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Introduction to Exercises and Answers

This file contains answers (solutions) to exercises in Fuclidean Geometry
and its Subgeometries by Specht, Jones, Calkins, and Rhoads (Birkhauser,
2015).

All references to chapters, theorems, definitions, remarks, and figures refer
to this work. Most exercises are in the form of statements, so that “answers”
are actually proofs, and are labeled as such.

Here we state all the exercises for each chapter, but give solutions only to
those that are starred; most of these are needed for the development of the
book. Thus, a solution is given for Exercise 1.13* but not for Exercise 1.14.

We encourage you to read each exercise, make a sketch if it helps you to
visualize it, and get in mind how to prove it, even if you don’t actually put
the details together. You can justify skipping an occasional exercise only if
you are quite sure you could construct the proof if you had to, and feel it is
a waste of your time to supply all the details. But beware that supplying all
the details may look deceptively simple when you give a theorem a cursory
glance.

It is possible that you may create new solutions for exercises that are more
elegant than the ones we have given. The authors will appreciate receiving
any such improvements, as well as corrections to errors you may find in the

proofs given.

Chapter 1: Exercises and Answers for
Preliminaries and Incidence Geometry (I)

Exercise I.1* If £ and M are distinct lines and if £ N M # (), then
LN M is a singleton.

Exercise 1.1 Proof. Assume £ N M has two distinct members A and B;
then each of the points A or B belongs to £ and to M. By Axiom 1.1 £L = M,
contradicting the given fact that £ and M are distinct. Hence our assump-
tion that A # B is false, and since LN M # 0, LN M is a singleton. O

Exercise 1.2* (A) If A and B are distinct points, and if C' and D are
distinct points on ﬁ, then Cﬁ = ﬁ



(B) If A, B, and C are noncollinear points, and if D, E, and F are non-
collinear points on ABQ%, then iiE? = ABE%.

Ezxercise 1.2 Proof. (A) Since C' and D are distinct points, by Axiom I.1,
CD = 4B.

(B) Since D, E, and F are noncollinear points on m, by Axiom 1.2,
DEF = ABC. D

Exercise 1.3* If £ and M are lines and £ C M, then £ = M.

Ezercise 1.3 Proof. By Axiom I.5(A) there exist distinct points A and B
on L. Since L C M, A and B are on M. By Axiom .1 L= M. O

Exercise 1.4* Let A and B be two distinct points, and let D, E, and
F' be three noncollinear points. If j@ contains only one of the points D, F,
and F', then each of the lines ﬁ, ﬁ, and W intersects j@ in at most one

point.

Ezercise 1.4 Proof. We may choose our notation so that j@ contains
the point D. Then if ﬁ (or E}’) intersects jﬁ in two points, by Exercise
I.2(A) DE = ﬁ, (or DF = ﬁ) and both D and F (D and F) are members
of AB, contradicting the assumption that this line contains only one of the
points D, E, or F. Since E and F do not belong to j@, H’ #+ j@ and by

Exercise 1.1, if these intersect they intersect in a singleton. O

Exercise I.5* If £ is a plane, £ is a line such that £N L # (), and L is

not contained in &, then £ N L is a singleton.

Ezercise 1.5 Proof. Since €N L # (), there exists a point A belonging to
£ and to L. Assume there exists a point B distinct from A which belongs to
£ and to L. By Axiom .1 £ = ﬁ and by Axiom 1.3 £ C &. This contra-
dicts the given fact that £ is not contained in £. Hence £NL is a singleton. O

Exercise 1.6 Let D and & be distinct planes such that DNE # (), so that
(by Theorem I1.4) DN E is a line £; let P be a point on D but not on £; and
let @ be a point on £ but not on L. Then % and £ are not coplanar.

Exercise I.7* Given a line £ and a point A not on £, there exists one
and only one plane £ such that A € £ and L C €£.
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Exercise 1.7 Proof. By Axiom L.5 there are two distinct points on £, and
by assumption these are not collinear with A. By Axiom 1.2 there exists ex-

actly one plane £ containing all three points. By Axiom .3 L C £. O

Exercise 1.8*% Let A, B, C, and D be noncoplanar points. Then each of
the triples {A, B,C}, {A, B, D}, {A,C, D}, and {B, C, D} is noncollinear.

Ezercise 1.8 Proof. If one of the triples is collinear, all of its points belong
to a line £. By Exercise 1.7 there exists a unique plane £ such that £ and
the one point among A, B, C, and D which is not in the triple are in that
plane, hence the four points are coplanar. 0O

Exercise 1.9 There exist four distinct planes such that no point is com-

mon to all of them.

Exercise 1.10 Every plane £ contains at least three lines £, M, and N
such that LN M NN = 0.

Exercise I.11 Every plane contains (at least) three distinct lines.
Exercise 1.12 Space contains (at least) six distinct lines.

Exercise 1.13* If L is a line contained in a plane &, then there exists a
point A belonging to £ but not belonging to L.

Exercise 1.13 Proof. Axiom 1.5 says that there exist at least three non-
collinear points on £. Therefore not all of these points can be in any line £;

let A be that point from among these three that is not on this line. O

Exercise 1.14 If P is a point in a plane &, then there is a line £ such
that P € £ and £L C €.

Exercise I.15 If a plane & has (exactly) three points, then each line con-
tained in € has (exactly) two points.

Exercise 1.16 If a plane £ has exactly four points, and if all of the lines
contained in £ have the same number of points, then each line contained in

& has (exactly) two points.



Exercise 1.17 If each line in space has at least three points, then:
(1) Each point of a plane is a member of at least three lines of the plane;
(2) Each plane has at least seven points;

(3) Each plane contains at least seven lines.

Exercise 1.18 In this exercise we will use the symbolism “P || Q” to indi-
cate that two planes P and Q do not intersect. Consider what can happen if
the restrictions of P; NPy, P; NP3, and P2 NP3 being nonempty are removed
in Theorem 1.9. Sketch at least four possibilities (P || P2 || P3, P1 = P2 || Ps,
P1 =Py ="Ps3, P1NPy =0, but PLNP3 =Ly and Po NP3 = L1) and deter-
mine if these can be proved within incidence geometry.

Exercise 1.19 Count the number of lines in the 8-point model. Compare
this with T, = @, triangular numbers, for n = 7. Compare it also with
nCr = #Lr),, the number of combinations of n items taken r at a time,

where n = 8 and r = 2.

Exercise 1.20 Count the number of planes in the 8-point model. Com-
pare this with ,,C, for n = 8 and » = 3. Note the reduction by a factor of
four due to the fact that each plane has four points. Can you form a similar
argument with r = 47

Exercise 1.21 Consider a 4-point model with the four points configured
like the vertices of a tetrahedron. Label these points A, B, C, and D. Specify
six lines and four planes and verify that this model satisfies the axioms and
theorem of incidence geometry. Compare this with Exercises 1.7, 1.10, 1.12,

and I[.13. How does Theorem 1.9 apply in this geometry?
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Chapter 2: Exercises and Answers for
Affine Geometry: Incidence with Parallelism (IP)

Exercise IP.1* If £ and M are parallel lines, then there is exactly one

plane containing both of them.

Ezercise IP.1 Proof. 1f L || M, by Definition IP.0 there exists a plane &
containing both £ and M such that £N M = (). If there is a second plane F
containing both £ and M, let A and B both belong to £ and C' € M. Then
A, B, and C are not collinear and by Axiom 1.2, F =&. O

Exercise IP.2* Let £, M, and N be distinct lines contained in a single
plane.

(A)If L || M and M || NV, then L || N.

(B) If £ intersects M, then N/ must intersect £ or M, possibly both.

Ezercise IP.2 Proof. (A) This follows immediately from Theorem IP.6.
However, since all the lines are in a single plane, a simpler proof may be
constructed as follows: if £ [f N then LNN # (); let LNN = {A}; then since
L and N are both parallel to M, there are two lines through A parallel to
M, violating the parallel postulate PS.

(B) If N does not intersect either £ or M, then it is parallel to both, and
thus, by part (A), £ is parallel to M, contradicting the assumption that £
and M intersect. O

Exercise IP.3* Let E be a pencil of lines on the plane P. If £ and M
are distinct members of E which intersect at the point O, then the members
of E are concurrent at O.

Ezercise IP.3 Proof. By Definition IP.0(D) O belongs to every member of

E, so the members of E are concurrent at O. 0O

Exercise IP.4* Let £, M, and N be distinct lines in a plane £ such that
L|| M. Then if LON # 0, MNN # 0.

Exercise IP.4 Proof. If £ and N intersect, and neither intersects M, then
both £ and A are lines through a point, both parallel to M. By Axiom PS,

this is impossible, so that one of these lines must intersect M. By assumption

L ]| M so N intersects M. 0O



Exercise IP.5* Let L1, Lo, M1, and My be lines on the plane P such
that £ and Lo intersect at a point, £1 || M1, and Lo || Mg, then M; and

M intersect at a point.

Exercise IP.5 Proof. Assume M and Ms are parallel, then by Exercise
IP.2(B) Ly || £2. This contradicts the given fact that £, and Ly intersect
at a point. Hence our assumption is false and so M; and M intersect at a

point. O

Exercise IP.6* Let £ and F be planes such that £ || F, and let £ be a
line in €. Then L || F.

Ezercise IP.6 Proof. By Definition IP.0(C), £ || F means that £NF = 0.
Since L C &, LN E =0, and by Definition IP.0(B) L || £. O

Exercise IP.7* Let £, F, and G be planes such that £ || F, ENG # 0,
and FNG # (. Then ENG is aline £, FNG is a line M, and L || M. See
Figure 2.2 in Chapter 2 (Exercises), reproduced here.

].'

Figure 2.2 for Exercise IP.7.

Ezercise IP.7 Proof. By Theorem 1.4 £N G is a line £ and F NG is a line
M. Since lines £ and M are subsets of G, they are coplanar. Since £ C &,
MCF,and ENF =0, LNAM # (. By Definition IP.O(A), £ || M. O

Exercise IP.8 If £ F, and G are distinct planes such that £ || F and
F | G, then £ || G.

Exercise IP.9 If £, F, and G are distinct planes such that £ || F and
ENG#D, then FNG # 0.
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Exercise IP.10 If £ and M are noncoplanar lines, then there exist planes
€ and F such that £ || F and £L C &, and M C F.

Exercise IP.11 Let £ and F be parallel planes, and let £ be a line which
is parallel to £ and which is not contained in F. Then £N F = ().

Exercise IP.12 Let £ and F be parallel planes, and let £ be a line which
is not parallel to £ and which is not contained in £. Then £ N F # (.

Exercise IP.13 Given a plane £ and a line £ parallel to &, there exists
a plane F containing £ and parallel to £.

Exercise IP.14 Let n be a natural number greater than 1. If there exists
a line which has exactly n points, then:

(1) Every line has exactly n points.

(2) For any point P and any plane £ containing P, there are exactly n+ 1
lines through P and contained in £.

(3) For any line £ and any plane £ containing £, there exist exactly n — 1
lines L1, ..., Ly—1 such that Ly, || £ for each k in [1;n — 1].

(4) Each plane contains n(n + 1) lines.

(5) Each plane contains n? points.

(6) Given any plane &, there exists exactly n — 1 planes &;,...,&,-1 such
that & || € for each k in [1;n — 1].
7) There are n® points in space.
8) There are n?(n? + n + 1) lines in space.
9) There are n? +n + 1 lines through each point.
10) There are n + 1 planes containing a given line.
11) There are n? + n + 1 planes through each point.

(
(
(
(
(
(

12) There are n(n? + n + 1) planes in space.
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Chapter 3: Exercises and Answers for
Collineations of an Affine Plane (CAP)

Exercise CAP.1* Let P be an affine plane and let £, M, and N be
lines on P. If L PE M and M PE N, then £ PE N.

Ezercise CAP.1 Proof. There are four cases.

(1) If £ || M and M || N, then by Exercise IP.2, L || N, so L PE N.
2)If L=Mand M || N, then L || N, so L PE N.

B)IUL|| Mand M =N, then L || N, so L PE N.

4 I L=Mand M =N, then L=N,so LPEN. O

Exercise CAP.2* Let P be any plane where the incidence axioms hold,
© be a collineation of P, and A, B, and C be points on P.

(A) If A, B, and C are collinear, then ¢(A), ¢(B), and ¢(C') are collinear.

(B) If A, B, and C are noncollinear, then ¢(A), ¢(B), and ¢(C) are
noncollinear.

(C) A, B, and C are collinear iff p(A4), ¢(B), and ¢(C) are collinear.

(D) A, B, and C are noncollinear iff p(A), ¢(B), and ¢(C) are non-
collinear.

Ezxercise CAP.2 Proof. (A) If A, B, and C are collinear, by Definition
1.0.1 there exists a line £ containing all these points. By elementary map-
ping theory, p(A), ¢(B), and ¢(C) all belong to ¢(L), which by Definition
CAP.0(A) is a line. By Definition 1.0.1, these points are collinear.

(B) By Theorem CAP.1(D’) p~ 1! is a collineation. If ¢(A), p(B), and ¢(C)
are collinear. by part (A) and elementary mapping theory, ¢~ !(¢(A)) = A,
0o Hp(B)) = B, and p~1(p(C)) = C are collinear. This proves the contra-
positive of the assertion.

(C) Part (A) proves one half of the assertion, and the proof of part (B)
proves the other half.

(D) Each half of this proof is the contrapositive of half of the proof of part
(C).

Note that the proof does not require Axiom PS to be in force. O

Exercise CAP.3* Let ¢ be a collineation of an affine plane P, M a line
on P such that every point on M is a fixed point of ¢, and @ a fixed point
of ¢ such that @ € (P \ M). Then ¢ = 1.
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Ezercise CAP.3 Proof. Let X be any member of P\ (MU{Q}), R and S
be distinct members of M, G = par(X, %) and H = par(X, SQ). By The-
orem CAP.4(A), ﬁ and @ are fixed lines of ¢. By part (A) of Theorem
CAP.26, G and H are fixed lines of ¢. By Theorem CAP.4(B), X is a fixed
point of ¢. Since X is any member of P\ (M U{Q}), and since each member
of MU{Q} is a fixed point of ¢, the set of fixed points of ¢ is P. But that
means that ¢ =1. O

Exercise CAP.4* Let P be an affine plane, £1, and L5 be parallel lines
on P, O1 be a member of L1, O3 be a member of Lo, and 7 be the translation
(cf Theorem CAP.9) of P such that 7(O1) = Oa, then 7(L1) = 7(L2).

Ezxercise CAP.J Proof. Since 7 is a collineation of P, 7(£1) is a line on
P. Since T(Ol) =0, € Eg, 0, € T(ﬁg). By Definition CAP6, T(ﬁl) || L.
Since Ly || L1, by Axiom PS, Lo =7(£1). O

Exercise CAP.5* Let P be an affine plane, ¢ be a dilation of P with
fixed point O, and ¥ be a stretch of P with axis M through O, then o1 =
¥ o . (We take Remark CAP.30 as a definition of a stretch.)

Exercise CAP.5 Proof. Let X be any member of P.

(1) If X € M, then (¢ o ¥)(X) = (X)) = p(X). Since M is a fixed
line of ¢ (cf Theorem CAP.18), (o (X)) = (X).

(2) Let X € (P\ M) and let £ be the fixed line of ¢ through X (cf
Theorem CAP.27), then ¢(X) # X and ¢(X) € L. Since OX is a fixed line
of ¢ (cf Theorem CAP.18), p(X) € OX. Furthermore, (cf Definition CAP.17),
gp(Xd)(X;) = par(¢(X), £). Since O(X) is a fixed line of ¢, p(1)(X)) is the
point of intersection of par(p(X), £) and Op(X). Since ¢(<7) =0yY(X) =
W(0p(X)) = Op(p(X)), ¥(p(X)) is the point of intersection of par(p(X), £)
and O1/1(X;. Hence o(¢(X)) = ¢¥(e(X)). O




10

Chapter 4: Exercises and Answers for
Incidence and Betweenness (IB)

Exercise IB.1 If A and B are distinct points, then there exist points E
and F such that F—~B-A and B-A-F.

Exercise IB.2* Let A, B, C, and D be distinct collinear points, then
A-B-C-D iff D-C-B-A.

Exercise IB.2 Proof. By Definition 1B.2 A-B-C-D means that A-B-C|
A-B-D, A-C-D, and B-C-D. By property B.1 of Definition IB.1 (Symmet-
ric property for betweenness) C-B-A, D-B-A, D-C-A, and D-C-B. By
Definition 1B.2, D-C-B-A. 0O

Exercise IB.3 If A and B are any two distinct points, then AB = BA
and AB = BA.

Exercise IB.4* If A and B are any two distinct points, then AB -
AB C AB C AB, AB C AB C AB C AB, and AB C AB C 4B.

Ezercise IB./ Proof. The proof is direct from Remark IB.4.1 and Theorem
IB.5. O

Exercise IB.5 If ﬁ = % or AB = %, then /@ = @

Exercise IB.6* Prove Corollary IB.5.2: let A and B be distinct points.
Then 54? and i@ are both proper subsets of j@, AB is a proper subset of
@, and AB and AB are proper subsets of ]/@ (See also Exercise 1B.4.)

Ezercise I1B.6 Proof. By property B.3 of Definition IB.1 there exists a

point X such that X—A-B; by the third equality of Theorem IB.5, no such
2

point belongs to ﬁ so this is a proper subset of @ f@ is a subset of 54?

so is also a proper subset.

Again by property B.3 there exists a point X such that A-B-X and by
the trichotomy property, this means that A-X-B is false. By Definition 1B.4
X e ﬁ and by Definition IB.3 X ¢ AB , which is therefore a proper subset

2 — J
of 54? Also X € f@ and X ¢ AB, which is thus a proper subset of 1@;

since AB is a subset of AB it is also a proper subset of j@ O
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Exercise IB.7* Prove the Corollary IB.6.1: for any two distinct points
A and B, @Uig—fi:j@.

Ezercise IB.7 Proof. Since AB = }@U{A} and BA = ]B_1>4U{B}, by
Theorem IB.6 ABUBA = ABUBAU{A, B} = AB U {A, B} = 4B. O

Exercise IB.8* If A and B are any two distinct points, then

(A) ABNBA = 4B,

(B) ABNBA = 4B,

(C) ABN BA = 4B, and

(D) ABNBA = AB.

Exercise 1B.8 Proof.

(A) By Definition IB.4, X € AB iff X = Aor AX-Bor X = B or
A-B-X,and X € @1 iff X = Bor A-X-Bor X = A or B-A-X. Therefore
X € ABNBA iff X = A or A-X-B or X = B, which is true iff X € 4B, by
Definition 1B.3.

(B) By Definition IB.4, X € AB iff A-X-B or X = B or A-B-X, and
X € BAiff AAX-B or X = A or B-A-X. Therefore X € ABNBA iff
A-X-B, which is true iff X € ﬁ, by Definition IB.3.

(C) By Definition IB.4, X € AB iff A~X-B or X = Aor X = B or
A-B-X, and X € BA iff A~X-B or X = A or B—A-X. Therefore X €
ABNBAiff A~X—B or X = A, which is true iff X € AB, by Definition IB.3.

(D) X € AB iff AX-Bor X = B iff X € BA, which by part (C) is true
iff X e BANAB. O

Exercise IB.9* Let £ be a line, and let A and B be distinct points such
that £ # AB. If ABNL = {R)}, then AB N £ = {R}.

Ezercise 1B.9 Proof. Since AB C /@, ABNL = {R} C AB O L. 1f there
were a second point S in /@ N L, then by Exercise 1.2 /@ = L which con-
tradicts our assumption that £ jﬁ a

Exercise IB.10* Prove Corollary 1B.14.1: let P, £, P, and @ be as in
Theorem IB.14 (that is, £ is a line in plane P, and P and @ are points such
that P € £ and Q ¢ £). Then PQNL = 0.

Exercise IB.10 Proof. By Theorem 1B.14 Pjﬁ is a subset of the @-side of
L. By Definition IB.11 the Q-side of Lis {X | X = Q or (X € (P\{Q}) and
)[(HQ NL = 0}; so the Q-side of £ and L are disjoint. Therefore Pjﬁ NnC=0¢. O
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Exercise IB.11* Prove Corollary 1B.14.2: let P, £, P, and @ be as in
Theorem IB.14 (that is, £ is a line in plane P, and P and @ are points such
that P € £ and Q ¢ L£). Then Pjﬁ and P]_Qr are subsets of the @)-side of L.

Ezercise IB.11 Proof. By Definitions IB.3 and IB.4 PJ_Qr is a subset of Pjﬁ
By Theorem IB.13, Pjﬁ is a subset of the @Q-side of £. O

Exercise IB.12 Prove Corollary 1B.14.3: for any triangle AABC, the
edges AB and AC are subsets of BCA, AB and BC are subsets of f40§,
I —
and AC and BC are subsets of ABQ%.

Exercise IB.13 Space is convex.
Exercise IB.14 Every plane is convex.

Exercise IB.15* If G is any collection of convex sets, and if the inter-

section of the members of G is nonempty, then the intersection is convex.

Exercise IB.15 Proof. Let P and () be members of the intersection of all
sets in G. This means P and @ belong to every set in G, each of which by
Definition IB.9 contains the segment AB. Thus their intersection contains

jﬁl_é, and the intersection is convex by Definition IB.9. O

Exercise IB.16 Let £ be a line and let £ be a nonempty proper subset
of £ such that £ is not a singleton. Then:

(1) € is not a segment iff for every pair of distinct points A and B on L,
there exists a point U such that A~-U-B and U ¢ &, or there exists a point
V such that A-B=V and V' € &, or there exists a point W such that B—-A-W
and W e &.

(2) € is not a ray iff for every pair of distinct points A and B on L, there
exists a point U such that A~-U-B and U ¢ &, or there exists a point V' such
that A-B-V and V ¢ &, or there exists a point W such that B-A-W and
W eé&.

Exercise IB.17* Let P be an IB plane, £ and M be lines on P, and O
be a point such that £ N M = {O}, then there exist points P and Q on £
such that P and @) are on opposite sides of M.

Exercise I1B.17 Proof. By Axiom 1.5, there exists a point P on £ distinct
from O. By property B.3 of Definition IB.1 there exists a point () such that
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P-0-Q. By property B.0, @ belongs to £. By Definition IB.11, P and @ are
on opposite sides of M. 0O

Exercise IB.18 (True or False?) Let P be an IB plane, and let J, K,
and £ be distinct lines on P such that J N L # @ and KN L # 0. Then if U
is a point on J but not on L, there is a point V' on I such that U and V are
on opposite sides of L.
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Chapter 5: Exercises and Answers for
Pasch Geometry (PSH)

In the following exercises, all points and lines are in a Pasch plane.

Exercise PSH.0* (A) Let P be a Pasch plane, £ and M be lines, O be
a point on P such that LN M = {O}. If H is a side of £, then M NH # ().
(B) Let P be a Pasch plane and let J, K, and £ be distinct lines on P
such that 7NL # 0 and KN L # ). If U is a point on J but is not on L,
then there is a point V' on K such that U and V are on opposite sides of L.

Ezercise PSH.0 Proof. (A) By Axiom 1.5 there exists a point A on M
distinct from O. Since £L N M = {O}, by Axiom PSA, A belongs to a side
of L. If A belongs to H1, we are done. If A does not belong to H;, then we
use Theorem PSH.12 (Plane Separation Theorem). It says there exists a side
Ho of £ such that Hy NHy = 0 and P\ L = Hy1 U Hs. By property B.3 of
Definition IB.1 (Extension Property for betweenness) there exists a point B
such that B-O-A. By property B.0 B € M. By Definition 1B.11 A and B
are on opposite sides of L. Therefore by Theorem PSA.11 B € H;.

(B) Since the lines J, K, and L are distinct lines, 7NL # (), and KNL # 0,
by Exercise 1.1 there exist points @ and R such that 7 N L = {Q} and
KN L ={R}. By property B.3 of Definition IB.1 there exists a point W such
that U-Q-W. By property B.0 W € 7. By Definition IB.11 U and W are
on opposite sides of L. Let H; = the U-side of £ and Hy = the W-side of L.
Then by part (A) there exists a point V' € K which is on the W-side of L,
and this is opposite the U-side of £. O

Exercise PSH.1* Complete the details of the proof of Theorem PSH.8,
part (B)(1).

Ezercise PSH.1 Proof. By Axiom 1.5, there exists a point £ on P not be-
longing to j@ By Theorem 1B.14, BD C (the D-side of ﬁ) Since B-C-D,
by Definition IB.4 C belongs to ﬁ and hence to the D-side of ﬁ Since
A-B-C, the A-side and the C-side = D-side are opposite sides of ﬁ . There-
fore A and D are on opposite sides of ﬁ By Axiom PSA, there exists a
point ) such that ADN BE = {Q} and A-Q-D. But B € AD and B € ﬁ,
so by Exercise I.1 Q = B and hence A-B-D. 0O
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Exercise PSH.2* (A) Prove Corollary PSH.8.3: Let A, B, C, and D
be distinct coplanar points. If A~-C-D and B-C-D), then exactly one of the
following two statements is true:

(1) A-B-C and A-B-D; (2) B-A-C and B-A-D.

(B) Prove Corollary PSH.8.4: Let A, B, C, and D be distinct coplanar
points. If A-B—D and A-C-D, then exactly one of the following two state-

ments is true:

(1) A~-B-C and B-C-D;  (2) A~-C-B and C-B-D.

Ezercise PSH.2 Proof. (Proofs for Corollaries PSH.8.3 and PSH.8.4.) (A)
If A-C-D, then by property B.1 of Definition IB.1 D-C-A and if B-C-D,
then D-C-B. By Corollary PSH.8.2 D-C—-A-B or D-C-B-A. By property
B.1 of Definition IB.1 either B-A-C-D or A-B-C-D.

(B) By property B.1 of Definition IB.1 D-B-A and D-C-A. By Corol-
lary PSH.8.2 D-B-C-A or D-C-B-A. By property B.1 of Definition 1B.1
A-C-B-D or A-B-C-D. 0O

Exercise PSH.3* Let A, B, C, and D be points such that A-B-C-D
and let P and @ be points such that P=A-B and C-D-(Q). Then:

(A)@:R:@:%:%:Cﬁ; the points A, B, C, and D are
collinear;

(B) % is the union of the disjoint sets {B, C'}, Bj—zzl, BJ_CF, and Cj?;

(C) % is the union of the disjoint sets {A, B,C, D}, jﬁ, A]_§, B]_Cr, ﬁ,
and m;

(D) AD is the union of the disjoint sets {A, B, C, D}, AHB, B]—C[', and CJ—DC;

(E) AD is the union of the sets {X |X-A-D}, AD, and {X |A-D-X},
which are all disjoint.

Ezxercise PSH.3 Proof. (A) By property B.0 of Definition IB.1 A, B, and
C are collinear and B, C, and D are collinear and so A, B, C, and D are
collinear. By Exercise 1.2 @ = % = ﬁ = % = @

(B) BC' = {X | X=B—C or X = B or B-X-C or X = C or B-C—X}. By
Theorem PSH.13 {X | X-B-C} = BA and

(X | B-C-X} = {X | X-C-B} = CG.

Since ﬁ, Cﬁ and BC are disjoint (cf property B.2 of Definition IB.1), the
proof is complete.

(C) By Definitions IB.3 and 1B.4
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BC = 4D = {X | X-A-D} U {A} U {X | A-X-D} U {D} U {X |A-D-X}.
By Theorem PSH.13 {X | X=A-D} = AD and {X | A-D-X} = DQ, so
4B = {A}UAPUAD U{D} U DO
— {A,B,C,D}UAPUABUBCUCDUDO.
(D) Since
AD={X|X=Aor A~X-Bor X = B or
B-X-Cor X =Cor C-X-Dor X = D}
={A,B,C,D}UABUBCUCD
and {A,B,C,D} N ABNBCNCD = (), the proof is complete.
(E) By properties B.0, B.1, and B.2 of Definition IB.1
AD = {X | X=A-D or X = A or A-X-D or X = D or A-D-X}
= {X | X-A-DYU{X = A or X = D or A~X-D}U {X | A-D-X}
= {X | X-A-D}YUADU{X | A-D-X}.
Moreover the sets forming these unions are all pairwise disjoint. O

Exercise PSH.4* (A) Let A and B be distinct points on the Pasch plane
P and let £ be a nonempty subset of AB. Then & is not a ray.

(B) Let A and B be distinct points on the Pasch plane P and let £ be a
nonempty subset of AB. Then & is not a ray.

Exercise PSH.J Proof. (A) Assume & is a ray; then by Definition 1B.4
there exist distinct points D and E belonging to £ such that & = ﬁ or
£ = ]lﬁ If the latter, choose D’ such that D—-D’-FE, so that l])'—E> Cé&. In
either case we can choose D so that ﬁ cEC A]—BC

By Theorem PSH.13 DE = DEU{X | D-E-X}. Since DE is a subset of
jﬁl_é, either A—D—F or A—E-D. Choose the notation so that A-D—F. Since
FE e A]_§, A-FE-B. By Theorem PSH.8 A-D-FE-B so D-FE-B. Since ﬁ
is a ray, by Definition IB.4 B € DE C &. Since & C AB, B ¢ &. This
contradiction proves that our assumption that £ is a ray is false.

(B) Assume £ is a ray; then by Definition IB.4 there exist distinct points
D and F belonging to £ such that & = ltﬁ or £ = ]lﬁ By Theorem PSH.13
£=DEU{X | D-E-X}, or £ = DEU{X | D-E-X}.

Either D is an endpoint of AB or it is not. If D is an endpoint, then choose
the notation so that A = D. Then A-E-B or B = E. By property B.3 of
Definition IB.1 there exists a point C such that A-B-C. Then A-E—-C, that
is, D—E-C so that C' € ltﬁ C 54_B], a contradiction to A-B-C.

If D is not an endpoint either A~-D-FE—-B or A-E-D-B. Again choose the
notation so that A~-D—FE—-B, and again by property B.3 let C' be a point such
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that D—B-C' and hence A-D-F-B-C and A-B-C'. Then C € ﬁ - ﬁ, a
contradiction to A-B-C'". Thus our assumption that £ is a ray is false. O

Exercise PSH.5* Let A, B, C, D, and E be points on plane P such that
A, B, and C are noncollinear, A—-B—D, and A-C—FE. Then D € ins Z/BCE.

Ezercise PSH.5 Proof. By Definition IB.11 and the fact (Theorem PSH.12)
that there are exactly two sides to a line, D and E are both on the side of
% opposite A, so that D is on the E-side of % By Theorem PSH.12 D
and B are on the same side of % because A-B-D so that D is on the B-side
of AC' = C'E, hence by Definition PSH.36 D € ins /BCE. O

Exercise PSH.6 Let A, B, C', D, and E be as in Exercise PSH.5. Then
AB N (ins ZBCE) = BD and AB N (out ZBCE) = BA.

Exercise PSH.7 Let A, B, C, D, and E be as in Exercise PSH.5. Then
there exists a point F' such that BENCD = {F}.

Exercise PSH.8*% Let O, A, B, A’, and B’ be points on P such
that O, A, and B are noncollinear, B—-O-B’, and A-O-A’. Let X be any
member of ins ZAOB, and let X’ be any point such that X—-O-X’. Then
WﬂinséA'OB' = W

Exercise PSH.8 Proof. Since X € ins ZAOB, by Definition PSH.36 X
and A are on the same side of Oﬁ and X and B are on the same side of &i
The lines H , ﬁ , and )ﬁ are concurrent at O. Then A’ and A are on
opposite sides of @, X’ and X are on opposite sides of @, and X is on
the A-side of OB. Therefore X' is on the A’-side of OB.

Interchanging A with B and A’ with B’ in this reasoning, we have that
X' is on the B’-side of &i, hence X’ € ins ZA’OB’ by Definition PSH.36.
By Theorem PSH.38(B) OX' = OX Nins ZA'OB’. Tn this reasoning we have
relied heavily on Theorem PSH.12 (Plane Separation Theorem). O

Exercise PSH.9* Let O, A, B, A’, and B’ be points on the Pasch plane
P such that O, A, and B are noncollinear, B'~O-B, and A’—-O-A, let X be
any member of ins ZAOB and X’ be any point such that X'-O-X.
It I I
(A) OXNA'B'=0X"NA'B' is a singleton, i.e., there exists a point ¥ such
-
that OX N A'B’ = {Y}.
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(B) (B) Let X be any point such that X € AB; if X € AB define 2(X) =

Y, where Y is as in part (A); if X = A define Y = A’, and if X = B define
s E——3

Y = B’. Then the mapping {2 maps AB onto A'B’ and is one-to-one, hence

is a bijection.

Ezercise PSH.9 Proof. (A) By Exercise PSH.8, X’ € ins ZA'OB’. By
Theorem PSH.39 (Crossbar) there is a point Y such that OXNA'B = {Y}.

(B) Since 2 maps A to A" and B to B’, both A" and B’ belong to (2(54_33)
For any point Y € ﬁ , by property B.3 of Definition IB.1 there is some
X such that Y-O-X. By Exercise PSH.8 X € ins ZAOB, and by Theorem
PSH.39 there is a point X such that {X} = OX N AB. Then (X)) =Y so
that Y € (2(54_33) This shows that (2 maps AB onto A'B'.

If W # Z are two points of AD, then nNWw) e ﬁ/_& 2(2) e %,
W-O-Q(W) and Z-O-Q(Z). Since W # Z WO # ZO and by Exercise
I.1 the only point of intersection of these lines is O. Hence 2(W) # 2(Z),

and {2 is a bijection. 0O

Exercise PSH.10 If A and B are distinct points, then {A, B} is non-

convex.

Exercise PSH.11 Let P be a Pasch plane, £ be a line on P, and let J
be a side of L. IfPEEander,thenPj_Qrgj.

Exercise PSH.12* Let A, B, and C be noncollinear points on a
Pasch plane. If D € ins ZBAC, prove that i@ - AD§, R C ADE%,
B € out LZCAD, and C € out ZBAD.

Ezercise PSH.12 Proof. By Corollary PSH.39.2, B and C are on opposite
sides of /ﬁ, so by Theorem PSH.41(C) B € out ZCAD and C € out ZBAD.
By Theorem IB.14, AB C ADB and AC C ADC. 00

Exercise PSH.13* Let A, B, and C be noncollinear points on a Pasch
plane, and let P and @ be members of ins Z/ZBAC. Then if P € ins ZBAQ,
Q € ins ZCAP.

Exercise PSH.13 Proof. 1f P € ins ZBAQ), by Corollary PSH.39.2, B and
@ are on opposite sides of jﬁ; hence @ is on the side of /ﬁ opposite B, that
is, on the C-side; we already know that @ is on the B-side of /ﬁ , which is
the same as the P-side; hence Q € ins ZCAP. O



Chapter 5: Pasch Geometry (PSH) 19

Exercise PSH.14* (Key exercise) (A) Let £ be a convex subset of
plane P and let £ be a line on P. If EN L = (), then £ is a subset of a side
of L.

(B) If a line M, or a segment or a ray does not intersect £, then that line,

segment, or ray lies entirely on one side of L.

Ezercise PSH.14 Proof. (A) Let P be a point of £. If Q) is any other point
of &, then %TQJ C & because & is convex. By Theorem PSH.12 P and @) are
on the same side of L, because Pj’—Q[ does not intersect L.

(B) By Theorem IB.10 every line is convex; by Theorem PSH.18 all seg-
ments and rays are convex. Therefore by part (A) if any of these fail to
intersect the line £, they lie entirely on one side of £. O

Exercise PSH.15*% Let A, B, and C be noncollinear points on a Pasch
plane P and let £ be alineon P.If { A, B, C}NL = (), then either LNAABC =
() or L intersects two and only two edges of AABC, in which case LNAABC
is a doubleton.

Ezercise PSH.15 Proof. If LN AABC # (), by Theorem PSH.50(B), if £
contains no point of {A, B,C} then alternatives (1) and (3) or that theorem
are ruled out, and L intersects AABC' in exactly two points, which are on
different edges. 0O

Exercise PSH.16* The inside of every angle is convex and the inside of

every triangle is convex.

Ezercise PSH.16 Proof. By Exercise IB.15 any non-empty intersection of
two convex sets is convex. By Theorem PSH.9, every side of a line is convex.
By Definition PSH.36, the inside of an angle and the inside of a triangle are
intersections of sides of lines, hence are convex. O

Exercise PSH.17* Let P be a Pasch plane and let A, B, and C be
noncollinear points on P.

(A) If D € ins ZBAC, then AD C ins ZBAC.

(B) ins ZBAC = |J AD

peBE

Ezercise PSH.17 Proof. (A) By Theorem IB.14 AD C B-side of AC and
AD C C-side of AB. By Definition PSH.36 AD C ins /BAC.

(B) Let X be any member of ins ZBAC. By Crossbar (Theorem PSH.39)
there exists a member Y of BC such that AX NBC = {Y'}. By Theorem
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PSH.16 AX = AY so X € AY. Therefore X € U jﬁﬁ}, and

yeBO
ins/BAC C U AY. By part (A), for every Y € B]_(E', AY C ins ZBAC,
—r
YeBC
soins/ZBAC 2> | ﬁ O
YeBE

Exercise PSH.18* (Angle analog of Exercise PSH.32) Let A, B, and
C' be noncollinear points on the Pasch plane P and let D be a member of
ins ZBAC. Then ins ZBAC is the union of the disjoint sets jﬁ, ins LZBAD
and ins ZDAC.

1
Ezercise PSH.18 Proof. By Crossbar (Theorem PSH. 39) AD and BC
intersect at a point F. By Exercise PSH.17(B)
ins/BAE = |J AY,ins/CAE= |J AY.

YeBE yelk
Moreover, ﬁ = iﬁ
Therefore ins /BAC = ( U ﬁ) U( U 34—)}) UAE. O
veBE velk
Exercise PSH.19* Prove parts (3) and (4) of Theorem PSH.48: if A, B,

and C are noncollinear points and P is a member of ins AABC, there exists
a point QQ € BC such that

(3) AQ C ins AABC, and

(4) A0\ AQ C out AABC.

Ezercise PSH.19 Proof. We are to show that if A, B, and C' be non-
collinear points, P is any member of ins AABC and @ € BC that (3)
1]4—6,2[ C ins AABC, and (4) A]@\[Aié C out AABC. To show (3), note that
A and @ are not on the same edge of AABC the result follows from The-
orem PSH.47. (4) If X € m\fél_d then A-Q-X and X is a member of the
side of % opposite A, which is a subset of out AABC by Theorem 46(D). O

Exercise PSH.20* The union of a line £ and one of its sides H is convex

(i.e., a halfplane is convex).

Ezercise PSH.20 Proof. Let A and B be distinct members of £ U H.
(Case 1) If A € £ and B € £, then by Theorem IB.10 AB C £ C L UH.
(Case 2) If A € H and B € H, then by Definition IB.11 AB C H C LUH.
(Case 3) If A € H and B € L, then by Theorem PSH.13 AB C i@, and
by Theorem IB.14 AB C AB C LUH. If A € £ and B € H they may be
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relabeled and the same logic applied. O
See also Theorem PSH.9 as used in the proof to Theorem PSH.12.

Exercise PSH.21* Let A be any subset of plane P having at least two
members and let B be the union of all segments ﬁj such that P € A and
Q € A. Is B necessarily convex?

Ezercise PSH.21 Proof. No. Let A, B, and C be any noncollinear points.
Then AABC (which is the union of all the segments connecting these points)
is not convex, by Corollary PSH.47.1. O

Exercise PSH.22* If A, B, and C are noncollinear points, then both
enc ZABC and enc AABC' are convex sets.

Exercise PSH.22 Proof. By Exercise PSH.16 ins ZABC' is convex and so
is ins AABC.

(I) Proof that enc ZABC' is convex. Suppose that P and @ are both mem-
bers of ins ZABC); then Wj C ins ZABC'. Now let P and Q be members of
/ABC, if both are members of BE_I)4, Wj C BE_1>4 since this is convex by The-
orem PSH.18. A similar argument shows that if both are members of l% ,
PG C BC.

Finally, suppose P € ZABC and @ € insZABC. Then by Theorem
PSH.43 either alternative (2) or (3) holds; if alternative (2) holds, by Theo-
rem PSH.13, Pjﬁ - P]ﬁ C ins ZABC so that ﬁj C enc ZABC. If alternative
(3) holds, and P’ is the second point of intersection of % with ZABC, then
ﬁ = % Nins ZABC and hence @ € ﬁ and P]HQ C ﬁ Cins LZABC so
that BD_d CencZABC.

(IT) Proof that enc AABC is convex. Note again that if P and Q are
both members of ins AABC' then by convexity ﬁj Cins AABC. If P and
@ are both members of AABC, either alternative (2) or (3) of Theorem
PSH.50 holds. If alternative (2) holds, then P]_Qr = % Nins AABC so that
BD_d C enc AABC. If alternative (3) holds, then m NAABC = () and both
P and @ are members of the same edge of AABC which by Theorem PSH.18
is convex, so that %TCj Cenc AABC.

Finally, if P € AABC and @ € ins AABC, only alternative (2) of
Theorem PSH.50 can hold, since it is the only alternative where the line
% intersects ins AABC. Let P’ be the second point of intersection of
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% with AABC; then PP = % Nins AABC and hence @ € PP’ and
P]HQ - ﬁ C ins AABC so that %TCj Cenc ANABC.

Part (II) could also be proved by observing that if P and @ are any two
points of enc AABC, both are points of m N enc AABC which is a seg-
ment by Theorem PSH.50(A). By Theorem PSH.18 a segment is convex, so
ﬁj CencAABC. 0O

Exercise PSH.23* Without referring to Theorem PSH.43 (that is, us-
ing principally the definitions of inside, outside, and Theorem PSH.41(C)),
construct a proof of part (A) of Theorem PSH.44: Let A, B, C, P, and @
be distinct points where A, B, and C are noncollinear; if P € ins ZBAC and
Q € out LBAC, then PJ—QC NZBAC is a singleton.

Ezercise PSH.23 Proof. P € ins/BAC = mﬂm, and @ €
out ZBAC = (side of jﬁ opposite C')U (side of jﬁ opposite B.) We prove
the assertion for the case where @ € side of j@ opposite C. The other case
is similar.

By Theorem IB.12 (or Definition IB.11), there exists R such that P]_Qr ﬁ@ =
{R}, so that P-R-Q.

(I) It R € AB then by Definition PSH.29 R € ZBAC and we're done.

(II) If R—A-B then R is on the side of jﬁ opposite B so by Theorem 1B.12
(or Definition IB.11) there exists a point S € AC such that PRNAC = {S}
and P-S—-R-Q). Since P € ABC and R € @, by Theorem PSH.38(A)
ﬁ - 3@ so that S € m and hence S € 3@, and S is the only inter-
section of % with /ﬁ by Exercise 1.1. Since % does not intersect 54? , S
is the only point of intersection of % and P]—CEQ) with ZBAC. 0O

Exercise PSH.24* Prove Theorem PSH.47: Let A, B, and C be non-
collinear points, and let P and @ belong to AABC. If no edge of AABC
contains both P and @, then PJ—QC Cins AABC.

Ezercise PSH.24 Proof. Note that only one of the points P and @ can
be a corner. Without loss of generality we may assume that P € AB and
Qe AC.

By Theorem PSH.37, PQ C ins /BAC. If Q # C then PO C BCA

i, =3 I—L
because both P and @ € BCA and PQ NBC = 0, and hence PQ C
ins /BAC N BCA = ins AABC by Definition PSH.36.
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If @ = C, since P € %CZ, we may apply Theorem IB.13 and find that
Qj? C BC’Z, so that again P]—CEQ Cins ZBACN 13071 =ins AABC. O

Exercise PSH.25* Prove part (2) of Theorem PSH.49, which we restate
here for convenience. Let A, B, and C' be noncollinear points and let L be a
line such that LNins NAABC # () and LN{A,B,C}=0.If P € LNins AABC
and @ # P is any point of L, then

(1) Pjﬁ intersects exactly one of the segments IJZX_CF,B]_Cr or AB in e-
actly one point,

(2) L = % intersects exactly two of the segments xjél—CE',Bj—CE' or Aj—é,
and thus L intersects NABC in exactly two points D and E, and

(3) DE C ins AABC.

Exercise PSH.25 Proof. E}t Q' € L be any point such that Q'-P-Q. By
J

Theorem PSH.15(B), £ = PQ" U{P}U Pjﬁ By part (1) of Theorem PSH.49,
— I—L I—fL I—t
each of Pjﬁ and PQ’ intersects exactly one of the segments AC, BC' or AB
in exactly one point. Since P ¢ AABC, L intersects AABC' in exactly two
points which we may call D and F, and these points are not on the same

edge of AABC. O

Exercise PSH.26* Let A, B, and C be noncollinear points, let E be

—L Tt ey

any member of A]_Cr, and let F' be any member of AB. Then BE and CF
intersect in a point O which belongs to ins AABC.

Exercise PSH.26 Proof. By Definition 1B.11, A and B are on opposite
sides of W; by Theorem IB.14, F € ]CT)ZI C the A-side of W, so that F
and B are on opposite sides of Cﬁ By Theorem PSH.12 there exists a point
O such that {O} = W N BE. By similar reasoning, there exists a point @
such that {Q} = CFNBE. Both of these points are intersections of OF and

, which by Exercise I.1 is a single point, so O = @, and {O} = CENBE.
Now by Theorem PSH.37 both I’ € ins ZACB and E € ins ZABC, and by
Theorem PSH.38, O is a member of both these sets. By Theorem PSH.46(C)
ins AABC = ins ZACB Nins ZABC, so O € ins ANABC. 0O

Exercise PSH.27* Let A, B, and C be noncollinear points on plane P,
let @ be a member of ins ZABC, and R a member of ins ZACB. Then Bjﬁ
and ]C@ intersect at a point O which belongs to ins ZABC.

Ezercise PSH.27 Proof. By Theorem PSH.39 (Crossbar) Bjﬁ intersects
AC at some point E, and ]C% intersects AB at some point F. By Exercise
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€ 3L 3
PSH.26, there exists a point O such that {O} = CFNBE C CRNBG. O

Exercise PSH.28* Let A, B, and C be noncollinear points and suppose
P e i@ and @ € ins ZBAC. Then Pjﬁ Cins Z/BAC.

Ezercise PSH.28 Proof. Either alternative (2) or (3) of Theorem PSH.43
holds since % Nins ZBAC # (. If alternative (2) holds, PQ C PQ C
ins ZBAC. If alternative (3) holds, let P’ be the second point of intersection

— <
of PO with ZBAC. Then by Theorem PSH.43 (3) PP = PP’ (ins ZBAC.
"
Since Q € ins /BAC, Q € PP’ C ins /BAC and Pjﬁ Cins/ZBAC. O

Exercise PSH.29* Let A, B, and C be noncollinear points and suppose
P e AABC and Q € ins AABC. Then PQ C ins AABC.

Exercise PSH.29 Proof. If P € AABC and is one of the corners, say
B, then P € AB and also P € OB. By Theorem PSH.46 ins AABC —
ins /ZBAC Nins ZBCA, so @ is a member of both ins ZBAC and ins ZBC A.
By Exercise PSH.28 PQ C ins ZBAC and PQ C ins ZBCA, hence PG C
ins AABC.

On the other hand, if P is not one of the corners, then it belongs to
one of the segments AHB, B]—CE', or AC. Without loss of generality assume
that P € AB. Then P € AB and also P € BA. By Theorem PSH.46
ins ANABC = ins /ZBAC Nins ZABC, so Q) is a member of both ins /BAC
and ins ZABC'. By Exercise PSH.28 Pjﬁ Cins Z/BAC and Pjﬁ Cins ZABC,
hence Pjﬁ CinsANABC. 0O

Exercise PSH.30* Prove Theorem PSH.42: Let P and Q) be distinct
points, and let H be a side of m Let A and B be members of H U m such
that A, B, and P are noncollinear. Then ins ZAPB C H. See figure below.

Line PO

.
@
g

Line PO

Q
P

N
N
X
N
N
N
N
B
N
N

N N
Case 1): A and B € PQA Case 2): A€ PQA and B € %

Figure 5.4 for Theorem PSH.42.



Chapter 5: Pasch Geometry (PSH) 25

Ezercise PSH.30 Proof. There are three possibilities: 1) both A and B €
H;2) AeHand B € %, and 3) A € % and B € H. (It is not possible for
both A and B to belong to %, for then A, B, and P would be collinear.)
Clearly if we can prove the theorem in case 2), case 3) is also proved.

In either case 1) or 2), H = PQA is the A-side of PQ by Definition IB.11.
In case 1), B € PQA and by Definition IB.11 AB C AB C PQA. In case 2),
B € PO so by Theorem 1B.13, AB C BA C PQA.

In either case, let R € ins ZAPB. By the Crossbar Theorem PSH.39
i, e —L
PRNAB = {S} for some point S. Since in either case AB C H,S € H.
Now ﬁﬁ% = {P} (because PEN % = {P} by Exercise I.1) so that
; i, I—L0 i,

]ﬁﬂ% = (). Since R and S both belong to ]ﬁ,RS c PR so that
R]_S’rﬂ% = (). Thus by Definition IB.11 R and S belong to the same side
of %, and since Se H, Re H. O

Exercise PSH.31* Let P and @ be distinct points on plane P, let H be
a side of % in P, and let A and B be members of H such that A, B, and P
are noncollinear. Then either B € ins ZAPQ or A € ins ZBPQ.

Ezercise PSH.31 Proof. Since B € m, if Be m then by Definition
PSH.36(A) B € ins ZAPQ. If B is on the side of ﬁél opposite @ then by
Theorem PSH.38(C), A € ins ZBPQ. To see this, in the statement of Theo-
rem PSH.38(C) substitute P for A, Q for B, A for P, and B for C; then the
theorem reads: If A is on the B-side of m, and if Q and B are on opposite
sides of ﬁl, then A € ins ZQPB, thus proving the second alternative. O

Exercise PSH.32 (Side analog for Exercise PSH.18) Let P, O, and @
be points such that P-O—-Q, and let R be a point off of O(—}% Then OPﬁ is
the union of the disjoint sets ins ZPOR, ]O_f%, and ins ZQOR.

Exercise PSH.33 Let A, B, and C be noncollinear points and let B’
and C’ be points such tljwu_t>Bj—_>A—B' and C—A-C’. Then out ZBAC is the
union of the disjoint sets AB’, AC”, ins ZBAC’, ins ZCAB’, and ins /B’ AC".

Exercise PSH.34 Let A, B, and C be noncollinear points and let F be
a member of out ZBAC'. Then iﬁ is a subset of out ZBAC.

Exercise PSH.35 Let A, B, and C be noncollinear points and let P and
@ be members of (enc ZBAC'\ {A}) such that P, @, and A are noncollinear.
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Then ins ZPAQ C ins ZBAC'. Note: try solving this before reading the proof
of Theorem PSH.41(D).

Exercise PSH.36* Let £ be a line and let H be a side of L. If A, B,
and C' are noncollinear members of H, then enc AABC C H.

Exercise PSH.36 Proof. By Theorem PSH.9, H is convex. Each of A, B,
and C' is a member of H, so the segments AB , BHCJ', and AC are all subsets
of H, and by Definition IB.7 AABC C H.

Now let X be any point of ins AABC, and let P € AABC. Then alter-
native (2) of Theorem 50 applies to ﬁ , since this is the only alternative
where a line intersects the inside of the triangle. There exists a point Q) # P
such that Q € AABC and P]_Qr = ﬁ Nins AABC, hence P-X-(Q). By the
convexity of H, X € H. Therefore enc AABC C H. O

Exercise PSH.37 Let A, B, C, R, and S be points such that A, B,
I I £E—3
and C are noncollinear, R € AB, and S € AC. Then RSN BC = () and
e -
RSNBC = 0.

Exercise PSH.38 Let 7 be a triangle, let P be a member of ins T, and
let @ be a point distinct from P. Then there exists a point R such that
Tﬂ% = {R}, inSTﬁP’:ﬁ = PE_CR, and out'TﬁP[ﬁ = %\ﬁ

Exercise PSH.39 Let A, B, and C be noncollinear points on plane P,
let P be a member of AABC, let @ be a member of ins AABC, and let R
be a point such that Q—P—-R. Then R € out AABC, Qj?ﬂins NABC = Q[—[P,
and Qj? Nout AABC = Qj?\ﬁj

Exercise PSH.40 Let 7 be a triangle, let P be a member of ins 7 and @
be a member of out 7. Then there exists a point R such that % NT = {R},
PR = WjﬁinsT, and Rj@ = WjﬂoutT.

Exercise PSH.41 Let 7 be a triangle and let P, @, and R be non-
collinear members of enc 7. Then ins APQR C insT.

Exercise PSH.42* Let A, B, and C be noncollinear points and let
P, @, and R be noncollinear members of ins AABC. Then enc APQR C
ins ANABC.
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Exercise PSH./2 Proof. Since P, @), and R are members of ins AABC' =
ABCNACEN ]BC'A, all these points belong to each of the sets W, f@,
and m By Exercise PSH.36, enc AABC' is a subset of each of these sets,
so that it is a subset of their intersection, that is, of ins AABC. 0O

Exercise PSH.43 Let A, B, and C be noncollinear points on Pasch plane
P, let O be a member of ins AABC, let A’ be any point between O and A,
let B’ be any point between O and B, and let C’ be any point between O
and C. Then O € ins AA'B’C’, and enc AA'B’C’ C ins AABC.

Exercise PSH.44 Let A, B, and C be noncollinear points. Then:

(a) There exist points P and @ such that A is between P and Q, ZBACN
BD_d = {A}, and P and @ are both members of out ZBAC.

(b) If P and @ are any points satisfying the conditions in (a) above, then

B and C are on the same side of .

Exercise PSH.45*% Let £ be a nonempty convex subset of the plane P,
and let A, B, and C' be noncollinear members of £. Then enc AABC C &.

Exercise PSH.45 Proof. Since £ is convex, AABC C &. Let X €
ins AABC, and let £ be any line containing X. Referring to Theorem
PSH.50(B), we observe that only part (2) can apply, since this is the only
case in which £ intersects ins AABC'. Then by part (2)(b), there are exactly
two points P and @ in LNAABC, so that X € PJ_Qr C ED_Cj; since £ is convex,
Xe& andenc NABC CE. O

Exercise PSH.46 Let A, B, and C be noncollinear points and let O be
a member of ins AABC. Then
ins AABC' = OAUOBUOC Uins AOAB Uins AOAC Uins AOBC.

Exercise PSH.47* Let P be a Pasch plane and A, B, and U be non-
collinear points. Then for every point V in P,

(A) UV is not a subset of j@; and

(B) UV is not a subset of AB.

Ezxercise PSH.,7 Proof. Since A, B, and U are noncollinear, U ¢ /@
(A) Let V be any point on P distinct from U. By property B.3 of Definition
IB.1 there exists a point W such that U-V-W. Then by Definition IB.4
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W e W By Exercise 1.2, if W - /ﬁ, both V and W are in j@ so that
j@ = W/ ) W, and A, B, and U are collinear, a contradiction.
(B) Let V' be any point on P distinct from U. By two successive appli-
cations of Theorem PSH.22 (Denseness) there exist distinct points X and Y
I—C I—C
belonging to UV. If UV C @, both X and Y are in @ so that by Exercise
1.2 W/ = j@ Then A, B, and U are collinear, a contradiction. 0O

Exercise PSH.48* Prove parts 4-6 of Theorem PSH.18: Let A and B
be distinct points on the Pasch plane P. Then each of the following sets is
convex: (4) AB, (5) AB, and (6) AD.

Ezercise PSH.48 Proof. (4) By Exercise IB.8 AB = ABN BA, both of
which are convex by parts (1) and (2) of Theorem PSH.18. Both these sets
contain the point A so are not disjoint, and by Exercise IB.14 their intersec-
tion AB is convex.

(5) AB = BA is convex by part (4) proved just above.

(6) By Exercise IB.8 AB = /ﬁ N ﬁ, both of which are convex by part
(2) of Theorem PSH.18. They both contain the point A so are not disjoint,
and by Exercise IB.14 their intersection AB is convex. O

Exercise PSH.49* Prove Theorem PSH.46(B): Let A, B, and C be
noncollinear points. Then ins AABC U AABC U out AABC = P and the

sets in this union are pairwise disjoint.

Ezercise PSH./9 Proof. That ins ANABC U AABC Uout AABC = P is
immediate from Definition PSH.36(B). We examine each pair of sets to see
that the pair is disjoint:

(1) AABC N ins AABC = § since AABC C AB U BC U CA which is
disjoint from ins AABC by part (A).

(2) By Definition PSH.36(B), out AABCN(AABC Uins AABC) = () and
therefore out AABC N AABC = () and out AABC Nins AABC ={. O

Exercise PSH.50* Prove Theorem PSH.46(C): Let A, B, and C be
noncollinear points. Then ins AABC = ins /BACNins ZABC = ins ZBACN
BCA.

Ezercise PSH.50 Proof. By Definition PSH.36(B),

ins AABC = ABC'NBCANCAR = ins ZBAC N BCA
since ins /ZBAC = ABCNACE = ABCNCAB by part (A) of the Defini-
tion. Also, ins ZABC = 3@ N m by the same definition, so that
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ins /ZBAC Nins ZABC = ABCNACBNABC NBCA
= ABCNACBNBCA = ABCNBCANCAB = ins AABC. 0O

Exercise PSH.51* Let P be a Pasch plane, O, B, and R be noncollinear
points on P, C be a member of ins /ZROB and B’ be a point on @ such
that B—O-B’, then R € ins ZCOB’.

Exercise PSH.51 Proof. Since C' € ins ZROB, by Definition PSH.36 C' is
on the R-side, that is, R is on the C-side of @ = (W = W By Corollary
PSH.39.2 B and R are on opposite sides of O(? Since B and B’ also are on
opposite sides of % (cf Definition IB.11), R is on the B’-side of % By
Definition PSH.36 R € ins ZCOB’. O

Exercise PSH.52* (A) Let X be any point on the Pasch plane P, then
there exists a triangle 7 such that X € ins 7.

(B) Let P and @ be distinct points on plane P. Then there exist triangles
T and U such that P € insT, Q € insU, encT C outU, and encld C out 7.

Exercise PSH.52 Proof. (A) By Axiom 1.5 there exists a point U on P
distinct from X. By property B.3 of Definition IB.1 there is a point B such
that B-X-U. By Axiom L.5 there exists a point A not belonging to W
By property B.3 of Definition IB.1 there exists a point C such that A-U-C.
By Theorem PSH.37 B]_(E] C ins ZBAC and BJ_ICJ C ins Z/BCA. By Theorem
PSH.46(C) BU C (ins ZBAC Nins ZBCA) = ins AABC. Let T = AABC.
Then X € ins 7.

(B) We first construct a triangle AABC with P € ins AABC, then we
construct a second triangle ADEF with ) € ins ADEF, in such a way that
the enclosures of the triangles are disjoint.

By repeated applications of property B.3 of Definition IB.1 and Theorem
PSH.22, there exist points T', A, D, and U such that T-P-A-D-Q-U. As in
part (A), let B be a point not on %, and let C and C’ be points such that
C-T-B-C', and by the argument in part (A), P € ins AABC.

Then T-A-D and T-B-C'; applying Exercise PSH.5 we have D €
ins ZABC'. Then by Theorem PSH.38 ﬁ C ins ZABC'. By property B.3
there is a point E such that B-D-F and E € ins ZABC". By Theorem 1B.14
ﬁ is a subset of the side of @ opposite T', which is the C’-side, and hence
both @ and U are on the C’-side of jﬁ They are also on the A-side of W
and therefore belong to ins ZABC".
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Now by Exercise PSH.16 ins ZABC" is convex, and since both E and U
are in ins ZABC', EU C ins ZABC'.

By Theorem PSH.43 either the intersection of ﬁ} with ZABC' is a single
point (alternative (2)) or exactly two points (alternative (3)). In the first
case, either EE_U} intersects ZABC' (in which case we define F' to be any point
with E-U-F) or it intersects it at some point G. G ¢ [lTU], so by Theorem
PSH.22 let F' be a point such that E-U-F-G.

In the second case there are two points G and H which are the points of
intersection of ﬁ with ZABC'. Then if G-E-U-H let F be a point such
that U-F-H; if H-E-U-G then let F' be a point such that U-F-G. In all
cases E-U—~F and F € ins ZABC".

As in part (A), Q € insADEF. By Exercise PSH.36 enc ADEF is a
subset of the C'-side of AB. Now C is in the side of AB opposite C’, and
by Definition PSH.36 ins AABC C m Also both Aj? and B]? are subsets
of ABC by Theorem IB.14, and AB C /ﬁ, so that AABC C (f@ Uj@)
which by Theorem PSH.12 is disjoint from ABC” and thus from ADEF'.

If we let T = AABC and U = ADEF, P € insT, Q € insU, and
encT is disjoint from encU. By Definition PSH.36, if 7 is any triangle in
P,outT = P\ encT, so that by elementary set theory enc7T C outl, and
encd Cout7. O

The reader might try constructing a simpler proof of the above showing
only that enc7 Ninst = encU NinsT = (. This would not require that
Tnu=0.

Exercise PSH.53* Let P be a Pasch plane, £ and £’ be distinct lines
on P, O be a member of P\ (LUL'), A, B, and C be points on £ such that
A-B-C and A’, B’, and C’ be points on £’ such that A—-O-A’, B-O-B’, and
C-0-C", then A'-B'-C".

Exercise PSH.53 Proof. Since A—-B-C', by Theorem PSH.37 B € ins ZAOC.

By Exercise PSH.8 B’ € ins ZA’OC’. By Theorem PSH.37 C" A’ C ins ZC'OA'.
I—-FDT
Therefore B’ € C'A’ and A'-B'-C’". O

Exercise PSH.54* Let A, B, and C be points on the Pasch plane P
such that A-B-C. Then i@ N Cj% = AC.
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Ezercise PSH.54 Proof. By Theorem PSH.16 j@ = j@ and C§ = ]C'—/i
J
so ABNTB = ACNTA. The result is immediate from Exercise IB.3(B). O

Exercise PSH.55 (Sets bounded by two parallel lines.) Let P be the
plane containing parallel lines £ and L5, let P; and P» be points on £; and
Lo, respectively, and let ;1 and Q)2 be points on irP; such that Q1—P,—P»
and Pi—P—Q4, Q1 be the Q1-side of L4, let Q7 be the Ps-side of L4, let Qo
be the Q2-side of Lo, let Q3 be the P;-side of Lo, and let Q = Q7N Q5. Then
Q1NQy=01NQ=05NQ = (); each of the sets Q1, QF, Qa, OF, and Q is
convex; and Q1 U Q2 UQ =P\ (L1 U Ly).

Exercise PSH.56* See Figure 5.13 from Chapter 5, reproduced below.
Let O, A, B, A’, and B’ be distinct points on the Pasch plane P such that
>
ABNA'B = {0} and A4’ | BB', then
(I) O-A-B iff O-A'-B',
(II) O-B-A iff O-B'~A’, and
(IIT) A-O-B iff A’'~O-B'.

0 A B
Figure 5.13 for Exercise PSH.56(I).

Ezercise PSH.56 Proof. (1) If O-A-B, then O-A'-B’. Since O-A-B, then
— — Te—
by Definition IB.11 O and B are on opposite s(id_>es of AA’. Since AA" || BB',
by Exercise PSH.&B' is on the B-side of AA’. Since O and B’ are on
opposite sides of AA’, by Axiom PSA there exists a unique point @ such
— —
that AA'NOB" ={Q} and O-Q-B’. Since AA'NOB' = {A’}, Q= A’, and
O-A'-B'.
(2) It O-A'-B’, then O-A-B. In (1) interchange “A” and “A’” and inter-
change “B” and “B’.”
(3) If O-B-A, then O-B’~A’. In (1) interchange “A” and “B” and inter-
change “A’” and “B’.”
(4) It O-B’-A’, then O-B-A. In (1) interchange “A” and “B’” and inter-
change “B” and “A’.
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(5) If A~-O-B, then A’'-O-B’. By Theorem IB.5 B’ € m ift B'-O-A’ or
B’ =0 or O-B'-A’ or B’ = A’ or O-A’-B'.

If B = O then W — BA and W intersects ﬁ so that ﬁ Wﬂ,
which contradicts our hypothesis. Similarly, if B’ = A’ then ﬁ I <£_3—Bj,
again a contradiction.

If O—B’-A’ then since O, A, and A’ are noncollinear they form a triangle
ANOAA’; by Theorem PSH.6 BB’ must intersect either O]—/i, in which case
2@ = éig’ which is impossible by hypothesis, or it must intersect ﬁ and
AA" | BB', again a C(z_n_tgadiction. .

If O-A'-B’, then BB’ co(_nt>ains points &opgisi}e sides of AA’ so by
Axiom PSA must intersect AA’, and again AA" |f BB’ which contradicts the
hypothesis. Therefore B'—-O-A’, that is A’-O-B’.

(6) If A’~O-B’, then A-O-B. In (5) interchange “A” and “A’” and inter-
change “B” and “B’”. 0O

Exercise PSH.57* Let £ and M be distinct lines in a Pasch plane, let
A, B, and C be points of £, and let D, E, and F be points of M such that
4D | BE || OF. Then A-B—C iff D-E-F.

Exercise PSH.57 Proof. By Exercise PSH.14, A and D are on the same
side of ﬁ and C and F are on the same side of ﬁ’; by Definition IB.11,
if A-B—C then A and C are on opposite sides of ﬁ and hence D and F
are on opposite sides of the same line, so again by Definition IB.11, D-E-F.
Interchanging the roles of A with D and C' with F' shows the converse. O

Exercise PSH.58* Prove Theorem PSH.34 using the result of Theorem
PSH.32. That is, show that if A, B, and C' are noncollinear points on a Pasch
plane P, then the set of corners of AABC' is {A, B,C'}.

Exercise PSH.58 Proof. The points A, B, and C' are all corners of AABC,
by Definition IB.7. By the same definition, a corner is a point of the tri-
angle. So to prove this theorem we need only prove that no member of
ABUBCUAC can be a corner of AABC.

We may choose the notation so that U € AB , that is, A-U-B, and assume
U is a corner of AABC. By Theorem PSH.32 there exist points V' and V’
such that UV C AABC and UV'NAABC = () where U, V, and V' are
collinear, and since U and V € AB , U, V, V' A, and B are all collinear. By
property B.2 of Definition IB.1 exactly one of V'-A-B, A-V'-B, or A-B-V"’

is true.
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A-V'-B is impossible for then UV' C AB contrary to UV' NAABC = 0.
If V'—A-B, then since A~-U-B, by Corollary PSH.8.1, V/'-A-U. By Theorem
PSH.22 (denseness) let X be such that A-X-U and by the same corollary,
V'A-X-U. Then X € AB and X € UV’ so that X ¢ A]_§, a contradiction.
A similar argument shows a contradiction in the case that A-B-V’. There-
fore U ¢ AHB, and it follows that every corner of AABC must be either A,
B,orC. O

Exercise PSH.59* Let A, B, C, and D be points on the Pasch plane
P such that ABUBCUCDUDA is a quadrilateral; then if /ﬁ I @, this

quadrilateral is rotund.

Ezercise PSH.59 Proof. By Exercise PSH.14 both C' and D are on the
same side of ﬁ and both A and B are on the same side of Cﬁ If the quadri-
lateral DA BC'D is not rotund, by Theorem PSH.53 one of the corners belongs
to the inside of the triangle formed by the remaining three corners. Suppose
A € ins ABCD; then by Theorem PSH.46 A € ins ZDBC and by Theorem

3 It
PSH.39, ﬂl - @ intersects C'D C Cﬁ, which contradicts the parallelism
of ﬁ and Cﬁ Similar proofs will hold for the other corners B, C, and D. 0O

Exercise PSH.60 Consult a book on projective geometry and com-
pare/contrast those axioms of separation with those involving the open sets

used to classify topological spaces.
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Chapter 6: Exercises and Answers for
Ordering a Line in a Pasch Plane (ORD)

Exercise ORD.1* Let A, B, C, and D be points such that A-B-C-D.
If the points on /ﬁ are ordered so that A < D, then A < B < C < D.

Ezercise ORD.1 Proof. By Theorem ORD.6, A—-B-D implies that either
A< B<DorD< B < A; by hypothesis A < D so A < B < D. It follows,
since B < D, that B<C < D, hence A< B<C<D. 0O

Exercise ORD.2 Let O and P be distinct points, and let £ be a
nonempty finite subset of W which has n elements. Then there exists a
mapping 6 of [1;n] onto £ such that for every member k of [1;n — 1],
0(k) < 0(k + 1), and every member of {0(j)|j € [1;k]} is less than every
member of £\ {0(j)]5 € [1;k]}.

Exercise ORD.3 Let D be the field of dyadic rational numbers', let I’
be equal to DN [0; 1], and let A and B be distinct points on the Pasch plane

‘P. Then there exists a mapping 6 of D into AB such that, for all members r
and s of D, r < s iff O(r) < 0(s).

Exercise ORD.4* Let £ be a convex subset of a line M. If £ is not a
singleton, then & is infinite.

Exercise ORD.5 Let £ be an infinite convex subset of a line M. If A is
a member of £, B is a member of M\ £, and C' is a point such that A-B-C,
then BC is a subset of M \ €.

Exercise ORD.6* Prove Theorem ORD.7 part (II): let O and P be
distinct points on the Pasch plane P and suppose the points of W are
ordered so that O < P. If A and B are points on Oﬁ such that A < B, then

AB ={X|A< X < B}={X|B> X > A},
AB = {X|A< X < B} ={X|B> X > A},
AB = {X|A< X < B}={X|B> X > A},
AB={X|A<X<B}={X|B>X > A},
AB = [X|A < X} = {X|X > A},

I Dyadic Rationals are rational numbers with integer numerators but denominators of
the form 2™ where n is a natural number, and the greatest common divisor (gcd) of the

numerator and denominator is 1.
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AB = {X|A < X} = {X|X > A};
while if A and B are points on E% such that B < A, then
AB ={X|A>X > B} ={X|B < X < A},
AB = {X|A>X > B} = {X|B < X < A},
AB ={X|A>X >B}={X|B< X < A},
AB = {X|A> X > B} = {X|B< X < 4},
AB = [X|A> X} = {X|X < A},
AB = {X|A> X} = {X|X < A}.

Ezercise ORD.6 Proof. Let A and B be points on W We will use The-
orem ORD.6 repeatedly without further reference.

By Definition IB.3, X € AB iff A~X-B.If A< B, thisis A < X < B. If
A> B, thisis A> X > B.

X € ABiff AAX-Bor X = A. Tf A< B, thisis A< X < Bor X = 4,
that is, A < X < B.If A > B, thisis A > X > B or X = A, that is,
A>X > B.

Xe€ABiff A~X-Bor X = B.If A< B, thisis A< X < Bor X = B,
that is, A < X < B.If A > B, thisis A > X > B or X = B, that is,
A>X>B.

X cABiff AAX-Bor X = Aor X =B.If A< B, thisis A < X < B
or X =Aor X =B, thatis, A< X <B.If A> B, thisis A>X > B or
X =Aor X =B, thatis, A> X > B.

By Definition IB.4X€j@iﬁ A-X-Bor X = Bor A-B-X.If A < B,
thisis A< X <BorX=Bor A< B<X,thatis, A< X.If A> B, this
isA>X>BorX=BorA>B>X,that is, A > X.

X ecABM X = Aor A~X-Bor X = B or A~B-X.If A < B, this is
X=AorA<X<BorX=BorA<B<X,thatis, A< X.If A> B,
thisis X =AorA>X>BorX=BorA>B>X,thatis, A>X. O

Exercise ORD.7* Let A and B be distinct points on the Pasch plane P
== It e E=—— ==
and let C' and D be distinct members of AB, then CD C AB and CD C AB.

Ezercise ORD.7 Proof. Using Definition ORD.1, we order the points on
j@ so that A < B and we choose the notation so that C' < D. By Theorem
ORD.7(Il), A< C < Band A<D < Bsothat A< C < D < B. Let
X be any member of ﬁ, then by Definition IB.3, C-X-D. By Theorem
ORD.6, C < X < D. By Theorem ORD.4, A < C < X < D < B, so that
A < X < B. By Theorem ORD.7(II), X € AB. Since X is any member of
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CD,CD C AB. Since {C, D} C AB and CD = CDU{C,D},CD C AB. O
Exercise ORD.8* Let O, A, B, and C be collinear points on the Pasch

plane P such that O < A < B and O < A < C then there exists a point D
such that D > max{B, C}.

Exercise ORD.8 Proof. We order the points on &i so that O < A.

(Case 1: A-B-C'.) By property B.3 of Definition IB.1 there exists a point
D such that B-C—D. By Theorem PSH.8(B) A-B-C-D. By Theorem ORD.6
O<A<B<(C<D.

(Case 2: A-C-B.) By property B.3 there exists a point D such that
C-B-D. By Theorem PSH.8(B) A-C-B-D. By Theorem ORD.6 O < A <
C<B<D. 0O

Exercise ORD.9* Let P be a Pasch plane, and let £ and £ be distinct
lines on P, O be a member of P\ (LUL'). Suppose further that a line through
O intersects £ iff it intersects £’, and that each of the intersections of every
such line with £ or £’ is a singleton.

Let A and B be distinct points on £, A’ be the point such that OANnL =
{A'} and B’ be the point such that OBNL = {B’}. Order the points on £
so that A < B, and order the points on £’ so that A" < B’.

For every X € L let ¢(X) be the point on £’ such that OXne = {o(X)}.

(A) ¢ is a bijection of £ onto L.

Let X, Y, and Z be any distinct points on L.

(B) X=Y~7 iff ¢(X)=p(Y }-p(7).

(C) p(XY) = p(X) (V).

(D) soﬁﬂ P(X)p(Y).

(B) p(L) = p(XT) = p(X)o(Y) = L.
(F)If X <Y, then p(X) < ¢(Y).

Ezxercise ORD.9 Proof. (A) The mapping ¢ is onto because every line
through O intersecting £ also intersects £'. If X and Y are members of L,
and o(X) = p(Y) then OX = OY and X = Y because each line through O
that intersects £’ has only one point of intersection with £. Therefore ¢ is
one-to-one, hence is a bijection.

(B) Suppose X-Y-Z; since ¢(X) = X0 n L oY) = YO n L', and
o(Z) = 70n L', by Exercise PSH.53, (X )—¢(Y)—¢(Z). To prove the con-
verse, interchange £ with £’ ¢ with ¢!, X with ¢(X), Y with ¢(Y), and
Z with ¢(2).
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(C) Let X and Y be distinct points on £. By Definition IB.4 XY = {T]
T=Xor X-T-Y or T =Y}. By part (B) X-T-Y iff p(X)-¢(T)-p(Y) so
QD(B(T/) consists of exactly the points ¢(X), ¢(Y), and all the points ¢(T)
where (X )—@(T)—p(Y). Therefore cp()E(T/) = Eo(X)go(Yi.

(D) Let X and Y be distinct points on £. By Definition IB.4 XY =
(T|T =X or X-T-Y or T = Y or X-Y-T }. By part (B) X-T-Y iff
O(X)=p(T)—p(Y) and X-Y-T iff o(X)—o(Y)-p(T) so Lp()[(HY) consists of ex-
actly the points ¢(X), ¢(Y'), and all the points ¢(T") where (X )—p(T—o(Y)
together with all the points ¢(T") where (X )—¢(Y )—¢(T). Therefore cp()ﬁ) =
e(X)p(Y).

(E) By part (A) ¢ maps 4B = £ onto W =/L.

(F) By Definition ORD.1 X < Y iff XYNAB is a ray. By the fact
that ¢ is a bijection and elementary set theory, together with part (D)
Lp()t(_}/)ﬂﬁ) = fp(X)w(Yjﬂfp(A)w(Bj. Since XY NAB is a ray, by part
(D) o(X)o(Y) N p(A)p(B) is a ray. By Definition ORD.1 p(X) < ¢(Y). O
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Chapter 7—has no Exercises (COBE)

Chapter 8: Exercises and Answers for
Neutral Geometry (NEUT)

Strictly speaking, Exercise NEUT.0 is out of place in Chapter 8, because
it refers to the coordinate plane, and the development to this point does not
show that the incidence, betweenness, and Plane Separation axioms hold on

the coordinate plane. This is done in Chapter 21.

Exercise NEUT.0* There can be more than one mirror mapping over
a line in the (real) coordinate plane R2. More specifically, if for each pair
(u1,u2) of real numbers on the plane, we define @(uy,uz) = (u1, —ug) and
U(uy,ug) = (u1 — ug, —us), both @ and ¥ are mirror mappings over the

T-axis.

Exercise NEUT.0 Proof. Refer to the figure below. It is quite easy to see
that @ is a mirror mapping over £. We give a detailed proof that ¥ is a mirror
mapping over the line L.

(A) If (u1,u2) € £ then ug = 0 and ¥(uq1,0) = (u; — 0,0) = (u1,0). Thus
¥ satisfies Property (A) of Definition NEUT.1.

(1,1)  (2,1) (3,1)
; 4

(1,-1) (2,-1)

Showing action of the mirror mappings @ (solid arrows) and ¥ (dashed arrows).

(B) ¥(u1,us) = (u1 — ug, —usg) is on the opposite side of £ from (uq,uz)
because the midpoint of the segment Eul, u2)¥(uy,ug) is (
(u1 — %,0) € L. Thus ¥ satisfies Property (B) of Definition NEUT.1.

(C)T (U (ur,uz)) = ¥(ur—uz, —u2) = (u1—us—(—usz), —(—u2)) = (u1, ua).
Thus ¥ satisfies Property (C) of Definition NEUT.1.

Uy —UzFUuy uz—uz) —
2 ’ 2
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(D) Let (u1,us) and (vi,v2) be points of R?, and let (x1,22) be a point
between them so that (uy,us)—(r1,x2)—(v1,v2). There exists a real number ¢
such that 0 < ¢ < 1 such that

T o uy + t(v1 — ul)
To N U + t(’l)g — UQ) .

Uy + t(’Ul — U1)> _ <u1 + t(’l)l — ul) — (U2 + t(’l)g — U2))>

Then
v

N

Uo + t('UQ — UQ) —Uu — t(vg — UQ)
(u1 — UQ) + t(v1 — vy — U + UQ)

—Uu — t(vg — UQ)

) ()
—U2 —V2 — U2
(u1,u2) + t(¥(v1,v2) — ¥(u1,usz)),

so that ¥(uy, us)-¥ (1, x2)-¥(v1,v2). Thus ¥ satisfies Property (D) of Defi-
nition NEUT.1, and ¥ is a mirror mapping over £. O

Il
S~

From this point on, the symbol R, will denote a reflection over the line £
as defined in Definitions NEUT.1 and NEUT.2.

Exercise NEUT.1* Let P be a neutral plane and let £ and M be
parallel lines on P, then R, (M) is a line which is contained in the side of £
opposite the side containing M and M || Rz (M).

Ezercise NEUT.1 Proof. By Theorem NEUT.15, R (M) is aline. By The-
orem IB.10 M is a convex subset of P; by Exercise PSH.14, M is a subset of
a side H of L. By Definition NEUT.1(B), Rz (M) is a subset of the side K of
L opposite H. Hence Rz (M)NL = 0 and by Definition IP.1, R (M) || £. O

Exercise NEUT.2* Let M be any line on the neutral plane P. If X is
any point on P such that Ry (X) = X, then X € M.

Exercise NEUT.2 Proof. If X were a point off of M, then by Defini-
tion NEUT.1(B), X and R (X) would be on opposite sides of M and thus
Rm(X) would not be equal to X. O

Exercise NEUT.3* Let P be a neutral plane and let £ and M be lines
on P. If Ry = R, then £L = M. This may be restated in its contrapositive
form as follows: If £ # M, then R, # Rum.
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Ezercise NEUT.3 Proof. Let X be any member of £. By Definition
NEUT.1(A), Rz(X) = X. Since Ry(X) = Re(X) = X, by Exercise
NEUT.2 X € M, so that £ C M. By reversing the roles of £ and M in
this reasoning we get M C Lso L=M. O

Exercise NEUT.4* Let A, B, and C be noncollinear points on the
neutral plane P, then neither j@ nor /ﬁ is a line of symmetry of ZBAC.

Ezercise NEUT.J Proof. (I) By Theorem NEUT.15,
Riy(AC) = Reg (AR (C) = AR« (C).

By Definition NEUT.1(B), C' and R¢3(C) are on opposite sides of AB. By
Theorem IB.14 AC C ABC and jﬁlRf@(Cﬁ is a subset of the R« (C)-side of
AB. By Theorem PSH.12 (plane separation) AC and W are disjoint.
Hence R3(£LBAC) # ZBAC so that by Definition NEUT.4 AB is not a
line of symmetry of ZBAC.

(IT) By interchanging “B” and “C” in the reasoning in (I), we get that
AC' is not a line of symmetry of ZBAC. O

Exercise NEUT.5* Let S be a nonempty subset of P which has a line
M of symmetry, H1 and Hs be the sides of M, S} = SNH; and So = SNHs,
then Raq(S2) = S

Ezercise NEUT.5 Proof. (I) Let Y be any member of R a((Sz2), then there
exists a member X of Sy such that Y = R(X). By Definition NEUT.1(B)
X and Y are on opposite sides of M. Since M is a line of symmetry for S,
Y =Rm(X) €S, and hence Y € S;. Since Y is arbitrary Ra(Sz) C Si.

(IT) Let X be any member of S;. By Definition NEUT.1(C) X =
Rm(Rm(X)). By Definition NEUT.1(B) X and Ra(X) are on opposite
sides of M. Thus Ra(X) belongs to Sz and X € Raq(S2). Since X is arbi-
trary S € Ram(S2).

By (I) and (IT) S1 = Rm(S2). O

Exercise NEUT.6* (A) Let a be an isometry of the neutral plane P
and let £ be a line on P such that every point on L is a fixed point of a and
no point off of £ is a fixed point of «, then o = R .

(B) Let « be an isometry of the neutral plane P which is also an axial
affinity with axis £. Then a = R .

Ezercise NEUT.6 Proof. (A) By Theorem NEUT.37 either o« =1 or oo =
R .. Since no point off of £ is a fixed point of a;, & # 1. Hence o = R .
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(B) Let A and B be distinct points of £; by Definition CAP.25, these
points are fixed points of o, and « is not the identity map :. By the contra-
positive of Theorem NEUT.24, there can be no fixed point of « that is not
on L; by part (A), a =R,. O

Exercise NEUT.7* Let £ and M be distinct lines on the neutral plane
P, then Ry 0 R # ¢ (the identity mapping of P onto itself).

Ezercise NEUT.7 Proof. If Ryq o0 R, were equal to 2, then Ry = Rzl =
R and by Exercise NEUT.3 £ would be equal to M, contrary to the fact
that £ and M are distinct. Hence Ry o Ry # 2. O

Exercise NEUT.8* If £ and M are distinct lines on the neutral plane
P, then there exists a unique line J such that R o Ry o Re. = R 7. In fact,
J =Re(M).

Ezercise NEUT.8 Proof. (I: Existence.) Let « = Rpo Ry o Re. If «
were equal to ¢ (the identity mapping of P onto itself), then R, o R
would be equal to R,, and Raq would be equal to z, contrary to Defini-
tion NEUT.1(B)). Hence a # 1. Let X be any point on Rz (M), then there
exists a point Y on M such that X = R.(Y). By Definition NEUT.1(C)
Y = RL(X) Thus a(X) = RL(RM(Rg(RL(Y)))) = Rg(RM(Y)) =
R.(Y) = X. Hence every point of Rz (M) is a fixed point of o. By The-
orem NEUT.37 a = Rg (M)

(II: Uniqueness.) If K is a line on P such that & = R, then by Exercise
NEUT3, K=J. O

Exercise NEUT.9*% Let O, A, and B be noncollinear points on the
neutral plane P and let £ be a line such that R, (m) — OB. By Remark
NEUT.6(B), £ is a line of symmetry of ZAOB, R is an angle reflection
for ZAOB, and by Theorem NEUT.20, R-(O) = O. Construct a proof that
Rz(0) = O, using Theorem NEUT.15, but not Theorem NEUT.20 or The-
orem PSH.33 (uniqueness of corners).

Ezercise NEUT.9 Proof. It Rz(O) # O, then for some X € O]?, Rc(0) =
X, and OB = OX. From Definition NEUT.1(C) Rz (X) = Re(Re(0)) = O
and Rz(0OB) = Re(Re(OA)) = OA. By Definition NEUT.1(D) R is
a belineation as well as a collineation. By Theorem COBE.3 or Theorem
NEUT.15, Re(OX) = Re(O)Re(X) = XO = OX, so that OX — OB is
a fixed line for R,. Then since OA = Re (ﬁ) C OB which is a fixed line,
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A€ @ and O, A, and B are collinear, contradicting our hypothesis. 0O

Exercise NEUT.10* Let A, B, and C be noncollinear points on the
neutral plane P, B’ and C’ be points such that B-A-B’, C-A-C’, and M
be a line of symmetry of ZBAC, then M is a line of symmetry of Z/B'AC".

Ezercise NEUT.10 Proof. By Theorem NEUT.20, A € M, 'RM(@) =
AC and RM(%) — 4B so that Rm(B) € AC and Rm(C) € AB. By
Theorem NEUT.15 and Definition NEUT.1(A)

Rau(AB) = Ras(A)Raa(B) = AC

Rau(AC) = Rau(A)Ras (C) = AB.
By Theorem PSH.15 B is the union of the disjoint sets ]/@, {4}, and H
and AC is the union of the disjoint sets iﬁ, {A}, and AC, By elemen-
tary sce_>ttheory and the fact that R is one-to-one, Ry (AB') = W and
Rm(AC") = AB’. By Definition NEUT.3(D) M is a line of symmetry of
/ZB’AC'. O

and

Exercise NEUT.11* Let O, P, and ) be noncollinear points on the
neutral plane P such that W is a line of symmetry of @ and let Q' be
a point such that Q'-0-Q. If we let £ = OB, then R:(00) = OQ' and
Rc(Q) € OQ".

Ezxercise NEUT.11 Proof. By set theory and Theorem NEUT.15, R (OGN
@ :]@ N W) By Theorem PSH.38 w N m = Ojﬁ and @ N

E—>
QPQ’" = OQ'. By Definition NEUT.1(A) Rz(O) = O. Thus Rg(O(j) =0q’.
By Theorem NEUT. 15 and Definition NEUT.1(A) Rz (0Q) = Rz (0)R2(Q) =
J

—
ORg(Q;. By Theorem PSH.24 R.-(Q) € OQ'. O

Exercise NEUT.12* Let P be a neutral plane and let O, A, A’, B,
and B’ be points such that: (1) A-O-A’, (2) B and B’ are on opposite
sides of &i, (so that {A,O, B} and {A4’,0, B’} are noncollinear), and (3)
/ZAOB = /A'OB’. Then B-O-B’.

Ezercise NEUT.12 Proof. By Property B.3 of Definition IB.1 there exists

P

a point B”' such that B'~O-B’’, and B’ and B’ are on opposite sides of OA;

by Theorem PSH.12 (plane separation), B and B’/ are on the same side of
s
OA.

By Theorem NEUT.42 (vertical angles) ZA'OB’ = ZAOB’. By Theo-

rem NEUT.14 (congruence is an equivalence relation), ZAOB =~ /A'OB’ =
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E—>
/AOB". By Theorem NEUT.36 OB = OB". By Theorem PSH.24, B €
B —
OB". In Theorem PSH.13, substitute B’ for A, O for B, and B” for C; by
part (A), B-O-B’. O

Exercise NEUT.13* Let A, B, C, D, A’, B’, C’, and D’ be points on
the neutral plane P such that A, B, and C are noncollinear, A’, B’, and
C’ are noncollinear, D € ins /BAC, D' € B'A'C’', /ZBAC = /B’A’C’, and
/BAD = /B'A'D'; then A'D' C ins /ZB'A'C".

Ezercise NEUT.13 Proof. By Theorem NEUT.38 there exists an isometry
a of P such that «(AB) = B, a(AC) = AT, and a(LBAC) = /B'A'C.
By Theorem NEUT.15 a(AB) = a(A)a(B). Since a(A)a(B) = AB, by
Theorem PSH.24 a(A) = A" and a(B) € AR By Theorem NEUT.15 and
Definition PSH.29,
a(/BAD) = Za(B)a(A)a(D) = a(A)a(B) Ua(A)a(D)
—AB UA (DS = LB'Aa(D).
By Definition NEUT.3(B) ZBAD = /B' A'a(D). Since ZBAD = /B'AD/,
by Theorem NEUT.14 /B'A'a(D) = /B'AD’. By Theorem NEUT.15
a(D) € a(ins ZBAC) = insZa(B)a(A)a(C) = ins ZB’A'C’. By Defini-
tion PSH.36 «(D) € A’B'C". By assumption, D’ € B’A’C’. By Theorem
NEUT.36 A'« (D) = 1[4—’17 By Theorem PSH 24 D' € Aa (D) By Exercise
PSH.17 A« (D) Cins ZB'A’D’. Hence A0 CinsZB'A'C'. O

Exercise NEUT.14* Let A, B, C, D, A’, B’, C’, and D’ be points on
the neutral plane P such that A, B, and C are noncollinear, A’, B’, and
C’ are noncollinear, B € ins ZCAD (so that by Corollary PSH.39.2 C' and
D are on opposite sides of ﬁ), B € C'A'D', ZCAB =~ /C'A’B’, and
LCOAD = 4C’A’<D_’.>Then B' € ins ZC'A'D’ (so that C’' and D’ are on
opposite sides of A'B’.

Ezercise NEUT.14 Proof. In Exercise NEUT.13, replace D with B, B
with C, C with D; also replace D’ with B/, B’ with C’, C' with D’; then
B eins/C'A'D'. O

Exercise NEUT.15* Let A and B be distinct points on the neutral
plane P, M be the midpoint of Sﬁ, C and D be points on the same side
of jﬁ such that jﬁ il @ and @ 1 jﬁ and M be the perpendicular
bisector of AB, then RM(%) — BD and Rm (@) —ac
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Ezercise NEUT.15 Proof. By Theorem NEUT.52 Ra(A) = B and
Rm(B) = A. By Theorem NEUT.44 ZMAC and ZMBD are right an-
gles. By Theorem NEUT.69 /MAC = /MBD. By Theorem NEUT.15
and Definition NEUT.1(A) Rm(LMAC) = ZRM(M)RMm(A)RM(C) =
/MBR(C). By Definition NEUT.3(B) ZMAC 22 /M BR i (C). By Corol-
lary NEUT.44.2 /M BRM(C) is a right angle. By Theorem NEUT.45
BRM(C’; 1 j@ Since € j@, by the uniqueness part of Theorem
NEUT.48 BRM(C; - BD. By Theorem NEUT.15

Rm(AC) = Raq (AR (C) = BRu(C).
Thus R (AC) = BD. By Definition NEUT.1(C)
Ra(BD) = Rau(Raa (AC)) = AC
completing the proof. 0O

Exercise NEUT.16* Let O, P, @, and R be points on the neutral plane
P such that ZPOQ is right, ZROQ is right, and P and R are on opposite
sides of w, then P, O, and R are collinear.

Ezercise NEUT.16 Proof. Using Property B.3 of Definition IB.1 let
R’ be a point such that P-O-R’. Since ZPOQ is right, by Definition
NEUT.41(C) ZPOQ = ZR'OQ and ZR'OQ is right. By Theorem NEUT.69
ZR'0OQ = ZROQ. By Definition IB.11 P and R are on opposite sides of w
By Theorem PSH.12 (plane separation), R and R’ are on the same side of w
By Theorem NEUT.36, O — OR'. By Theorem PSH.24 R € OR C PO.
Thus P, O, and R are collinear. 0O

Exercise NEUT.17* Let A, B, and C be noncollinear points on the
neutral plane P. If ZACB is right or is obtuse, then AC < AB and BC <
AB.

Ezercise NEUT.17 Proof. By Theorem NEUT.84, /BAC and ZABC are
acute angles; by Definition NEUT.81 and transitivity for angles, these angles

are both smaller than a right angle, hence smaller than ZACB. By Theorem
NEUT.91, BC < AB and AC < AB. O

Exercise NEUT.18* Let O, P, and S be noncollinear points on the
neutral plane P such that ZPOS is acute, U be a member of Oj?, and
V = ftpr(U, 08), then V € OS.

Ezercise NEUT.18 Proof. Using Property B.3 of Definition IB.1 let S’
be a point such that S’-O-S. By Theorem NEUT.82 ZS’OP is obtuse. By
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I
Theorem NEUT.44 ZOV U is right. If V' were to belong to OS’, then AOVU
would have a right angle and an obtuse angle. By Theorem NEUT.84, this is
impossible. Hence V € %ﬁ . O

Exercise NEUT.19* Let A, B, and C be noncollinear points on the
neutral plane P; by Definition NEUT.2 (property R.5) there exists an angle
reflection Ry for ZBAC, and by Theorem NEUT.20(E) a point P € M
such that zjﬁ C ins ZBAC'. By Definition NEUT.3(D) Eél_P> is a bisecting ray
for /BAC'. Show that ZBAP is acute.

Exercise NEUT.19 Proof. Using Corollary NEUT.46.1 let £ be the line
such that A € £ and £ L jﬁ Using Exercise PSH.0 let @ be a point on
L which is on the the B-side of jﬁ and let R be a point on £ which is
on the Cside of AP. If ZBAP were right, then by Definition NEUT.41(C)
ZC AP would be a right angle and by Exercise NEUT.16, B, A, and C would
be collinear, contrary to the given fact that B, A, and C are noncollinear.
Hence ZBAP is not a right angle. If ZBAP were obtuse, then by Defini-
tions NEUT.70 and NEUT.81 @ would belong to ins ZBAP. By Corollary
PSH.39.2 B and P would be on opposite sides of j@ Similar reasoning
shows that C' and P would be on opposite sides of m = jﬁ Since B and C'
would both be on the side & of m opposite the P-side, by Theorem PSH.42
ins ZBAC would be a subset of the side of m opposite to the P-side . This
would contradict the fact that P € ins ZBAC. Hence ZBAP is not obtuse. By
Theorem NEUT.75 (trichotomy for angles) and Definition NEUT.81 ZC AP

is acute. 0O

Exercise NEUT.20* Let A, B, and C be noncollinear points on the neu-
tral plane P. If ZBAC and ZABC' are both acute, and if D = ftpr(C, jﬁ),
then D € AB.

Exercise NEUT.20 Proof. If D were equal to either A or B, then by Theo-
rem NEUT.44, /BAC or ZABC would be right. Both of these are impossible
by assumption. By Property B.2 of Definition IB.1 there are exactly three
mutually exclusive possibilities: (1) B-A-D, (2) A-B-D, and (3) A-D-B.
If A were between B and D, then by Theorem NEUT.80 (outside angles)
applied to AACD, Z/BAC would be obtuse contrary to the given fact that
/BAC is acute. Hence A is not between B and D. If B were between A and

D then by interchanging “A” and “B” in the above reasoning we would get
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that ZABC'is obtuse. Since B—A-D and A-B-D are both false, A-D-B. O

Exercise NEUT.21* Let A, B, and C be noncollinear points on the
neutral plane P, if AB is the maximal edge of AABC and if D = ftpr(C, jﬁ),
then D € AB.

Exercise NEUT.21 Proof. If ZBAC were not acute, then by Definition
NEUT.81 it would either be right or obtuse and by Exercise NEUT.17 BC
would be larger than AB contrary to the given fact that AB > BC. Hence
ZBAC is acute. If ZABC were not acute, then by interchanging “A” and
“B” in the reasoning above we would get that AC is larger than AB con-
trary to the given fact that AB > AC. Hence ZABC is acute. By Exercise
NEUT.20 D € AB. O

Exercise NEUT.22* Let £ be a line on the neutral plane P and let P
be a point such that P & L.

(I) Let @ = ftpr(P,L); if X is any point on £ distinct from @, then
PQ < PX.

(II) If @ is a point on £ with the property that for every point X on L
which is distinct from Q, PQ < PX, then Q = ftpr(P, L).

Ezxercise NEUT.22 Proof. (I) By Theorem NEUT.44 /PQX is right. By
Exercise NEUT.17 BD_d < PX.

(IT) Assume ZPQX is not right, then by Theorem NEUT.44, % and L
are not perpendicular to each other. Using Theorem NEUT.48(A), let M
be the line such that P € M and M L L. By Theorem NEUT.44 there
exists a point R such that M N L = {R}, and by the same theorem /PRQ
is a right angle. By Part I above, PR < %TQJ, ie., %TQJ > PR. This contra-
dicts the given fact that for every point X on £ distinct from @, %TQJ < PX.
Hence the assumption that ZPQX is not right is false, so ZPQX isright. O

Exercise NEUT.23* Let P be a neutral plane, A, B, and C' be non-
collinear points on P, P be a member of ins /ZBAC, @ = ftpr(P,/@), and
R = ftpr(P, /ﬁ)

(1) If AP is the bisecting ray of ZBAC, then BD_d ~ PR.

(2)IfQ e j@, Re iﬁ, and BD_d = ﬁ%, then AP is the bisecting ray of
/BAC.

Exercise NEUT.23 Proof. We will use Theorem NEUT.15 several times
without further reference. (1) If AP is the bisecting ray, then Rﬁ(@) =
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AC by Theorem NEUT.39. Then Ré(Q) € AC and Res(ZAQP) =
Z(Rgp(A)(Rep(Q)) (R (P)) = LA(R43(Q)) P which is a right angle by
Corollary NEUT.44.2.

Therefore by Theorem NEUT.47(B ﬁ R<—P> ) SO that R<—P> Q) =
R. Thus Rigp(P (PQ) = (Rep(P )R <—P>(Q)) PR and PQ = PR.

(2) Since AP = AP and PQ ~ PR and both ZPQA and ZPRA are
right, by Theorem NEUT.96 (hypotenuse-leg) ZPAQ = ZPAR. By Theo-
rem NEUT.39 ﬁ is the bisecting ray of ZBAC. 0O

Exercise NEUT.24* Let P be a neutral plane and let A, B, C, and
D be points on P such that ABUBCUCDUDA is a quadrilateral, and
suppose that j@ 1 jﬁ and /ﬁ 1 R’ Then

(1) DABCD is rotund;

2) BC ~AD iff ZADC = /BCD; and

(3) BC < AD iff ZADC < /BCD.

Ezercise NEUT.24 Proof. (1) By Theorem NEUT.47 4D || BC. Thus
by Theorem IB.9 and Exercise PSH.14 every point of jﬁ is on the A-side
of % and every point of % is on the B-side of jﬁ By Theorem 1B.14
]C@ - ]B—C'Z and D]?’ - f@ﬁ so that by Exercise 1B.8 C’]—DC - mﬁm

Then if D and C are on opposite sides of /@, by Theorem PSH.11 (PSA)
ﬁﬁ@ # () and this point of intersection must lie between A and B,
that is, CDNAB # () which contradicts the assumption that DABCD is a
quadrilateral (cf Definition PSH.31).

Therefore both C' and D are on the same side of /@ By interchanging
“A” with “C” and “B” with “D” in the above argument, we see that A and
B must be on the same side of @ Since jﬁ and % are parallel, A is on
the D-side of BC and C is on the B-side of ﬁ, so that by Definition PSH.31
OABCD is rotund.

Part (2) follows from (A) and (D) below; part (3) follows from (B) and
(E) below:

(A) By Theorem NEUT.44 both ZBAD and ZABC are right. By Theo-
rem NEUT.69, /BAD = /ABC. If AD = BC, then by Theorem NEUT.64
(EAE) applied to ABAD and AABC AC = BD. Hence by Theorem
NEUT.62 (EEE) applied to AADC and ABCD ZADC = /BCD.

B) If BC < ﬁ, then by Definition NEUT.70 there exists a point P
such that A~P-D and BC = AP. By part (A) ZAPC = /BCP. By The-
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orem NEUT.80 (outside angles) ZADC < ZAPC. By Theorem NEUT.76
(transitivity for angles) ZADC < ZBCD.

(C) If BC > ﬁ, then by Definition NEUT.70 AD < BC. Interchanging
A and B, and interchanging C' and D in part (B), ZBCD < ZADC.

(D) Suppose ZADC = /BCD. By Theorem NEUT.72 (trichotomy for
segments) one and only one of the following statements holds: AD = BC ,
AD < BC, or AD > BC. If AD < BC, then by part (C) ZBCD < ZADC
contrary to the given fact that ZADC = /ZBCD. If AD > %, then by
part (B) ZBCD > ZADC contrary to the given fact that ZADC = /BCD.
Hence AD = BHCJ'

(E) If ZADC < ZBCD, again, as in part (D) we use trichotomy for seg-
ments. AD = BC is ruled out by part (A), and AD < BC is ruled out by
part (C). Therefore BC <AD. O

Exercise NEUT.25% Let A, B, C, A’, B/, and C’ be points on the
neutral plane P such that A, B, and C are noncollinear, A’, B’, and C’ are
noncollinear, both ZACB and ZA’C'B’ are right, BC =~ B'C’ and AC <
A'CY, then ZABC < ZA'B'C', AB < A'B', and /B'A'C" < /BAC.

Ezxercise NEUT.25 Proof. Using Theorem NEUT.67 (segment construc-
tion) let A” be the point on OA such that CA” = ¢’ A7,

By Theorem NEUT.73 (transitivity for segments) CA < W In Theorem
NEUT.74, substitute C' for O, A for X, and A” for Q to get C—-A-A". By
Definition IB.3 A € CA”. By Theorem PSH.37 A € ins ZCBA”. By Theorem
NEUT.69 LA”"CB = LA'C'B’. By Theorem NEUT.64 (EAE) AA”BC
AA'B'C’ so that ZA"BC = /A'B'C’, /BA'C = /B'AC' and A"B
AB

By Definition NEUT.70 ZABC < £A"” BC; by transitivity for angles (The-
orem NEUT.76), ZABC < LA'B'C".

Applying Theorem NEUT.80 (outside angles) to AABA", /BA"C <
/BAC, so by transitivity for angles /B’A'C’ < /BAC.

By Theorem NEUT.93 A”B > BC; by Theorem NEUT.95 AB < A" B so
by transitivity for segments (Theorem NEUT.73) AB <A'B. O

1R

Exercise NEUT.26* Let A, B, C, A’, B/, and C’ be points on the
neutral plane P such that A, B, and C are noncollinear, A’, B’, and C’ are
noncollinear, ZACB and ZA’C’'B’ are both right, BC < B'C’ and AC >
A'C | then ZABC > /A'B'C’ and /BAC < /B'A'C'.
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Ezxercise NEUT.26 Proof. Using Theorem NEUT.67 (Segment Construc-
E—3 e—3
tion) let A” be the member of OA such that CA” = 074" and let B” be
I— E—3 E——
the member of C'B’ such that CB” = C'B’. By Theorem NEUT.64 (EAE)
NA"B"C =2 NA'B'C’. By Theorem NEUT.73 (transitivity for segments)
E=——43 — E——43
A"C < AC and BC < B'C. Again, substituting appropriately in Theorem
NEUT.74, we get A—A”"-C and B"-B-C. By Theorem 1B.14 j@ C ABE% SO
that A” € ABC. By Definition IB.11 B” and C' are on opposite sides of AB.
By Theorem PSH.12 (plane separation) B” and A” are on opposite sides of
-7y
AB. By Axiom PSA A”B” and AB intersect at a point D. Similar reasoning
shows A and B are on opposite sides of A” B”. By Axiom PSA AB and A" B"
SR T >
intersect at a point D’. By Corollary 1B.5.2 AB - /ﬁ and A”B"” C A”B".
Hence by Exercise 1.1 D’ = D. By Theorem NEUT.80 (outside angles) ap-
plied to AADA"” we get /ZBAC < Z/B"A”C. By the same theorem applied
to ABDB" we get ZABC > £A"B"C. By Theorem NEUT.76 (transitivity
for angles) ZABC > ZA'B'C’" and Z/ZBAC < /B’A'C’'. O

Exercise NEUT.27* Let A, B, C, A’, B/, and C’ be points on the
neutral plane P such that A, B, and C are noncollinear, A’, B’, and C’ are
[—] E =l
noncollinear, both ZACB and ZA'C'B’ are right, BC < B'C’, and AC <
E—3 =3 E——3
A'C' then AB < A'B.

Ezxercise NEUT.27 Proof. Using Theorem NEUT.67 (segment construc-
E——43 E——3
tion) let B” be the point on CB such that B"C =~ B'C'. Applying Exercise
E— E— =

NEUT 25 to AABC and AAB"C, since AC =~ AC and BC < B"C, we get
AB < AB” Applymg Exerc1se NEUT 25 to AAB”C and AA’B'C’, since
B'C =~ B'C" and AC < A’C’ we get AB" 3" < AB. By Theorem NEUT.73
(transitivity for segments) AB < AB" < A'B. O

Exercise NEUT.28*% Let A, B, C, A’, B/, and C’ be points on the
neutral plane P such that A, B, and C are noncollinear, A’, B’, and C’ are
noncollinear, both ZACB and ZA'C’'B’ are right, BC < B'C’ and AB =
A'B, then A'C" < AC, /BAC < /B'A'C" and ZABC > /A'B'C".

Exercise NEUT.28 Proof. If /El’—C:" were larger than or were congruent
to AHC]’, then by Exercise NEUT.27 or Exercise NEUT.25 W would be
larger than Sﬁ, contrary to the given fact that AB =~ W Hence by Theo-
rem NEUT.72 (trichotomy for segments) W < AC. By Exercise NEUT.26
/BAC < /B'A'C" and ZABC > Z/A'B'C'. O
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Exercise NEUT.29* Let A, B, C, A’, B, and C’ be points on the neu-
3 £E—3
tral plane P such that both ZACB and ZA'C' B’ are right, AB = A’'B’ and
E——3 E———3
LA'B'C' < ZABC, then A'C" < AC, BC < B'C' and ZBAC < /B'A'C".

Ezercise NEUT.29 Proof. }Jiin)g Theorem ENLU]T.67 (segment construc-
tion) let C” be the point on B’C” such that B'C" = BC. Using Theorem
NEUT.48 let £ be the line such that C” € £ and £ L B<’_)C’ Using Ex-
ercise PSH.0 let T' be a member of £ N B'C'A’. Using Theorem NEUT.67
(segment construction) let A” be the point on C"T such that C" A7 = O4.
By Theorem NEUT.44 £ A”C" B’ is right. By Theorem NEUT.69 ZACB =
ZA"C"B'. By Theorem NEUT.64 (EAE) AB’A"C"” =2 ABAC and thus
/BA'C" = /BAC, /A"B'C" = ABC, and A"B = AB. By the assump-
tion that ZA'B'C" < ZABC and Theorem NEUT.76 (transitivity for angles),
/A'B'C' < LZA"B'C" = ZA"B'C".

By ]'Eh_e>orem &T.?S A" € ins ZA"B'C’. By Theorem PSH.39 (Cross-
bar), B’A’ and A”C” intersect at a point S such that A”-S-C”, that is,
C"—-S—A". By Theorem NEUT.74 C"S' < C"A". By Theorem NEUT.93
and Theorem NEUT.95 (applied to AA”B'C"), B'S < B'A”. By Theorem
NEUT.73 (transitivity for segments), EB_’Sj’ < W By Theorem NEUT.74
B'-S—A’. By Definition IB.11 B’ and A’ are on opposite sides of W By
Theorem NEUT.44 Cﬁ 1 W By Theorem NEUT.47(A CW N W =
(). By Theorem IB.10 and E><<er_cis)e PSH.14 CW C C"A" A’ so that C'" and
A’ are on the same side of C”A”. By Theorem PSH.12 (plane separation)
B’ and C’ are on opposite sides of W By Axiom PSA, Exercise 1.1, and
Corollary IB.5.2 B'~C"~C". By Theorem NEUT.74 B'C” < B'C". By Theo-
rem NEUT.73 (transitivity for segments) BC < BC. By Exercise NEUT.28
AC? < AC, LABC > LA'B'C’, and Z/BAC < /B'A'C". 0O

Exercise NEUT.30*% Let A, B, C, A’, B/, and C’ be points on the
neutral plane P such that A, B, and C are noncollinear, A’, B’, and C’ are
noncollinear, both ZACB and ZA’C’' B’ are right, BC ~ W, and ZABC <
ZA'B'C", then AC < A'C", ‘AB < A'B', and /B'A'C" < /BAC.

Ezercise NEUT.30 Proof. 1f AC = W, by Theorem NEUT.64 (EAE)
LABC = /A'B'C’'. By Theorem NEUT.75 (trichotomy for angles) this is
contrary to the assumption that ZABC < ZA’B'C’. Also, if A0 < 5476,
it follows from Exercise NEUT.25 that ZA’B'C’ < ZABC, again contrary

to this assumption. Hence by Theorem NEUT.72 (trichotomy for segments)
E——3
AC < A'C'. Applying Exercise NEUT.25, we have ZABC < /A'B'C',
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E——1

< A'B’,and £LB'A'C' < ZBAC. O

i‘

D}m
Sy

Exercise NEUT.31* Let P, O, and T be noncollinear points on the
neutral plane P, let S be a member of ins ZPOT such that ZPOS < ZTOS,
and let M be a member of ins ZPOT such that OE—]\/} is the bisecting ray of
/POT, then M € ins ZTOS.

Ezercise NEUT.31 Proof. (I) If M were a member of b?, then by Theorem
PSH.16 0[—1\4> would be equal to 5’? and by Definition PSH.29 Z/POM would
be equal to ZPOS. By Theorem NEUT.39 ZPOS would be congruent to
ZTOS. By Theorem NEUT.75 (trichotomy for angles) this would contradict
the given fact that ZPOS < £ZTOS. Hence M ¢ b?

(IT) If M were a member of ins ZPOS, by Definition NEUT.70 ZPOM <
/ZPOS. By Exercise PSH.13, S € insZTOM, and hence by Definition
NEUT.70 ZTOS < ZTOM By hypothesis ZPOS < ZTOS. Putting
this all together by Theorem NEUT.76 (transitivity for angles) we have
ZPOM < ZPOS < ZTOS < ZTOM which contradicts the given fact
that ZPOM = /TOM. Hence M ¢ ins ZPOS, and by part (I) M ¢ Eﬁ, SO
by Exercise PSH.18, M € ins Z/TOS. 0O

Exercise NEUT.32* Let P, O, and T be noncollinear points on the
neutral plane P, S and V be members of ins ZPOT such that ZPOS <
ZTOS and ZPOV = /TOS, and M be a member of ins ZPOT such that
OE—]\/} is the bisecting ray of ZPOT'. Then

(1) S € ins ZPOV and V € ins LZTOS,

(2) OM is the bisecting ray of ZSOV/,

(3) LTOV = /POS, and

(4) M € ins ZTOS Nins ZPOV.

Exercise NEUT.32 Proof. Since both S and V' are members of ins ZPOT,
by Definition PSH.36 S € OPT and V € OPT. By Definition IB.11 § €
O]W. Since ZPOS < /ZTOS by Exercise NEUT.31 M € ins ZTOS.

By Theorem NEUT.39 L = <(_)—]\7[> is the line of symmetry of ZPOT, so that
R.(OT) = OP. By Theorem NEUT.15

Re(LTOS) = LR (T)RL(O)YR(S) = LPOR.(S),
so that ZTOS = ZPOR,(S). By hypothesis, ZPOV = /TOS, so by The-
orem NEUT.76 (transitivity for angles) ZPOV = ZPOR,(S). Since R, (S)
and V are on the same side of W, by Theorem NEUT.36, OE—V2 = OR.(9).
This shows that £ is the line of symmetry for £SOV, and hence 5]\7
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is its bisecting ray, proving (2). Also R.(£LPOS) = ZTOV and hence
LTOV = /ZPOS, proving (3).

To prove (1), note that ZPOS < ZTOS = ZPOV so that by Theo-
rem NEUT.78, § € ins ZPOV. Since ORz(S) = OV, OR. (T = OP, and
ORz(P) = OT, we have Rz (LPOS) = Z/Re(PYRz(0)R2(S) = ZTOV and
R (LTOS) = ZPOV. Thus LTOV = /POS < ZPOV = /TOS so that by
Theorem NEUT.78, V € ins ZT'OS; this proves (1).

Since by hypothesis ZTOS = /ZPOV and ZPOS < ZTOS we have
LTOV = LPOS < LTOS = ZPOV, or ZTOV < ZPOV. Again by Exer-
cise NEUT.31, M € ins ZPOV. Thus M € ins ZTOS N ins ZPOV, proving
(4). O

Exercise NEUT.33* Let P be a neutral plane and let Ay, By, M7, Ao,
By, and My be points on P such that A; # By and Ay # Bs, Mj is the
E——3 E——3 E——3 E——3
midpoint of AlBl and MQ is the midpoint of AQBQ, then A1B1 = AQBQ iff
E—3 E—3
A1M1 = AQMQ.

BEe——3 EEe——3 Ee——73 EBEe———4

Ezxercise NEUT.33 Proof. (I: If AyB; = A3Bs, then A1 M7 = AsMs.)
Using Theorem NEUT.56 let o be an isometry of P such that a(A1Bq) =
E—3 E——35
AQBQ, (Al) AQ, and Oé(Bl) = BQ By Definition NEUT. 3(0) A1M1 =
MlBl By Theorem NEUT.13 O[(AlMl) = O[(MlBl)

By Theorem NEUT.15 o i

(AlMl) = a(Al) ( 1) Agra(Ml and

=l

o(MiB1) = a(My)a(By) = o(M)Bs
so that AQO[(Ml) = Oé(Ml)Bl By Definition NEUT. 3(0) Al—Ml—Bl.

By Definition NEUT.1(D) a(A4;)-a(My)-a(By), ie., As—a(M;)-Bs. By
the uniqueness part of Theorem NEUT.50 «(M7) = Ms. Thus 04(541M1) =
Ee——73 EBEe——-4 EBEe———4
A2M2. By Definition NEUT. 3( ) A1M1 A2M2

E——3 E——13
(II If A1M1 = AQMQ) then Al 1 = AQBQ Usmg Theorem NEUT.56
let v be the isometry of P such that *y(AlMl) = AQMQ, v(A1) = Ag,
EBEe———4 E———3
and y(M;) = M2 By Definition NEUT.3(C) Ay M; = M;B;. By Theorem
NEUT.13 (A1M1) = W(MlBl) By Theorem NEUT.15
(A1M1 (A ) ( ) A2M2 and
y(MyBr) = 7(M)7(By) = Mﬂ(Bl) ) )
By Theorem NEUT.14 and Definition NEUT. 3( ) A M, = Msy(By).

By Deﬁnltlon NEUT 3(C) A2M2 &~ Mng It follows from Theorem
NEUT.14 that Mgw(Bl) Mng By Definition NEUT.3(C) 4;-M1-B;. By
Definition NEUT.1(D) ~(A1)—y(M1)—y(B1), that is to say, As—Mo—y(By).
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By Theorem PSH.13 v(B1) € M3Bs. By Property R.4 of Definition NEUT.2,

v(B1) = By. Thus by Theorem NEUT.15 v(4,B;) = v(A1)y(B1) = Ay Bs.
E——3 E———3

By Definition NEUT.3(B) A1B; = AsBy. O

Exercise NEUT.34* Let P be a neutral plane, O and P be distinct
points on P, let the points on Oﬁ be ordered so that O < P, and let A and
B be distinct points on O]? Let M be the midpoint of OA and N be the
midpoint of OEHB, then A < Biff M < N.

Ezxercise NEUT.34 Proof. (I. If M < N, then A < B.). If M < N, then
in Theorem NEUT.74 substitute M for X and N for Q to get OM < ON.
By Definition NEUT.3(C) O-N-B; by Theorem ORD.6 O-M-N so that
O-M-N-B, and hence B-N-M. Again in Theorem NEUT.74 substitute B
for O, N for X, and M for @ to get BN < BM.

E—3 E—1 E—3 E— E—J E—3

By Definition NEUT.3(C) OM = MA and ON =~ NB. MA = OM <
3  E-3 E—3 E—3
ON = NB, so by Theorem NEUT.73 (transitivity for segments), MA < NB,
and since NB < 3\/[—33, MA < MB. Then by Theorem NEUT.74, A < B.

(I: If A < B, then M < N.) If N = M, then by Exercise NEUT.33
OA =~ OB and by Property R.4 of Definition NEUT.2, A = B, contrary to
the given fact that A < B (see Theorem ORD.5). If N < M, then by part
(I) B < A contrary to the given fact that A < B. Hence N < M is false. By
Theorem ORD.5 (trichotomy for ordering) M < N. O

Exercise NEUT.35* Let P be a neutral plane, O and P be distinct
points on P, A and B be distinct members of O]?, M be the midpoint of
OE_/i, and N be the midpoint of ﬁ, then O-A-B iff O-M-N.

Exercise NEUT.35 Proof. By Theorem ORD.6 O < A < B iff O-A-B and
O < M < N iff O-M-B. Hence by Exercise NEUT.34 O-A-B iff O-M-N.
O

Exercise NEUT.36* Let P be a neutral plane and let Ay, By, M,
Ay, By, and Ms be points on P such that A; # By, Ay # Bs, M be the
E——3 E——3 E——3 E——3
midpoint of A1 B7 and My be the midpoint of AsBs, then A1 By < Ay By iff
Ee——73 Ee——73
A1 My < Ay M.

Ezercise NEUT.36 Proof. By Theorem NEUT.67 (segment construction)
there exists a point S such that § € m and E@Sj’ = xﬁ Let M be
the midpoint of A2S. By Definition NEUT.70 Ap—S—By iff ApS < A B, and
A—M—Ms, iff A,0M < AMs. By Exercise NEUT.35 Ay—S—By iff Ap—M—Mo.
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e—23 £ 3 2 3 £ 3 E——3 E—23 E—3
Hence A>S < A3Bs and AsM < AsMs. Since A1 By = AsS and A M, =
E—3 E——3 E——3
AsM by Theorem NEUT.73 (transitivity for segments) A1 By < AyBsg iff
E——= 3
A1My < AoM>. 0O

Exercise NEUT.37* Let Ay, By, A, and BQ be points on the neutral
plane P such that A; # By, Ay # Bs, and A1B1 =~ AQBQ and let C’l and
Cs be points such that A-C1—-By, Cy € A2B2 and A 01 = AQC’Q, then
Ay—Co—Bs.

Ezercise NEUT.37 Proof. By Theorem NEUT.56 there exists an isometry
E——3 E——3

« of P such that O[(AlBl) = AQBQ, (Al) = AQ and Oé(Bl) = BQ By Defini-

tion NEUT.1(D) a(A1)-a(Cy)-a(By) ie. Ag—a(C’l) Bs. By Definition IB.4

(Cl) € AsBs. By Theorem NEUT. 15 a(Alcl) = a(Al) (Cl) AQO((Cl)

By Definition NEUT. 3(B ) A101 Aga(Cl) Since AlCl 54202, by The-

orem NEUT.14, Aga(C’l) AQOQ. By Property R.4 of Definition NEUT.2,
(Cl) = (s, so As—Co—By. O

Exercise NEUT.38* Let A, By, Ao, By, C1, and Cg be points on the
neutral plane 73 such that A1 # Bl, A2 75 Bs, Cl S AlBl, and Cy € Ang

(A) If A101 AQOQ and ClBl CQBQ, then A1B1 = A2B2

(B) It A 01 AQOQ and A1B1 AQBQ, then C’lBl CQBQ

Ezxercise NEUT.38 Proof. (A) Since A1 Cl AQCQ by Theorem NEUT.56
there exists an isometry a of P such that a(Alcl) = AgCg, a(Ar) = As,
and «(Cy) = Cs. By Definition IB.3 A;-C1-B;. By Definition NEUT.1(D)

a(A1)-a(C1)-a(B1), i.e., Az=Co—a(By). By Theorem PSH.13 a(B1) € C2B.
By Theorem NEUT.15 a(C1B1) = a(Ch)a (B D = cza(Blf By Defini-
tion NEUT.3(B) ClBl & 0204(315 Since ClBl = Cng, by Theorem
NEUT.14 (congruence is an equivalence relation), Cga(Bl) C2Bs. Since

a(By) € m by Property R 4 of Deﬁn1t1on NEUT 2, a(B1) = Bsy. By The-
orem NEUT 15 a(AlBl) = a(Al) (B ) A, Bs. By Definition NEUT.3(B)
AlBl = AQBQ.

(B) Since STC; = 5?02] by Theorem NEUT.56 there exists an isometry
~ of P such that v(A1C1) = A3C, (A1) = Az, and (Cy) = Ca. By Def-
inition IB.3 A1—-C1-B;. By Definition NEUT.1(D) ~(A41)—y(Cy)—y(By), i.e.,
A2 Cg—y(Bl) By Deﬁnltlon 1B.4 7(31) € m By Theorem NEUT.15

~(AB1) = 7(A)y(B1) = Asy(By). By Definition NEUT.3(B) A,B; =
5427(31) Since 541—31] = 542—33, by Theorem NEUT.14 (congruence is an
equivalence relation) A; B; = A~(B1). By Definition NEUT.3(B) Ay~ (By) &
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A2B2 Since v(Bi) € AQBQ, by Property R.4 of Deﬁn1t1on NEUT 2, v(By) =
Bs. By Theorem NEUT 15 'y(C'lBl) = ’y(C’l) (B ) CyBs. By Definition
NEUT.3(B) CiB, = CyB,. O

Exercise NEUT.39* Let P be a neutral plane and let A, B, C, D, A,
B’, C’, and D’ be points on P such that: (1) A, B, and C are noncollinear,
Q_f}', B’, and C" are noncollinear, (3) AD is the bisecting ray of ZBAC, (4)
A’D’ is the bisecting ray of Z/B’A’C". Then Z/BAC = /B'A'C" iff /ZBAD =
/B'A'D'.

Ezercise NEUT.39 Proof. (I. If ZBAC = /B'A'C’, then /BAD =
/ZB'A'D’.) By Theorem NEUT.38 there exists an isometry « of P such
that a(Z/BAC) = /B'A'C’, o(AB) = A'B', and a(AC) = A'C". By The-
orem NEUT.15 a(ﬁ) = a(A)a(?_agnd a(m) = aJ(A_)g(C;. By Theo-
rem PSH.24 a(A) = A, a(B) € A'B’, and o(C) € A'C’. By Definition
NEUT.3(D) D € ins ZBAC and D’ € ins ZB’A’C’'. By Theorem NEUT.15
a(D) € insa(£LBAC) = ins ZB'A’C’. By the same theorem

a(/BAD) = Hé UAD) = «(AB) U a(4D)
—AB uXa (D) = £B’A'a(D).
By Definition NEUT.3(B) £ZBAD = /B'A'a(D). By similar reasoning
LCAD = £C"A'aD). Since ZBAD =~ ZCAD by Theorem NEUT.14 (con-
gruence is an equivalence relation) /B’ A’a(D) = Z/C'A'a(D). By Theorem
NEUT.39 and Definition NEUT.3(D) A'« (D) is a bisecting ray of /B’ A'C’,
and hence by Theorem NEUT.26, A'a(D) = A’D’. By Theorem PSH.24
a(D) € A'D'. Since /BAD = /B'A'a(D), /BAD = /B'A'D.

(Il: If /ZBAD = /B'A'D’, then /BAC = /B'A’C’.) By Theorem
NEUT.38 there exists an 1sometry v of P such that v(£/BAD) = /B'A'D’,
+(AB) = A8, and v(AD) = A'D'. By Theorem NEUT.15

W(LBAD) = ~(AB UAD) = ~(AB) U~(AD)
i = ”Y(A)”Y(Bj UW(A)W(DQ = 2y(B)y(A)y(D).
Since W(A)Wj@ = A’B’ and ?ﬂv( D) = A'D', by Theorem PSH.24 y(A) =
A’ v(B) € AB" and (D) € A'D’. By Theorem NEUT.15
¥(LCAD) = y(ACUAD) = v(AC)UAD)
— SN (C) US (AN (D) = XA (CUAD = /1(C)A' D,
By Definition NEUT.3(B) ZCAD = /~v(C)A’D’'. By Theorem NEUT.39
/BAD = /CAD and /B'A'D" = /C'A'D'. Since /BAD = /B'A'D’,
by Theorem NEUT.14 (congruence is an equivalence relation), Zy(C)A’D’
>~ /C'"A'D’'. Since D € ins ZBAC, by Theorem NEUT.15
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]H”Y(D) € insy(£LBAC) = ins LB’ A'v(C).
Since y(D) € A’D', D' € MB/A/”Y(C)- By Definition PSH.36 D" and ~(C')
are on the same side of A’B’. By Theorem NEUT.36 A'v(C) = W By
Theorem PSH.24 7(C) € A/C". By Theorem NEUT.15
_(£BAC) =1(ABUAC) = 5(AB) U~(AC)
= 7(A)y(BU~F(A)(C) = AB UA'C" = LB'A'C".
By Definition NEUT.3(B) ZBAC = /B'A'C'. O

Exercise NEUT.40* Let P be a neutral plane and let A, B, C, D, A,
B’, C’, and D’ be points on P such that: (1) A, B, and C are noncollinear, (2)
A’, B, and C" are noncollinear, (3) D € ins ZBAC and D’ € ins /B’ A'C".

(A) If ZBAD = /B'A'D’ and LCAD = /C'A'D’, then /BAC =
/B'A'C.

(B) If ZBAD = /B'A'D' and /BAC
LCO"A'D'.

2
1%

/B'A'C", then ZCAD

Il

Ezercise NEUT.40 Proof. (A) By Theorem NEUT.38 there exists an
isometry « of P such that o(£LBAD) = ZB'A'D’, a(ﬁ) — AP and
a(ﬁ) = W By Definition PSH.29, Theorem NEUT.15, and elementary
mapping theory

a(Z/BAD) = f(ABUAD) = o(AB) U «(AD) = a(A)a(Bj Ua(A)a(D).
By Theorem PSH.24 a(A) = A’, «(B) € A'B and a(D) € A0, By Defini-
tion PSH.29, Theorem NEUT.15, and elementary mapping theory,

a(£CAD) = o(AC UAD) = a(4AC) U a(4D)

= a(A)a(CS Ua(A)a(D) = A'a(CYUAD' = La(C)A'D'.
By Definition NEUT.3(B) ZOAD = Za(C)A'D'. Since ZOAD = /C'A' D/,
by Theorem NEUT.14 (congruence is an equivalence relation), o(C)A’ D’ =
LC'"A'D’. Since a(D) € w, by Theorem PSH.16 A’a(D; — XD, Since
D € insZBAD, by Theorem NEUT.15 a(D) € insZa(B)a(A)a(C) =
ins ZB'A’'a(C). By Corollary PSH.39.2 B’ and «(C) are on opposite sides
of A'a(D; =A'D".

Since D' € ins/ZB’A'C’, B’ and C’ are on opposite sides of m By
Theorem PSH.12 (plane separation), C’ and «(C) are on the same side of
w. By Theorem NEUT.36 A'C’ = A’a(C’;. By Definition PSH.29, Theo-
rem NEUT.15, and elementary mapping theory

a(£BAC) = a(ABUAC) = o(AB) Uo(AC) |
= a(A)a(BjUa(A)a(C) = AB'UAC" = /B A'C'.
By Definition NEUT.3(B) ZBAC = B'A'C".
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(B) By Theorem NEUT.38 there exists an isometry + of P such that
v(£LBAD) = /B'A'D’, ”y(/ﬁ) = /T? and ”y(@) = 54—’3 Reasoning
as in part (A) we get y(£BAD) = ~(A)y(B)Ur(A)y(D), (4) = 4,
v(B) € A'B’, and (D) € A'D'. Furthermore v(£ZBAC) = £ZB'A'y(C).
So that ZBAC = /B'A'y(C) and thus, ZB'A'v(C) = £ZB'A'C’, and so
LB'A'~(C) =2 £B'A'C’. Since D € ins ZBAC, by Theorem NEUT.15

~v(D) € insy(£LBAC) = ins Z/B'A'~(C) = ins AB'A’C]”.4>
Since D’ € ins ZB'A'C" and (D) € ins ZB’A’C" and (D) € A'D’ so that
by Theorem PSH.16 MD) = W By Definition PSH.36 D’ and C('_ar)e
on the same side of A’B’ and (D) and C’ are on the same side of A’B’.
Thus b}(ﬂleorem PSH.12 (plane sepga_t;on) C’ and (C) are on the same
side of A’B’. By Theorem NEUT.36 A’C" = A’y(C). By Definition PSH.29,
Theorem NEUT.14, and elementary mapping theory
(LCAD) = v(ACUAD) = ~(AC) U~A(AD) = AC'UAD = LC'A'D.

By Definition NEUT.3(B) ZCAD = /C'A'D'. O

Exercise NEUT.41* Let P be a neutral plane and let Ay, By, Ci,
D1, As, Ba, Cy, and D5 be points on P such that: (1) Ay, By, and C; are
noncollinear, (2) D; € ins £B1A;Ch, (3) Aa, Bs, and Cy are noncollinear,
(4) Dy € ins /By AyCy, and (5) ZByA1Dy = /ByAsDs. Then /By A,Cy <
LBy AsCs iff £D1A1Cy < £DoAsCs.

Ezercise NEUT.41 Proof. (I If /B1A1Cy < £BsA3C5, then /D1 A1 Cy <
ZD2A5Cs.) By Definition NEUT.70 £B1A1Dy < £B1A1Cy, £ByA3 Dy <
/BsA3C5 and there exists a point S belonging to ins /By AsCy such that
/B1A1C1 = £ByAsS. Since LB1A1Dy < LB1A1Cy, LB1A1 Dy = LBy As Do,
and /B1A;Cy & /ByA3S, by Theorem NEUT.76 (transitivity for angles),
/ByAsDy < /B5AsS. By Definition NEUT.70 Do € ins /BsA5S. Since
/B1A1Cy < £B3AsCy and /B1A1C) =2 /By AyS, by Theorem NEUT.76
(transitivity for angles) Z/ByA2S < £B2A2C5. By Theorem NEUT.78 S €
ins Z/Bs A>C5. By Exercise PSH.18 ins /By A3C5 is the union of the disjoint
sets m, ins /By A3 Do, and ins /D3 AsCy. Since Do € ins /B3 A5S, by
Exercise PSH.12 S € out £/BsA3D5, so that S € ins ZDsA3C5. By Defini-
tion NEUT.70 £D>A5S < ZD5A5C5. We know that /B1A1C7 = /ByA5S
and /B1A1D1 = /ByAsDs, so that by Exercise NEUT.40, /D1 A,Cy =
ZDsAsS. Since £D2AsS < £DyAsCy by Theorem NEUT.76 (transitivity
for angles), /D1 A1Cy < £D3A5Cs.



58

(IL: If £D1A1Cy < £D2A5Co, then /B1A1C; < £B3A2Cs.) By Def-
inition NEUT.70 there exists a point 7T belonging to the ins ZDyA5Cy
such that /D1 A1C7 = ZDyA>T. By Exercise PSH.18 ins /By A5C5 is the
union of the disjoint sets m, ins /B> A5 Do, and ins £ZD>A5C5, so that
T € ins £/B3A5C5. By Definition NEUT.70 /By AsT < /By A3Cs. Since
/B1A1Dy & /By AsDy and £D1AC1 = LDy A>T by Exercise NEUT.40
/B1A1C1 = ZByAST.

Since 4BQA2T < ZBQAQCQ and 43114101 = 4BQA2T, by Theorem
NEUT.76 (transitivity for angles) ZB1A41Cy < ZB3A3Cy. O

Exercise NEUT.42* Let P be a neutral plane and let Ay, By, Ci,
D1, As, Ba, Cy, and D5 be points on P such that: (1) Ay, By, and C; are
noncollinear, (2) Dy € ins ZB1A;1C1, (3) Aa, Bs, and Cy are noncollinear,
and (4) Dy € ins ZBaAsCy. Then if ZB1 A1 Dy < ZBaAsDs and 2Dy A, C <
/DsAsCy, /B1AICy < /ByAsCs.

Exercise NEUT.42 Proof. Let Az and B3 be distinct points on P and let
‘H be a side of m By Theorem NEUT.68 (angle construction) there exists
a point D3 belonging to H such that /B3A3D3 = /B1A1D:. By the same
theorem there exists a point C5 on the side of m opposite the Bs-side
such that ZD3A3C3 = /Dy A5C5.

Since ZBgAng = ZBlAlDl and 401A1D1 < 403A3D3, by Exercise
NEUT.41 £ZB1A1Cy < £B3A3C5.

Since £/ D3A3C3 = /DyA3Cy and /B3AsD3 < /Bs Ay Dy, by the same
exercise ZB3A3C3 < LBy A>Cs.

Then /B1A1Cy < /B3A3C3 < /By A3C5 so that by Theorem NEUT.76
(transitivity for angles) /B1A;Cy < ZB2AxCs. O

Exercise NEUT.43* Let P be a neutral plane and let Ay, B, Ci,
D1, As, By, Cy, and D5 be points on P such that: (1) Ay, By, and C; are
noncollinear, (2) m is the bisecting ray of ZB1A;1Cq, (3) As, B2, and
(s are noncollinear, and (4) m is the bisecting ray of Z/ByA>C5. Then
/B1A1C1 < LBy AsCy iff /B1A1D1 < £ByAsDs.

Exercise NEUT.43 Proof. By Theorem NEUT.39
/B1A1Dy = /D1 A1Cq1 and LBy A9 Dy =2 /Do AyCs.
(I) If £B1A1Dy < Z£B3A3D,, then by Theorem NEUT.76 (transitiv-
ity of angles) ZD1A1C1 < £D3A3C5. By Exercise NEUT .42, /B1A1Cy <
/By AsCs.
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(IT) Conversely, suppose that £B1A;Cy < £B2A3C5. By Theorem NEUT.75
(trichotomy for angles), exactly one of ZB1A1 Dy < £ByAsDs, /B1A1 Dy &
ZBQAQDQ, or /B1A1 Dy > £BsAsD5 holds.

If ZBlAlDl = 4BQA2D2, then by Exercise NEUT.39 éBlAlCl =
/ Bs A5Cs, which is contrary to our assumption.

If /B1A1 D1 > ZByA3Ds, then by part (I) (interchanging the subscripts
1 and 2) £ZB1A1Cy > £ByAsCy, which is contrary to our assumption.

Therefore /By A1 Dy < £ByAs Do, completing the proof. 0O

Exercise NEUT.44* Let P be a neutral plane and let A, B, C, P,
and @ be points on P such that: (1) A, B, and C are noncollinear, (2)
P eins ZBAC, and (3) Q € ins ZBAP. Then ZQAP < ZBAC.

Exercise NEUT./4 Proof. Since P € ins ZBAC by Definition NEUT.70
/BAP < /BAC. By the same definition ZQAP < /BAP. By Theorem
NEUT.76 (transitivity for angles) ZQAP < ZBAC. 0O

The reader will note that the next exercise is identical to Exercise NEUT.42,
although somewhat disguised by the use of different notation. At one point
we thought to eliminate it. We decided to leave it in, since the method of
proof is different from that for Exercise NEUT.42.

Exercise NEUT.45* Use Exercise NEUT.44 to prove the following: Let
P be a neutral plane and let A, B, C, D, A’, B’, C’, and D’ be points
on P such that: (1) A, B, and C are noncollinear, (2) A’, B’, and C’ are
noncollinear, (3) D € ins ZBAC and (4) D’ € ins£ZB'A'C’. If ZBAD <
/B'A'D" and ZCAD < /C'"A’D’, then /BAC < /B'A'C".

Ezercise NEUT./5 Proof. By Definition NEUT.70 there exist points P
and @ such that P € ins ZC"A'D’, Q € ins/B'A'D’', /D'A'Q = /BAD and
/D'A'P =~ /DAC.

By Exercise PSH.18, P, ), and D’ are members of ins /B’ A’C’. Since P €
ins Z/C"A'D’, by Exercise PSH.13 D’ € ins /B’ A’ P; then Q € ins /B’A'D’ C
ins /B’ A’ P’ again by Exercise PSH.18.

We may now apply Exercise NEUT.44 to get ZQA'P < /B'A’C’. By Ex-
ercise NEUT.40 ZQA'P = /BAC. By Theorem NEUT.76 (transitivity for
angles) ZBAC < ZB'A'C’. O
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Exercise NEUT.46* Let A and B be distinct points on the neutral
plane P, L be the perpendicular bisector of AB , and « be an isometry of P
such that a(54_Bj) = Sﬁ, then one and only one of the following statements
is true: (A) o is the identity mapping 2 of P onto itself, (B) a = R, (C)
a=TRg,or (D) a=RcoRyp.

E— BT

Ezercise NEUT. 46 Proof. By Theorem NEUT.15 a(AB) = a(A)a(B) and

—C "
a(AB) = a(A)a(B). Thus {a(A),a(B)} = {4, B}, so that either a(A) = A
and a(B) = B, or a(A) = B and «(B) = A. If o(A) = A and «(B) = B,
then by Theorem NEUT.37 either o = 2 (the identity mapping of P onto
itself) or a = Rez. If a(A) = B and a(B) = A let v = R o a, then by
Theorem NEUT.11 « is an isometry of P. Moreover v(A) = A and v(B) = B
so by Theorem NEUT.37 either v = or v = Ryp. If v =R, oa =1, then
by Definition NEUT.1(C) a = Re. If y = Rpoa = Ryp,a=ReoRyp. O

Exercise NEUT.47* Let A, B, and C be distinct points on the neutral
plane P and let o be an isometry of P such that A is a fixed point of « and
B is not a fixed point of . Then A is the midpoint of BC iff B-A-C' and
a(B) =C.

Ezxercise NEUT./7 Proof. (I: If A is the midpoint of BHC]', then B-A-C
and a(B) = C.) By Definition NEUT.3(C) B-A-C' and BA =~ CA. By
Definition NEUT.1(D) «a(B)-«a(A)-a(C), ie., a(B)-A-a(C). By Property
B.0 of Definition IB.1 «(B) # A. By Theorem PSH.15 1B \ {4} is the

E—

union of the disjoint rays AB and AC. By Theorem NEUT.15 o(AB)
(

E————F

a(A)a(B) = Aa(B) so that by Definition NEUT.3(B) AB = Aa(B). If a(B
were a member of j@, then by Property R.4 of Definition NEUT.2 «(B
would equal B, i.e., B would be a fixed point of «. This would contradict th
given fact that B is not a fixed point of «e. Hence «(B) € AC. Since AB =

Eu%]m = =

by Theorem NEUT.14 (congruence is an equivalence relation) AC =~ EAoz(
By Property R.4 of Definition NEUT.2, o(B) = C.

(IL: If B-A—C' and «(B) = C, then A is the midpoint of %) By Theorem
NEUT.15 a(BA) = a(B)a(A) = CA. By Definition NEUT.3(B) BA =~ CA.
By Definition NEUT.3(C) A is the midpoint of BC. O

Exercise NEUT.48* Let P be a neutral plane, let £ and M be distinct
lines on P through the point O, and let £ and M be lines on P such that
Ly L Land My L M, then £; and M are distinct.
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Ezercise NEUT.48 Proof. If £1 and M were equal then there would exist
distinct lines (namely £ and M) through O each of which is perpendicular
to L1, contrary to Theorem NEUT.47(B). Hence £1 # M;. O

Exercise NEUT.49* Let P, O, and T be noncollinear points on the
neutral plane P and let S and V be members of ins ZPOT such that
/ZPOS < ZTOS and ZPOV = /TOS. Furthermore, let X be any mem-
ber of ins ZTOV and let W be a point such that ZPOW < /ZPOX and
/XOW = /ZPOS, then W € ins ZPOV'.

Exercise NEUT.49 Proof. By Exercise NEUT.32 S € insZPOV, V €
ins ZTOS, and ZTOV = ZPOS. Since ZXOW = /POS and ZPOS =
/ZTOV, by Theorem NEUT.14 /XOW = /TOV. Since ZPOS < ZTOS,
by Theorem NEUT.76 (transitivity for angles) ZTOV < ZTOS. Since
S € ins ZPOV by Definition NEUT.70 ZPOS < ZPOV. By Definition
PSH.36 V and S are on the same side of (67 and V and S are on the same
side of E% By Theorem NEUT.78 V' € ins ZTOS and S € ins ZPOV. If W
were to belong to O]_Y} or to ins ZT'OV, then by Exercise NEUT.44 Z/ XOW
would be smaller than Z/TOV. By Theorem NEUT.75 (trichotomy for an-
gles), this contradicts the established fact that ZXOW = ZTOV. Hence
W ¢ (O]—‘} Uins ZTOV). By Exercise PSH.18 W € ins ZPOV. O

Exercise NEUT.50* Let P be a neutral plane, £ and M be lines on P
such that £ 1 M, and & be a side of L. Then M is a line of symmetry of £.

Exercise NEUT.50 Proof. By Theorem NEUT.10 we need only show that
if X is any member of £, then Rp(X) = X. If X € M, then by Definition
NEUT.1(A) Rpm(X) € €. If X € (P \ M), then by Theorem NEUT.48(A)
E—mm3 E—mmm3
XRm(X) L M. By Theorem NEUT.47(A) XRm(X) || £. By Theorem
IB.10 and Exercise PSH.14 Rpq(X) € €. O

Exercise NEUT.51* Let P be a neutral plane and let A, B, and C be
noncollinear points on P such that ZACB is a maximal angle of AABC.

(A) If D is any member of B]—CE', then AD < AB.

(B) If ZACB is acute, there exists a point D € BC such that AC > AD.

(C) If LZACB is right or obtuse then for every D € BC,AC < AD.

Ezercise NEUT.51 Proof. (A) By Theorem NEUT.92 AC < AB. By
Theorem NEUT.95 AD < AB.
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(B) By Theorem NEUT.86 LABC is acute. By assumption ZACB is
acute. Let D = ftpr(A, %) By Exercise NEUT.20, D € BC. Then AADC
is right and ZADC ' is a right angle, hence by Theorem NEUT.93 AC > AD.

(C)(1) If LACB is right then for any D € BC, ZACD is right and by
Theorem NEUT.93 AD > AC.

(C)(2) If LZACB is obtuse, then let E = ftpr(A,@). Then AAED is a
right triangle, and ZAEB is maximal by Theorem NEUT.84 so that by part
(A) above, AD > AC. O

Exercise NEUT.52* Let P be a neutral plane, A, B, and C be points
on P such that B-A-C, and D be a member of P\ 1B such that ZBAD <
ZCAD, then ZBAD is acute and ZCAD is obtuse.

Ezercise NEUT.52 Proof. By Corollary NEUT.46.1 there exists a point
P such that P € m and ZBAP is right. If D were a member of Aj?, then
by Theorem NEUT .44, ZBAD and ZC AD would be congruent. By Theorem
NEUT.75 (trichotomy for angles) this would contradict the given fact that
/BAD < /CAD. Hence D € (ABP\ AP).

By Exercise PSH.31 either D € ins /ZBAP or D € ins ZCAP. If D were
a member of ins ZCAP, then by Definition NEUT.70 ZCAD < ZCAP.
By Exercise PSH.51 P is a member of ins ZBAD and thus by Definition
NEUT.70 ZBAP < ZBAD. Since ZBAP is right, by Definition NEUT.41(C)
/BAP =~ /CAP. By Theorem NEUT.76 (transitivity for angles) ZCAD <
/BAD, contrary to the given fact that /BAD < ZCAD.

Hence D € ins ZBAP. By Definition NEUT.70 /BAD < /BAP. By Def-
inition NEUT.81 ZBAD is acute. By Exercise PSH.51 P € ins ZCAD. By
Definition NEUT.70 ZCAP < ZCAD. By Definition NEUT.81 ZCAD is
obtuse. O

Exercise NEUT.53* Let P be a neutral plane, A, B, and C' be non-
collinear points on P such that AC < AB and D be the point of intersection
of the bisecting ray of ZBAC and BC (so ZBAD = /CAD), then ZADC
is acute, ZADB is obtuse, and DC < DB.

Ezercise NEUT.53 Proof. (A) By Definition NEUT.70 there exists a point
E belonging to AB such that AE = AC. By Theorem NEUT.64 (EAE)
applied to AADFE and NADC, ZADE = /ADC, ZAEC = ZACD, and
DE = DC. By Theorem PSH.37 E € ins ZADB. By Definition NEUT.70
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/ZADE < ZADB. By Theorem NEUT.76 (transitivity for angles) ZADC <
/ADB. By Exercise NEUT.52 ZADC' is acute and ZADB is obtuse.

By Property B.3 of Definition IB.1 there exists a point F’ such that
A-C—-F'. By Theorem NEUT.67 (segment construction) there exists a point
F belonging to CF' such that CF = EB. By Theorem NEUT.43 Z/DEB =
ZDCF. By Theorem NEUT.65 (AEA) applied to ADEB and ADCF,
/EDB = /CDF. By Exercise NEUT.12 E-D-F. By Exercise NEUT.38
AB = AF. By Theorem NEUT.64 (EAE) applied to AABC and AAFE,
LACB = LAEF, ZABC = /AFE. By Theorem NEUT.80 (outside an-
gles) applied to AABC, ZABC < ZBCF. By Theorem NEUT.91 applied
to ADCF DC < DF. By Theorem NEUT.73 (transitivity for segments)
DC <DB. O

Exercise NEUT.54* Let P be a neutral plane and let A, B, and M be
distinct collinear points on P such that AM =~ BM , then M is the midpoint
of AB.

Ezercise NEUT.5/ Proof. By Property B.2 of Definition IB.1 one and
only one of the following statements is true: A-M-B; M-A-B; A-B-M.
If M=A-B were true, then by Definition NEUT.70 AM would be smaller
than BM. If M—B-A were true, then by the same definition BM would be
smaller than AM. Each of these situations contradicts Theorem NEUT.72
(trichotomy for segments). Hence A—M-B. By Definition NEUT.3(C) M is
the midpoint of AB. O

Exercise NEUT.55* Let P be a neutral plane, A and B be distinct
points on P, M be the midpoint of 54_B], and C be a member of AB. Then
C e AM iff AC < BC.

3—L =2 E—3J

Ezercise NEUT.55 Proof. (I: If C € AM, then AC < BC.) By Definition
NEUT.70 AC < AM. By Definition NEUT.3(C) AM = BM. By Theorem
NEUT.73 (transitivity for segments) AC < BM. By Definition NEUT.70
E—3 E—

BM < BC. By Theorem NEUT.73 AC < BC.
E—3 E—3 I

(Il: If AC < BC, then C € AM.) By Theorem PSH.15(D) one and only
one of the following possibilities is true: C' = M; C € BJ—J\CL CeAM.IfC
were equal to M, then by Definition NEUT.3(C) AC would be congruent

E— I—
to CB. If C were a member of M B, then by part (I) BC would be smaller
than AC. By Theorem NEUT.72 (trichotomy for segments) each of these two
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BE—3 E—3J JI—t
possibilities contradicts the given fact that AC < BC. Hence C' € AM. O

Exercise NEUT.56* Let P be a neutral plane, A, B, and C' be non-
collinear points on P, P be a member of ins ZBAC such that Eél_P> is the
bisecting ray of ZBAC, and let @ also be a member of ins ZBAC. Then
Q €ins /BAP iff /BAQ < ZCAQ.

Ezxercise NEUT.56 Proof. (I: If @ € ins ZBAP, then ZBAQ < ZCAQ.)
By Definition NEUT.70 Z/BAQ < ZBAP. By Theorem NEUT.39 /BAP =
ZCAP. By Theorem NEUT.76 (transitivity for angles) ZBAQ < ZCAP.
By Exercise PSH.13, since @ € ins ZBAP, P € ins ZCAQ. By Definition
NEUT.70 ZCAP < ZCAQ. By Theorem NEUT.76 (transitivity for angles)
/BAQ < ZCAQ.

(Il: If ZBAQ < ZCAQ), then @ € ins ZBAP.) By Exercise PSH.18 one
and only one of the following possibilities holds: @ € jﬁ; Q € ins L/BAP;
Q € insZCAP. If (Q were a member of A]?, then by Theorem PSH.16
AQ would be equal to AP and by Definition NEUT.39 /BAQ and ZCAQ
would be congruent. If @) were a member of ins ZCAP, then by part (I)
ZCAQ would be smaller than ZBAQ. By Theorem NEUT.72 (trichotomy
for segments), each of these two possibilities contradicts the given fact that
/BAQ < ZCAQ. Hence Q € ins ZBAP. 0O

Exercise NEUT.57* Let P be a neutral plane, A, B, and C' be non-
collinear points on P such that AC < EA_BJ, and D be the midpoint of BC.

(A) LADC is acute and ZADB is obtuse.

(B) If E is the point of intersection of the bisecting ray of ZBAC and
segment BJ_CF, then C~E-D-B and /BAD < ZCAD.

Ezxercise NEUT.57 Proof. (A) By Theorem NEUT.98 (Hinge) applied to
ADAB and ADAC, ZADC < ZADB. By Exercise NEUT.52 ZADC' is
acute and ZADB is obtuse.

= E=—3

(B) By Exercise NEUT.53 EC < EB. By Exercise NEUT.55 E € DC.
By Definition IB.3 C-E-D. By Definition NEUT.3(C) C-D-B. By Theo-
rem PSH.8 C-E-D-B. By Theorem PSH.37 D € ins ZBAE, so by Exercise
NEUT.56 Z/BAD < ZCAD. 0O

Exercise NEUT.58* Let P be a neutral plane and let A, B, C, D, E,
and F be points on P such that: (1) A, B, and C are noncollinear, (2) D, E,
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and F are noncollinear, (3) ZBAC =2 ZEDF and Z/CBA = /ZFED, and (4)
AB < DE. Then AC < DF and BC < EF.

Ezercise NEUT.58 Proof. By Definition NEUT.70 there exists a point
B’ belonging to DE such that DB =~ AB. By Theorem NEUT.68 (an-
gle construction) there exists a point U on the F-side of ﬁ such that
/DB'U = /ABC. Let V be a point such that V-B’-U. Then by The-
orem NEUT.42 (vertical angles) ZDB'U = /V B'E. Since by assumption
ZABC = /DEF, by Theorem NEUT.14 (congruence is an equivalence re-
lation) /DEF = /ABC = /DB'U = /VB'E. Thus by Theorem NEUT.87
(alternate interior angles) v I FE.

By the Postulate of Pasch W intersects either DF or ﬁ'; the lat-
ter can’t be true because UV I ﬁ, so there is a point C’ such that
DENUV = {C"}, and since C’ € DF, F-C'-D. By Theorem NEUT.65
(AEA) ADB'C" 2 AABC hence DC’ 2 AC and from Definition NEUT.70
AC = D[—C:; < DF. Interchanging “A” with “B” and interchanging “D” with
“E” in the above argument shows that BC < EF. O

Exercise NEUT.59* Let P be a neutral plane, A, B, and C' be non-

collinear points on P, F' be the midpoint of [/TB], FE be the midpoint of ﬁ, and

Tt B B3 E—3 E—3 E—2

O be the point of intersection of BE and CF. If AB = AC, then BE = CF,

/CBE = /BCF, /ABE = /ACF, jﬁ is the perpendicular bisector of BC
and % is the bisecting ray of Z/BAC.

Ezercise NEUT.59 Proof. By Exercise NEUT.33 BF =~ CE. By Theorem
NEUT.40(A) (Pons Asinorum) LABC = ZACB. By Theorem NEUT.64
(EAE) BE = CF and /BCF =~ /CBE. By Theorem NEUT.40(B) (the
converse of Pons Asinorum) OB = OC. Let L be the perpendicular bisec-
tor (See Definition NEUT.51) of BC. By definition £ intersects BC at its
midpoint. By Theorem NEUT.52 R, (B) = C; by Theorem NEUT.55 L is
identical with the line of symmetry of ZBAC. By Theorem NEUT.20 A € L.

Since Rg(B) = C and A € L, RL(Sél_Bj) — AC and by Exercise NEUT.33
Re(E) =F, sothat R (BJ_EC’) = CF. Let @ be the point of intersection of £
and IJQ—EE; since @ € L, R.(Q)=Q € Rg(BHE) = C]'—FE, so that @ is the point
of intersection of these two segments, that is, @ = O; therefore O € L, and
L= % We defined £ to be the perpendicular bisector of %, and since
O € ins ZBAC, ﬁ is its bisecting ray. 0O
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Exercise NEUT.60* Let P be a neutral plane and let A, B, and C be
noncollinear points on P, E be the midpoint of AC and F be the midpoint
of AB. If AC < AB, then ZABE < /ACF.

Exercise NEUT.60 Proof. By Definition NEUT.70 there exists a point B’
I E— e

belonging to AB such that AB’ = AC. Let F' be the midpoint of AB’. By Ex-

ercise NEUT.59 ZACF' = ZAB'E. By Theorem NEUT.80 (outside angles)
E—3

applied to AEB'B, ZABE < /AB'E. By Exercise NEUT.36 AF' < AF

E—3 3
because AB’ < AB. By Exercise NEUT.55 F/ € jﬁ'; by Theorem PSH.37
I’ € ins ACF and by Definition NEUT.70 ZACF’' < ZACF. By Theorem
NEUT.76 ZABE < /AB'E = /JACF' < Z/ACF. O

Exercise NEUT.61* Let P be a neutral plane and let A, B, C, E,
and F' be points on P such that: (1) A, B, and C are noncollinear, (2) E is
the point where the bisecting ray of ZABC and AC intersect, (3) F is the
point where the bisecting ray of ZAC'B and AB intersect. If AB < zTCj', then
BE < CF.

Ezercise NEUT.61 Proof. In this proof a carefully sketched and labeled
figure will be of great assistance in keeping things straight.

Since AB < AC, by Theorem NEUT.90 ZACB < /ABC. By Exercise
NEUT .43 ZACF < ZABE and /BCF < ZCBE. By Theorem NEUT.68
(angle construction) there exists a point U on the A-side of ﬁ such that
/EBU =2 /ECF = LACF. Since ZACF < /ABE by Theorem NEUT.76
(transitivity for angles) /ZEBU < ZABE.

By Theorem NEUT.78 U € ins ZABE. By Theorem PSH.39 (Crossbar)
BU and AE intersect at a point A’. Let O be the point (See Exercise PSH.26)
of intersection of BE and CF. Since U € ins ZOBF, by Theorem PSH.39
(Crossbar) BU and OF intersect at a point F'; F' € OF C CF, so that
C—F'—F, and by Definition NEUT.70, CF’ < CF.

Then ZA'CF' = ZACF = /EBU = ZEBA’ and again by Exercise
NEUT.43 Z/BCF' < ZEBC. By Theorem NEUT.76 (transitivity for angles)
/A'CB < /A'BC, and by Theorem NEUT.91 A'B < A'C.

Now compare AA’BE and ANA'CF’, where A’ corresponds to A’, B cor-
responds to C, and E corresponds to F’. We see that

(1) ZCA'B=/ZEA’'B = ZF'A'C is common to both triangles,

(2) LZACF' = /A'BE, and

(3) AB < AC.
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E—3 E— E—3 E=—3 A
Hence by Exercise NEUT.58 BE < CF’ < CF, so that BE < CF. O

Exercise NEUT.62* (Steiner-Lehmus) Let P be a neutral plane and
let A, B, C, E, and F be points on P such that:

(1) A, B, and C are noncollinear,

(2) E is the point of intersection of the bisecting ray of ZABC', and A]—CE’,
and

(3) F is the point of intersection of the bisecting ray of ZACB and AB.
IfBE_JE%EC_ﬁ, then AB = AC.

Ezercise NEUT.62 Proof. We prove the contrapositive, which is equiva-
lent. If AB and AC are not congruent, then BE and CF are not congruent.
By Theorem NEUT.72 (trichotomy for segments) we can choose the notation
so that AB < AC. By Exercise NEUT.61 BE < CF. By Theorem NEUT.72
BE and CF are not congruent. O

Exercise NEUT.63* (A) Let P be a neutral plane and let A, B, C, and
D be points on P such that:
(1) A, B, and C are noncollinear,
(2) ZBAC is acute,
(3) B and D are on opposite sides of jﬁ,
(4) ZCAD = /CAB.
Then D is on the C-side of jﬁ
(B) Let P be a neutral plane and let A, B, C, and D be points on P such
that:
1) A, B, and C are noncollinear,
2) Z/BAC is acute,
3) B and D are on opposite sides of jﬁ,
4) ZCAD is acute or right.
Then D is on the C-side of j@

(
(
(
(

Ezxercise NEUT.63 Proof. (A) Using Property B.3 of Definition IB.1 let
B’ be a point such that B'~A-B. By Theorem NEUT.83 ZC' AD is acute. By
Theorem NEUT.82 ZC'AB’ is obtuse. By Definition IB.11 B and B’ are on
opposite sides of /ﬁ By Theorem PSH.12 (plane separation) B’ and D are on
the same side of % . Since ZC'AD is acute and ZC' AB’ is obtuse, by Theorem
NEUT.83 ZCAD < ZCAB'. By Theorem NEUT.78 D € ins ZCAB’. By
Definition PSH.36 C' and D are on the same side of j@, i.e., D is on the
C-side of /ﬁ .
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(B) Using Property B.3 of Definition IB.1 let B’ be a point such that
B'-A-B. Let F be a point on the C-side of /ﬁ such that jﬁ 1 /ﬁ Since
it is acute, /BAC < /ZBAEFE which is right, and since F and C' are on the
same side of ﬁ, by Theorem NEUT.78, C € ins /BAE.

By Corollary PSH.39.2 E and B are on opposite sides of jﬁ D and B are
on opposite sides of /ﬁ, so D and E are on the same side of /ﬁ Now /B’AC
is obtuse because it is a supplement of ZBAC' (cf Theorem NEUT.82).

If ZCAD is either a right or an acute angle, ZCAD < /B’'AC, and by
Deﬁniti{c&NEUT.?O, D € ins /B’ AC. By Definition PSH.36 D is on the C-
side of AB’ = AB. O

Exercise NEUT.64* Let P be a neutral plane and let Ay, By, C1, D1,
Ay, By, C3, and D5 be points on P such that:

(1) Ay, By, and C; are noncollinear,

(2) Ay, Bs, and Cs are noncollinear,

(3) By and D; are on opposite sides of m,

(4) Bz and D4 are on opposite sides of m,

(5) 4D1A101 = ZBlAlcl,

(6) £LD2AsCy = /By AsCo,

(7) £B1A1Cy < £B2A3Cy, and £BoA2Cy is acute.

Then £/B1A1 Dy < £ByAsDs.

Ezercise NEUT.64 Proof. By Theorem NEUT.83 /B;A;C: is acute.
By Theorem NEUT.76 (transitivity for angles) Z/D1A;C7 =& ZB1A1Cy <
/BsAyCy = /Dy AsCs. By Exercise NEUT.63 C; and D; are on the same
side of A1B; and C5 and D> are on the same side of m By Exercise
NEUT.42 Z/B1A1Dy < £BoAsDs. O

Exercise NEUT.65* Let P be a neutral plane and let A, B, and C
be noncollinear points on P such that each angle of AABC' is acute, D =
ftpr(B, j@) and F = ftpr(C, jﬁ), then BD and CF intersect at a point O
which belongs to ins AABC.

Exercise NEUT.65 Proof. By Exercise NEUT.20 D € AC and E € AB.
By Exercise PSH.26 BD and CF intersect at a point O which belongs to
ins AABC. O

Exercise NEUT.66* Let P be a neutral plane and let A, B, C, D, E,
and F' be points on P such that: (1) A, B, and C are noncollinear, ZABC
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and ZACB are both acute, and AC < Eﬁ, (2) D is the midpoint of %HC,
E is the point of intersection of the bisecting ray of ZBAC and B]—CE', and
F = ftpr(A,%). If the points on BC are ordered so that B < C, then
B<D<E<F<C.Moreover,ﬁ<ﬁ<ﬁ<fﬁ.

Exercise NEUT.66 Proof. By Exercise NEUT.57 and Theorem ORD.6
B < D < E < C. By Exercise NEUT.53 ZAEB is obtuse so that by Theorem
NEUT.44 jﬁ and % are not perpendicular to each other and thus F' # FE.
By Theorem NEUT.82 ZAEC is acute. By Exercise NEUT.20 F € EC.

By Theorem ORD.6 B < D < E < F < (C. By Exercise NEUT.22
AF < AB. Applying Exercise NEUT.51(C) successively to AABF and

E—3 == E—3 E—
ANABE we have AF < AE < AD < AB. O

Exercise NEUT.67* Let P be a neutral plane and let A, B, C, D, E,
and F' be points on P such that: (1) A, B, and C' are noncollinear, (2) D is

the midpoint of %, (3) E is the point of intersection of the bisecting ray of
/BAC and BC, and (4) F = ftpr(A, BC). It AB = AC, then D = E = F.

Ezercise NEUT.67 Proof. Let L = AE. Then R (B) is a point on AC
and R (AB) = AB = AC so that by Property R.4 of Definition NEUT.2,
Rz (B) = C. By Theorem NEUT.20, D = E and by Theorem NEUT.48(A)
£1BCsothat E=F. O

The following exercise will strike the reader as decidedly odd, because we
can hardly imagine a triangle such that the perpendicular bisectors of the
sides do not intersect. But this is all we can prove at this stage of our devel-

opment. The issue is resolved in Chapter 11, Theorem EUC.9.

Exercise NEUT.68*% Let P be a neutral plane, A, B, and C' be non-
collinear points on P. Let £, M, and N be the perpendicular bisectors of
54_B], Sél_d, and BC respectively. Then either (1) £, M, and A are concurrent
at a point O, or (2) L || M, L || N, and M || N.

Ezercise NEUT.68 Proof. (Case 1: Two of the three lines intersect at a
point O) We choose the notation so that £ and M intersect at O. Both O € L
and O € M, so by Theorem NEUT.53 OA 2~ 0B and OA =~ OC. By Theorem
NEUT.14 (congruence is an equivalence relation) OB = OC. By Theorem
NEUT.55 the line of symmetry of ZBOC' is the line of symmetry, hence the
perpendicular bisector of %, which is A/. Thus O € N. By Exercise 1.1
LAMNN ={0}.
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(Case 2: L || M) If any two of the lines £, M, and N were concurrent,
then by Case 1 £, M, and N would all be concurrent. Hence L || M, L || N,
and M | N. O

Exercise NEUT.69* Let £ be a line on a neutral plane P; let A, B,
and C be points on £ such that B—-A-C, and let M be the line such that
Ae M and M L L. We order the points on £ such that A < B. Let X and
Y be points on £. Then X <Y iff Rp(Y) < Rm(X).

Exercise NEUT.69 Proof. Since A < B and B-A-C, by Theorem ORD.6
C < A < B. By Theorem PSH.38 AB = AB N the B-side of M and AC =
AB N the Cside of M. By Definition NEUT.1(D) R (C)-Ram(A)-Rm(B).
By Definition NEUT.1(A) Ram(A4) = A. Now assume that X < Y. (Case
1: ' Y = A). Since Rm(4) = A, Rm(C)-A-Ram(B). Since X < A < B by
Theorem ORD.8 X € AC. By Definition NEUT.1(B) X and R (X) are on
opposite sides of M, thus Ry (X) € AB. By Theorem ORD.8 Rp(X) >
A =Rp(Y). By Definition ORD.1 Raq(Y) < Raq(X).

(Case 2: Y < A). Since X < Y by Theorem ORD4 X < Y < A
By Theorem ORD.8 Y € AC and X € AC. By Definition NEUT.1(B)
Y and Rpm(Y) are on opposite sides of M, so that Ry (Y) € AB and
R(X) € AB. Since X <Y < A, by Theorem ORD.6 X—Y—A. By Defini-
tions NEUT.1(A) and (D) Ra(X)-Ram(Y)-A. Since Ry (Y) > A, by The-
orem ORD.6 Ra(X) > Ram(Y). By Definition ORD.1 Rp(Y) < R (X).

(Case 3: X = A). The proof is similar to Case 1.

(Case4:A<YandX<A)X€AjﬁandY€j@, so that X and Y are
on opposite sides of M. Since X and R (X ) are on opposite sides of M and
Y and R (Y') are on opposite sides of M, Rp(X) € AB and Rm(Y) € AC
and thus by Theorem ORD.8 Ru(Y) < Rum(X).

(Case 5: A < X < Y) By Theorem ORD.6 A-X-Y. By Definition
NEUT.1(A) and (D) A-Rm(X)-Rm(Y). Since X and Y are both members
of AB by Definition NEUT.1(B) R (X) and R (Y) are both members of
AC and by Theorem ORD.8 Raq(Y) < Raq(X).

This shows that if X <Y, Rym(Y) < Rm(X). The converse follows im-
mediately from Definition NEUT.1(C), which says that Ry = Ry. O

Exercise NEUT.70* Let P be a neutral plane, £ and M be lines on P
which intersect at the point O, A be a point on £ distinct from O, and X
and Y be points on M distinct from O such that X and Y are on the same
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side of L. Let the points on M be ordered so that O < X. Then O < X <Y
iff Z/OAX < ZOAY.

Ezercise NEUT.70 Proof. (I) If O < X <Y, then by Theorem ORD.6
O-X-Y. By Definition IB.3 X € OY. By Theorem PSH.37 X € ins ZOAY'.
By Definition NEUT.70 ZOAX < ZOAY.

(II) Since X and Y are on the same side of £, O < Y. Now suppose
ZOAX < ZOAY. By Theorem ORD.5 (trichotomy for ordering) one and
only one of the following statements is true: X = Y; X < Y; Y < X. By
Theorem NEUT.75 (trichotomy for angles), one and only one of the following
statements is true: ZOAX = ZOAY; ZOAX < LOAY; ZOAY < LZOAX. It
X were equal to Y, then ZOAX would be equal (and therefore congruent) to
ZOAY . This contradicts the fact that ZOAX < ZOAY . If Y were less than
X, then by Part I, ZOAY would be smaller than ZOAX. This contradicts
the fact that ZOAX < ZOAY . Hence X <Y. O

Exercise NEUT.71* Let P be a neutral plane, A, B, and C' be non-
collinear points on P, and D be a member of BC \{B,C}. Then B-D-C iff
LACB < LZADB and LABC < LADC.

Ezercise NEUT.71 Proof. (I. If B-D-C, then ZACB < ZADB and
ZABC < ZADC.) By Theorem NEUT.80 (outside angles) applied to
ANADC, ZACB < ZADB. By the same theorem applied to AABD ZABC <
LADC.

(II: If LZACB < ZADB and ZABC < ZADC, then B-D-C'.) Suppose
/JACB < ZADB and ZABC < ZADC'. By Property B.2 of Definition IB.1
(trichotomy for betweenness) one and only one of the following statements is
true: C-B-D; B-C-D; B-D-C. By Theorem NEUT.75 (trichotomy for an-
gles) one and only one of the following statements is true: ZACB = ZADB,;
/JACB < LZADB; ZADB < ZACB, and one and only one of the following
statements is true: ZABC = /ADC; /ABC < LADC; Z/ADC < LABC.
If C—~B-D were true, then by Theorem NEUT.80 (outside angles) applied to
ANADB, ZADC would be smaller than ZABC, contrary to the given fact
that LZABC < ZADC. If B-C-D were true, then by Theorem NEUT.80
(outside angles) applied to AADC, ZADB would be smaller than ZACB,
contrary to the given fact that ZACB < ZADB. Hence B-D-C. 0O
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Exercise NEUT.72* Let A, B, C, and M be points on the neutral plane
P such that A # B, A # C, M is the midpoint of AB and M is the midpoint
of AC. Then B = C.

Ezercise NEUT.72 Proof. Since AM = 54_3M, by Exercise NEUT.33
ADB = AC. By Definition NEUT.3(C) A~M-B and A-M~-C. By Theorem
PSH.16 AM = AB = AC. By Theorem PSH.24 C € AB. By Property R.4
of Definition NEUT.2, B=C. O

Exercise NEUT.73* Let A and M be distinct points on the neutral
plane P. Then there exists a unique point B such that M is the midpoint of

E—

AB.

Ezercise NEUT.73 Proof. (I: Existence.) By Property B.3 of Definition
IB.1 there exists a point D such that A-M-D. By Theorem NEUT.67 (seg-
ment construction) there exists a unique point B belonging to m such that
MB = AM. By Theorem PSH.13 {X | A-M-X} = MD. Hence A-M-B.
By Definition NEUT.3(C) M is the midpoint of AB.

(IT: Uniqueness.) This is Exercise NEUT.72 above. O

Exercise NEUT.74* Let P be a neutral plane, £ be a line on P, and
6 be the mapping of P into P such that: (1) For every member X of L,
0(X) = X. (2) For every member X of P\ £, 0(X) is the point such that .
Then 0 = R ..

Ezercise NEUT. 7/ Proof. (Case 1: X € (P \ £)) By Theorem NEUT.55
ftpr(X, £) is the midpoint of B(Rg (Xi; by hypothesis it is also the midpoint
of X0(X). By Exercise NEUT.72, 6(X) = R (X).

(Case 2: X € L) By Property (A) of Definition NEUT.1, Rg(X) = X =

0(X). Hence 0 = R,. O

Exercise NEUT.75% Let P be a neutral plane and let 6 be an isometry
of P. Then:

(A) If A and B are distinct points of P and if M is the midpoint of AB,
then @(M) is the midpoint of 6(A)é(B).

(B) Let A, B, and C be noncollinear points on P. If H is a member of
ins ZBAC such that AH is the bisecting ray of ZBAC, then H(A)H(B; is the
bisecting ray of Z0(B)0(A)0(C) and if D is the point of intersection of iﬁ
and BC, then (D) is the point of intersection of #(A)0(H) and 6(B)0(C).
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(C) If £ is line on P, Q is a member of P\ £, M = pr(Q, L), and F =
ftpr(Q, £), then (M) = pr(0(Q), (L)) and 6(F) = ftpr(6(Q),0(L)).

Ezercise NEUT.75 Proof. (A) By Definition NEUT.3(C) A-M-B and
AM = BM. By Definition NEUT.1(D) 6(A)-0(M)-6(B). By Theorem
NEUT.13 §(AM) = 6(BM). By Theorem NEUT.15 0(A0) = 6(A)0(M)
and 0(BM) = 6(B)0(M). Hence §(A)0(M) = 6(B)O(M). By Definition
NEUT.3(C) (M) is the midpoint of (A)0(B).

(B) By Theorem NEUT.39 /BAH = /CAH. By Theorem NEUT.13
0(/BAH) = 0(/CAH). By Theorem NEUT.15 §(/ BAH) = £0(B)8(A)9(H)
and 0(LCAH) = Z0(C)0(A)0(H). By Theorem NEUT.39 and Theorem
NEUT.15 H(A)G(H; is the bisecting ray of Z0(B)0(A)0(C). By Theorems
NEUT.11 and NEUT.15 6 is a bijection of AH onto O(A)H(H; and is
also a bijection of BC onto 0(B)0(C). By Theorem NEUT.15 6(H) €
ins Z0(B)#(A)0(C). By Theorem PSH.39 (Crossbar) 8(A)0(H) NO(B)(C)
is a singleton. Since (D) is a member of both 139(A)0(H§ and 139(B)9(O§,
0(A)0(H)NO(B)O(C) = {A(D)}.

(C) Let G and K be points on £ such that G-F-K. By Definition
NEUT.1(D) 0(G)-4(F)-0(K). By Theorem NEUT.11 and NEUT.15 6 is a
bijection of £ onto #(L) and of M onto §(M). By Corollary NEUT.44.1, since
L LM, 0(L) L OM). By elementary set theory 6(L) NG(M) = {0(F)}, so
that 0(F) = ftpr(6(Q),0(L)). D

Exercise NEUT.76* Let P be a neutral plane and let Ay, By, Cy, D1,
Ey, Py, A, Bs, Ca, Do, Es, and Fy be points on P such that:

(1) Ay, By, and Cy are noncollinear; As, B, and Cy are noncollinear; and
ANA1B1Cy 2 ANA3ByCs.

(2) 0 is an isometry of P such that (A A B1Cy) = AA3ByCs, 0(A1) = As,
0(B1) = B, and 6(C4) = Cs.

(3) Dy is the midpoint of [31701] and D5 is the midpoint of [BTCQ]

(4) E; is the point of intersection of the bisecting ray of ZB;A;Cy and
m ; and Fs is the point of intersection of the bisecting ray of /ByAsCh
and ]BQ—OE

(5) Fy = ftpr(Ar, B1Cy) and Fy = ftpr(As, BaCa).

Then 6(D;) = Da, 6(Ey) = Eo, and §(Fy) = Fb.
Ezercise NEUT.76 Proof. By Exercise NEUT.75(A) 6(D;) is the mid-

point of EBlclj and so by Theorem NEUT.50 6(D;) = Ds. By Exercise
NEUT.75(B) 6(E;) is the point of intersection of the bisecting ray of



74

/By A3Cy and BC so §(Ey) = Ey. By Exercise NEUT.75 part (C), 8(F;) =
ftpr(@(Al), 9(B1)9(01 ) = FQ. O

Exercise NEUT.77* Let A, B, C, D, and E be points on the neutral
plane P such that A-B-C, A~-B-D, A-D-FE, and BC = DE, then A-C-E.

Exercise NEUT.77 Proof. Since A-B-C and A-B-D, by Corollary
PSH.8.2 exactly one of C' = D, B-D-C', or B-C-D holds. In the the rest of
the proof we may invoke Theorem PSH.8 and its corollaries without further
citation.

(Case 1: D = (). A-D-F yields A-C-FE.

(Case 2: B-C-D). Since A-B-C and B-C-D, A-B-C-D so that A-C-D.
Since A-D-FE, we have A—-C-D-FE, so that A—-C-F.

(Case 3: B-D-C). Since A-B-C, A-B-D-C, and hence A-D-C' Since
A-D-FE. by Corollary PSH.8.2, either £ = C, D-E-C, or D-C—-FE. In the
first two of these alternatives, F € zTCj'; if this were true, by Definition
NEUT.70 DE would be smaller than BC. By Theorem NEUT.72 (trichotomy
for segments) this would contradict the fact that DE = AC. Therefore
A-B-D-C-FE, hence A-C-E. 0O

Exercise NEUT.78* Let P be a neutral plane and let F, G, and H be
distinct lines on P concurrent at the point O such that no two of them are
perpendicular to each other, @ be a member of F \ {O}, R = ftpr(Q,G),
S = ftpr(R,H) and T = ftpr(Q,H). Then S # T.

Ezercise NEUT.78 Proof. If S =T then m = ﬁ% because there is only
one perpendicular to a line at a point on that line, by Theorem NEUT.47(B);
R e %, and hence m = m Then both G L % and H L % so that by
Theorem NEUT.47(A) G || H which is impossible because G and H intersect
at the point O. 0O

Exercise NEUT.79* Let A, B, and C be noncollinear points on the neu-
tral plane P and @ be a member of ins ZBAC. Then ?@ is the bisecting ray
of ZBAC iff for every member T' of jﬁ@, TD =~ THE], where D = ftpr(T, /ﬁ)
and F = ftpr(7T, j@)

Ezxercise NEUT.79 Proof. (L. If m is the bisecting ray of ZBAC, then
TD = TE.) By Exercise NEUT.19, ZBAT and ZCAT are acute, and by
3
Exercise NEUT.18, D € AB and E € AC. By Theorem PSH.16, 4B — AD
and AC = AF so that /ZTAB = /TAD and /TAC = /TAE.
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By Definition NEUT.99 ZADT and ZAET are right. Then by Theorem
NEUT.69 ZADT = ZAET. By Theorem NEUT.39 /TAD = /TAE. By
Theorem NEUT.60 (Kite) ﬁ is the line of symmetry of /DAFE, /DTE,
DE, and DADTE so that R (D ) E. By Theorem NEUT.15, R+, (TD)

R (T) Rz (D) = (TE) so that TD = TE.

(H If TD = [—], then ﬁ ?@ is the bisecting ray of ZBAC) Since
AT = AT and ETD] x~ ﬁ by Theorem NEUT.96 there exists an isometry «
such that (A ) a(T) =T, and a(D) = E. Then by Theorem NEUT.15
a(£LDAT) = (D)a(A) (T') = ZEAT so that by Theorem NEUT.39, ?@

is the bisecting ray of ZBAC. 0O

Exercise NEUT.80* Prove parts (B), (C), and (D) in Theorem NEUT.83:
Let P be a neutral plane; then

(B) every angle on P congruent to an obtuse angle is obtuse;

(C) every angle on P smaller than an acute angle is acute; and

(D) every acute angle on P is smaller than every obtuse angle on P.

Ezercise NEUT.80 Proof. (B) Suppose ZBAC' is obtuse and Z/BAC =
/B'A'C’. By Theorem NEUT.38 there exists an isometry « such that
A(LBAC) = /B'AC', o(AB) = AB, and a(AC) = A'C". Let D be a
point such that D-A-C'’; then Z/BAD is supplementary to ZBAC" and thus
by Theorem NEUT.82 /BAD is acute.

Let D' = a(D); by Theorem NEUT.15, o(AD) = a(A)a(D) =
Then

A(/BAD) = a(ABUAD) = o(AB) U a(AD) = ABUAD = /B A'D.
Also,

a(/BAC) = a(ABUAC) = a(AB) Ua(AC) = AB UAXC = /B AC'.
By Definition NEUT.1(D), a(D)-c(A)-a(C); since a(%) = /W, D-A'-C".
Thus LB’ A’C" and £ZB’' A’ D' are supplements. By part (A), ZB’ A’ D’ is acute;
therefore ZB’'A’C" is obtuse.

(C) Let A be an acute angle and let C be a right angle. Then by Definition
NEUT.81, A < C. If B is an angle and B < A, B < A < C so by Theorem
NEUT.76 (transitivity for angles), B < C and B is acute.

(D) Let A be an acute angle and B an obtuse angle. Let C be a right an-
gle. Then by Definition NEUT.81 A < C < B so that by Theorem NEUT.76
A<B. O

::Br'\

'D’.
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Exercise NEUT.81* Without invoking Theorem NEUT.15 parts (4)
through (7), prove that if A # B are points in a neutral plane,

(A) AB % ADB and AB % AB;

(B) AB 2 AB; and

(C) AB 2 AD and AB % AB.

Exercise NEUT.81 Proof. We may invoke the fact that an isometry is a
belineation, that is, preserves betweenness.

(A) We show that AB * AD. Suppose « is an isometry such that a(Z_CB) =
AB. a(A) is either A or B, for if A—a(A)-B then a~!(A)-A-a~1(B) which
is impossible since both a~!(A4) and a~!(B) are members of AB.

If a(A) = B then there exists a point C € AB such that a(C) = A
By Theorem PSH.22 we may pick D such that C—D-B; then A-C-D and
since « preserves betweenness, a(A)-a(C)-a(D), that is, B-A-«(D), so that
a(D) ¢ AB. But o maps AD onto EA_BJ, so that a(D) € EA_BJ, a contradiction.

If a(A) = A then there exists a point C € AB such that a(C) = B.
Since A-C-B, by Theorem PSH.22 we may pick D such that C-D-B so
that A-C-D; then since « preserves betweenness, a(A)-a(C)-a(D), that
is, A-B-a(D), so that «(D) ¢ AB. But a maps AB onto AB, so that
a(D) € [/TB], a contradiction.

A similar proof shows that AB % AB.

(B) We show that AB 2 AB. Suppose « is an isometry such that
a(jél_é) = AB. Then there exists a point C' € AB such that alC) = A
Since A-C-B, a(A)-a(C)-a(D), that is to say, a(A)-A-a(D), where both
a(A) and a(D) are members of Eﬁ, and a(A) # A # a(D) (betweenness

implies distinctness).

i

Neither a(A) nor «(D) can equal A, for this would contradict distinctness.

Suppose a(A) = B; we know already that a(D) € AB and that a(D) # A;
by distinctness a(D) # B = a(A). Thus A-a(D)-B and a(A)-A-«a(D)-B,
that is B—A-«(D)-B which is impossible.

If (D) = B then by similar reasoning, A-a(A)-B and A-«(A)-A-B
which is impossible.

If neither a(A) or a(D) is B, then both A-a(A)-B and A-a(D)-B so
that A-a(A)-A-a(D)-B which again is impossible.

(C) We show that AB =3 AB. Suppose « is an isometry such that
a(jél_é) = AB. Then there exists a point C' € AB such that alC) = A
Since A-C-B, a(A)-a(C)-«a(D), that is to say, a(A)-A-a(D), where both
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a(A) and (D) are members of ?TEB, and a(A) # A # a(D) (betweenness
implies distinctness).

Then both A-a(A)-B and A-«(D)-B so that A-a(A)-A-a(D)-B which

is impossible. A similar proof shows that AB 2 AB. O

Exercise NEUT.82* Let A, B, and C be points on a neutral plane
such that A # B, C € A]?, and AB = AC. Let ¢ be the isometry such that
go(iﬁ) = AC. (A) Using only NEUT.1 through NEUT.20, show that if ¢
is its own inverse, then B = C. (B) Discuss why this type of proof will not
work in the general case, where ¢ is not necessarily its own inverse. If it did,
we could prove Property R.4 of Definition NEUT.2 as a theorem.

Ezercise NEUT.82(A) Proof. Assume that B # C. Then either A-B-C
or A-C-B. If A-B-C, then 30_1(54_62) = AB. Let us assume that A-C—B.
By Remark NEUT.16 either p(A) = A and ¢(B) = C, or p(A) = C and
o(B) = A.

If ¢(A) = A and ¢(B) = C, then since ¢ is its own inverse, ¢(C) = B.
Since ¢ preserves betweenness, p(A)—p(C)—p(B), which is to say A-B-C
which contradicts our assumption.

If (A) = C and p(B) = A, then since ¢ is its own inverse, p(C) = A,
which contradicts the assumption that ¢ is a 1-1 mapping. 0O

Exercise NEUT.83* Let £ be a line on a neutral plane P. Let ¢ be a
mapping obeying properties (B) through (D) of Definition NEUT.1. Then if
every point O of £ is contained in some line Ap(A), where A & L, Property
(A) of Definition NEUT.1 holds for ¢.

Ezercise NEUT.83 Proof. By Property (B), ¢(A) is on the opposite side of
L from A, so the point O of intersection of £ and Ap(A) satisfies A—O—p(A).
By Property (D) ¢(A)—p(O)—p(¢(A)), that is, ¢(A)—p(0)-A. If p(O0) # O,
0(0) & L, s0 p((0)) = O ¢ L, a contradiction. Therefore p(O) = 0. O

The following scrap came from some attempts to show that there is a
Pasch plane in which there is a line over which there exists no reflection. It
seemed, somehow, worth saving, as it gives some insight into the structure of

fixed lines.
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Exercise NEUT.84* Let £ be a line in a neutral plane P, and let A
and B be distinct points on the same side of £. Then if ¢ is a reflection over
L, the lines p(A)B and Ap(B) intersect at a point P € L.

Ezxercise NEUT.84 Proof. (A) By Theorem NEUT.15 ¢ is a collineation,
so maps lines into lines. By Theorem NEUT.22 the lines Ap(A) and Byo(B)
do not intersect. By Property (B) of Definition NEUT.1, A and ¢(B) are on
opposite sides of £, so by Axiom PSA the segment Aj<p—® intersects L at

some point P.
It follows from Theorem NEUT.15 and Property (A) of Definition NEUT.1
B e e B e

that p(Ap(B)) = ¢(A)B and thus P € ¢(A)B. Since these two segments are
distinct, they have only one point of intersection, which must be P. O
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Chapter 9: Exercises and Answers for 9
Free Segments of a Neutral Plane (FSEG)

Exercise FSEG.1* Let A, B, C, and D be points on the neutral plane
E—3 3 S
P such that A # B and C' # D. Then [AB] = [CD] ifft AB=CD.
B3 E— E—3 E—3
Ezercise FSEG.1 Proof. (I If AB = CD, then [AB] = [CD].) (A) Let
E——2 E—3 E—
[AB] be a free segment; using Definition FSEG.2, let XY € [AB]; then
E—3 == === E— E— E—=
XY = AB. Since AB = CD, by Theorem NEUT.14 XY = CD, and by Def-
E— E—3 E—2 E—3
inition FSEG.2, XY € [CD]. Therefore [AB] C [CD]. (B) If we interchange
E—3 E—3
“A” with “C” and “B” with “D” in part (A) we get [CD] C [AB]. Thus
E—3 E—3
[AB] = [CD].
E— E—3 E— E— E—3 E-—3

(IT: Conversely, if [AB] = [CD], then AB = CD.) Since [AB] = [CD],

Exercise FSEG.2* Let A, B, C, and D be points on the neutral plane
E—3 E—3 E—3
P such that A # B and C' # D. Then [AB] < [AB] & [CD].
Ezercise FSEG.2 Proof. By Theorem FSEG.1 there exists a point E on
P such that A-B-F and BE = CD. By Definition NEUT.70, AB < 54_Ej, SO
E—3 E—3 E— E—3
that by Definition FSEG.3 [AB| < [AE] =[AB|@ [CD]. O

Exercise FSEG.3* Let A and B be distinct points on the neutral plane
P and let m and n be natural numbers. For the purposes of this exercise, we
define certain rational multiples of free segments, using induction, as follows:

Definition (1): Define I[AHB]] = [xTBj] For any n, if a point C' has been
determined so that n[ﬁ] = [ﬁ] define (n + 1)[AE_B]] = [ﬁ] @ [Eél_ﬁ]

Definition (2): Using Theorem NEUT.50, let M be the midpoint of AB.
Then define %[ﬁ] = [W] If for any m, C' has been determined so that

2%[543]] = [AC], let D be the midpoint of AC and define s [AB] = [54Dj].
E—3 E—3
Definition (3): For any n and m, define 5% [AB] = 5L (n[AB]).
Let A, B, C, and D be points on the neutral plane such that A # B and
C # D; use the definitions above to show the following:
E—3 E—3
(I) If [AB] < [CD], then for any natural numbers n and m,

(A) n[AB] < n[CD),

(B) 5=[4B] < 3=[CD), and
(C) & [AB] < &[CD).
(1) 2(AB] @ [CD)) = 2+ [AB] @ 2 (CD]
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Ezercise FSEG.3 Proof. (I) (A) The proof is by induction. First, (A) is
trivially true for n = 1. Assume that for some n > 1 we have shown that
(n — 1)[E¢1—Bﬁ < (n— 1)[%], by hypothesis [ﬁ] < [ﬁ], using Definition
(1), Theorem FSEG.9(IT), and Definition (1) again,

n[AB] = (n - 1)[AB] & [AB] < (n— 1)[CD] ® [CD] = n[CD),
proving assertion (A).

(B) Again using induction, (B) is trivially true for m = 0. Assume that for
some m > 1 it has been shown that W%[STB]] < gt [%] Using Definition
(2) above, let E be the point on AB such that [ﬁ] — [AHB]], F be the
point on OD such that [ﬁ] = 2ml 5 [ﬁ] G be the midpoint of AE, and H
be the midpoint of CF. Then 7 AB 54? and 2m ] = [ECHJ] Since
AE < CF, by Exercise NEUT.36 AG < CH so Q—M[AB] < 5=[CD).

(C) By part (A) n[AB] < n[CD] so by part (B) 3% [AB] < 2% [CD].

(IT) (a) n([féi_gi] ® [ﬁ]) = n[ﬁ] ® n[ﬁ] is trivially true for n = 1.

Assume that for some n > 1,

(n—1)([AB] & [CD]) = (n —1)[AB] & (n— 1)[CD];
then
n([AB®[CD)) = (n — 1)([AB] ® [CD)) & (AB] © [CD))
= ((n—1[4B]® [AB)) & ((n - 1)[CD] & [CD))
D].

(b) For m = 1, 52~ ([AB] @ [CD]) = 5= [AB] @ 5= [CD] is trivially
true. Assume that for some m > 1, it has been shown that Qm—l,l([AHBj] @
[CD]) = 2,,}—,1[14%B]] @ 2,,L#,I[CHD] Let J be the point such that W%[ﬁ] =

—ZI

[AJ], K be the point such that W%l[ﬁ] = [EC—K]], L be the midpoint of
T], and M be the midpoint of CK. Then

ﬁ

S (AB] @ = (3)(3=)(AB] & [CD))
= %((2m T ( 54—3‘]) D (2m1—1 (iﬁi))
— 1(52=[4B]) & { (5=[CD))
= L[AT]® }[CK | = [AL] @ [CM]

2 ([AB) @ [CD]) = 5= (n([AB] & [CD])) = 5= (n[AB] ® n[CD))
= L[AB]® L[CD]. O
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Exercise FSEG.4* If s and T are any free segments of the neutral plane
P such that s < 7, then (T@s)es=7and (TEs)Ps=T7.

Ezercise FSEG.J Proof. By Definition FSEG.11 (7 @ s) © s is the free
segment of P which when added to s yields 7 & s so this free segment is 7.
By the same definition, 7 & s is the free segment of P which when added to
s yields 7. So if it is added to s the result is 7. O

Exercise FSEG.5* Let s, T, and u be free segments of the neutral plane
P.

(A)fu<sandu < 7,then (s®&T)ou=(s0u)d7=(TSU)DS.

B)ITdu<s, thenso(Tou)=(soT)0u=(s0uU)OT.

Ezercise FSEG.5 Proof. (A) By Definition FSEG.11 (s ©7) ©u is the free
segment of P which when added to v yields s @ 7. By Theorem FSEG.8 and
Exercise FSEGA4 ((sou)®T)du=(sou)® (Tou) = (seu)dudT) =
((seu)ou)dT = sOT. Similarly ((sCu)®T)du = s&T and ((TOU)BS)duU =
S®&T.Hence (s T)cu=(scu)d67=(T6uU)BSs.

(B) Using Definition FSEG.11, s & (7 @ u) is the free segment of P which
when added to 7 ® v yields s.

Using the commutative and associative properties of the operation & we
get (sOTou)d(Tdu)=sand (TOuU)OT = 7. Hence s (TDu) =
(seT)eu=(sou)oT. O

Exercise FSEG.6* Let s, 7, and u be free segments of the neutral plane
Psuchthaty < sandu < 7.If s <7, then scu < T U.

Exercise FSEG.6 Proof. There exists a free segment v such that 7 = s®v,
(cf. Theorem FSEG.9) so that T ©u = (s ® v) © u. By Exercise FSEG.4
TOU=8BVvOu=(s6u)®v. By Exercise FSEG2 scu<76u. O

Exercise FSEG.7* Let s, 7, and u be free segments of the neutral plane
P such that s Du < 7 ®u, then s < 7.

Exercise FSEG.7 Proof. By Exercise FSEG.2 s < s@u and 7 < 7 D u.
By Exercise FSEG.6 s @u < 7 ® v implies that (s Du) Ou < (T@® u) Ou,
so that s < 7. O

Exercise FSEG.8* Let s, T, u, and v be free segments of the neutral
plane P such that 7 < s and v < u, then (s&T)® (USV) = (sdu)S(THV).
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Ezercise FSEG.8 Proof. By Exercise FSEG.5(A) (s ©7)® W ov) =
(seu)eT)ev = ((s®u)oT)ev. By Exercise FSEG.5(B)((s@u)eT)ov =
sOuo(rtodv). O

Exercise FSEG.9* Let s, T, u, and v be free segments of the neutral
plane P such that T < sand v<u,thensoT=uocvif s@v=7du.

Exercise FSEG.9 Proof. (. If s&T =u©v, then s®v = 7 du.) If
SO T = u O v, then using Exercise FSEG.4 and Exercise FSEG.5(A) s =
(sOT)BT = (UEV)ET = (UBT)OV, so that &V = (UBT)OV)BY = uUdT.

(IL: If s@®v = 70U, then s©7 = uoV.) If s&V = 7@®uU, by Exercise FSEG.4
s = (sBv)ev = (Thu)Sv. Consequently, s&T = (TGu)SV)ST. By Exercise
FSEG.5(A) and (B) this becomes (T®u)oT)0V = ((TOT)BU)OV =ucy. O

Exercise FSEG.10* If s and T are free segments of the neutral plane
P such that 7 < s, then s67<sandss(sa7) =T7.

Ezercise FSEG.10 Proof. (I) By Exercise FSEG.2 s < s ® 7. By Exercise
FSEG.6 s©T < (s®T)OT. By Exercise FSEG.4 (s®T)OT = 8,80 SO7T < S.

(IT) By Definition FSEG.11 7 @ (s © 7) = s. By Exercise FSEG.4
(Te(seT)esor)=TsoT=s0(seT). O

Exercise FSEG.11 If s, 7 and u are any free segments of the neutral
plane P, then (seT)eu=sa(Tes) (the operation ¢ is associative on the set F
of free segments.

Exercise FSEG.12 Construct a theory FANG of free angles analogous
to that developed in this chapter for free segments, based on the following
definition: the free angle FA(/BAC) = {/XYZ|/XYZ = /BACY}.
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Chapter 10: Exercises and Answers for
Rotations about a Point of a Neutral Plane (ROT)

Exercise ROT.1* Let P be a neutral plane.

(A) If O is a point on P, and R is the point reflection about O, then
Ro(0O) =0 and Rp o Rp = 1.

(B) If £ and M are distinct lines on P and if « = Rpq 0 R, then a™! =
Rz oRm.

(C) If G and H are points on P and if § = Ry oRg, then 7! = RgoRpy.

Ezxercise ROT.1 Proof. (A) By Definition ROT.1 there exist lines £ and
M on P such that LM = {0}, L L M, and Ro = RaoR. By Definition
NEUT.1(A) elementary theory of functions

Ro(0) = (RmoRe)(0) = Rm(Re(0)) =Rm(0) = O.
By Corollary ROT.5 and Definition NEUT.1(C)
Ro ORO = (RM O'Rg) o (RM O'Rg) = (RM O'R,L) o ('Rg ORM)
= (RM o (RLORL))ORM = (RM OZ)ORM = RM ORM = 1.

(B) If £ and M are distinct lines on P, and if &« = R o Rz, then by

Definition NEUT.1(C) and elementary theory of functions
(RmoRe)o(ReoRm)=(Rmo(ReoRe))oRm
=(Rmot)oRM=RmoRm =1

(C) By Part (A) and elementary theory of functions,

(RauoRg)o(RgoRpy)=(Ruo(RagoRag))oRu
=(Rpyot)oRy=RygoRy =1 O

Exercise ROT.2* Let P be a neutral plane, O be a point on P and a be
a rotation of P about O which is not a point reflection. If X is any member
of P\ {0}, then X, o(X), and O are noncollinear.

Ezercise ROT.2 Proof. Let X be any member of P\ {O}, and K = OX.
By Theorem ROT.13 there exists a unique line J such that O € J and o =
Rz o Ryc. Thus a(X) = Rz (R (X)) = R (X) (cf Definition NEUT.1(A)).
By Theorem ROT.2 O is the only fixed point of «, so a(X) # O. By Def-
inition NEUT.1(B) «(X)(that is, R7(X)) and X are on opposite sides of
J. If O, a(X) and X are collinear then = XR7(X), and by Theorem
NEUT.48(A) K = XRJ(X; 1 J so that « is a point reflection, in contra-
diction to our assumption. 0O
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Exercise ROT.3* Let P be a neutral plane, O be a point on P, and
a and B be rotations of P about O. If X is any member of P\ {O}, then

3

Oa(X) = OB(X)

Ezercise ROT.3 Proof. Since « and [ are isometries of P, by Theo-

E—3 E——— E—3 E——2
rem NEUT.15 a(OX) = O«a(X) and S(OX) = OpB(X) so by Definition
E—3 E———3 E—3 E———2
NEUT.3(B) OX = Oa(X) and OX = OB(X). Since by Theorem NEUT.14

E

congruence is transitive, Oa(X) = OB(X). O

The following exercise shows that rotations (and half rotations, which we
will meet in Chapter 13) behave as we expect them to—all points “rotate in

the same direction.”

Exercise ROT.4* Let O, X, and Y be noncollinear points on the neutral
plane P and let « be a rotation of P about O which is not a point reflection;
we note that o cannot be the identity, as was proved in Theorem ROT.2.

(A1) arotates X and Y through congruent angles: ZXO«a(X) = ZYOaY .

(A2) Let v and 8 be rotations of P about O which are not point reflections.
Let X be a point of P\ {O} such that

a(X) € ins ZXO(B o a(X)).
Then for any point U € P\ {O},

LUO0a(U) =2 £LXOa(X);

£a(U)O(B 0 a)(U) = La(X)O(8 0 a)(X);

LUO(Boa)(U) = £LXO(Boa)(U); and

a(U) € ins ZUO(B o a)(U).

(B) It cannot be true that both a(X) € Y-side OX and a(Y) € X-side
oy

(C) Tt cannot be true that both «(X) is on the side of W opposite Y and
a(Y") is on the side of oy opposite X.

(D) a(X) € Y-side of OX iff a(Y) is in the side of Oy opposite X;
equivalently, a(Y") € X-side of OY iff a(X) is in the side of OX opposite Y.

(E) Let W = a(X), and Z = «(Y); let E be a point on the bisecting ray
of ZXOW and F a point on the bisecting ray of ZYOZ. Then ZEOX =
LEOW =2 LFOY = LFOZ.

(F) E € Y-side of OX iff F is in the side of OY opposite X; equivalently,
F € X-side of W iff E is in the side of W opposite Y.

Ezxercise ROT.4 Proof. (Al) This is Theorem ROT.22. We repeat es-
sentially the same proof with the current notation. Let v be the rota-
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tion (see Theorem ROT.15) such that v(X) € O]—Y> (£XO(a(X))) =
Zy(X)Ov(a(X)) = LY Ovy(a(X)). (cf Theorem NEUT.15). By Theorem
ROT.21 y(a(X)) = a(y(X)) € Q(W), and thus v(£ZXO«a(X)) = ZY Oa(Y)
and ZXOW = /ZXO0«a(X) 2 LY Oa(Y) = LY OZ (cf Definition NEUT.6(B)
(Congruence)).

(A2) From part (A1) we already know that ZXO«a(X) = ZUO«(U) and
Za(X)O(Boa)(X) = a(U)O(B o a)(U).

In the following we repeatedly use Theorem ROT.21 (commutativity of
rotations about a point). Let v be the rotation such that v(X) € 037 . Without
loss of generality we may pick U so that v(X) = U; then

(10 a)(X) = (a0 7)(X) = a(U)
and
(Yo Boa)(X) = (Bovyoa)(X) = (Boaoy)(X)=(Boa)).
Now + is an isometry, so by Theorem NEUT.15, o(U) = (yo a)(X) is a
member of
A(ins £XO(B 0 a) (X)) = ins 1(X)O((y 0 B 0 a) (X))
=ins ZUO(Boaoy)(X) =1ins LZUO(Boa(U))
and hence by Exercise NEUT.40(A), ZUO(foa)(U) = £LXO(Boa)(X). This
completes the proof of part (A2).

We consider parts (B) and (C) together.

Let OE? be the bisecting ray of ZXO«a(X) and W the bisecting ray of
ZYOa(Y). Let D', X', and Y’ be a points such that D-O-D’, X-O-X',
and Y~ O—Y’ Wlthout loss of generality, we may assume that OX =~ bX S
0Y = 0Y' = OD = OD. We will be referring a great deal to a(X) and
a(Y), and since « is an isometry it will follow that OX = Oa( ) Oa(Yi.
In all that follows we will use Theorem PSH.16 and Definition NEUT.70

repeatedly without further reference. We will assume the negations of (B)

and (C) and eventually show contradictions in all cases.

(B) Assume the contrary, that «(X) € Y-side OX and a(Y) € Y-side
oy

We know from part (A) that ZXO«a(X) = ZYOa(Y). Since D is on the
line of symmetry for ZXOY, by Theorem NEUT.39 Z/DOX = ZDOY . By
Theorem NEUT.75 (trichotomy for angles) (or Exercise PSH.32) there are
three cases:

(Case Bl: ZXOa(X) < £XOD) Then a(X) € ins ZXOD, so

ZYOa(Y) =2 /X0a(X) < LXOD = /YOD
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and hence a(Y) € insZYOD. By Exercise NEUT.40(B) ZDO«a(X) =
ZDO«(Y).

(Case B2: ZXO«(X) = ZXOD) Then by Theorem NEUT.36 a(X) € oD
and ZYOD = /XOD = /X0O«a(X) =2 ZYO«a(Y). Now by assumption D
and «(Y) are on the same side of %72 so by Theorem NEUT.36 «(Y) € %ﬁ,
and since OD = Oa(Y) it follows from Property R.4 of Definition NEUT.2
that a(Y) = D = a(X). But this is impossible because « is one-to-one.

(Case B3: ZXOa(X) > ZXOD) Then D € ins ZXOc«(X) and LY OD =
ZXO0D < LXO«a(X) =2 ZYOa(Y), and D € ins ZY Oa(Y'). Then by Exer-
cise NEUT.40(B) ZDOa(X) 2 ZDOa(Y).

(C) Assume the contrary, that both «a(X) is on the side of 1954 opposite
Y and a(Y) is on the side of oy opposite X, ZDO«a(X) =2 ZDO«(Y). In
this part we will use Theorem NEUT.43 (supplements of congruent angles
are congruent) repeatedly without further reference.

By Theorem NEUT.75 (trichotomy for angles) there are three cases:

(Case Cl: LXO«a(X) < £XOD') Then a(X) € ins ZXOD'; it follows

that ZYOa(Y) =2 £LXOa(X) < LXOD' = LY OD' (the last congruence is
by supplements) and hence a(Y) € ins ZYOD’. By Exercise NEUT.40(B)
ZD'Oa(X) =2 £D'Oa(Y), so that ZDOa(X) = ZDOa(Y"), again by supple-
ments.
]_(>Case C2: LXO«a(X) =2 £ZXOD') Then by Theorem NEUT.36 «(X) €
OD'. Since L/YOD = /XOD, by supplements /YOD' = /XOD' =
ZX0a(X) =2 ZYO«a(Y). Now by assumption D and «(Y") are on opposite
sides of W, so that D’ and a(Y") are on the same side of OY. By Theorem
NEUT.36 a(Y) € W, and since OD' Oa(Y) it follows from Property
R.4 of Definition NEUT.2 that a(Y) = D’ = «(X). But this is impossible
because « is one-to-one.

(Case C3: ZXO«a(X) > ZXOD') Then D' € insZXO«(X). Since
/YOD = /XOD, by supplements /YOD' = /XOD'. Then /YOD' =
ZXO0D' < ZXO«a(X) = ZYO«a(Y), and D' € insZYOa(Y). By Ex-
ercise NEUT.40(B) ZD'O«a(X) = /ZD'Oa(Y), and again by supplements
/DOa(X) = /DOa(Y).

We have now shown that in all the cases where we do not already have
a contradiction (that is, B1, B3, C1, and C3) ZDO«(X) = ZDO«(Y), and
hence @ (the line of symmetry for ZXOY) is the line of symmetry for
Za(X)Oa(Y).
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Let M be the midpoint of XY, By Exercise NEUT.76(A) a(M) is
the midpoint of a(X)a(Y). By Theorem NEUT.55, M € DO, and since
[Oa(Xi = [Oa(Yi, a(M) e

Either a(M) = O or M-O-«(M) or a(M) € OM = OD.

The first case gives us a contradiction immediately, because a(O) = O and

« is one-to-one.

In the second case, since both M and «(M) are in oﬁ, « is a point
reflection which is ruled out by hypothesis.

In the third case, a(M) € OM so that by Property R.4 of Definition
NEUT.2 a(M) = M and « is the identity, which is ruled out by hypothesis.
This completes the proof of parts (B) and (C).

(D) By parts (B) and (C), if «(X) € Y-side of OX then a(Y') cannot be
in X-side of OY so must be in the side opposite X; conversely, if a(Y") is in
the side of O(_X> opposite X then «(X) cannot be in the side of W opposite
Y hence must be in the Y-side. Similar reasoning shows the other assertion.

(E) We know from Theorem NEUT.20(E) (also from Theorem NEUT.39)
that /ZEOX = /FEOX and ZFOY 2 /FOZ. By part (A) ZXOW =
/Y OZ. By Exercise NEUT.39 /EOX = /FOY.

(F) If ZBAC is any angle and D is a point in its bisecting ray, D is on
the B-side of AC' and D is on the A-side of AB. From part (D),

E € Y-side of OX iff a(X) € Y-side of W) iff a(Y) is in the side of oy
opposite X iff F' is in the side of W opposite X;

F € X-side of OY iff a(Y) € X-side of OY iff a(X) is in the side of OxX
opposite Y iff E is in the side of O<7 opposite Y. 0O

Exercise ROT.5* Let P be a neutral plane, O be a point on P, £ and
M be lines on P through O which are not perpendicular to each other, @
and R be points on £ such that Q-O-R, S and T be points on M such
that S—O-T and p be the rotation Raq o R, about O. If we choose the
notation (using Theorem NEUT.82) so that ZQOS is acute, then p(Q) is
the member of ins ZROS such that Q] and p(Q) are on opposite sides of M,

3 E—

/50p(Q) = ZQOS and Op(Q) = 0Q.

Ezercise ROT.5 Proof. Since p(Q) = Rm(Q) and M L QRm(Q) (cf
Theorem NEUT.48(A)), by Definition NEUT.1(B) Q and R (Q) are on
opposite sides of M. Hence, by Axiom PSA, there exists a point G such that
MNQRMm(Q) = {G}. Since Q and R are on opposite sides of M, Ry (Q)
and R are on the same side of M (cf Theorem PSH.12 and Definition IB.11).
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Since ZS0Q is acute, by Exercise NEUT.18 G € b? so that by Theorem
IB.14 Q]@ = QRMm (Q) C S-side of £. Hence Ra(Q) and S are on the same
side of £. Then Ram(Q) € ins ZROS (cf Definition PSH.36), and by Theo-
rem NEUT.15 and Definition NEUT.1(A) Ry (ZQOS) = ZRMm(Q)OS and
Rm(0Q) = ORM(Q). By Definition NEUT.3(B) (congruence) /QOS =
LRM(Q)OS = £p(Q)0S and OG = ORM(Q) = 0p(Q). O

Exercise ROT.6* Let A, B, and C be noncollinear points on the neutral
plane P and let £ = ﬁ, M = %, and N = % Then there exists a unique
point G and a unique line 7 such that C' € J and Ry oRpmoRr = R7oRe-

Ezxercise ROT.6 Proof. Let K = pr(C,jﬁ), and G = ftpr(C,jﬁ).
By Theorem ROT.13 there exists a unique line J through C' such that
R7soRik = Ry oRum. Then Ryy o RpygyoRe = Ry o R o Re. By Def-
inition ROT.1 R o Ry = Rg, so that Ryy o RyyoRe =RgoRg. O

Exercise ROT.7* Let A and B be distinct points on the neutral plane
P. If M is the midpoint of 54_B], then Ry (A) = B.

Ezercise ROT.7 Proof. Let L = 4B and M = pr(M, L). By Definition
ROT.1 Ry = Ry o Re. Hence Ry (A) = Rm(Re(A)) = Raq(A) so that
3 E J E 3 = E———3d
RM(AM) = Ras (AR (M) = Raq(A)M, and AM 22 Rpq(A)M. Since M
—3 3 e
is the midpoint of 54§, MB = AM = Rm(A)M; by Theorem NEUT.14,
E——F—— E——323
congruence is transitive, and Ry (A)M = MB. Now Ry and B are on
the same side of £ so Ry € M§ By Property R.4 of Definition NEUT.2,

Rar(A) = Ru(A) = B. O

Exercise ROT.8*% Let P be a neutral plane, o be an isometry of P
such that a has one and only one fixed point O, and for every member X of
E——3

P\ {0}, X-O-a(X) and OX =~ Oa(X). Then « is the point reflection Ro.

Ezercise ROT.8 Proof. Since X-O-a(X), X-O-Ro(X), OX =~ ORo (X),
and congruence is transitive (c¢f Theorem NEUT.14) O0X = Oa(X) and
Oa(X) = ORo(X). By Theorem PSH.13 a(X) € ORo(X). Hence by Prop-
erty R.4 of Definition NEUT.2 a(X) = Ro(X), and a« = Rp. O

Exercise ROT.9% Let P be a neutral plane, O be a point on P, p be the
point reflection of P about O, £ be a line on P through O which is ordered
according to Definition ORD.1, and let X and Y be points on £. Then X <Y
iff (V) < p(X):
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Ezxercise ROT.9 Proof. Let M = pr(O, L). By Definition ROT.1 p =
Rr o Ra. Hence p|L (the restriction of p to L) is equal to Raq|L. Since
Rm|L =RolL, by Exercise NEUT.69 X <Y iff p(Y) < p(X). O

Exercise ROT.10* Let P be a neutral plane, A, B, and O noncollinear
points on P. Then there exists a unique rotation a of P about O such that
ZAOa(A) = LAOB.

Ezercise ROT.10 Proof. By Theorem ROT.15 there exists a unique ro-
tation « such that a(m) — OB. Then by Theorem NEUT.15 ZAOa(A) =

OAUO(A) = OAUa(O4) = OAUOB = £40B. O
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Chapter 11: Exercises and Answers for
Euclidean Geometry Basics (EUC)

Exercise EUC.1* Prove Corollary EUC.4, using Theorem EUC.3: let
L, M, and N be distinct lines on the Euclidean plane P such that M and
N intersect at a point O, M and N are not perpendicular to each other, and
L L N; then £ and M intersect at a point Q.

Ezercise EUC.1 Proof. The contrapositive of Theorem EUC.3 says that if
M and N are not perpendicular, then either £ / N or £ |[f M. By hypothesis
L L N so L |f M and hence £ intersects M. O

Exercise EUC.2* Using Definition PSH.31 and Remark PSH.12.1, prove
Theorem EUC.6: A parallelogram is a rotund quadrilateral.

Exercise EUC.2 Proof. Let OABCD be a parallelogram; by Definition
EUC.5 AB || €D and AD || BC. By Remark PSH.12.1
A and B are on the same side of ,
D and C are on the same side of /@,
A and D are on the same side of %, and
B and C are on the same side of ﬁ
By Definition PSH.31 OABCD is rotund. 0O

Exercise EUC.3* Prove Corollary EUC.8: let £, M, 7, and K be dis-
tinct lines on the Fuclidean plane P such that £ and M intersect at the point
O, L1 J,and M L K; then J and K intersect at a point Q.

Ezercise EUC.3 Proof. This is essentially the contrapositive of Theorem
EUC.7. If J and K were parallel, then by Theorem EUC.7 £ and M would
be parallel, contrary to the given fact that £ and M intersect at the point
O. Hence J and K are not parallel, and so intersect at a point Q. O

Exercise EUC.4* Complete the proof of Theorem EUC.22: let A, B,
and C be noncollinear points on the Euclidean plane P; let M be the midpoint
— F— —
of AB, and let N € AC and @ € BC be points such that M ﬁ I R’ and
OBMNQ is a parallelogram. Then N is the midpoint of AC.

Ezercise EUC.J Proof. Since OMNQ@B is a parallelogram, by Theo-
E—3J E—3 G731 E—3

rem EUC.12(A) BQ =~ MN, BM = QN, and ZNMB =~ /NQB. By

Definition NEUT.3(C) and Theorem NEUT.14 (congruence is transitive),
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E

AM =~ MB = QHN By Theorem NEUT.43 (supplements of congruent
angles) ZAMN = /NQC. By Theorem EUC.11(4) ZNAM = ZCNQ.
Then by Theorem NEUT.65 (AEA) there exists an isometry « such that
a(ANQC) = AAMN where a(Q) = M, a(N) = A, and a(C) = N, so that
ANQC = AAMN and AN = CN; thus N is the midpoint of AC. 0O

Exercise EUC.5* Prove Corollary EUC.23: let P be a Euclidean plane
and A, B, and C be noncollinear points on P. If M is the midpoint of AB
and N is the midpoint of 54_61', then MN I BC. Moreover, if L is the midpoint
of BHCJ', then BL = MN.

Ezercise EUC.5 Proof. Let L = par (M, %) By Theorem EUC.22 L
and j@ intersect at the midpoint N of AC. By Axiom I.1 £ = m Let
M = par (N,@); by similar reasoning, L € M. By Definition EUC.5(B)
ONMBL is a parallelogram and by Theorem EUC.12(A) BL=~MN. O

Exercise EUC.6* Prove Theorem EUC.32: complements of acute con-

gruent angles are congruent.

Exercise EUC.6 Proof. Let &, F, &', and F’ be acute angles where £ is a
complement of F, £ is a complement of ', and £ = £’. We need to prove
that F = F'.

By Definition EUC.30, there exist points A, B, C', and D such that D €
ins /BAC and £ =2 /BAD, F = /ZCAD and ZBAC is right; also there exist
points A, B/, C', and D’ such that D’ € ins/B'A'C’" and &' = /B'A'D’,
F'=2/C'A'D" and £B'A’C’ is right.

By Theorem NEUT.14 (congruence is transitive), since & = &', ZBAD
Ex ¢ = /B'AD. To show F = F' it is sufficient to show ZCAD
/C'A'D'. By Theorem NEUT.38, there exists an isometry « such that
a(ﬁ) — B and a(ﬁ) - AD. Since D € ins ZBAC by Definition
PSH.36, C' € D-side of<@> and hence D € C-side of j@; by a similar argu-
ment D’ € C’'-side (of_A)’B’. By Theorem NEUT.15, a(C-side of jﬁ) = the
a(C) = C'-side of A’B’ and since D € C-side of 4B then a(D) € C'-side
A’'B’, as does D', as we have already seen.

By Corollary NEUT.44.2, a(£BAD) = ZB’A’a(D) is right. By Theo-
rem NEUT.69 ZBAD = /B'A'D" = /B'A'a(D). By Theorem NEUT.36,
a(AD) = Aa(D) = AD, so that a(ZCAD) = LC'A'D', and F =
/CAD = /C'A'D'=2F'. O

111
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Exercise EUC.7* Prove Corollary EUC.3.1: let Raq be the line reflec-
tion over M, and let £ be a fixed line for Raq. Then N || £ iff N is a fixed
line for R 4.

Ezercise EUC.7 Proof. If N is a fixed line for R then by Theorem
NEUT.44 N/ L M and by Theorem NEUT.48 A || L. Conversely, if N || £,
since we know £ 1 M, by Theorem EUC.3 N' L M, and by Theorem
NEUT.44, N is a fixed line for Rpy. 0O
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Chapter 12: Exercises and Answers for
Isometries of a Euclidean Plane (ISM)

Exercise ISM.1* Let P be a Euclidean plane.
(A) There is no translation 7 of P such that 7 o7 = 4.

(B) For any translation 7 of P, 7 o 7 is a translation.

Ezercise ISM.1 Proof. Let T be any translation of P.

(A) By Theorem ISM.5 there exist parallel lines £ and M on P such that
T =RroRnm. If ToT were equal to 7, then we would have RpoRypo R =
Rm- By Exercise NEUT.8 Rz o R0 Re = Rr . (m)- Hence we would have
Rr.m) = Rm. By Remark NEUT.1.2(B) Rz (M) would be equal to M.
But L || M, so by Exercise NEUT.1, M and R, (M) are subsets of opposite
sides of £, a contradiction. Thus 7o 7 # 1.

(B) By Theorem ISM.8(A) 7 o 7 is either a translation or :. By part (A)
T o7 is not 7 so it must be a translation, having no fixed point by Definition
CAP.6. DO

Exercise ISM.2* Let P be a Euclidean plane, o and 7 be translations
of P such that L is a fixed line of o, M is a fixed line of 7, £ and M are not
parallel, and let @ be any point on P. Then OQ(c(Q))(7(c(Q)))(7(Q)) is a
parallelogram.

Exercise ISM.2 Proof. Since £ and M are not parallel, by Theorem
CAP.8(C) Qo(Q) || 7(@)7(0(Q)) and Q7(Q) || o(Q)o(7(Q)). By Theorem
ISM.7(B) 7(0(Q)) = o(7(Q)). By Definition EUC.5(B) 0Qc(Q)7(c(Q))7(Q)

is a parallelogram. 0O

Exercise ISM.3* Let P be a Euclidean plane, A and B be distinct points
on P, and 7 be a translation of P such that @ is not a fixed line of 7. Then
:47'(145 and _LBT(BS are opposite edges of a parallelogram.

Exercise ISM.3 Proof. By Theorem ISM.5 there exists a unique transla-
tion o of P such that o(A) = B, and its fixed line 4B is not parallel to a
E———3

fixed line of 7, so 7(B) = 7(0(A)) = (7 0 0)(A). By Exercise ISM.2 A7(A)
E J
and B7(B) are opposite edges of the parallelogram OAc(A)7(c(A))7(A). O

Exercise ISM.4* Let P be a Euclidean plane, £, and Lo be parallel
lines on P, A; be a point on L1, Ay be the point of intersection of pr (Ay, L)
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and Ly, and 7 be the translation of P such that 7(A;) = Az (cf Theorem
ISM.5). Then 7(£1) = Ls.

Ezercise ISM.J Proof. By Definition CAP.6 either 7(Ly) || £1 or 7(£1) =
Ly that is 7(£1) PE £;. Since 7(A41) = Az, 7(L1) # L1. Therefore by Axiom
PS, 7(£1) is the line through A which is parallel to L, ie. 7(£1) = L. O

Exercise ISM.5* Let M be a line on a Euclidean plane P and let o
be a translation along M; that is, M is a fixed line for o. Let R be the
reflection with axis M. Then Raio0 =0 o0 Raq.

Exercise ISM.5 Proof. Case 1. Let X be any member of M. Since M
is a fixed line of ¢ and is point-wise fixed for R, Rm(0(X)) = o(X) =
o(Rm(X)).

Case 2. (I) Let X be any member of P\ M. By Definition CAP.6 transla-
tions have no fixed points, so (X ) # X; by Theorem CAP.8 the lines XO'(X;
and R (X)o(Raq (X)) are fixed lines for o and are parallel to M.

(IT) By Theorem CAP.3, since Xo(X) || M,

Rm(Xo(X)) = Rum(X)Rpm(o(X))
is also parallel to M. (Here we have used Theorem NEUT.15.) Since Ra((X)
is a member of both R (X)o(Ra (X)) and Ry (X)Ra(o(X)), and both
these lines are parallel to M, by Axiom PS they are the same.

(III) By Theorem NEUT.22 X Ry (X ) and o(X)Rpq(0(X)) are fixed lines
for Raq and are parallel; by Theorem NEUT.44 they are perpendicular to

(and intersect) M; they are distinct lines because X does not belong to both
of them.

(IV) By Theorem NEUT.15, o(XRa(X)) = o(X)o(Rm(X)); by Defini-
tion CAP.6, XR (X || U(X)U(RM(X)j. Since o(X) is a member of both
o(X)o(Ram(X)) and o(X)Ra((X)), and both these lines are parallel to
XRm(X), by Axiom PS they are the same. Thus both the points R (o (X))
and o(R (X)) belong to

o(X)Rpm(0(X)) VR (X)o (R (X))
which intersection, by Exercise I.1, contains exactly one point; thus Ry (o (X)) =
o(Rm(X)). O

Exercise ISM.6 Prove, disprove, or improve: let P be a Euclidean plane,

7 a translation, and £ a line on P. Then R ()07 =70 R..
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Exercise ISM.7 In Theorem ISM.23 Case 2, create a simpler proof of
the fact that X < 74(X).

Exercise ISM.8* Let P be a Euclidean plane, and let « = Rz o7 be a
glide reflection, where 7 is a translation and £ is the single fixed line for o
according to Theorem ISM.13.

(A) It V|| £ then a(N) || L.

(B) If N L £ then a(N) L £ and a(N) || V.

FEzercise ISM.8 Proof. (A) By Definition CAP.6, 7(N) || N; by Exercise
NEUT.1, a(N) = Re(r(N)) | V|| £.

(B) If N L L, then by Definition CAP.6 7(N) || N and by Theorem
EUC.3 7(N) L L. By Theorem NEUT.44 7(N) is a fixed line for R.; hence
aN) = Re(r(N)) = 7(N) is both parallel to A, and perpendicular to L.
O
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Chapter 13: Exercises and Answers for
Dilations of a Euclidean Plane (DLN)

Exercise DLN.1* Let O be a point on a Euclidean plane P, and let «
be a half-rotation of P about O. If X and Y are members of P\ {O} such
that O, X, and Y are noncollinear, then Z/XO«a(X) = /Y Oa(Y).

Ezercise DLN.1 Proof. Let p, be the rotation of P about O associated
with a. Let £ be the line of symmetry of ZXOp,(X) and let M be the line
of symmetry of ZY Op,(Y). Then by Theorem DLN.2(E) a(X) = ftpr (X, £)
and a(Y") = ftpr (X, M). By Theorem NEUT.39 Oa(X) is the bisecting ray
of ZXOpu(X) and O« (Y) is the bisecting ray of ZY Op,(Y). The result then
follows immediately from Exercise ROT.4(E). O

Exercise DLN.2* Let O be a point on a Euclidean plane P, and let
«a and § be half-rotations of P about O; let R, S, and T" be members of
P\ {O} such that «(R) = 5, 8(S) =T, and S € ins ZROT. Then for every
member U of P\ {0} ZUO«(U) = ZROS, Za(U)O(B o a)(U) & /SOT
LUO(Boa)(U) = ZROT, and «(U) € ins LZUO(B o a)(U).

Ezercise DLN.2 Proof. By Theorem ROT.15(A) let o’ and 8’ be rotations
such that o/ (R) € O and B'(S) e OT. Then the result follows immediately
from Exercise ROT.4(A2). O

Exercise DLN.3* Let O be a point on a Euclidean plane P, and let 0y
and Jo be dilations of P with fixed point O. Then §; 0 05 = d 0 41, i.e. the

composition of dilations with a common fixed point is commutative.

Exercise DLN.3 Proof. By Theorem DLN.7 there exist half-rotations a;,
B1, Y1, a2, B2, and v of P about O such that 6; = Fyfl o 1 o a1 and
So =75, 0 B0z s0that 300, = (7,1 0 Baoaz)o (7 o froa).

By Theorem DLN.G, the composition of half-rotations is commutative;
using this fact repeatedly, along with associativity, we can “pull” each factor
of the second set of parentheses “through” the first set of parentheses so that

82081 = (7)o (15 ' o Baoaz)o(Broar)
=(n'eBi)o(rptofaoaz)o(ar)
=(r;'oBioar)o(y; 0froar) =608, O
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Exercise DLN.4* Let O be a point on a Euclidean plane P, and let
D = {«a | « be a dilation of P with fixed point O, or a = ¢}. Then under
composition of mappings D is an abelian group.

Ezercise DLN.4 Proof. By Theorem CAP.21 D is a group under compo-
sition of mappings. By Exercise DLN.3 that group is Abelian. O

Exercise DLN.5* Let O be a point on a Euclidean plane P, and let ¢
be a dilation of P with fixed point O.
(I) If X and Y are members of P \ {O} such that O, X, and Y are
noncollinear, then §(X) and §(Y) are on the same side of .
(IT) Let A be any member of P\ {O} and let X be any member of P \
{0, A}.
(A) If O-A-0(A), then O-X-6(X).
(B) If O-6(A)-A, then O-0(X)-X.
(C) If 6(A)-O-A, then §(X)-O-X.
(IIT) Let A be any member of P \ {O} and let X be any member of
PA\A{O, A}
(A) If 6(A) € OA, then 6(X) € OX.
(B) If A’ is a point such that A’-O-A, X’ is a point such that X'-O-X|
and if 5(A) € OA', then §(X) € OX'.
(IV) Let A be any member of P\ {O} and let C' be any member of ’P\m
(A)If46(A) e 0371, then 6(C) is on the C-side of OA.
(B) If 6(A)-O-A, then §(C) is on the side of OA opposite the C-side.

Ezercise DLN.5 Proof. (I) By Theorem CAP.1(A) 5(@) = 5(X)5(Y;.
By Theorem CAP.18(C) and Definition CAP.17 XY || §(XY) so that XY |
0(X)4(Y). By Theorem IB.10 and Exercise PSH.14, §(X) and 6(Y) are on
the same side of .

(IT) Let X be any member of P\ {O, A}. Then by Definition CAP.10
X PE S(A)5(X).

(Case 1: X € (P \ fﬁ)) By Theorem DLN.9(A), 6(X) is the point of
intersection of OX with par (6(A), jﬁ), so that the lines AJ(A) and X8(X)
are parallel. Conclusions (A), (B), and (C) are then immediate consequences
of Exercise PSH.56.

(Case 2: X € (?ﬂ \ {0, A}).) Following the construction of Theorem
DLN.9(B), we let Q be any point not on OA. Part (A) locates 6(Q@) as a point
of @ Since A € @ we may apply Theorem DLN.9(A) again, locating §(X)
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as the point of intersection of 0(71 with par (0(Q), Q(_X>), and the lines w and
5(Q)5(X; are parallel.
(A) If O—A-6(A), then by Case 1, O-Q—-0(Q). By another application
of Case 1 we get O-X-§(X).
(B) If O-6(A)-A, then by Case 1 O-§(Q)-Q. Another application of
Case 1 yields O-§(X)-X.
(C) If A-O-6(A), then by Case 1, Q—-O-6(Q). Another application of
Case 1 yields X-0O-0(X).
(IIT)(A) This is an immediate consequence of (A), (B), and Definition IB.4.
(B) This is an immediate consequence of (C) and Definition IB.4.
(IV) (A) By Part (II)(A) and (B) of this theorem, §(A) € OA and 6(C) €
OC. Hence by Theorem IB.14 §(C) € C-side of OA.
(B) By part (IIT)(B) of this theorem, §(C)-O-C' and by Definition IB.11
4(C) and C are on opposite sides of OA. O

Exercise DLN.6* Let O be a point on a Euclidean plane P; let ¢ be a
dilation of P with fixed point O and let p be a rotation of P about O. Then
plodop=dand dtopod=p

Ezercise DLN.6 Proof. By Theorem DLN.7(E) and associativity,
Lo(op)=plto(pod)=(ptop)od=106=4¢ and
d7to(pod)=6to(6op)=(0"tod)op=10p=p. O

Exercise DLN.7* Let O be a point on a Euclidean plane P; let § be a
dilation on P with fixed point O, and let £ be any line on P. Then
Rg ocd=4do Rg—l(ﬁ).

Ezercise DLN.7 Proof. By Theorem CAP.21 6~ ! is a dilation of P with
fixed point O. By Theorem DLN.15 § o Rs-1(£) = Rsi-1(£)) 00 = R 0.
O

Exercise DLN.8* Let O be a point on a Euclidean plane P, and let ¢
be a dilation of P with fixed point O. Let £, M, and N be distinct lines on
P. Then § o (R/\/ o RM ORL) = (RJ(J\/) OR&(M) o Rg(ﬁ)) 0d.

Ezercise DLN.8 Proof. By Theorem DLN.15
0o(RyoRMmoRz)=(00Rn)0 (RmoRe) = (Ré(N) 0d)o(RmoRe)
= (Rswyo(0oRm))oRe
= (Rswvy © (Rsmy ©0)) o Re
= (Rswvy o Rsamy) 0 (0o Re)
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= (Rsn) © Rsmy) © (Rs(ey ©0)
= (R(;(j\/) o R6(M) o ng(ﬁ)) 0d. O

Exercise DLN.9* Let O be a point on a Euclidean plane P; let ¢ be a
dilation of P with fixed point O, and let § be an isometry of P. Then there
exists an isometry 1 of P such that 0 o = § o).

Ezercise DLN.9 Proof. By elementary mapping theory, we know that
(o6)~t =6"tof~!. By Theorem NEUT.11 #~1! is an isometry. By Theorem
CAP.21 6! is a dilation of P. By Theorem DLN.16, there exists an isometry
@ of P such that 6! 0§~ = ¢ o §~!. Taking inverses, we have

fod=(0"tod ) L =(pod )y t=0op L
Let ¢ = ¢~ '; by Theorem NEUT.11 this is an isometry; then foé = §otp. O

Exercise DLN.10 Using the construction of Theorem DLN.4, prove that
for any half-rotation «, if A~-B-C, then a(A)-a(B)-«a(C).
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Chapter 14: Exercises and Answers for
A Line as an Ordered Field (OF)

Exercise OF.1* Let P be a Euclidean plane; let I be an ordered field on
P with origin O, and 74 be the translation of P such that 74(0) = A, where
A is any member of L\ {O}. Then for every member X of L, 74(X) = X & A.

Ezercise OF.1 Proof. This is an immediate consequence of Definition
OF.1(A) and (C). O

Exercise OF.2* Let P be a Euclidean plane; let IL be an ordered field on
P with origin O and unit U, (where U € (L\ {O})) and let 04 be the dilation
of P with fixed point O such that 64(U) = A. Then for every member X of
L\ {0}, 64a(X) =X 0O A.

Exercise OF.2 Proof. This is an immediate consequence of Definition
OF.1(B) and (D). O

Exercise OF.3* (A) If A, B, and C are members of the ordered field I
(cf. Definition OF.1) such that A@® C = B@® C, then A = B.

(B) If A and B are members of L and if C' is a member of L \ {O} such
that A© C =B ®C, then A = B.

Ezxercise OF.3 Proof. (A) By Theorem OF.2 there exists a member D of
L such that C@® D = O. Since (A®C)® D = (B®C)® D, by the associative
property for addition A ® (C & D)=B® (C® D), thatis Ao O =B O,
or A= B.

(B) There exists a member D of L. \ {O}, such that C'® D = U. Since
by the associative property for multiplication (A® C)® D = A® (C ® D)
and (BOC)®D =B®(C®D)and since ( A©C)®D =(BoC)®D,
A0(COD)=BO®(Co®D), thatis AU =B®U. Thus A=B. O

Exercise OF.4* (A) If A, B, and C are members of the field L such
that A®@ B=A®C, then B =C.

(B) If A is a member of L\ {O}, and if B and C are members of L such
that A© B=A®C, then B=C.

Ezxercise OF.J Proof. (A) By the commutative property for addition B @&
A=C® A, so by Exercise OF.3 B=C.
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(B) By the commutative property for multiplication B ® A = C ® A, so
by Exercise OF.3 B=C. O

Exercise OF.5*% Let A, B, and C be members of the field L; then (B ©
A)oC=BoC)s(A00).

Exercise OF.5 Proof. Using Definition OF.8, the commutative property
of multiplication, and Theorem OF.6 (distributive property),
(BoA)o©C=(B®(°A)0C=C0(Ba(°4))
=(CoOB @ (Co®(PA))=(Bo0C)d((PA) o).
By Theorem OF.10(D) (°A) ® C' = ©(A® C) so that this becomes
(BoC)a® (A0C)=(BoC)o (A 0),
as required. 0O

Exercise OF.6* Let § be a dilation of the Euclidean plane P with fixed
point O, and let L be an ordered field with origin O and unit U. If K and T
are any members of L, then 6(K 0 T) = K © 6(T).

Ezercise OF.6 Proof. By Definition OF.1 and Exercise DLN.3
S(KOT)=0(0k(T)) = (600x)(T) = (6x 0)(T)
=0x(0(T)=KodiT). O

Exercise OF.7* Let A and B be members of .. Complete the proof of
Theorem OF.11(A) by showing that B& A > O iff (°B) < (®A).

Ezercise OF.7 Proof. By Theorem OF.10(A)(3) and (D) O < B& A =
(°(°B)) & A = (°A) © (°B). By the part of Theorem OF.11(A) already
proved, this is true iff (°A) > (°B). O

Exercise OF.8*% Prove part D of Theorem OF.11: if A < B and C < O,
then BoOC < A®C.

Ezercise OF.8 Proof. 1f A < B, then by Theorem OF.11(A) B& A > O.
Since C' < O by Theorem OF.10(E) C ® (B © A) < O. By Exercise OF.5
O>Co(BocA=(CoB)c(CoA);
by Theorem OF.11(A) COA>CGo®B. O

Exercise OF.9* Let A and B be negative members of I.. Then A < B
iff | B] < |A|.
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FEzercise OF.9 Proof. By Definition OF.13, [A| = ©A and |B| = ©B.
Then by Theorem OF.11(A) A < Biff |[B| = ®B < [4] = ®A. O

Exercise OF.10 (A) Let T = {74|A € L}; then the mapping a:A — 74
is a bijection of I onto T.

(B) Let M = {04|A € L}; then the mapping p:A — d4 is a bijection of L
onto M; furthermore g maps L\ {O} onto M\ {O}.

Exercise OF.11* (This result is analogous to Theorem CAP.23) Let
P be a Euclidean plane, and let I; and Ly be parallel lines on P, where
L; has been built into an ordered field with origin O; and unit U;. Let Oq
be a point of Ly, and let o be the translation of P such that o(O1) = Os.
(The existence and uniqueness of this translation is guaranteed by Theorem
ISM.5.) Let A € L1 \ {O1,U;}. Then 00§00~ is a dilation of P with fixed
point Oz. In fact, 0 0 d4 0071 = d,(4) 50 that 0004 = 6,4y 0 0.

Exercise OF.11 Proof. The statement of this exercise assumes that 04 is
the dilation with fixed point O; such that 64(U;1) = A, and that d,(4) is the
dilation with fixed point Oy such that d,(4)(Us) = 0(A), where Uy = o(Uy).

By Definition CAP.6, o(LL1) || L1, and since O3 € Ly and o(01) = Oa, by
the Parallel Axiom PS, o(IL;) = Ls. Since 0! is a translation taking O, to
01, it follows immediately from Theorem CAP.23(C) that c o400 ! is a
dilation of P with fixed point Oy. Moreover, a(54 (01 (Us))) = o(54(Uy)) =
o(A).

By Theorem CAP.24, §5(4) is the only dilation with Og as a fixed point
which maps Us to o(A), so that cod 40071 = do(ay; and 0064 = 0y(4)00. O

Exercise OF.12* Let P be a Euclidean plane; let L be an ordered field
on P with origin O and unit U, A be a member of L\ {O,U}, and let 74 and
da be as in Definition OF.1. Then 64 074 = 75,(4) ©da.

Ezercise OF.12 Proof. By Theorem CAP.13 §4 074 0 621 is a translation
of P. Then since O is a fixed point for 5;1,
(6a07406,")(0) =0a(r4(637(0))) = d4(74(0)) = d(A).
The translation 75,4y maps O to 64(A), and by Theorem CAP.9 is the only
translation doing so. Therefore d4 o 74 o 621 =Ts5,(4)- O
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Chapter 15: Exercises and Answers for
Similarity on a Euclidean Plane (SIM)

Exercise SIM.1* Let P be a Euclidean plane and let 4 and B be free
segments of P.

(I) If 4 < B, then A% < B2

(IT) If A > B, then A% > B2

Ezercise SIM.1 Proof. (I) If A < B, then by Theorem SIM.9 and Definition
SIM.10 4?2 < A® B and 4 ® B < B2. By Theorem FSEG.7 (Transitivity for
Free Segments), 4% < 52

(IT) If 4 > B, then by Definition FSEG.3 B < 4. By part (I) 8% < 4%, that
is, 42 >5% O

Exercise SIM.2* Let P be a Euclidean plane and let 4 and B be free
segments of P. If 42 = 5%, then A = 5.

Ezercise SIM.2 Proof. We prove the contrapositive: If 4 # 5, then
A2 # B2 If A # B, then by Theorem FSEG.5 (Trichotomy for Free Seg-
ments), either A < B, or B < 4. If A < B, then by Exercise SIM.1 4% < 52. If
B < A, then by the same exercise, 52 < 42. 0O

Exercise SIM.3* Let P be a Euclidean plane and let 4, B, and ¢ be free
segments of P such that ¢ < 8. Then 4® (Bo¢) = (A0 B) S (4G c).

Ezercise SIM.3 Proof. By Theorem SIM.9 4 ® ¢ < A ® B. By Theorem
FSEG.10 (4 ® B) © (A ® ¢) exists. By Definition FSEG.11 86 ¢ is the free
segment D of P such that cD = B. By Theorem SIM.8 A®B = A® (cBD) =
(4®¢) @ (4®D). By Definition FSEG.11 4©D = (4®B) & (A®¢), that is,
AQ(BsCc)=(A40B)8(A4GC). O

Exercise SIM.4* Let P be a Euclidean plane and let 4, B, ¢, and »
be free segments on P. Then the following statements are equivalent to each
other.

(1)

(2) A@B=CcoD.

(3) A@c =B@D.

(4) BeAa=DacC.

(5) (4@ B)eoB=(c&D)OD.
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Exercise SIM.4 Proof. We use Theorem SIM.8 and Definition SIM.12 in
the following reasoning:

AOD=B0ciff(4OD)O(c o) = BOc)O(ctop™); (4eD)O
(clor H=Boco(ctop)ifucc!=op "

Also, A0 ¢t =Boptif uec =Bep. AOD=8B0Ciff (AOD)O
(ctorH=Boc)o(ctop™).

(AeD)o(ctop )=Boc)o(ctop Hif a0 ! =80p ! and
A0c t=pop lif ucc=8oD.

AOD=8B0ciff (40D)O (4o )= BoOc)o U o)

(Aop)o (A toc ) =Bo)oUtocHifpoect =oatiff
B@A=DOC.

AeB=copiff (A OB ) Pu=(cop ) du;

(Ao YHou = (cop Y ou iff (4o d(BOB™ ) = (cOop ) d(pOD™1);

(Ao HoBos™) = (cop V)@ (pop™t) iff (UueB) OB~ = (chp)OD Y]
and

(adB) o l=(cop)op lif(A®B)eB=(cdDp)op. O

Exercise SIM.5* Let P be a Euclidean plane and let 4, B, ¢, and »
be free segments on P such that 4 < ¢, B < p, and 4@8 = c®p. Then
AoB=(cc4)e(pen).

Exercise SIM.5 Proof. Since A < ¢ and B < p, by Theorem SIM.9
U=A"toAa< A toc=coaandu = 87108 < B7'©Dp = p @ 8. By Exercise
SIM4dcoA=DeB,s0 (ceA)cu=(peB)Su. Thatis, (ceoa)e(4A@A) =
(peB) & (B@B), so that (c & A)eA = (D& B)@B. In Exercise SIM.4(4)
substitute ¢ — A for B, D — B for D, A for 4, and B for ¢; reading the equiva-
lent formulation from Exercise SIM.4(3) we have A©B = (c64) @(pSB). O

Exercise SIM.6* Let P be a Euclidean plane and let Ay, By, Cy, Ao,
Bs, and Cs, be points on P such that A;, By, and Cy are noncollinear and
As, By, and Cy are noncollinear. Furthermore, let 4; = [Efrclj], Bl = [541—01] 1,
¢1 = [AiB1), 42 = [BaCs), By = [A3C3), and co = [A2B3). Then:
/B1A1C] =2 £ByA3Cy and LC1B1 A = LC3BoAs iff A1 ©B1 = Ay ©Bo,
A1 ©C1 = A2 ©Ca, and B) ©C1 = B2 ©Ca.

Ezercise SIM.6 Proof. By Theorem SIM.16 /B1A1Cy = /ByA>Ch
and LC1B1Ay &2 LO3ByAs iff Ay @Ay = B1©By, A1© Ay = C1 ©Co, and
B1 @By = C1 ©C2. However, by Exercise SIM.4 A1 @ Ay = B1 © 52 iff A1 ©B1 =
A2 @B2; A1 @42 = c1@C2 il Ay@c1 = A2 @c2; and B1 @By = croc iff
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B1 ©C1 = B2 ©Ca. Hence ABlAlCl = 4B2A202 and AClBlAl = 402B2A2
iff A1 ©B81 = A2 ©B2, A1 ©C1 = A2 ©C2, and B1 ©C1 = B2 ©C2. O

Exercise SIM.7* Let O be a point on a Euclidean plane P, and let § be
a dilation of P with fixed point O, such that for every X # O, §(X) € O]_X>
Let X and Y be distinct members of P\ {O} such that O, X, and Y are
e Ee—— e—a E——
collinear. Then [OX |@[0§(X)] = [0Y ]@[04(Y)].

Ezercise SIM.7 Proof. Let X' lﬁny member of P\ b_)f and let Y/ =
0(X”). By Theorem CAP.18 Y’ LE S OX’. Then by Theorem DLN.9(B) §(X)
is the point such t(hit>par (Y, X'X) NOX = {6(X)} anMY) is the point
gucl that par (¥, X'7) 1 OX = {5(Y)}. That is to say, X'X || Y'6(X), and
X'Y || Y'Y

Applylng Theorem SIM.13 to X X I Y ) we have [ X’] @[ Xj] =
[OY’] [06( )] by Exercise SIM.4 [OX’] [OY’] [ X|el04(X)]. Ap-
plying the same reasoning to X'Y | Y’4(Y), we have [bX’j] [OY'] =
[b_Yj] @[OTY) ] Therefore

0X]@[06(X)] = [0X| e [0V

u

SE

|

| =[0Y]el05(Y)]. O
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Chapter 16: Exercises and Answers for
Axial Affinities of a Euclidean Plane (AX)

Exercise AX.1* Let M be a line on a Euclidean plane P; let A and B
be distinct points such that 1B || M. By Theorem AX.2 there exists a shear
¥ with axis M such )(A) = B. Let £ be a line parallel to M; either £ = jﬁ
or L | AB. Let C = ftpr(A, M), let D be the point of intersection of ¢ and
L, and let E be the point of intersection of % and £. Then by Theorem
AX.2 y(D) = E. Using Theorem ISM.5 let 7 be the translation of P such
that 7(D) = E. Show that for every X € £, ¢(X) = 7(X). This shows that
the action of a shear on a line parallel to its axis is the same as that of a

translation.

Exercise AX.1 Proof. Note first that /ﬁ = R’ 1 M. Let X be any point
on £ and let T be the point of intersection of pr(X, £) and M. By Theorem
NEUT.47(A) X7 I DC. Then again by Theorem AX.2 ¢)(X) is the point of
intersection of par (7T, C(@) and L, that is, par(T, C(@) = par(T, C’Q/J(D;). We
have already defined 7 so that 7(D) = E.

Let F = ftpr(E, M); by Theorem NEUT.47(A) FE | DC. By Theorem
ISM.23 7(X) is the point of intersection of £ and par(F, CX). Using Theorem
ISM.5 construct a translation o such that o(D) = X. Then by Theorem
ISM.7 0 o 7 = 7 0 0. By Definition CAP.6 o(m I m, which is parallel to
X7. Since X € o(DC) by Axiom PS o(DC) = % By Theorem NEUT.15
=
o(D)o(C) = a(m) X7. Since both T and o(C) belong to M, T = o(C).

By similar reasoning, 0(%) | ¥(X)T, o(E)o(C) = (%) = (X)T,
and o(E) = ¢(X), because both o(E) and ¢(X) belong to L. Then
7(X) = 7(0(D)) = 0(r(D)) = o(E) = $(X). O

Exercise AX.2* Let P be a Euclidean plane, and let ¢ be an axial
affinity with axis M on P, and let £ be a line distinct from M. Then L is a
fixed line for ¢ iff for some Q € M, L = Q@(Q;.

Ezercise AX.2 Proof. If L is a fixed line, by Theorem CAP.27(A) L =
m for any point Q € L\ M.

Conversely, suppose that £ = Q¢ Q) for some Q ¢ M. By Theorem
AX.3(A) ¢ is either a stretch or a shear. If it is a stretch, by Definition AX.0
there exists a fixed line A which intersects M. If @ € N then ¢(Q) € N so
that by Axiom I.1 N = £; thus £ is a fixed line. If Q ¢ N then by Axiom PS
there exists a line £’ such that @ € £ and £’ || N; by Theorem CAP.27(B)
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L' is a fixed line, and by part (A) of the same theorem, £’ = Q@(Q; =L, so
that £ is a fixed line.

If ¢ is a shear, by Axiom PS there exists a line £’ such that £ || M and
Q@ € L. By Definition AX.0 £’ is a fixed line, and by Theorem CAP.27(A)
and Axiom 1.1 £' = Q@(Q; =L, and L is a fixed line. 0O
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Chapter 17: Exercises and Answers for
Rational Points on a Line (QX)

Exercise QX.1* Let r be a nonzero rational number, and let A € L\{O}.
(A) If A is positive, then rA is positive iff r is positive.

(B) If A is negative, then rA is negative iff r is positive.

Ezercise QX.1 Proof. (A) If A is positive, then by Theorem QX.13(A) rA
is positive if r is positive. If r is not positive, it is negative, because r # 0.
Then by Theorem QX.13(B), rA is negative, that is, not positive. This is the
contrapositive of the converse of the first statement.

(B) If A is negative, then by Theorem QX.13(C) rA is negative if r is
positive. If  is not negative, it is positive. Then by Theorem QX.13(D), rA
is positive, that is, not negative. This is the contrapositive of the converse of
the first statement. 0O

Exercise QX.2* Let A be a positive member of I and 7 and s be rational
numbers. Then rA < sA iff r < s.

Ezercise QX.2 Proof. (I) If r < s, then s —r > 0 so by Theorem QX.13
(or Exercise QX.1) (s —r)A > O. Since by Theorem QX.11(A) (s —r)A =
(s+(-7)A=sA®(°rA) = sASrA, and this is positive, then by Theorem
OF.11(A) rA < sA.

(IT) If rA < sA, then by Theorem OF.11(A) sA©rA = (s —r)A is pos-
itive. If s — r were negative, then r — s would be positive and rA > sA by

part (I), contradicting the assumption. Hence s—r is positiveand sor < s. O

Exercise QX.3* Let A be a negative member of L and r and s be
rational numbers. Then rA > sA iff r < s.

Ezercise QX.3 Proof. (I) If r < s, then s —r > 0 so by Theorem QX.13
(or Exercise QX.1) (s —r)A < O. Since by Theorem QX.11(A) (s —r)A =
(s+(-7)A=35A®(°rA) = sASrA, and this is negative, then by Theorem
OF.11(A) rA > sA.

(IT) If rA > sA, then by Theorem OF.11(A) sA©rA = (s —r)A is neg-
ative. If s — r were positive, then r — s would be negative and rA < sA by

part (I), a contradiction. Hence s — r is negative and so r > s. O
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Exercise QX.4* Let P be a Euclidean plane, I be an ordered field on
P (cf Theorem Q.13), T be a member of L and r be a rational number. Then
(—r)T = °(rT).

Ezercise QX.4 Proof. By Theorem QX.11(A), (—r)T @ rT = (—r+r)T =
0T = O. By Definition OF 4, (—r)T = <(+T). O

Exercise QX.5* Let L be an ordered field with origin O on a Euclidean
plane P, and let X and Y be positive members of L. Then there exist non-
collinear points A, B, and C on P such that %X ®Y is the area of AABC.

Ezercise QX.5 Proof. Let C and E be distinct points on P. By Theorem
NEUT.67 (segment construction) there exists a unique point B on OF such
that [CB] = [0X]. Let £ = pr(B, BC) (cf Definition NEUT.99(A)). Then
by Theorem NEUT.67 there exists a point A € £ such that [ﬁ] = [OE_Y]]
Then CB is an altitude of NABC, AB is the base for that altitude, and by
Definition QX.22 the area of this triangle is %X oY. O
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Chapter 18: Exercises and Answers for
A Line as Real Numbers (REAL); Coordinatization of
a Plane (RR)

Exercise REAL.1* Let A, B, C, and D be points on the Euclidean
plane P such that A # B and C' # D. Then there exists a natural number n

E—3
such that [’%nB] < [C['—ﬁ]

Ezercise REAL.1 Proof. By Theorem REAL.5 there exists a natural num-

ber n such that n[ﬁ] > [ﬁ] Since for every natural number n, 2" > n,

E—3
48] D). o

E—3 E—3

27[CD] > n[CD), 2"[CD] > [AB] so that

Exercise REAL.2* Let P be a Euclidean/LUB plane, and let L be a
line in P having origin O and unit U. Then if T" and V are positive members
of L, there exists a natural number n such that %T < V.

Ezercise REAL.2 Proof. Since by Theorem REAL.9 the set {nV | n € N}
is unbounded above, there exists a natural number n such that nV > T. But
then %T <V. O

Exercise REAL.3* Let P be a Euclidean/LUB plane, and let L be a
line in P having origin O and unit U. Then if T is a positive member of L,
{s]s€Q and sU < T} is bounded above.

Ezercise REAL.3 Proof. Since by Corollary REAL.9.1 {tU | t € Q} is
unbounded above there exists a rational number h such that hU > T'. Let s
be any member of {t |t € Q and tU < T}. Then sU < T < hU so that by
Exercise QX.2 s < h and h is an upper bound of {s | s € Q and sU < T}. O

Exercise REAL.4* Prove Lemma REAL.4: let P be a Euclidean/LUB
plane, and let L be an ordered field on P with origin O and unit U. If £ is
a subset of L. which is bounded above, and T > O is a member of LL, then
(lub&) O T =lb(EGT).

Ezercise REAL.4 Proof. Suppose B is any upper bound for &; then for
every A € £, B> A. By Theorem OF.11(C), BOT > A® T so that BOT
is an upper bound for the set £ ® T. Since lub& is an upper bound for &,
(lub&) ® T is an upper bound for £ ® T, hence (lub&) ® T > lub(€ © T).

By Theorem OF.10(E), T=! > O, so that substituting £ ® T for £ and

T~ for T in the calculation just above,
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lub(EoT) Tt >b(EOT)®T™ ) =1ubé,
and multiplying on the right by 7" we have
b(EOT)=MWbET)ToT > (lubé) o T;
therefore (lub&) @ T =lub(EGT). O

Exercise REAL.5* Prove Lemma REAL.24: let P be a Euclidean/LUB
plane, and let I be an ordered field on P with origin O and unit U. Let S
be a subset of L which is bounded above, and suppose A is an upper bound
for S. Then A = lub S iff the following property holds: for every ¢ > O in L,
there exists € L such that x > ASe.

Ezercise REAL.5 Proof. Assume that A = lub S, and that the property
does not hold; then there exists € > O such that for all X € S, X < ASe.
Then A © e < A is an upper bound for S, so that A is not the least upper
bound.

Conversely, if the property holds and A # lub S, since A is an upper bound,
A >1ub S. Since A is not the least upper bound, there exists an upper bound
B such that A > B. Let ¢ = A & B; then there exists X € S such that
X >A6e¢e=Ac(Ae B) = B. Then X is not an upper bound for S, a
contradiction. 0O

Exercise REAL.6* Complete the proof of Case 4 of Theorem REAL.23:
let P be a Euclidean/LUB plane, and let I an ordered field on P with origin
O and unit U. Let S > O be a member of L. Then if x < 0 and y > 0 are
irrational numbers, z(yS) = (zy)S.

Ezxercise REAL.6 Proof. Using, in succession, arithmetic, Theorem REAL.21(A),
Case 2 of the proof of Theorem REAL.23, arithmetic, Theorem REAL.21(A),
and Theorem OF.10(A), we have
2(yS) = (—(=2))(¥S) = ((—=2)(¥9)) = (((-2)y)S)
= “((=(zy))8) = “(°((zy))S) = (zy)S. O

Exercise REAL.7* Complete the proof of Theorem REAL.25, Case 3:
let P be a Euclidean/LUB plane, and let L an ordered field on P with origin
O and unit U. Let S < O and T' > O be members of L. If = is an irrational
number, then (zS) T =z(S©T).

Ezxercise REAL.7 Proof. Using, in succession, Theorem REAL.21(C),
Theorem OF.10(D), Case 1 of the proof of Theorem REAL.25, Theorem
OF.10(D), and Theorem REAL.21(C), we have
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Exercise REAL.8* Complete the proof of Case 5 of Theorem REAL.31:
let P be a Euclidean/LUB plane, and let L an ordered field on P with origin

O and unit U. If x < 0 and y < 0 are irrational numbers, and H is any
member of L, then (z +y)H = axH & yH.

Exercise REAL.8 Proof. Applying, in order, Theorem REAL.21(A),
arithmetic, Cases 3 and 4 of the proof of Theorem REAL.31, Theorem
REAL.21(A), and Theorem OF.10(F), we have, since —x > 0 and —y > 0,

le+y)H =—(z+yH = ((—2) + (—y)H = (—2)H & (—y)H
= S(xH)® ®(yH) = °(zH ® yH).
The result follows from Theorem OF.10(A). O

Exercise REAL.9* (Alternative proof of Theorem REAL.32) Let
x be any real number, and let S and 7" be members of L. Prove, using

Definition REAL.19 and other theorems from this chapter and previous ones,
including Theorem REAL.21, that 2(S @ T) = 2S5 @ «T.

Ezercise REAL.9 Proof. (Case 0: x =0o0r S =0 orT =0.)If x =0 then
x(SeT)=0=2S@aT.If S =0 then S = O and (x(S@T) = 2T =

xS @ T Similarly for T'= O. Here we have used Definition REAL.19(A)(1).
(Case 1: x is a rational number.) This is Theorem QX.11(B).

B
(Case 2: x is irrational, S > O and T > O.) Applying, in order, Defini-

tion REAL.19(A)(3), Theorem QX.11(A), Definition REAL.27(A), Theorem
R.28(A), and Definition REAL.19(A)(3), we have

2(SOT)=1lub{r(SeT)|r <z}
=lub{rS@rT |r <z}
=lub({rS|r<z}®{rT)|r <z})

=1lub{rS | r <z} & lub{rT) | r < x}
=S ®aT.

(Case 3: x is irrational, S < O and T < O.) Applying, in order, Theorem
REAL.21(C), Theorem OF.10(F), Case 2 above, Theorem REAL.21(C), and
Theorem OF.10(F), we have
CEEeT)=2°SeT)
— 2((28) & (°T))
— 2(°8) & 2(°T))
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= S(@S)® ©(2T)
= @S ®aT).
By Theorem OF.10(A), z(S®T) = xS @ aT.

(Case 4: x is irrational, one of S or T' is a positive member of L, and the
other is negative.) Without loss of generality, we assume that S > O and
T <O0.

(Subcase A: S®&T > O and T < O.) Then T > O. Applying Case 2 and
Theorem REAL.21(C), we have

rS=z(SeTa(°T)=z(SeT)dz(°T)=2(SdT)® °(T).
Adding 2T to both sides, S @ 2T = z(S @ T).

(Subcase B: S@T < O and T > O.) Then ©S < O. Applying Case 3 and

Theorem REAL.21(C), we have
el =z2(PSeSeT)=z®S)oaz(SaT)="@S)dz(SaT).
Adding xS to both sides, S @ 2T =x(S®T). O

Exercise RR.1* Complete the computations necessary to prove Remark
RR.2(A) from Theorem ISM.8(A), that is, show that a Euclidean/LUB plane

‘P is an abelian group under the operation +.

Exercise RR.1 Proof. Let A, B, and C be any points of P, and let 74,
7p, and 7¢ be the translations in T such that 74(0) = A, 75(0) = B, and
T70(0) = C. We will freely use, without reference, the fact that the set of
all such translations forms an abelian group under composition, as shown in
Theorem ISM.8(A).

A+ B = (ta07p)(0) € P since 74 o T is a mapping of P to P, so that
P is closed under addition.

A+ (B+C)=(tao(tBo70))(0) = ((tao1s)o1c)(0) = (A+ B) +C
so that addition is associative.

A+ B = (1a07p)(0) = (tBo74)(0) = B+ A, so addition is commutative.

A4+ 0O = (14070)(0) = (14 02)(0) = 74(0) = A s0 O is the additive
identity.

For any translation 74 which maps O to A, there exists an inverse transla-
tion 74 1. If we define —A = 7471(0), then A+ (—A) = (1a(t4a~1(0)) = O
so that — A is the additive inverse of A. O

Exercise RR.2* Prove Theorem RR.4: (A) For every A € P\ {O},
OA = {zA € P | x € R}. That is, every line through the origin is the set of
all scalar multiples of any point in that line which is distinct from O.
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Moreover, if A and B are any points in P and x and y are any real numbers,
(B) z(yA) = (zy)A, (C) x(A+ B)=2A+2B, (D) (x+y)A =zA+yA, (E)
1A=A, (F) 2A=0 iff x =0 or A = O (or both).

Ezxercise RR.2 Proof. (A) m is a line through the origin O and therefore
is a fixed line for the dilation d,, and hence if z # 0, A € m By Theorem
REAL.35(A), for every A" € &i \ {O}, there exists a real number ¢ # 0 such
that tU; = A’ and a real number s # 0 such that sU; = A, so that A’ = %A.

(B) This is Theorem REAL.23.

(C) If A, B, and O are collinear points, then (C) is Theorem REAL.32.
If they are non-collinear, let ¢, be the dilation with fixed point O such that
for every A € P\ {0}, d,(A) = zA. Then both §,(B) = B and 6,(A +
B) = 2(A + B) (cf Theorem REAL.42). By Remark RR.2 and Exercise
ISM.2, A + B is the fourth corner of the parallelogram whose other corners
are A, O, and B, that is, JAOB(A + B) is a parallelogram. Since all the
lines O<—/>l, Oﬁ, and O(4 + B) are fixed lines for 0z, 0.(LAOB) = LAOB,
0, (LAO(A+ B)) = LAO(A + B), and 6,(£(A+ B)OB) = Z(A+ B)OB.

By Theorem DLN.14,

0:(LOA(A+ B)) 2 ZOA(A + B) and
0,(LO(A+ B)A) = ZO(A + B)A.
By Theorem SIM.18
ANOA(A+ B) ~ AO(6,(A))(6.(A+ B))
and hence by Definition CAP.17,
(6,(A))(0,(A+ B)) || A(A+ B) and z(A)x(A + B) || A(A+ B).
By similar reasoning
(0:(B))(62(A + B)) || B(A+ B) and 2(B)z(A + B) | B(A + B).
Since JAOB(A+ B) is a parallelogram, so is O(zA)O(xB)(z(A+ B)). Again
by Remark RR.2, A+ xB is the fourth corner of this parallelogram, that is,
xA+axB=uxz(A+ B).
(D) (z+y)A= (z +y)(U - A)
=((z+yU)-A by Theorem REAL.25
= (xU+yU)-A by Theorem REAL.31
=aU-A+yU-A by Theorem OF.6
=xA+yA by Theorem REAL.25.

(E) 14 = A is immediate from Definition QX.1(C).

(F)If « =0 or A= O (or both), xA = O by Definition REAL.19(A)(1).
If xA = O, then by Theorem REAL.25 zA = x(U - A) = a2U - A = O and by
Theorem OF.10(H), 2U = O or A = O. If 2U = O then x = 0 by Corollary
REAL.34(B). O

N
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Chapter 19—has no Exercises (AA)

Chapter 20: Exercises and Answers for
Ratios of Sensed Segments (RS)

Exercise RS.1* If g, b, and z are real numbers, and a # b, P # —1.
_ -
Exercise RS.1 Proof. If i ¢ o lthenz-a=z-bsothata=5b O

Exercise RS.2* Let a, b, z, and y be real numbers, and let a # b. Then
LT—a  Yy—a

f =
i b—y’

T =1y.

r—a Yy—a

Ezercise RS.2 Proof. If 2 =3 then (x —a)(b—y) = (y—a)(b—1x)
— —y

and bx — xy —ab+ ay = by — xy — ab + ax or bx + ay = by + ax, so that

blx—y) =br—by =axr—ay = a(r—y) and (b—a)(x—y) = 0. Since b—a # 0,
r—y=0andzr=y. O

Exercise RS.3 Let A, B, and X be points on a line L in the Eu-

clidean/LUB plane P, where A # B. Make a graph of the function f(X) =
[AX)

(XB)

Exercise RS.4* If statement (2) of Ceva’s theorem is true, that is if
AF) [BD) [CE
{FBi - {DC’; . %EA; =1, then the number of exterior Cevians is either zero
or two, the other Cevians being interior.

Exercise RS.4 Proof. Let A and B be two corners of a triangle, and
suppose that W is the Cevian through C', the third corner, where F' € /@ .
Then by Remark RS.7(B)(3) EF is exterior iff F ¢ AB iff F~A-B or A-B-F

__|AF) e s o [AF)
iff 7 ) <1, and Cﬁ is interior iff F' € AB iff A-F-B iff [FB) > 1.
Assume now that [AF) . [BD) . [CE) = 1. Then either

[FB) [DC) [FA)
(i) all the lines /ﬁ, ﬁ, or OF are interior Cevians (none are exterior),
in which case the product is positive, or
(ii) two are exterior and one is interior, in which case the product is posi-
tive.
If two of the Cevians are interior and one is exterior, then the product is

negative which contradicts our assumption. 0O
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Chapter 21: Exercises and Answers for
Consistency and Independence of Axioms (LM)(MLT)

Exercise LM.1 Using Definition LA.1(2) prove that ABC = CAB =

BCA = CBA.

Ezercise LM.1 Proof. Prove that ABC = CAB = BCA = CBA.
ABC = CAB = BCA=CBA

(A) ABC = {A+s(B — A) +1{(C — A) | (s,1) € F?}
={C+(1-s—t)(A-C)+s(B-0C)| (s,t) € F?}
= {C +uw(A— B) +v(C — B) | (u,v) € F?} = CAB;

(B) ABC = {A+ s(B— A) + 1(C — A) | (s,1) € F?}
={B+(1—s—t)(A—B)+t(C—B)| (s,t) € F?}
— {B+0(C — B) +u(A - B) | (v,u) € F2} = BCA;

(C) ABC = {A+s(B— A) +H(C — A) | (s,1) € F?}
={C+s(B-C)+(1—s—t)(A-C0C) | (s,t) € F?}
—[C+u(B—C)+v(A—C)|(u,v) e F?} = CBA. O

Exercise LM.2* Prove Theorem LA.3: distinct points A, B, and C are
collinear iff B — A and C' — A are linearly dependent.

Ezercise LM.2 Proof. (1) If A, B, and C' are collinear, then by Definition
LA.1(1) there exists a number u such that C = A 4+ u(B — A), that is,
u(B — A) — (C — A) = O. This means that B — A and C' — A are linearly
dependent.

(IT) If B — A, and C — A are linearly dependent, then there exists
(r,5) € (F?\ {(0,0)}) such that 7(B — A) + s(C — A) = O. If r # 0, then
B=A—2(C—A) ie BeAC. s £0, then C = A — L(B — A), that is,
CedB. O

Exercise LM.3* Prove Theorem LA .4: distinct points A, B, C, and D
in F3 are coplanar iff B — A, C — A, and D — A are linearly dependent.

Ezxercise LM.3 Proof. (1) If A, B, C, and D are coplanar, then by Defi-
nition LA.1(2) there exist numbers r and s such that D = A+ r(B — A) +
s(C —A), ie, r(B—A)+s(C—A)—(D—-A) =0. Since 1 # 0, not all of
1,7, and s are 0, so that B— A, C — A, and D — A are linearly dependent.

(I) If B— A, C — A, and D — A are linearly dependent, then there exists
(u,v,w) € (F3\ {(0,0,0)} such that u(B — A) + v(C — A) + w(D — A) = 0.
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If u # 0, then B = A— 2(C — A) — 2(D — A), ie, B € ACD. If v # 0,
then C = A - %(B - A) — ¥(D — A), ie, C € ABD. 1f w # 0, then
D:A—%(B—A)—%(C’—A),i.e.,DeABi%.In each case, all of A, B, C,

and D are members of a single plane. O

Exercise LM.4* Prove Theorem LA.5: if A and B are distinct points in
I3, define, for each real number ¢, ¢(t) = A+t(B—A). Then ¢ is a one-to-one
mapping of F onto @

Ezercise LM.4 Proof. (A)Ift =0, then ¢(0) = A. If t # 0, then ¢(t)— A—
t(B—A)=0,s0¢(t)— A and (B — A) are linearly dependent. By Theorem
LA.3, ¢(t), A, and B are collinear, so ¢(t) € 1B.

(B) Note that

ot) —p(s) =A+t(B—A)—(A+s(B—A)) =(t—s)(B—A).
Since A and B are distinct, B — A # O. Thus, if t — s #£ 0, ¢(t) — ¢(s) # O,
50 p(t) # ¢(s) and ¢ is one-to-one.

(C) To show that ¢ is onto, let X be any member of /ﬁ If X = A, let
t =0. Then ¢(0) = A4+ 0(B - A) = A.

If X # A, then X — A # O and so by Theorem LA.3, X — A and B— A are
linearly dependent. Hence there exists a member (u,v) of F2\ {(0,0)} such
that w(X — A) +v(B—A) =0, or v(B — A) = —u(X — A).

If u were equal to 0, then v(B — A) = O. Since B — A # O, v would equal
0. This would contradict the fact that at least one of the members u or v of
the field F is different from 0. Hence u # 0, and

p(F)=A-2(B-A)=A-=2(X-A4)=X. O

Exercise LM.5 (A) Prove Theorem LA.15: (A) Two points A = (a1, as2)

ay by

and B = (by,by) of F? are linearly dependent iff = 0. A solution is

az by
provided for this part.
(B) Three points A = (ay,as,a3), B = (b1,b2,b3), and C = (c1, ¢, c3) of
a by ¢
I3 are linearly dependent iff |ay by co| = 0.
az bs c3
Ezercise LM.5 Proof. (A) Suppose A = (a1,a2) and B = (by,bs) are
linearly dependent; if aA + bB = 0 where not both ¢ = 0 and b = 0, and
a = 0, then bB = O and B = (0,0) so the determinant is zero; likewise if
b=0.
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Suppose both a and b are non-zero; then let ¢ = ¢ # 0, so that B = c4,
b1 = cay and by = cas; then the determinant
“ bl = a1b2 — CL2b1 = ajcCay — agcay = 0.
az by
On the other hand, if 0 = a1bs — asby, then a1bs = agby; if a1 # 0,
by = %ag. Since b; = Z—llal, A and B are linearly dependent. Similar proofs
hold if as 7§ O, bl 7§ O, or bQ }é 0.
(B) The proof is left to the reader. O

Exercise LM.6* Prove Theorem LA.17: let a, b, ¢ and d be members
of F, where at least one of a, b, ¢ is non-zero; let £ be the set of all points
(71, 72,73) € F3 such that axy + bxs + crs + d = 0, as defined in Remark
LA.16.

(A) £ is a proper subset of F3.

(B) If X = (z1,x2,23) € &, there exist two other points Y = (y1,¥2,¥3)
and Z = (21, 22,23) in € such that X, Y, and Z are noncollinear, which is
to say (by Theorem LA.4) that the vectors Y — X and Z — X are linearly
independent.

Ezercise LM.6 Proof. (A) If d # 0, (0,0,0) ¢ &;if d =0, and (1) a # 0,
then (1,0,0) € &;if (2) b # 0, (0,1,0) € &, and if (3) ¢ # 0, then (0,0,1) & £.
Thus £ is a proper subset of F3.

B)Ifa#0andb=c=0,let Y = (y1,y2,93) = X + (0,1,0) and
Z = (21, 292,23) = A+(0,0,1); then a-04+0-14+0-0 = 0 and a-04+0-0+0-1 =0
so that ay; + bys + cys +d = 0 and az; + bz + cz3 +d = 0. Thus both Y
and Z belong to £, and Y — X = (0,1,0) and Z — X = (0,0, 1), which are
linearly independent, and X, Y, and Z are noncollinear. Similar arguments
will show the result in case b # 0 and a = ¢ =0, and ¢ # 0 and a = b = 0.

Ifa #0and b # 0 and ¢ = 0, let Y = (y1,92,43) = X + (1,-%,0)
and Z = (z1,202,23) = X 4 (0,0,1); then a -1 +b(—=%) +0-0 = 0 and
a-0+b-0+0-1 = 0, so that ay; +bys+cys+d = 0 and az1+bzo+cz3+d = 0, and
both Y and Z belong to £. Then Y — X = (1,-%,0) and Z — X = (0,0, 1),
which are linearly independent, so that again by Theorem LA.3 (Exercise
LM.2), XY, and Z are noncollinear. Similar arguments will show the result
incasea# 0 and c#0and b =0, and b # 0 and ¢ # 0 and a = 0.

If a, b, and ¢ are all non-zero, again let X = (x1,29,23) € & so
that ary + bz + crs +d = 0; let Y = (y1,92,43) = X + (1,—-%,0)
and Z = (2z1,22,23) = X + (1,0,—%); then a - 1 +b(=%) +0-0 = 0

c

and a-14+b-0+4 c¢(=%) = 0, so that ayy + bya + cy3 +d = 0 and
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az1+bze+czz+d = 0 and both Y and Z belong to £. Then Y - X = (1,-%,0)
and Z — X = (1,0,—2), which are linearly independent, and X, Y, and Z

C
are noncollinear. O

Exercise LM.7* Prove Theorem LA.18: let X = (z1,22,23), Y =
(y1,v2,y3), and Z = (21, 22, 23) be noncollinear points in F3, so that XY 7 is
a plane as in Definition LA.1(2). Then there exist numbers a, b, ¢ and d in
F, where not all of a, b, or ¢ are zero, such that

m = {(w1, we, w3) | awy 4+ bws + cws + d = 0}.

Ezercise LM.7 Proof. By Definition LA.1(2) W = (w1, we, ws) is a point
on XY Z iff there exist numbers s and ¢ such that W = X+s(Y-X)+t(Z-X)
ie. (W—-X)—-s(Y —X)—t(Z - X) = 0. By Theorem LA.4 and Theorem
LA.15 (Exercises LM.3 and LM.5) this equality holds iff

Wy —T1 Yy —T1 21— L1
Wo — T2 Y2 — T 22 — X2 :0

W3 — T3 Yz — T3 23 — T3

Y2 — T2 22 — X2

Ys — T3 23 — I3

Yir —T1 21 — 1

Ys — T3 23 — T3

Define det] = , dety = and

3

Y1 —T1 21 — 21

Y2 — T2 22 — T2

detg =

Expanding the first determinant by its first column, we have
(w1 — x1)det; — (we — xo)dets + (w3 — x3)dets

= widety — wadety + wadets — x1det + xodety — x3dets

= awy + bwy + cws +d =0,
where a = dety, b = —dets, ¢ = dets, and d = —xdety +xodets —x3dets. Since
these implications are all reversible, they show that (w1, we,ws) € XYZ iff
awy + bwy + cws + d = 0, that is to say

Y7 = {(w1,ws,w3) | awy + bws + cws +d=0}. O

Exercise LM.8* Prove Theorem LA.19: let a, b, ¢, and d be numbers in
F, where not all of a, b, or ¢ are zero. Then the set
E={(x1,22,23) | axy + bxg + cx3 +d =0}
is a plane in 3 as defined by Definition LA.1(2).

Ezercise LM.8 Proof. Let W = (w1, w2, ws) be any member of £ so
that aw; 4+ bws + cws +d = 0. For any X = (x1,29,23) € £, X — W =
(x1—w1, xa—wa, x3—ws) satisfies a(x1 —wy ) +b(x2—ws)+c(x3—ws)+d—d = 0;
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and if this is satisfied, then X = X —-W4+W € &. Thus, E-W = {(z1, z2,x3) |
ari + brs + cxs = 0.

We show that & — W is a vector space. If (21,22, x3) and (y1,y2,y3) are
members of this set, then axy +bxs+crs = 0 and ay; +bys + cys = 0, so that
a(z1 +y1) +b(x2 + y2) + c(xs +y3) = 0, so is a member of & — W. Likewise,
if z is any number, zaxy + zbxs + zcxs = 0 so that z(x1,ze,23) € € — W.
Therefore £ — W is a vector space.

By Theorem LA.17(B) (Exercise LM.6) there exist vectors D and E in
this space which are linearly independent, so that its dimension is > 2. By
Theorem LA.17(A), & — W is a proper subset of F3; by the Dimension Cri-
terion of Chapter 1 Section 1.5, the dimension is 2; by Remark LA.9(C) it
is a plane, and by part (D) of the same remark £ = £ — W +W is a plane. O

Exercise LM.9*% Prove Theorem LB.4: for any numbers a, b, ¢, da’, V/,
and ¢ in F, where at least one of a or b, and at least one of a’ or ¥’ is non-zero,
then

(A) £ ={(z1,22) | az1 + bxs + ¢ = 0} # F

(B) there exist at least two distinct points in £; and

(C) both axy +bxa+ ¢ =0 and a’x; + b'xo + ¢ = 0 are equations for L iff
there exists a number k # 0 such that o’ = ka, b’ = kb, and ¢’ = ke.

Ezercise LM.9 Proof. (A) If ¢ # 0, (0,0) € &; if ¢ = 0 and a # 0, then
(1,0) € & if ¢ =0, and b # 0, then (0,1) ¢ €. Thus L is a proper subset of
F2.

(B) Suppose X = (x1,z2) € &; we show that there exists another point
Y = (yl,yz) eL.

(1) If a # 0 and b #£ 0, let

Y =(y1,y2) = X+ (=2,1) = (21 — 2,20 + 1);
then
ayr +bys +c=a(zy — 2) +b(z2 +1) + ¢
=azy +bra+c+a(-2)+b-1
=ax; +bras+c+(=b+b)=0+0=0.
Thus Y € £, and Y # X.

2)Ifa#0andb=0,let Y = (y1,y2) = X +(0,1); thena-0+0-1=0so
that ay1 +by2 +¢=0. Thus Y € £, and Y — X = (0, 1) so these are distinct
points.
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B3)Ifa=0andb#0,let Y = (y1,y2) = X +(1,0); then 0-14+5-0 =0 so
that ay; +by2+¢=0. Thus Y € £, and Y — X = (1,0) so these are distinct
points.

(C) If for some k # 0 such that ' = ka, V' = kb, and ¢ = ke, and
axy + bro + ¢ = 0, then clearly a’zy + b'zo + ¢ = 0.

Conversely, suppose both azy + bxy + ¢ =0 and o’z + V'ze + ¢ = 0.

(1) If ¢ = 0 then (0,0) € £ and hence ¢ = 0; also not both a and b can
be zero. If ¢ # 0 and b = 0, £ = {(0,22) | z2 € F}. Choose z2 = 1; then
a -0+b =0,s0b =0 and a’ can be any non-zero number.

Similarly, if « = 0 and b # 0 then ¢’ = 0 and ¥’ can be any non-zero
number. If a # 0 and b # 0, the point (—2,1) € £ so that a’(—2) + ' = 0,
and %/ = %; we may let k = %/

(2) If ¢ 0 then ¢ #0.If a # 0 and b = 0, (—=£,0) € L so that Then
a'(=£)+b -0+ =0, and %(—c) +¢d =0,0r & = %; also, (—%,1) € L so

a
’

that a’(—£) +b" 4+ ¢’ = 0 and hence %/ + (f—/c) — % =0, and b’ = 0. We may
let k=2,

Similarly, if ¢ # 0 and a = 0 and b # 0, then a’ = 0 and %, = %, and we
may let k = %.

Finally, if ¢ # 0, a # 0, and b # 0, (0, —¢) € £; then a’-0+b'(—F)+¢" =0,
and ¥ = <. Likewise, (—£,0) € £ and a’(— <)+ -0+¢ = 0, so that & = <.
In this case we can let k = C—C/ O

Exercise LM.10* Prove Theorem LB.5: let X = (z1,22) and YV =
(y1,y2) be distinct points in F2, and let XV be the line containing both X and
Y according to Definition LA.1(1). Then Xy = {(w1,w2) | awy + bwa + ¢ =

0}, where a = y2 — 22, b = 21 — y1, and ¢ = x2(y1 — 21) — 21 (y2 — 22).

Ezercise LM.10 Proof. W = (w1, ws) is a point on XY iff there exists a
number s such that W =X+ s(Y — X) i.e. (W - X) —s(Y — X) = O. By
Theorem LA.3 and Theorem LA.15 (Exercise LM.2 and Exercise LM.5) this
equality holds iff
O (o — @) (g2 — ) — (w2 — @) (31 — 1)

W2 — T2 Y2 — T2
= (y2 — z2)wr — 21 (y2 — 22) — (Y1 — T1)w2 + 22(Y1 — 1)
= (y2 — z2)w1 + (21 — y1)w2 + (22(y1 — 1) — 21(y2 — 22)) = 0.
This is true iff aw; + bws + ¢ = 0, where a = ys — x2, b = x1 — y1, and
¢ =x2(y1 — x1) — x1(y2 — x2). Since the implications are all reversible, they
show that (wy,ws) € XY iff awy + bws + ¢ = 0. Therefore
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XY = {(w1,ws) | aws + bws + ¢ =0}. O

Exercise LM.11 Prove Theorem LB.6: let a, b, and ¢ be numbers in F,
where at least one of a or b is non-zero. Then the set
E ={(x1,22) | axy + bxy + ¢ =0}
is a line in F? as defined by Definition LA.1(1).

Ezercise LM.11 Proof. Let W = (wjy,wsz) be any member of £ so that
awy +bws +c¢ = 0. For any X = (z1,22) € €, X — W = (21 — wy, 22 — w3)
satisfies a(zq — w1) + b(ax2 — wa) + ¢ — ¢ = 0 so that

E—W C{(x1,22) | axy + bxy = 0}.

Conversely, if Z = (21,22) € {(21,22) | az1 + b2 =0}, Z =Z4+W —-W =

(21 + w1 — w1, 22 + we — wo) satisfies
0=a(z1 +wi; —wiy) + b(z2 + wa — wo)

=a(z1 +wy) — awy + b(z2 + wa) — bwe

= a(z1 +wi) + b(22 + w2) — awy — bwy

=a(z1 +wy) + b(z2 + w2) — (awy + bws)

=a(z1 +wy) +b(z2 + w2) — (—¢)
so that a(z1 +w1)+b(z2+w2)+c=0and Z4+W € £. Thus Z = Z+W-W €
E—-W,and & =W = {(z1,22) | ax1 + bzy = 0}.

If X = (21,22) and Y = (y1,y2) are members of £ —W, then axq +bxo =0
and ay; + bys = 0, so that a(z1 + y1) + b(z2 + y2) = 0 and hence X +Y
is a member of & — W. Likewise, if X € £ — W, and z is any number,
zaxy + zbxa = 0 so that z(zq,22) € E — W.

According to the criterion in Chapter 1 Section 1.5 under the heading
Vector spaces, € — W is a vector space. By Theorem LB.4(A), £ — W is a
proper subset of F2; by the Dimension Criterion of Chapter 1 Section 1.5,
its dimension is 1; by Remark LA.8(C) it is a line according to Definition
LA.1(1), and by part (D) of the same remark € =& — W 4+ W is a line. O

Exercise LM.12 Prove Theorem LB.10: let
L ={(x1,22) | ayx1 + b2 + ¢; = 0} and
M = {(x1,22) | agx1 + baxa + c2 = 0}

be two lines in F2. Then if they are c-perpendicular, they must intersect.

Ezercise LM.12 Proof. By Theorem LB.8, £L 1 M iff ayjas + b1by =
0. The two lines intersect iff there exists a point (x1,z2) such that both
a1y + bixos + 1 = 0 and aszy + boxs + co = 0; by Cramer’s Rule such a
solution exists iff the determinant a1by — agb; # 0.
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Therefore, we need to show that if ajas + b1bs = 0, then a1bs — asby # 0.
There are three cases:

Case 1: a1 = 0; then by # 0; since ayas = —b1by = 0, by = 0 so that as # 0;
in this case a1by — asby = 0+ asby # 0. Interchanging a1 with as and by with
b1, if ag = 0, a1by — agby = a1bs + 0 # 0.

Case 2: by = 0; then a1 # 0; since ajas = —b1by = 0, az = 0 so that by # 0;
in this case ajby — asby = a1by + 0 # 0. Again, interchanging a; with as and
b2 with bl, if b2 = 0, albg — a2b1 =0-— a2b1 75 0.

Case 3: none of the coefficients a1, as, by and by is zero. From ajas+b1bs =

0 we get a1 = —blbg, or Z—ll = —Z—z. If CleQ — a2b1 = 0, CleQ = CLle, and
a __a as __ a1 __ b
b—ll—ﬁ,sothatb—;—b—ll_—a—z.

Therefore —by? = as2; since by? > 0 and as2 > 0 this is true iff by = as = 0

which is a contradiction to our original assumption that none of the coeffi-
cients is zero. Therefore ajby — agby #0. 0O

Exercise LM.13* Show that the line £ on R? through the distinct points
(u1,u2) and (vy,vs) is

{(x1,22) | (21,72) € R? and (va — u2)(z1 — u1) — (v1 — up) (w2 — uz) = 0}.

Ezercise LM.13 Proof. (I) By Remark LA.1(1), (x1,z2) belongs to the
line in Model LM2 containing both (u1,u2) and (v1,v2) iff for some ¢,
(21, 22) = (u1,u2) +t((v1,v2) — (u1,u2)).
Suppose that this holds, and v; # wuy; then ¢t = =% and x5 = us +

vV1—uU1

T=t (v — u2) so that (v — ur)(22 — u2) — (v2 — u2)(z1 — w1) = 0, that
is,

(vg —u2)(z1 —u1) — (v1 — ug)(x2 —u2) = 0.
A similar argument holds if vy # us. Then axy+bro+c = 0, where a = vo—us,
b=—(v1 —u1) and ¢ = (—uq)(va — uz) + ua(vy — uq).

Now suppose that axy + bze + ¢ = 0, where a, b, and ¢ are defined as
just above. By Theorem LB.6, we know that this is the formula of a line.
We verify that it contains the points (u1,us) and (v1,v2) by the following
calculations:

(u1,u2) € L, since (vy — ug)(ur — uy) — (v1 — ug)(ug — u2) = 0, and
(v1,v2) € L, since (v — ug2)(vy —u1) — (v1 — uyr)(ve — uz) = 0.
Since by Axiom I.1 there is only one line containing both these points, this

line must be the one with formula axq +bxs +c¢c=0. O
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Exercise LM.14* Show that for every member (z1,22) on the line
L= (x1,72) | (x1,72) € R? and axy + bwy + ¢ =0,
the formula for (1, 22) given in Definition LB.16 yields & (z1, x2) = (21, x2).

For a coordinate-free proof, see Theorem LC.23(A).

Ezercise LM.14 Proof. If axy + brs + ¢ = 0, then (b —a®)z1—2abry—2ac _

a?+b?
b2 _a? —2a(— —e)—2 2,2 2 2 _ 232
( a’)zq a;—f_b;xl c)—2ac _ bz’—a xlzgib§1+2ac 2ac _ (aa;r+b)2x1 =1 and
—2abz1+(a®—b2)xa—2bc _ —2b(—bza—c)+(a®—b ) xa—2bc _ (a®4b)zo
252 = 212 = Ty T T2 g

Exercise LM.15* 1In the plane F, if a line £ is c-perpendicular to a line
M and if line M and line A are parallel, then £ is c-perpendicular to line

N.

Exercise LM.15 Proof.

Let £ = {(z1,22) | (x1,72) € R? and a1x1+b1xa+c1 = 0}; since M || N,
there exist numbers as, by, co and c3 such that

M = {(x1,72) | (x1,22) € R? and azwy + baxs + o = 0}, and
N = {(x1,22) | (x1,22) € R? and asx; + baxa + c3 = 0},

where (a1,b1) # (0,0) and (az, b)) # (0,0).

By Theorem LB.8, L is c-perpendicular to M iff ajas + b1by = 0, which
is true iff £ is c-perpendicular to A. O

Exercise LM.16* Let F be an ordered field, and let Ry = @ be the
mapping defined by Definition LB.16 and Definition LC.25 over the line
L ={(z1,22) | (x1,22) € F? and ax; + bzs + ¢ = 0}.
where (a,b) # (0,0). Define Iy and I: to be the mappings such that
Re(x1,xe) = (I (x1,x2), [2(x1,22)). Then if X = (21,22) and Y = (y1,y2)
are any points of F?,
(I (w1, 22) — T (y1,y2))? + (I2(z1,22) — Ia(y1,y2))?
= (z1 —y1)? + (22 — 2)*.
In case F is algebraically closed, so that distance is defined, this says that
dis®>(Re(X), Re(Y)) = dis® (X, Y).
Ezercise LM.16 Proof. For any (r1,z2) and (y1,y2) in F?,
(I (21, 22) — Fl(y17y2))2
= (222:-(12; 1= a22-(il-l;)2 T2 — agiiz - 222:122 Y+ a22-(il-l;)2 Y2 + agi%2)2
= (%% (11 — 1) — 72285 (22 — 1))
= (%)2(551 - yl)2 + (%)2@2 - y2)2
+2(5te) (35 (1 = v) (22 = 32), - (%)
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2bc 2ab

2 a?-b? a®—b? 2bc 2
Tz L1 + 2 T2 T 2ipe + 22 Y1 T rpr Y2 + a2+b2)
2

1
—2ab a’—b?
= (a2+b2 (1 —y1) + o (T2 — yz))
—2ab 2 a’®—b? 2
(a2+b2 (z1 — yl)) + ((W) (72 — yz))
—2a a?—b?
+2 (%erbz) (x1 — 1) (az—+22) (2 —y2).  (*%)
Now add (*) and (**); their last terms are negatives of each other, so we have
(M1, 22) — Ti(y1,92))? + (Da(21, 2) — To(y1,2))?

_ b —2b%a®+a*+4a2b? 2 | 4a*b*+(a*-b*)? 2
= (aZ+b2)2 (331 - yl) + W(xz - yz)

_ bv*42v%a’+a? 2 2a°b%+a+b* 2
= W(Il - y1) + W(xz - yz)

b%+a?)? a24b2)2
= @12171,232(3:1 —y1)?+ %(xz — y2)

(x1 —91)* + (22 —y2)®. O

2

Exercise MLT.1* Prove the uniqueness of the line found in Theorem
MLT.3, which passes through both points A and B.

Exercise MLT.1 Proof. If a line M,, containing both A and B does not
include the point P, then it intersects the y-axis at some point Q. If @ is
above P, 81(22_1)4) > sl(PE—Zl). Then sl(@) > sl(PE? and these two rays are
disjoint so that B ¢ CEQ?, a contradiction. A similar proof will show that @
cannot be below P. 0O

Exercise MLT.2* Prove Claim 1 of Theorem MLT.5.

Exercise MLT.2 Proof. (A) Suppose a line £, in Model LM2R. (R?) is not
vertical. Let C' = (¢1,¢2) be a point that lies above £. —so that there is a
point A = (a1,a2) € L. with a; = ¢; and as < cz. Let B = (b1, b2) be any
point of £, such that B # A. By Definition LA.1(1) L, = {A+ s(B — A) |
se€R},and L. = j@c, the line in the coordinate plane containing A and B.
By Theorem LC.18 the C-side of j@c is the set

E={A+s(B—A)+t(C—-A)|(s,t) €R? and t > 0}.
This is the set of all points that lie above the line £.. By Theorem LC.19, if
C-A—-C’, the set of all points lying below L. is its C’-side. It is quite obvious
that every point of R? is in £ or one of these two sides.

Therefore, if X and Y are any two points, both lying above (or below) L.,
XY «N L. = 0. Moreover, if X and Y are points, one lying above and the
other below L., since Axiom PSA is true for Model LM2R, ])ﬁtfc NL.#0D.
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(B) Now suppose a line £. in Model LM2R (R?) is vertical; that is, there
exists a real number d such that £. = {(d,y) | y € R}. Again, let a point
C = (c1,¢2) where cg > d. Then C lies to the right of L.. By reasoning similar
to that of part (A), the C-side of L. is the set of all points on the plane lying
to the right of L.; if C-=A-C", the set of all points lying to the left of L. is
the C’-side of L.; and every point of the plane is in L. or one or the other of
these two sides.

Therefore, if X and Y are any two points, both lying to the right of (or to
the left of) L., )E(T/c N L. = (. Moreover, if X and Y are points, one lying to
the right of L., and the other to the left, since Axiom PSA is true for Model
LMZ2R, X]—}C/C N L. # (. This shows that £ and F are opposite sides of the
line. O

Exercise MLT.3* Prove that Case 4 of Claim 2 of the proof of Theorem
MLT.5 leads to a contradiction.

Ezercise MLT.3 Proof. Suppose both X and Y lie below £,,, 1 < 0, and
y1 > 0, and either P = O or P lies above O. The slope sl(ﬁ) > sl(ir(L).
(Thus if Wm is of type N, so is L,.)

If Wm is of type H or type P, sl(]ED_}}) = sl(ﬁ) > sl(ir(Ly)) >
sl(rr(Ly,)). I Wm is of type N, then L,, is of type N and SZ(W) =
2sl(PE_X)) > 2sl(lr(Ly,)) = sl(rr(Ly,). In either case, since P lies above O, all
points of W lie above L,,,, which is impossible, since Y is above that line. 0O

Exercise MLT.4* Let X = (z1,22) and Y = (y1,y2) be two points
in Model MLT, where 1 < w1, and let d be any real number such that
x1 < d < y1. Then there exists a real number e such that the point Z = (d, e)
is the point of intersection of £ and W m; also Z € XY m- This proves that

every non-vertical line intersects every vertical line.

Ezercise MLT.J Proof. (I) Suppose Wm is a line of type H or type P, or it
is a type N line and 0 < 21 < d < y1 or a1 <d<y1<0then)jﬁcfc:)]ﬁc/m.
(d —x1)(y2 — 22)

Y1 — 22
and Wm. Z € )E(T/m because X—Z-Y, since 0 < 1 < d < y;.
(II) 1t Wm is a type N line, and 21 < 0 < y1, then we have two cases:
Case 1: If d = 0, L is the y-axis, and the point of intersection of Wm and

d+ 2cb
L is the point O = (0, e) where e = ad + 2
2c+a

proof of Theorem MLT.3 (showing that Axiom I.1 holds in Model MLT).

Let e =

; then Z = (d, e) is the point of intersection of £

, as was calculated above in the
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Case 2: If d # 0, first we locate the point O = (0, ¢e) of intersection with
the y-axis, as in Case 1 above; then apply Part (I) above to calculate the

intersection of whichever of the segments OX ¢ or oy . intersects L. Since
both these are subsets of )jﬁcfm, it follows that )]ﬁcfm NLAQ. O

Exercise MLT.5* Prove that in Model MLT, every line parallel to a line
of type N is a line of type N.

Ezercise MLT.5 Proof. Let L be a line of type N; by Exercise MLT .4,
every vertical line intersects £; in particular, the y-axis intersects it at some
point O. Let M be any line of type H or type P, which intersects the y-axis at
a point P. If P is above O, then M intersects £ at some point of the left ray
Ir(L); if P is below O, these intersect at some point of the right ray rr(L).
Thus the only lines that do not intersect £ are lines of type N. O

Exercise MLT.6 Prove that the relation “<” defined (for lines of type N)
in part (3) of Definition MLT.1(F) is an order relation according to Definition
ORD.1. Note that this proof will involve Model MLT rays, which may lie
partly in one side and partly on the other side of the y-axis (and hence don’t
look like the Model LM2R rays we considered in the text).
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