2+b2)2 (x2 − y2)2

= b
4+2b2a2+a

4

(a2+b2)2 (x1 − y1)
2 + 2a2

b
2+a

4+b
4

(a2+b2)2 (x2 − y2)
2

= (b2+a
2)2

(a2+b2)2 (x1 − y1)
2 + (a2+b

2)2

(a2+b2)2 (x2 − y2)
2

= (x1 − y1)2 + (x2 − y2)2. ⊓⊔

Exercise MLT.1* Prove the uniqueness of the line found in Theorem

MLT.3, which passes through both points A and B.

Exercise MLT.1 Proof. If a line Mm containing both A and B does not

include the point P , then it intersects the y-axis at some point Q. If Q is

above P , sl(
px→
QA) > sl(

px→
PA). Then sl(

px→
QB) > sl(

px→
PB and these two rays are

disjoint so that B 6∈
px→
QB, a contradiction. A similar proof will show that Q

cannot be below P . ⊓⊔

Exercise MLT.2* Prove Claim 1 of Theorem MLT.5.

Exercise MLT.2 Proof. (A) Suppose a line Lc in Model LM2R (R2) is not

vertical. Let C = (c1, c2) be a point that lies above Lc —so that there is a

point A = (a1, a2) ∈ Lc with a1 = c1 and a2 < c2. Let B = (b1, b2) be any

point of Lc such that B 6= A. By Definition LA.1(1) Lc = {A + s(B − A) |

s ∈ R}, and Lc =
←→
ABc, the line in the coordinate plane containing A and B.

By Theorem LC.18 the C-side of
←→
ABc is the set

E = {A+ s(B −A) + t(C −A) | (s, t) ∈ R2 and t > 0}.

This is the set of all points that lie above the line Lc. By Theorem LC.19, if

C A C′, the set of all points lying below Lc is its C′-side. It is quite obvious

that every point of R2 is in L or one of these two sides.

Therefore, if X and Y are any two points, both lying above (or below) Lc,
px qy

XY c ∩ Lc = ∅. Moreover, if X and Y are points, one lying above and the

other below Lc, since Axiom PSA is true for Model LM2R,
qy px

XY c ∩ Lc 6= ∅.
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(B) Now suppose a line Lc in Model LM2R (R2) is vertical; that is, there

exists a real number d such that Lc = {(d, y) | y ∈ R}. Again, let a point

C = (c1, c2) where c2 > d. Then C lies to the right of Lc. By reasoning similar

to that of part (A), the C-side of Lc is the set of all points on the plane lying

to the right of Lc; if C A C′, the set of all points lying to the left of Lc is

the C′-side of Lc; and every point of the plane is in Lc or one or the other of

these two sides.

Therefore, if X and Y are any two points, both lying to the right of (or to

the left of) Lc,
px qy

XY c ∩Lc = ∅. Moreover, if X and Y are points, one lying to

the right of Lc, and the other to the left, since Axiom PSA is true for Model

LM2R,
qy px

XY c ∩ Lc 6= ∅. This shows that E and F are opposite sides of the

line. ⊓⊔

Exercise MLT.3* Prove that Case 4 of Claim 2 of the proof of Theorem

MLT.5 leads to a contradiction.

Exercise MLT.3 Proof. Suppose both X and Y lie below Lm, x1 < 0, and

y1 > 0, and either P = O or P lies above O. The slope sl(
px →
PX) > sl(lr(Lm).

(Thus if
←→
XY m is of type N, so is Lm.)

If
←→
XY m is of type H or type P, sl(

px→
PY ) = sl(

px →
PX) > sl(lr(Lm)) ≥

sl(rr(Lm)). If
←→
XY m is of type N, then Lm is of type N and sl(

px→
PY ) =

2sl(
px →
PX) > 2sl(lr(Lm)) = sl(rr(Lm). In either case, since P lies above O, all

points of
px→
PY lie above Lm, which is impossible, since Y is above that line. ⊓⊔

Exercise MLT.4* Let X = (x1, x2) and Y = (y1, y2) be two points

in Model MLT, where x1 < y1, and let d be any real number such that

x1 < d < y1. Then there exists a real number e such that the point Z = (d, e)

is the point of intersection of L and
←→
XY m; also Z ∈

px qy

XY m. This proves that

every non-vertical line intersects every vertical line.

Exercise MLT.4 Proof. (I) Suppose
←→
XY m is a line of type H or type P, or it

is a type N line and 0 < x1 < d < y1 or x1 < d < y1 < 0 then
qy px

XY c =
qy px

XY m.

Let e =
(d− x1)(y2 − x2)

y1 − x2
; then Z = (d, e) is the point of intersection of L

and
←→
XY m. Z ∈

px qy

XY m because X Z Y , since 0 < x1 < d < y1.

(II) If
←→
XY m is a type N line, and x1 < 0 < y1, then we have two cases:

Case 1: If d = 0, L is the y-axis, and the point of intersection of
←→
XY m and

L is the point O = (0, e) where e =
ad+ 2cb

2c+ a
, as was calculated above in the

proof of Theorem MLT.3 (showing that Axiom I.1 holds in Model MLT).
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Case 2: If d 6= 0, first we locate the point O = (0, e) of intersection with

the y-axis, as in Case 1 above; then apply Part (I) above to calculate the

intersection of whichever of the segments
qy px

OXc or
qy px

OY c intersects L. Since

both these are subsets of
qy px

XY m, it follows that
qy px

XY m ∩ L 6= ∅. ⊓⊔

Exercise MLT.5* Prove that in Model MLT, every line parallel to a line

of type N is a line of type N.

Exercise MLT.5 Proof. Let L be a line of type N; by Exercise MLT.4,

every vertical line intersects L; in particular, the y-axis intersects it at some

point O. LetM be any line of type H or type P, which intersects the y-axis at

a point P . If P is above O, thenM intersects L at some point of the left ray

lr(L); if P is below O, these intersect at some point of the right ray rr(L).

Thus the only lines that do not intersect L are lines of type N. ⊓⊔

Exercise MLT.6 Prove that the relation “<” defined (for lines of type N)

in part (3) of Definition MLT.1(F) is an order relation according to Definition

ORD.1. Note that this proof will involve Model MLT rays, which may lie

partly in one side and partly on the other side of the y-axis (and hence don’t

look like the Model LM2R rays we considered in the text).
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