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Abstract. We address the specification and verification of spatio-
temporal behaviours of complex systems, extending Signal Spatio-
Temporal Logic (SSTL) with a spatial operator capable of specifying
topological properties in a discrete space. The latter is modelled as a
weighted graph, and provided with a boolean and a quantitative seman-
tics. Furthermore, we define efficient monitoring algorithms for both the
boolean and the quantitative semantics. These are implemented in a Java
tool available online. We illustrate the expressiveness of SSTL and the
effectiveness of the monitoring procedures on the formation of patterns
in a Turing reaction-diffusion system.
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1 Introduction

There is an increasing interest in the introduction of smart solutions in the
world around us. A huge number of computational devices, located in space, is
interacting in an open and changing environment, with humans and nature in the
loop that form an intrinsic part of the system. Yet, science and technology are
still struggling to tame the challenges underlying the design and control of such
systems. In this paper, in particular, we focus on the challenge of spatially located
systems, for which the spatial and temporal dimensions are strictly correlated
and influence each other. This is the case in many Cyber-Physical Systems, like

Work partially funded by the EU-FET project QUANTICOL (nr. 600708), by the
German Research Council (DFQG) as part of the Cluster of Excellence on Multimodal
Computing and Interaction at Saarland University and the I'T MIUR project CINA.
We thank Diego Latella and Ezio Bartocci for the discussions and EB for sharing
the code to generate traces of the example.

© Springer International Publishing Switzerland 2015

E. Bartocci and R. Majumdar (Eds.): RV 2015, LNCS 9333, pp. 21-37, 2015.
DOI: 10.1007/978-3-319-23820-3_2



22 L. Nenzi et al.

pacemaker devices controlling the rhythm of heart beat, and for many Collective
Adaptive Systems, like the guidance of crowd movement in emergency situations
or the improvement of the performance of bike sharing systems in smart cities.

Controlling and designing spatio-temporal behaviours requires proper formal
tools to describe such properties, and to monitor and verify whether, and to
which extent and how robustly, they are satisfied by a system. Formal meth-
ods play a central role, in terms of formal languages to specify spatio-temporal
models and properties, and in terms of algorithms for the verification of such
properties on such models and on monitored systems. The type of systems that
we are considering are very large and complex for which standard model checking
procedures (checking whether all event sequences produced by a system satisfy
a property) are not feasible. For these kind of systems simulation and testing is
a preferred validation method. This is the area of the run-time verification, as
reported in [8,15], where an individual simulation trace x of a system is checked
against a formula, using an automatic verification procedure.

Related work. Logical specification and monitoring of temporal properties is
a well-developed area. Here we mention Signal Temporal Logic (STL) [8,15],
an extension of Metric Interval Temporal Logic (MITL) [2], describing linear-
time properties of real-valued signals. STL has monitoring routines both for its
boolean and quantitative semantics, the latter measuring the satisfaction degree
of a formula [8,9,15].

Much work has been done also in the area of spatial logic [1], yet focussing
more on expressivity and decidability, often in continuous space. Less attention
has been placed on more practical aspects, like model checking routines in dis-
crete space. An exception is the work of some of the authors [5], in which the
Spatial Logic for Closure Spaces (SLCS) is proposed for a discrete and topo-
logical notion of space, based on closure spaces [11]. First applications of that
work in the context of smart transportation can be found in [7]. Another spa-
tial logic equipped with practical model checking algorithms, and with learning
procedures, is that of [12,13], in which spatial properties are expressed using
ideas from image processing, namely quad trees. This allows one to capture very
complex spatial structures, but at the price of a complex formulation of spatial
properties, which are in practice only learned from some template image.

In this work, we will focus on a notion of discrete space. The reason is that
many applications, like bike sharing systems or metapopulation epidemic mod-
els [16], are naturally framed in a discrete spatial structure. Moreover, in many
circumstances continuous space is abstracted as a grid or as a mesh. This is the
case, for instance, in many numerical methods to simulate the spatio-temporal
dynamics of Partial Differential Equations (PDE). Hence, this class of models is
naturally dealt with by checking properties on such a discretisation.

The combination of spatial and temporal operators is even more challeng-
ing [1], and few works exist with a practical perspective. In [4], some of the
authors proposed an extension of STL with a somewhere spatial modality, which
can be arbitrarily nested with temporal operators, proposing a monitoring algo-
rithm for both the boolean and the quantitative semantics. An extension of SLCS
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with temporal aspects can be found in [6] where the logic has been applied in
the context of smart public transportation. In [14], instead, the authors merge
the spatial logic of [13] within linear temporal logic, by considering atomic spa-
tial properties. They also provide a qualitative and quantitative semantics, and
apply it to smart grids and to the formation of patterns in a reaction diffusion
model.

Contributions. In this work, we present an extension of the Signal Spatio-
Temporal Logic (SSTL), that combines the works in [4,5]. We extend SSTL with
the topological spatial surround operator, inspired by the spatial until modality
defined in [5].

We provide a qualitative and quantitative semantics for this new operator
and we define efficient monitoring algorithms for both of them. The major chal-
lenge is to monitor the surround operator for the quantitative semantics, for
which we propose a novel fixed point algorithm, discussing its correctness and
computational cost. Spatial monitoring requires very different algorithms from
those developed for timed modalities, as space is bi-directional, thus it makes
sense to observe both reaching and being reached; classical path-based model
checking does not coincide with spatial model checking also because loops in
space are not relevant in the definition of surrounded operators. The monitoring
algorithms have been implemented in Java, and applied and tested on a case
study of pattern formation in a Turing reaction-diffusion system modelling a
process of morphogenesis [18].

Paper structure'. The paper is organised as follows: Sect.2 introduces some
background concepts on STL and on discrete topologies. Section 3 presents the
syntax and the semantics of SSTL. Section4 introduces the monitoring algo-
rithms. Section 5 is devoted to the example of pattern formation, while conclu-
sions are drawn in Sect. 6.

2 Background Material

Weighted undirected graphs. We will consider discrete models of space that
can be represented as a finite undirected graph. Edges of the graph are equipped
with a positive weight, giving a metric structure to the space, in terms of short-
est path distances. The weight will often represent the distance between two
nodes. This is the case, for instance, when the graph is a discretization of con-
tinuous space. However, the notion of weight is more general, and may be used
to encode different kinds of information. As an example, in a model where nodes
are locations in the city and edges represent streets, the weight could represent
the average travelling time, which can be different between two paths with the
same physical length but different levels of congestion or different number of
traffic lights.

We represent a weighted undirected graph with a tuple G = (L, F,w),
where:

! Due to lack of space all proofs are omitted. The interested reader may refer to [17].
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e L is the finite set of locations (nodes), L # @

e Fc L x L is a symmetric relation, namely the set of connections (edges),

o w:E — Ry is the function that returns the cost/weight of each edge.
Furthermore, we denote by E* the set containing all the pairs of connected loca-
tions, i.e. the transitive closure of E. We will also use an overloaded notation
and extend w to the domain E*, so that for arbitrary nodes z,y (not necessarily
connected by an edge) we let w(x,y) be the cost of the shortest path between
two different locations. Finally, for all £ € L and wy,ws > 0, we let L¢ be

[wi,w2]
the set of locations ¢’ such that wy < w(4,£") < wo.

Closure spaces and the boundary of a set of nodes. In this work, we focus
on graphs as an algorithmically tractable representation of space. However, spa-
tial logics traditionally use more abstract structures, very often of a topological
nature (see [1] for an exhaustive reference). We can frame a generalised notion
of topology on graphs within the so called Cech closure spaces, a superclass of
topological spaces allowing a clear formalisation of the semantics of the spatial
surround operator on both topological and graph-like structures (see [5] and
the references therein). What is really relevant for this work, because of the
restriction to finite (weighted and undirected) graphs, is the notion of external
boundary of a set of nodes A, i.e. the set of nodes directly connected with an
element of A but not part of it.

Definition 1. Given a subset of locations A ¢ L, we define the boundary of
A as:
BYf(A)={leL|t¢AnI' e A st ({'()eE}.

Signal Temporal Logic. Signal Temporal Logic (STL) [8,15] is a linear
dense time-bounded temporal logic that extends Metric Interval Temporal Logic
(MITL) [2] with a set of atomic propositions {1, ..., ttm } that specify properties
of real valued traces, therefore mapping real valued traces into boolean values.

Let x: T — D be a trace that describes an evolution of our system, where T =
R, is the time set and D = Dy x---xD,, € R™ is the domain of evaluation; then each
pj 2D — B is of the form p;(x1,...,2,) = (fj(21,...,2,) > 0), where f; : D - R
is a (possibly non-linear) real-valued function and B = {true, false} is the set of
boolean values. The projections z; : T — ID; on the it" coordinate/variable are
called the primary signals and, for all j, the function s; : T — R defined by point-
wise application of f; to the image of x, namely s;(¢) = f;(21(t),...,zn(t)), is
called the secondary signal [9].

The syntax of STL is given by

o=l -l p1 Apa | e1U, 1] P2

where conjunction and negation are the standard boolean connectives, [t1,%2]
is a real positive dense intervals with t; < f2, U, 1,7 is the bounded until
operator and p is an atomic proposition. The eventually operator F, ;,; and
the always operator Gy, 4,1 can be defined as usual: Fpy, 1,10 = TUR, 119,

g[t1,t2]‘p = _“7:['517t2]_'<p'
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3 SSTL: Signal Spatio-Temporal Logic

Signal Spatio-Temporal Logic (SSTL) is a spatial extension of Signal Tempo-
ral Logic [8,15] with two spatial modalities: the bounded somewhere operator
O [w;,ws], defined in [4], and the bounded surround operator Slw, ,ws], that we
will define here, inspired by the work [5]. In the following, we first introduce
spatio-temporal signals, and then present the syntax and the boolean and quan-
titative semantics of SSTL.

Spatio-Temporal Signals. SSTL is interpreted on spatio-temporal, real-valued
signals. Space is discrete and described by a weighted graph G = (L, E,w),
as in Sect. 2, while the time domain T will usually be the real-valued interval
[0,T], for some T > 0. A spatio-temporal trace is a function x : T x L — D,
where D ¢ R™ is domain of evaluation. As for temporal traces, we write
x(t,£) = (x1(t,€),,x,(t,0)) € D, where each z; : T x L — Dy, for i = 1,...,n,
is the projection on the i*" coordinate/variable. Spatio-temporal traces can be
obtained by simulating a stochastic model or by computing the solution of a
deterministic system. In the previous work [4], some of the authors discussed
the framework of patch-based population models, which generalise population
models and are a natural setting from which both stochastic and determinis-
tic spatio-temporal traces of the considered type emerge. An alternative source
of traces are measurements of real systems. For the purpose of this work, it
is irrelevant which is the source of traces, as we are interested in their off-line
monitoring.

Spatio-temporal traces are then converted into spatio-temporal boolean or
quantitative signals. Similarly to the case of STL, each atomic predicate p; is
of the form p;(x1,...,2,) = (fj(z1,...,2,) 2 0), for f; : D - R. Each atomic
proposition gives rise to a spatio-temporal signal. In the boolean case, one may
define function s; : T x L — B; given a trace x, this gives rise to the boolean
signal s;(¢,0) = p;(x(¢,€)) by point-wise lifting. Similarly, a quantitative signal
is obtained as the real-valued function s; : T x L - R, with s;(¢,€) = f;(x(¢,£)).

When the space L is finite, as in our case, we can represent a spatio-temporal
signal as a finite collection of temporal signals. More specifically, the signal s(¢, ¢)
can be equivalently represented by the collection {sy(t) | £ € L}. We will stick
mostly to this second notation in the following, as it simplifies the presentation.

Syntax. The syntax of SSTL is given by

o= =l or Apa | 01U, 1] P2 | OLwr,we]? | 91 Sy wa1P2-

Atomic predicates, boolean operators, and the until operator U, ;,] are those
of STL. The spatial operators are the somewhere operator, &(u, w,], and the
bounded surround operator S[, w,], Where [wi,wz] is a closed real interval
with w; < wg. The spatial somewhere operator &[, w,]% requires ¢ to hold
in a location reachable from the current one with a total cost greater than or
equal to w; and lesser than or equal to wy. The surround formula v1 Spu, w,]¥2
is true in a location ¢, for the trace x, when ¢ belongs to a set of locations
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A satisfying ¢1, such that its external boundary B*(A) (i.e., all the nearest
neighbours external to A of locations in A) contains only locations satisfying ps.
Furthermore, locations in B*(A) must be reached from ¢ by a shortest path of
cost between w; and ws. Hence, the surround operator expresses the topological
notion of being surrounded by a @o-region, with additional metric contraints.
We can also derive the everywhere operator @[, w,19¢ = = ©[w, w,] ~¢ Tequiring
0 to hold in all the locations reachable from the current one with a total cost
between w; and ws. Several examples of SSTL formulas, that can be used to
clarify one’s intuition about the operators defined above, are provided in Sect. 5.

Semantics. We now define the boolean and the quantitative semantics for SSTL.
The boolean semantics, as customary, returns true/false depending on whether
the observed trace satisfies the SSTL specification.

Definition 2 (Boolean semantics). The boolean satisfaction relation for an
SSTL formula ¢ over a spatio-temporal trace x is given by:

(%,t,0) E p < p(x(t,L)=1

(x,t,2) E - < (x,t,0)Hp

(x,t,£) E 1 A2 < (x,t,0) Ep1 A (x,8,0) = p2

6O EQ1UL, 12 = 3 et+ [t t]: (X8, 0 E w2 AV €[t 1],(x,t7,£) £ o1
(5,6, £) F Oy we]® < WeL: (W, 0)eE* hwy <wl £) <wa A (x,6,0)E @
(66,0 Q1 S[uy wa)92 < FAC L Le ANVE € A (x,1,0) F o1

AB*(A) € Lf AL e BY(A), (z,t,0") E 2.

wi,wa]
A trace x satisfies p in location £, denoted by (x,£) E ¢, if and only if (x,0,€) = ¢.

The quantitative semantics returns a real value that can be interpreted as a
measure of the strength with which the specification is satisfied or falsified by
an observed trajectory. More specifically, the sign of such a satisfaction score is
related to the truth of the formula (positive stands for true), while the absolute
value of the score is a measure of the robustness of the satisfaction or dissat-
isfaction. This definition of quantitative measure is based on [8,9], and it is a
reformulation of the robustness degree of [10].

Definition 3 (SSTL Quantitative Semantics). The quantitative satisfac-
tion function p(p,x,t,£) for an SSTL formula ¢ over a spatio-temporal trace x
18 given by:

p(p,x,t,0) f(x(t,£)) where p=(f=>0)

p(—*QO,X,LZ) = —p(%x,t,f)

p(p1 A p2,%,t, L) min(p(p1,%,t,£), p(p2,%,t,£))

,0(4,01 u[tlytz]@2vxvt7€) sup (min{p(wg,x, t,7£)’t”gltf (P(SDhX, t”,[))}

tlet+[ty,to] ']
max{p(¢,x,t, ) [ € L,(¢',£) ¢ E*,w1 <w(l',£) <ws}
max (min(min p(p1, %, ¢, £'),
43

[ [
AgL[warz] JLeA,Bt (A)QL[

p(©[w1,w2]§07 X, t: é)
P(@l S[wl,wg]SDan? t, Z)

wy,wa]

. t Z/I
Z,,ergg(lA)p(tpzyx,, )));
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where p is the quantitative satisfaction function, returning a real number
p(p,x,t) quantifying the degree of satisfaction of the property ¢ by the trace
x at time t. Moreover, p(p,x,¢) = p(p,x,0,0).

The definition for the surround operator is essentially obtained from the boolean
semantics by replacing conjunctions and universal quantifications with the min-
imum and disjunctions and existential quantifications with the maximum, as
done in [8,9] for STL.

4 Monitoring Algorithms

In this section, we present the monitoring algorithms to check the validity of
a formula ¢ on a trace x(t,¢). The monitoring procedure, which is similar to
the ones for STL [9,15], works inductively bottom-up on the parse tree of the
formula. In the case of the boolean semantics, for each subformula 1), it constructs
a spatio-temporal signal sy s.t. sy (¢, ¢) = 1 iff the subformula is true in position
¢ at time t. In the case of the quantitative semantics, for each subformula ¢, the
signal s, corresponds to the value of the quantitative satisfaction function p,
for any time ¢ and location £. In this paper, we discuss the algorithms to check
the bounded surround operator. The procedures for the boolean and temporal
operators are those of STL [8,9,15], while the methods for the somewhere spatial
modality have been previously discussed in [4]. The treatment of the bounded
surround modality ¢ = 15[y, w.]p2, instead, deviates substantially from these
procedures. In the following, we will present two recursive algorithms to compute
the boolean and the quantitative satisfaction, taking inspiration from [5] and
assuming the boolean/quantitative signals of ¢1 and 2 being known.

4.1 Description of the Algorithms

Preliminary notions on boolean signals. Before describing Algorithm 1, we
need to introduce the definition of minimal interval covering Zs, ... s, consistent
with a set of temporal signals s1,. .. Sy, see also [15].

Definition 4. Given an interval I, and a set of temporal signals sy, ... s, with
s;: I - B, the minimal interval covering Z;, ., of I consistent with the
set of signals si,...,s, is the shortest finite sequence of left-closed right-open
intervals Iy, ..., Iy, such that U;I; =1, ;N1; =@, Vi # j, and for ke {l,...,n},
sk(t) = sg(t') for allt, t' belonging to the same interval. The positive minimal
interval covering of s is I} = {I e I,|Vt € I : s(t) = 1}.

Monitoring the Boolean semantics of the bounded surround. Algorithm 1
presents the procedure to monitor the boolean semantics of a surround formula
Y = 181w, we]P2 0 a location /, returning the boolean sigr}al Sy of ¢ at

location £. The algorithm first computes the set of locations Lf ] that are at

0,w2

distance wsq or less from Z, and then, recursively, the boolean signals s,, , and
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Algorithm 1. Boolean monitoring for the surround operator

1: inI)Ut Agv ¢ = 9013[1”1,11;2]@2
2: Vle Lfo,m] compute Sy, ¢, Spy,¢
3: compute Isw,e" {the minimal interval covering consistent with s, ¢,Sp,,e, £ €

i
L[waz]}
: for all I; EI% _do

4

I3
51 V= {leLigu,lsere(Li) =1}
6: Q = {é € wal,w2]|S<P2a‘€(Ii) = 1}
T
8

T=B"(QUYV)
: while T# @ do
9: T =2
10: for all /€T do
11: N =pre({)NV ={l' e VILEL'}
12: V =V\N
13: T =T'U(N\Q)
14: end for
15: T=T
16: end while
1 ifleV,

17 Sw’Z(L) 0 otherwise.
18: end for

19: merge adjacent positive interval [, i.e. I; s.t. s, ;(I;) =1
20: return s, ;

Spq.0, for £ e LfO,’wz]' These signals provide the satisfaction of the sub-formula ¢
and @9 at each point in time, and for each location of interest. Then, a minimal
interval covering consistent to all the signals s, , and s, ¢ is computed, and
to each such interval, a core procedure similar to that of [5] is applied. More
specifically, we first compute the set of locations T" in which both ¢; and ¢4 are
false, and that are in the external boundary of the locations that satisfy ¢1 (V)
or s (Q). The locations in T are “bad” locations, that cannot be part of the
external boundary of the set A of y;-locations which has to be surrounded only
by p2-locations. Hence, the main loop of the algorithm removes iteratively from
V' all those locations that have a neighbour in T' (set N, line 13), constructing
a new set T containing only those locations in N that do not satisfy o, until
a fixed point is reached. As each location can be added to T and be processed
only once, the complexity of the algorithm is linear in the number of locations
and linear in the size of the interval covering. Correctness can be proven in a
similar way as in [5].

Piecewise constant approximation of quantitative signals. The quanti-
tative semantics for STL is defined for arbitrary signals, but algorithms are pro-
vided for piecewise linear continuous ones [8,9], considered as the interpolation
of continuous functions. In this paper, we deviate from this interpretation, and
consider instead a simpler interpolation based on piecewise constant signals. In
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particular, we discretise time with step h > 0, so that our signals in each location
£, s¢:[0,T]x L - R, are represented by the finite set {s¢(0), s¢(h),...,se(mh)},
where mh = T. Then the piecewise constant approximation of s,(t) is the signal
80(t) = sg(kh) for t € [kh,(k + 1)h). We further assume, without loss of gen-
erality?, that all time bounds appearing in the temporal operators of a SSTL
formula are multiples of h.

Under the assumption that secondary signals are Lipschitz continuous®, and
letting K be the maximum of their individual Lipschitz constants, we have that
the following properties hold: (a) s¢(kh) = §,(kh); and (b) [s¢(t) = §.(¢)| <
Kh/2, uniformly in ¢.

Monitoring the quantitative semantics. We now turn to the monitoring
algorithm for the quantitative semantics, assuming the input is a piecewise con-
stant signal, where the time domain has been discretised with step h. Monitoring
boolean operators is straightforward, we just need to apply the definition of the
quantitative semantics pointwise in the discretisation. Monitoring the somewhere
operator @[y, w,]¥ 18 also immediate: once the location 7 of interest is fixed, we

can just turn it into a disjunction of the signals s, ; for each location £ ¢ wahwz]’
see [4] for further details. The time bounded until operator, instead, can also be
easily computed by replacing the min and max over dense real intervals in its
definition by the corresponding min and max over the corresponding finite grid
of time points. In this case, however, we can introduce an error due to the dis-
crete approximation of the Lipschitz continuous signal in intermediate points, yet
this error accumulates at a rate proportional to Kh, where K is the previously
defined Lipschitz constant.

The only non-trivial monitoring algorithm is the one for the spatial surround
operator, which will be discussed below. However, as the satisfaction score is
computed at each time point of the discretisation and depends on the values of
the signals at that time point only, this algorithm introduces no further error
w.r.t. the time discretisation. Hence, we can globally bound the error introduced
by the time discretisation:

Proposition 1. Let the primary signal x be Lipschitz continuous, as the func-
tions defining the atomic predicates. Let K be a Lipschitz constant for all sec-
ondary signals, and h be the discretisation step. Given a SSTL formula ¢, let
u(p) counts the number of temporal until operators in o, and denote by p(p,x)
its satisfaction score over the trace x and by p(p,X) the satisfaction score over
the discretised version X of x with time step h. Then |p(p,x) — p(p,X)| <
u(p)Kh.

Monitoring the quantitative semantics of the bounded surround. The
quantitative monitoring procedure for the bounded surround operator is shown

2 Time bounds can be restricted to rational numbers, hence there always exists an
h > 0 satisfying all assumptions.

3 The assumption of Lipschitz continuity holds whenever the primary signal is the
solution of an ODE with a locally Lipschitz vector field, as usually is the case.
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in Algorithm 2. Similarly to the boolean case, the algorithm for the surround
formula ¢ = 015w, w,]2 takes as input a location ? and returns the quantitative
signal s .00 OF better its piecewise constant approximation with time-step h (an
additional input, together with the signal duration T'). As a first step, it computes
recursively the quantitative satisfaction signals of subformula ¢, for all locations
le L[ ws] and of subformula ¢, for all locations ¢ € L wy ]+ Furthermore, it sets
all the quantitative signals for ¢; and 4 for the other locations to the constant
signal equal to minus infinity. The algorithm runs a fixpoint computation for
each time instant in the discrete time set {0,h,2h,...,mh}. The procedure is
based on computing a function X', with values in the extended reals R*, which
is executed on the whole set of locations L, but for the modified signals equal
to —oo for locations not satisfying the metric bounds for ¢. The function X is
defined below.

Definition 5. Given a finite set of locations L and two functions s1 : L —
R* sy : L — R*. The function X : N x L — R is inductively defined as:
(1) 2(0,£) = s1(£) (2) X (i+1,£) = min(X (¢, £), ming gy (max(X (i,£"),52(£')))).

The algorithm then computes the function X iteratively, until a fixed-point is
reached.

Theorem 1. Let be s1 and sy as in Definition 5, and
8(@) = IMaXAcL teA (min(minpeA S1 (f’), minzreB+(A) S92 (f’))),
then lim;_, o X (i,¢) = s(¢), VL € L. Moreover, 3K >0 s. t. X(j,0) =s({),Vj > K.

The following corollary provides the correctness of the method. It shows that,
when X is computed for the modified signals constructed by the algorithm, it
returns effectively the quantitative satisfaction score of the spatial surround.

Corollary 1. Given an (eL, let Y = 018w, we] P2 and

s1(£) = s2(£)

p(¢17X7t7€) if ng(&g) < w2
—o00 otherwise.

_ p(@z,x,t,f) if wi < w(&f) < w2
otherwise. I S

Then p(p,x,t,0) = s(¢) = max ;74 (min(minges s1(¢), mingep+(a) s2(¢)))-

In order to discuss the complexity of the monitoring procedure, we need an
upper bound on the number of iterations of the algorithm. This is given by the
following

Proposition 2. Let dg be the diameter of the graph G and X (£) the fized point
of X(i,0), then X(¢) = X(dg +1,£) for all L€ L.

It follows that the computational cost for each location is O(dg|L|m), where
m is the number of sampled time-points. The cost for all locations is therefore
O(dg|L|*m).
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Algorithm 2. Quantitative monitoring for the surround operator

1: inputs: lzd; = 018wy, w02 5 R, T

2: for all ¢ L do

3: if 0 <w(?,0) <wsy then

4: compute Sy, ¢

5 if w(/,0) > w; then compute s,, ¢ else sy, ¢ = —00
6: else s, 0= —00,54,,¢=—00

7: end for

8: for all te{0,h,2h,...,T} do

9: for all /¢ L do

10: Xprec(£) = 400

11: X(£) = 54,,0(1)

12:  end for

13:  while 30€e L, s.t. Xprec(£) # X(£) do

14: Xpree = X

15: for all /¢ L do

16: X (€) = min(Xpree(£), ming o pe (max(Se,,e (), Xprec(€'))))
17: end for

18: end while .
19: 5¢,é(t) =X()
20: end for

21: return Sy

4.2 Implementation

To support qualitative and quantitative monitoring of SSTL properties, a Java
library has been developed. This library, named jSSTL*, consists of three main
packages: core, util and io. Package core provides the classes used to represent
SSTL formulas. These classes mimic the abstract syntax tree of formulas. This
package also includes the implementations of the monitoring algorithms pre-
sented in this section and of those previously introduced in [4].

Monitoring algorithms are implemented following the visitor pattern. Hence,
monitoring is performed via a visit of a formula that implements a bottom-
up evaluation. It is important to remark that the use of this pattern simplifies
the integration of possible alternative monitoring algorithms. Each monitoring
algorithm is rendered in terms of a class that is parametrised with respect to
a weighted graph and provides the method check. The former represents the
topology of the considered locations, while the latter takes as parameters an
SSTL formula and a list of piecewise constant signals (one for each location)
and returns a list of piecewise constant signals providing monitoring evaluation.
The classes used to represent and manage piecewise constant signals are provided
within package util. The implementation of weighted graphs relies on JGraphT?.
This is a free Java graph library that provides mathematical graph-theory objects

* jSSTL is available on-line at https://bitbucket.org/LauraNenzi/jsstl.
5 http://jgrapht.org.
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and algorithms. Package io provides a set of classes that can be used to read
graph models and input signals from an input stream and to write monitoring
results to an output stream. Specific interfaces are also provided to simplify the
integration of new specific input/output data formats.

5 Example: Pattern Formation in a Reaction-Diffusion
System

In this section, we show how SSTL can be used to identify the formation of
patterns in a reaction-diffusion system. From the point of view of formal verifi-
cation, the formation of patterns is an inherently spatio-temporal phenomenon,
in that the relevant aspect is how the spatial organisation of the system changes
over time. Alan Turing theorised in [18] that pattern formation is a consequence
of the coupling of reaction and diffusion phenomena involving different chemical
species, and can be described by a set of PDE reaction-diffusion equations, one
for each species.

Our model, similar to [12,14], describes the production of skin pigments
that generate spots in animal furs. The reaction-diffusion system is discretised,
according to a Finite Difference scheme, as a system of ODEs whose variables
are organised in a K x K rectangular grid. More precisely, we treat the grid as
a weighted undirected graph, where each cell (i,j) e L={1,..., K} x{1,..., K}
is a location (node), edges connect each pairs of neighbouring nodes along four
directions (so that each node as at most 4 adjacent nodes), and the weight of
each edge is always equal to the spatial length-scale ¢ of the system®. We consider
two species A and B in a K x K grid, obtaining the system:

A
2= Ryaf B

i+ Ry+ Dy(py-af) i=1.K, j=1,.,K,

dt, 4§ hg T i,j (1)
dz; A B B B ; :
2t = Rexlxls + R+ Doy — o 1=1.,K, j=1,.,K,
where: xf‘j and xfj are the concentrations of the two species in the cell (4, j); R;,

i=1,...,4 are the parameters that define the reaction between the two species;
D¢ and D5 are the diffusion constants; ij and ij are the inputs for the (4,7)

cell, that is
1
— > ne{A, B}, (2)

u =
gl v,

where v; ; is the set of indices of cells adjacent to (¢, j). The spatio-temporal trace
of the system is the function x = (2, 28) : [0, T]x L - RE*K xRE>*K where each
x4 and z® are the projection on the first and second variable, respectively. In
Fig. 1, we report the concentration of A for a number of time points, generated by
the numerical integration of System 1; at time ¢ = 20 and ¢ = 50, the shape of the

pattern is apparent and remains stable. We can see that some regions (in blue)

5 For simplicity, here we fix § = 1. Note that using a non-uniform mesh the weights of
the edges of the resulting graph will not be uniform.
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have a low concentration of A surrounded by regions with a high concentration
of A. We consider as spots of our pattern the regions with low concentration of
A. The opposite happens for the value of B (high density regions surrounded by
low density regions, not shown).

= l"!‘-ﬂ-

..,E

t=5 t=7 t=10 t=20

oNnN O

Fig. 1. Value of z* for the system (1) fort =0,5,7,12,20, 50 time units with parameters
K=32,R1=1,R; =-12, R3 =-1,R4 =16, D1 = 5.6 and D> = 25.5. The initial condition
has been set randomly. The colour map for the concentration is specified in the legend
on the right (Color figure online).

The following shows how we can use the surround operator to characterise the
behaviour of this system. In order to classify spots, one should identify the sub-
regions of the grid that present a high (or low) concentration of a certain species,
surrounded by a low (high, respectively) concentration of the same species. For-
mally, one can e.g., capture the spots of the A species using the spatial formula

Pspot = (4 <) Spuy w1 (@ > h). (3)

A trace x satisfies pgpor at time ¢, in the location (3,7), (x,%,(4,5)) E ©spot, if
and only if there is a subset L’ c L, that contains (7,7), such that all elements
have a distance less than wy from (i,7), and x4, at time t, is less or equal to h.
Furthermore, each element in the boundary of L’ has a concentration of A, at
time t, greater than h, and its distance from (%, 7) is in the interval [wy,ws]. Note
that the use of distance bounds in the surround operator allows one to constrain
the size/ diameter of the spot to [wi,ws]. Recall that we are considering a
spatio-temporal system, so this spatial property alone is not enough to describe
the formation of a pattern over time; to identify the insurgence time of the
pattern and whether it remains stable over time we have to combine the spatial
property with temporal operators in this way:

Ppattern ‘= ]:[Tpattcrn JTpattern+9] g[O,Tend] (@SPOt ) 5 (4)

Ppattern States that eventually at a time between Tpattern and Tpattern + 6 the
property surround becomes true and remains true for at least Tenq time units.
In Fig. 2(b) we show the validity of the property pattern int €ach cell (¢, j) € L, for
both the boolean and the quantitative semantics. Recalling that (x, ¢) E ¢, if and
only if (x,0,¢) & ¢, for this reason the plots show the satisfaction at time ¢ = 0.
It is evident how well the procedure is able to identify which locations belong
to the spots or not. If we make the distance constraint stricter, by reducing the
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width of the interval [wy,ws], we are able to identify only the “centre” of the
spot, as shown in Fig. 2(d). However, in this case we may fail to identify spots
that have an irregular shape (i.e., that deviate too much from a circular shape).

Formula ¢pattern describes the persistence of a spot in a specific location. To
describe a global spatial pattern, i.e. that every location is part of a spot or has
a nearby spot, can be expressed in SSTL by the following formula:

PST-pattern -= E’[O,w] ©[O,w'] Ppattern (5)

where & and B are the everywhere and somewhere operators, w is chosen to
cover all space, and w’ measures the maximal distance between spots. Checking
this formula in a random location of our space is enough to verify the presence of
the pattern; this is enough because the first part of the formula, @ ,,], permits
us to reach all the locations of the grid. This is an example of how we can
describe global property also with a semantics that verifies properties in the
single locations. We verify the property (5) with w =45 and w’ = 15 (the other
parameters as in Fig.2), for a solution of the system (1) obtaining true for
the boolean semantics and 0.3 for the quantitative one. The low value of the
quantitative semantics is due to the choice of the threshold h.

(b)

o N A O

10 20 30

10 20 30

Fig. 2. Validity of formula (4) with h = 0.5, Tpattern = 19,0 = 1, Tena = 30, w1 = 1, w2 = 6
for (b), (c) and wy =4 for (d). (a) Concentration of A at time t = 50; (b) (d) Boolean
semantics of the property @pattern; the cells (locations) that satisfy the formula are in
red, the others are in blue; (c) Quantitative semantics of the property @pattern; The
value of the robustness is given by a colour map as specified in the legend on the right
of the figure (Color figure online).

Changing the diffusion constants Dy and Dy affects the shape and size of the
spots or disrupts them (Fig.3(a)). We evaluate formula (5) for model (1) with
parameters D = [1.5,23.6] and D = [8.5,40.7], as in Fig. 2(a), and it results false
with a quantitative value equal to -0.05 for both. Formula (4), instead, is still
true in some locations. This is due to the irregularity of the spots (where, as
Fig. 3(a) left, some spots can have a shape similar to the model in Fig. 2(a)), or
due to particular boundary effects on the border of the grid (where fractions of
spots still remain, as in Fig. 3(a) right).

A strength of spatio-temporal logics is the possibility to nest the temporal
and spatial operators. We illustrate this in the following scenario. We assume as
initial conditions of the system (1) its stable state, i.e. the concentrations of A
and B at time 50 (see Fig. 2(a)). We introduce a small perturbation, by changing
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a single value in a specific location in the centre of a spot. The idea is to study
the effect of this perturbation, i.e. checking if it will disrupt the system or not.
Specifically, we perturb the cell (6,6), setting xé6(0) = 10. Dynamically, the
perturbation is quickly absorbed and the system returns to the previous steady
state. Formally, we can consider the following property:

Ppert = (% 2 Ppert) A (018w w0 ]92); (6)

(x,(4,7)) E @pert, 1.€. a trace x satisfies @pert in the location (¢, ), if and only
if xfj(O) > hpert (the location is perturbed) and if there is a subset L' ¢ L
that contains (¢,7) such that all its elements have a distance less than wys from
(i,4) and satisfy ¢ = }_[07Tp]g[07Td](ac“x < h'); ¢ states that the perturbation
of 24 is absorbed within T, units of time, stabilising back to a value 4 < h
for additional T, time units. Furthermore, within distance [wp,,wps] from the
original perturbation, where wj is chosen such that we are within the spot of the
non-perturbed system, g := Q[O)T](xA < h') is satisfied; i.e. no relevant effect is
observed, the value of x4 stably remains below h’. The meaning of pper is that
the induced perturbation remains confined inside the original spot. In Fig. 3(b)
we report the evaluation of the quantitative semantics for ¢per, zooming in on
the 15 x 15 lower left corner of the original grid. All the locations that are not
plotted have been evaluated and do not satisfy the property. As shown in the
figure, the only location that satisfies this property is the perturbed one, (6,6).

(@ (b)
15

e g e = 20 -u_.r -' 8 0
B =T 10: =EN- ; ;
_&"'-'I'il 1 5 2
Feivaa § 3

5 10 15 5 10 15

Fig. 3. (a) Snapshots at time ¢ = 50 of z** for the model (1) with D = [1.5,23.6] (on
the left) and D = [8.5,40.7] (on the right). (b) Boolean and quantitative semantics for
the formula @pert With hpert = 10, Wy, = 1, war =2, Tp = 1, Ty = 10, b’ = 3, and T = 20.

Model (1) has been coded in Matlab/Octave, and the monitoring has been
performed by our Java implementation. As time performance, the verification of
property @pattern took 1.04s (boolean) and 69.39 s (quantitative) for all locations
and 100 time points, while property @sT_pattern to0k 1.81s and 70.06s, and
property @pert took 28,19s and 55,31s, respectively. The computation of the
distance matrix can be done just once because it remains always the same for
a given system, this takes about 23s. All the experiments were run on a Intel
Core i5 2.6 GHz CPU, with 8 GB 1600 MHz RAM.

6 Discussion

We extended the Signal Spatio-Temporal Logic [4], a spatio-temporal exten-
sion of STL [9], with the spatial surround operator from [5]. In SSTL, spatial
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and temporal operators can be arbitrarily nested. We provided the logic with a
boolean and a quantitative semantics in the style of STL [9], and defined novel
monitoring algorithms to evaluate such semantics on spatio-temporal trajecto-
ries. The monitoring procedures, implemented in Java, have been applied on a
Turing reaction-diffusion system modelling a process of morphogenesis [18] in
which spots are formed over time.

This work can be extended in several directions. First, we plan to perform
a more thorough investigation of the expressivity of the logic, and to apply it
on further case studies. In particular, we remark that SSTL can also be applied
to describe properties of stochastic spatio-temporal systems, and the monitoring
algorithms can be plugged in seamlessly into statistical model checking routines.
Secondly, we plan to extend our logic to more general quasi-discrete metric
spatial structures, exploiting the topological notion of closure spaces [5] and
extending it to the metric case. Note that the current monitoring algorithms
work already for more general spatial structures, like finite directed weighted
graphs, but we plan to provide a more precise characterisation of the class of
discrete spatial structures on which they can be applied. We will also optimise
the implementation to improve performance, and additionally investigate if and
how directionality can be expressed in SSTL. Finally, we plan to exploit the
quantitative semantics for the robust design of spatio-temporal systems, along
the lines of [3].
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