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Abstract. We consider the statistical lemmatization problem in which
lemmatizers are trained on (word form, lemma) pairs. In particular, we
consider this problem for ancient Latin, a language with high degree of
morphological variability. We investigate whether general purpose string-
to-string transduction models are suitable for this task, and find that
they typically perform (much) better than more restricted lemmatiza-
tion techniques/heuristics based on suffix transformations. We also exper-
imentally test whether string transduction systems that perform well on
one string-to-string translation task (here, G2P) perform well on another
(here, lemmatization) and vice versa, and find that a joint n-gram model-
ing performs better on G2P than a discriminative model of our own mak-
ing but that this relationship is reversed for lemmatization. Finally, we
investigate how the learned lemmatizers can complement lexicon-based
systems, e.g., by tackling the OOV and/or the disambiguation problem.

1 Introduction

Lemmatization can be defined as the normalization task of mapping the inflected
forms of lexical words to their canonical form, i.e., their lemma (cf. [5,6,12]).
A related problem is stemming, in which the variability of word forms is reduced
by mapping different variants to a common root or stem, which may be a
crude abstraction that does not need to correspond to any valid linguistic unit.*
Lemmatization and stemming are important preprocessing steps in information
retrieval, text mining, and knowledge discovery.

In this work, we view the lemmatization problem within the general string-to-
string translation setup of mapping arbitrary strings x € X* to arbitrary other
strings y € I'*, where X' and I are arbitrary alphabets (finite sets). While this
setup would also include other natural language processing (NLP) tasks such as

— grapheme-to-phoneme conversion (G2P) [2,11], in which x is a letter-string
and y is a string of phonemes,

— transliteration [21], in which x is a word form in one script (e.g., Cyrillic,
Hebraic, Latin, etc.) and y is a corresponding form in another script, or

— spelling error correction [4], in which x is a wrongly spelled word form and y
its desired correction,

! In stemming, all that typically matters is that related words map to the same (lin-
guistic or even non-linguistic) object.
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our focus is, as indicated, on the lemmatization task in which x is a word form
and y its lemma. Our statistical problem is to learn mappings x — y from pairs
of strings {(x;,y:)|i=1,2,3,...}.

As [12] point out, the difficulty of the lemmatization problem heavily depends
on the types of natural languages involved. While lemmatization is consid-
ered relatively easy in highly analytical languages such as English, the problem
becomes considerably more difficult in languages that exhibit sufficient mor-
phological variability, such as the Slavic languages or ancient Greek and Latin.
In these, “stems can combine with many different suffixes, and the selection of
appropriate ending and its combination with the stem depends on morpholog-
ical, phonological and semantic factors” [12]. In the present work, our focus is
on lemmatization in ancient Latin, because, on the one hand, ancient Latin is
a prime exemplar of a language with rich morphology in which more than hun-
dred distinct forms may be associated with a single (e.g., verb) lemma. On the
other hand, we are currently actively developing several NLP tools for ancient
Latin,? of which a lemmatizer (as well as, in subsequent steps, a POS tagger and
a parser) is an integral part.

Arguably, the most well-researched domain within the field of string-to-string
translation is G2P and it is tempting to simply apply one of the existing G2P
toolkits to the problem. Our approach in this work is indeed to evaluate how
standard G2P models perform on the lemmatization task and how their per-
formance relates to standard statistical lemmatizers. As one of our results, we
will show that two of the general G2P models that we review, a standard joint
n-gram model and a discriminative model of our own making, not only perform
orders of magnitude better than two off-the-shelf lemmatizers on the G2P prob-
lem, but also considerably better on the lemmatization task. We also show that
ordering of performance relationships is not necessarily preserved across string
transduction problems. More precisely, we show that the joint n-gram modeling
that we test is considerably better on G2P conversion than our own discrimina-
tive model, but that this relationship is reversed on the lemmatization task. After
reviewing the models in Sect. 2, we briefly outline our data base in Sect. 3, and
conduct performance comparisons in Sect. 4. In this section, we also investigate
how our learned lemmatizers may complement lexicon-based lemmatizers, e.g.,
by tackling the out-of-vocabulary (OOV) problem and/or by disambiguation.
We conclude in Sect. 5.

Concerning related work, Porter stemmer [19] is a rule-based heuristic for
solving the stemming problem in English. The approaches that we survey in
the current work are much more closely related to modern machine learning
approaches for string transduction. For instance, Dreyer and Eisner [6] present
a discriminative log-linear model learning latent classes and apply it to lemma-
tization. Gesmundo and Samardzic [9] reformulate lemmatization as a tagging
problem in a setting where they assume that lemmas are derived from word
forms by prefix and suffix transformations and the tag label encodes the substi-
tution patterns. Toutanova and Cherry [23] show that considering lemmatization

2 See, e.g., https://prepro.hucompute.org)/.
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and part-of-speech tagging jointly may be mutually beneficial. Their character-
based lemmatization module is similar to the G2P-type lemmatizers we consider
below but only considers one-to-one character transformations plus a heuristic
for dealing with suffixes.

2 Models

In this study, we rely on the following software/models for learning the lemma-
tization problem.

— Phonetisaurus [18] implements a joint n-gram model [2] in a weighted finite
state transducer setup, and has originally been designed for G2P conversion.
Like our own modeling, Phonetisaurus can be used in a more general setting,
however, to learn to transduce arbitrary input sequences into arbitrary output
sequences. Phonetisaurus seems to perform on par or better than competitors
on the G2P problem and trains and decodes orders of magnitudes faster [18].3

— LemmaGen [12,13] is a lemmatizer that learns ‘if-then’ rules from (x,y) pairs
as shown in Table4. To transduce/lemmatize a new input form, rules (and
their exceptions) are ordered, and the first condition that is satisfied fires the
corresponding rule [12]. Importantly, LemmaGen learns to transduce word
form suffizes into lemma suffizes, so it might be prone to committing errors,
e.g., when initial or middle parts of word forms need to be adjusted to generate
the correct lemma.

— Mate [3] provides a full pipeline of lemmatization, tagging, morphological
tagging, and dependency parsing. It is trainable on appropriate input format.
In our context, we only train the lemmatizer module of the pipeline.

Our own modeling implements a two-stage tagging procedure to translate
input strings into output strings. In the first stage, an input word is segmented
into parts using a sequence labeler (tagger) that maps input character sequences
to ones or zeros, depending on whether a split occurs at the given character
position. In the second stage, each part of the segmented input string is tagged
with an output string subsequence. Table 1 illustrates. The training data for both
sequence labelers is taken from monotone many-to-many aligned input strings as
in Table 2.* The second stage tagger directly trains on the aligned data, while the
first stage tagger learns sequence segmentations from the segmented x sequences
in the alignments using a binary coding scheme (cf. [1,7]). Table3 illustrates
this—note that we encode a split as a ‘1’ and a non-split (continuation) as a ‘0’.

As a tagging model, we use linear chain conditional random fields (CRF)
[14].5 This allows us to include arbitrary features in the tagging process. We use
the following:

3 In our experiments below, we choose an n-gram order of size 6 for Phonetisaurus.
Increasing n-gram order size did not lead to better performance in preliminary tests.

4 We use the alignments produced by the Phonetisaurus toolkit.

5 Although CRF's are rather old and typically not always the best-performing sequence
labeling models [17], we use them here mainly for practical reasons. In particular,
the CRF package we are using, available from https://code.google.com/p/crfpp/,
provides a very convenient interface to modeling sequence labeling.
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Table 1. Sample decoding phase.

praeformet ~» p-r-@-f-o-r-m-et  passvrarum ~- p-a-ss-vra-rum

PLLLLLL el bl

p-r-ae-f-o-r-m-o p-ati- o- 1

Table 2. Sample aligned input string pairs (x,y).

d-i-s-s-o-n-verat d-i-s-s-0-n-o0
C-0-n-r-e-Ct-v-s c-0-n-r-i-g-e-0
j-m-p-e-d-i-o i-m-p-e-d-i-o
c-o-m-p-u-t-aris c-0-m-p-u-t-o
t-e-r-r-e-batvr t-e-r-r-e-o

a-d-i-u-t-o-rivm a-d-i-u-t-o-r
p-r-a-e-p-e-d-i-m-e-n-t-a p-r-a-e-p-e-d-i-m-e-n-t-um
u-n-d-e-c-i-m-am u-n-d-e-c-i-m-a
d-u-I-c-i-1-o-c-u-t-i-ssimarum | d-u-I-c-i-l-o-c-u-t-u-s

Table 3. Word forms x from Table 2, corresponding segmentations and binary encod-
ings of the segmentations.

Word form Segmentation Binary encoding

dissonverat d-i-s-s-o-n-verat 01111110000
conrectvs c-o-n-r-e-ct-v-s 011111011
jmpedio j-m-p-e-d-i-o 0111111
computaris c-0-m-p-u-t-aris 0111111000
terrebatvr t-e-r-r-e-batvr 0111110000
adiutorivm a-d-i-u-t-o-rivim 0111111000
praepedimenta p-r-a-e-p-e-d-i-m-e-n-t-a 0111111111111
undecimam u-n-d-e-c-i-m-am 011111110
dulcilocutissimarum | d-u-l-c-i-l-o-c-u-t-i-ssimarum | 0111111111110000000

(1) Contextual features: for each input symbol (a character or a subsequence
of characters), we include all character subsequence m-grams (unigrams,
bigrams, trigrams, etc.) that fit inside a window of size 6 around the current
input symbol position.® To illustrate, when the second stage tagger views
the current input position e in the input word form c-o-n-r-e-ct-v-s, it sees
that the next position contains ct, the previous position contains r, etc.; the
next two positions contain (ct,v), etc.

6 Increasing window size typically does not lead to better performance, as we verified
in preliminary experiments.
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(2) Linear-chain and transition features: These include features between subse-
quent output symbol characters (character subsequences) as is the defining
property of linear chain conditional random fields.

(3) Intra-subsequence-character features: We also include features that allow the
second stage tagger to not only see the character subsequence at the current
input position but also the characters that constitute it. For example, rather
than merely knowing that the last input position of d-i-s-s-o-n-verat is verat,
the tagger would also know that verat is made up of the characters v, e,
r, a, t. This may help the classifier in case longer character subsequences
are sparse. Since additional features increase computational costs, we only
include unigram intra-subsequence-character features.

We call the system that includes features (1) and (2) AliSeTra (for align-segment-
translate), while we refer to the system that in addition includes features (3) as
AliSeTra++. We also note that our design of phrasing string transduction as a
(two-stage) sequence labeling approach is, per se, nothing novel — it is one of
the standard paradigms in G2P (cf., e.g., [10,11]).

3 Data

Our data base is a huge Latin lexicon containing almost 10 million distinct word
forms subsumed under more than 100,000 lemmas [8,15]. This lexicon has been
semi-automatically created from several freely available Web resources and via
lexical expanders and subsequent manual correction (where necessary). Of these
forms, almost 80 % belong to the open word classes nouns, verbs, and adjectives,
on which we will focus in the remainder of this work.” Our task will be to learn
to lemmatize Latin word forms falling under the named word classes from pairs
of examples as shown in Table4.

Table 4. Example string pairs in the data base. (Potential) substitution patterns
highlighted for clarity of exposition.

Verbs Nouns Adjectives
ingemuistis ingemisco principibvs princps denuntiatissimam denuntiatus
exmactauissetis exmacto fragi fragum perrectas perrectus
conrectvs conrigeo chyrogrillio  chyrogrillius  dedolatiores dedolatus
emundatarum emundo adversatvm adversatus praestantioribvs praestans
superintexere superintego  erupturus erupturus infortunatissimvs infortunatus
disputebant disputeo sciothericorvm sciothericum  resoniores resonus

" Typically, word forms in other word classes are also not inflectional, so that the
learning problem would be trivial.
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4 FEvaluation

We now evaluate the four described systems. We start with an evaluation on
a G2P conversion task, in order to see how the systems perform in a string-to-
string translation setting different from lemmatization. We train and evaluate all
systems on the General American (GA) variant of the Combilex [20] G2P data
set. Throughout our evaluation settings, we use word accuracy as our evaluation
measure, defined as the fraction of correctly transduced forms in the test set,
i.e., it is defined as the number of strings x; in the test set that satisty y; = y;,
divided by the size of the test set. Here x; is an input form, y; is the gold
standard reference and y; is the prediction of a specific system. Word accuracy
is a strict measure that penalizes even tiny deviations from the gold standard,
but is nowadays the most common in G2P and related fields.

4.1 Testing G2P Performance

Table5 gives results when we train the systems on training sets of size 2,000,
5,000, and 10,000, respectively, and test them on a disjoint set of string pairs of
size 28,609. Phonetisaurus is clearly best in all settings, with a margin of about
7-20% over AliSeTra, depending on training set size. AliSeTra++ performs
slightly worse than AliSeTra in two out of three training set size cases, indi-
cating that the additional features tend to harm in this case, which could be due
to the fact that the system now must estimate additional (possibly irrelevant)
parameters and due to stronger overfitting given the additional degrees of free-
dom (see also the discussion below). In any case, difference between AliSeTra++
and AliSeTra is marginal. Both AliSeTra/++ and Phonetisaurus perform strik-
ingly better than each of LemmaGen and Mate on the G2P conversion task. For
example, at a training set of size 10,000, Phonetisaurus has about 66 % of the
test inputs correct, while LemmaGen has only 6.82% correct (i.e., accuracy is
about 10 times higher for Phonetisaurus) and Mate 1 %.

Table 5. Word accuracy in % as a function of training set size. G2P data.

2,000 5,000 {10,000
AliSeTra++ 38.33| 51.98| 61.26

AliSeTra 36.64| 52.43| 62.13
Phonetisaurus |44.60/57.62|66.67
LemmaGen 2.29| 4.42| 6.82

-last-4-chars | 15.30| 22.33| 36.82
Mate 0.39| 0.76| 1.00

-on-training | 89.17| 97.49| 95.26

Looking at the reasons for this discrepancy, we find that, as we have already
outlined when introducing the systems, LemmaGen can essentially only
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transform the endings of strings, which results in errors for virtually all long
words. In fact, when we test accuracy comparing only the last four charac-
ters of y; with the last four of y;, we find that the accuracy of LemmaGen
increases substantially, but is still at a much lower level than either Phoneti-
saurus or AliSeTra. For instance, at a training set size of 10,000, word accuracy
of Phonetisaurus (AliSeTra) is still 81 % (68 %) higher than that of LemmaGen,
even in this favorable setting for LemmaGen. The performance of Mate is even
(considerably) worse than that of LemmaGen. This is not due to the fact that
input and output alphabets are different in G2P conversion, as the performance
on the training data shows. Here, Mate achieves accuracy of up to 97 %, indicat-
ing that the system may be entirely overfitting the training data (e.g., storing
training data instances as lexical entries and learning minimal transformation
regularities).®

4.2 Testing Lemmatization Performance

Next, we investigate performance on the lemmatization task. Figurel shows
learning curves—accuracy as a function of training set size—for all systems when
the systems are exclusively trained and tested on verbs. We distinguish two
modes of testing:

— In-domain-testing: In in-domain testing, training and test data contain forms
that belong to the same lemma. For example, the training data might contain
the form amavisse, while the test data might contain the form amas, both of
which have amo as a lemma (however, no form in the test data also occurs in
the training data).

— Out-domain-testing: In out-domain testing, the test data contains only forms
whose lemmas do not underlie any form in the training data.

In-domain and out-domain testing intend to address different application scenar-
ios. If a statistical lemmatizer is primarily used for lemmatizing out-of-vocabulary
(OOV) forms,? out-domain-testing would be the more relevant criterion for suit-
ability of the lemmatizer. In a less restricted application scenario for the lem-
matizer, results of in-domain-testing would likely be the more relevant statistic,
particularly if training sets are large enough, since in this case, most forms to be
lemmatized in a text will either have been seen in the training data or, at least,
may be expected to be morphologically related to forms in the training data.
The figure shows that AliSeTra++ performs best now, with a slight but con-
sistent margin over AliSeTra. Particularly in out-domain testing, AliSeTra/++
perform substantially better than Phonetisaurus where difference in performance

8 In fact, it seems that Mate simply stores input strings that occur fewer than 5 times,
rather than learning substitution patterns from these (personal communication with
Bernd Bohnet). Thus, the evaluation scenario adopted in this work puts Mate at
a general disadvantage, since we generally train systems on arbitrary lists of word
pairs selected from a lexicon rather than on the distributions found in ‘real’ text.

9 E.g., when the lemmatizer is developed to assist a lexicon-based lemmatizer.
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Fig. 1. Word accuracy as a function of training set size. Left: In-domain testing. Right:
Out-domain testing. Verbs.

is between 5 and 12 %. Again, all three of the general string transduction systems
have considerably higher word accuracies than either LemmaGen or Mate, but
differences are much less pronounced than on the G2P conversion task. In fact,
in out-domain-testing, LemmaGen performs even better than Phonetisaurus, for
particular training set sizes. It is also worthy to note that LemmaGen and Mate
perform relatively stable over in-domain vs. out-domain testing, while AliSe-
Tra/++ and Phonetisaurus seem to suffer more from overfitting (put positively:
can better adapt to the distribution of the training data).

As to why AliSeTra++ performs better than AliSeTra on the verb lemmati-
zation task, an intuitive explanation would be that average segment length in the
string transduction task is correlated with effectiveness of the intra-subsequence-
character features, since longer segments are sparser and therefore harder to
estimate as whole chunks. In fact, average length of a segment in verb lemma-
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Table 6. Test set sizes.

Verbs | Nouns | Adjectives
In-domain 20,000 | 20,000 | 20,000
Out-domain | 206,347 | 39,454 | 83,295

tization is 1.53, with a maximum segment length of 10—cf. the aligned pair
(m-i-r-arenturque,m-i-r-o )—while average length of a segment in the G2P data
set is 1.14, with a maximum length of 2—cf. the aligned pair (gu-a-r-a-n-t-ee-d,
g-a-r-@-n-t-i-d).

In Tables 7, 8, and 9, we report word accuracies for the different systems on
the three word classes verbs, nouns, and adjectives. Each system is trained ten
times, on randomly extracted and not necessarily disjoint training sets of size
40,000. These training sets contain only (word form, lemma) pairs that belong to
the respective word classes. The tables report average and simple majority vote
results when each system is tested on in-domain and out-domain data, as before.
Test set sizes are indicated in Table 6. Generally, the same conclusions as for the
values shown in Fig. 1 apply—namely, that AliSeTra/++ and Phonetisaurus per-
form considerably better than LemmaGen and Mate, and that AliSeTra/++ typ-
ically perform best among all systems (particularly in the out-domain setting).

Table 7. Word accuracy in % for different systems, verbs. Each system is trained on 10
random subsets of the training data of size 40,000 each. Average and simple majority
vote results indicated. In bold: Statistically indistinguishable best performances.

Avg-InDomain | Maj-InDomain | Avg-OutDomain | Maj-OutDomain
AliSeTra 87.89 89.07 81.78 82.94
AliSeTra++ | 88.42 89.72 83.09 84.51
Phonetisaurus | 86.98 89.64 73.78 78.40
LemmaGen 78.23 81.45 76.91 80.19
Mate 66.10 67.98 64.36 66.63

Error Analysis. For verbs, typical errors are mismatches of -or/-o endings.
Such distinctions are very hard to learn for the statistical lemmatizers because
it requires to know whether a verb is a deponent verb, that is, lacks active forms.
This can actually not be regularly predicted from the characters that constitute
a form, but would require lexical knowledge. Also, mismatches between conju-
gation classes is a common source of error. For example, the verb transpicio
(‘look through’) is third conjugation class, for which the -i- ending of the stem is
characteristic. A wrong lemmatization might assign a form in the morphological
paradigm of transpicio the lemma transpico, which contains the characteristic
ending for the (most common) first conjugation class. For nouns, the decoding
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Table 8. Word accuracy in % for different systems, nouns. Each system is trained on
10 random subsets of the training data of size 40,000 each. Average and simple majority
vote results indicated. In bold: Statistically indistinguishable best performances.

Avg-InDomain | Maj-InDomain | Avg-OutDomain | Maj-OutDomain
AliSeTra 78.25 79.98 74.11 75.84
AliSeTra++ | 77.76 80.96 74.31 75.92
Phonetisaurus | 76.74 79.28 72.98 75.64
LemmaGen 75.37 78.09 72.74 75.85
Mate 72.90 73.53 70.26 71.98

Table 9. Word accuracy in % for different systems, adjectives. Each system is trained
on 10 random subsets of the training data of size 40,000 each. Average and simple
majority vote results indicated. In bold: Statistically indistinguishable best perfor-

mances.

Avg-InDomain|Maj-InDomain | Avg-OutDomain | Maj-OutDomain
AliSeTra 92.13 93.18 87.21 87.94
AliSeTra++ [91.50 92.14 87.28 87.90
Phonetisaurus|91.80 93.57 84.57 86.09
LemmaGen [85.37 86.20 84.49 85.77
Mate 71.16 71.70 70.32 71.67

problem is even more difficult for the statistical lemmatizers because gender
(e.g., -us (masculine) vs. -um (neuter) lemma ending) is, to a significant degree,
arbitrary and therefore unpredictable. Moreover, many declination classes have
identical endings for forms in certain slots of the morphological paradigms (e.g.,
-is ending in dative plural for nouns that belong to both first as well as second
declension), which is another source of difficult-to-predict error. In many of these
instances, a lexicon could act as a filtering device (see below).

As to why the joint m-gram modeling Phonetisaurus performs worse than
the discriminative model in the lemmatization task but not the G2P setting, we
find that there are significantly more distinct ‘graphones’ (pairs of correspond-
ing input-output subsequences such as (a,a) or (arenturque,0)) in a comparable
quantity of aligned (x,y) pairs (e.g., 1,217 vs. 725 distinct graphones in a lemma
vs. G2P data set, respectively, in a list of 10,000 aligned pairs), so that the basic
entity of the joint m-gram model, the graphone, is harder to estimate.

4.3 Text Evaluation

We also present an evaluation of ‘real-world’ lemmatization, i.e., when the pre-
sented lemmatizers are used for the lemmatization of word forms in the context
of sentences. To this end, we extract all words in all sentences from Perseus [22].
We discard all upper-case forms (since upper case forms generally do not occur
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Table 10. Word accuracy for different systems. Each is trained 10 times on 120,000
(word form, lemma) pairs as described in the text. Type accuracy is the fraction of
unique word forms lemmatized correctly, while token accuracy also takes frequency of
word forms into account (irregular forms, which are harder to learn, are typically much
more frequent). In bold: Statistically indistinguishable best performances.

AliSeTra++ | Phonetisaurus | LemmaGen | Mate

Type | Average | 61.09 57.67 53.07 46.71
Majority | 63.83 60.96 57.40 49.12
Token | Average | 54.38 50.04 47.01 41.43
Majority | 57.07 52.09 52.11 44.12

in the above outlined training data), and all word forms that the Perseus gold
standard does not classify as either verbs, adjectives, or nouns.

Instead of training lemmatizers separately on each word class and then trying
to resolve the resulting ambiguity upon lemmatizing a new test form x, we
directly train lemmatizers on word forms from all word classes.!’ Hence, we
train each lemmatizer on a total of 120,000 word forms, consisting of 40,000 verb
pairs, 40,000 noun pairs, and 40,000 adjective pairs each. Results are shown in
Table 10. As can be seen, AliSeTra++ performs again best and the ordering of
systems is (about) the same as in the previous experiments, i.e., AliSeTra++ >
Phonetisaurus > LemmaGen > Mate. We omit indicating the results of AliSeTra
because the CRF typically takes hours to days to train on the given training set
size.

To say a word on why results appear relatively weak compared to the previ-
ously outlined, we note the following:

— Perseus sometimes indicates lemma variants as gold standard for input forms
(e.g., in Latin i/j and u/v alternation are typically considered free variants).
We count such phenomena as errors although, from a linguistic point of view,
these would not constitute real errors. Still, from an evaluation perspective,
this does not matter since conditions for all systems are the same.

— Most importantly, note that our training distributions do not represent the
actual distributions of word forms in text. For example, we include equal
numbers of verbs, nouns, and adjectives in training, but such a distribution is
not likely to hold for real text.

— We note, however, that when we increase training set size from 120,000 word
pairs to more than 3 million word pairs, type accuracy for LemmaGen
increases from about 53 % to more than 76 % and token accuracy increases
from about 47 % to more than 74 %. Training the other lemmatizers on much
more data would be the logical next step, but is omitted in this evaluation
because training times are considerable.

10 We also performed the alternative decoding strategy where lemmatizers are sepa-

rately trained, but found it to perform worse.
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Table 11. Combining a lexicon and statistical lemmatizer.

Type | Token
Lexicon 72.21169.11
Lexicon + AliSeTra++ | 76.22 | 71.38

Table 12. TreeTagger lemma token accuracy on a subpart of the PL and accuracy
values when the lemmatizer is complemented by our trained lemmatizers.

Token Accuracy
TreeTagger 86.23 %
TreeTagger + AliSeTra++ | 88.56 %
TreeTagger + LemmaGen | 89.37 %

Finally, we address two more questions in the context of real-world lemma-
tization. The first is how a lexicon can be combined with the trained lemmatizers
that we have outlined. To this end, we (a) lemmatize each word in Perseus with
simple lexicon look-up: if the word form is in our lexicon (see Sect.3), retrieve
the corresponding lemma. If several lemmas are associated with the form, pick
one of them randomly. This strategy leads to a word type accuracy of 72.21 %
(average over ten runs). Most problems in this case are due to lemma ambiguity:
while the lexicon has an OOV rate of only 1.03 %, each form is on average asso-
ciated with 1.49 lemmas. For example, for the form canis the lexicon outputs
the lemma suggestions canes, cania, cano, canum, canus, canis. Alternatively,
(b) for each form to lemmatize, we let AliSeTra++ output its k-best lemma sug-
gestions (we choose k = 10) and choose the first-best that occurs in the lexicon.
If none of the k best is in the lexicon, we simply choose the first-best suggestion
of AliSeTra+++. Table 11 shows that this leads to a type accuracy of 76.22 %,
which is not only considerably better than AliSeTra++’s performance without
a lexicon (61.09 %) but also better than the lexicon itself.

Secondly, we ask how our trained lemmatizer can complement an existing tag-
ger or lemmatizer. To this end, we download the Latin TreeTagger from Gabriele
Brandolini'! and have it lemmatize (and tag) a subpart of the Patrologia Latinae
(PL) [16].1% This tagger and lemmatizer has a token lemma accuracy of 86.23 %
on the indicated text. About 50 % of all errors are unknown word forms. If, for
each unknown word form, we substitute the prediction of AliSeTra++ (trained
on 120,000 pairs), or LemmaGen (trained on more than 3 million pairs), lemma
token accuracy increases to 88.56 % and 89.37 %, respectively, which constitute
improvements of about 2.7 % and 3.6 %, respectively. See Table 12 for a summary.

' Available at http://www.cis.uni-muenchen.de/~schmid/tools/ TreeTagger/.
12 We could not use Perseus because the TreeTagger was trained on Perseus.
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5 Conclusion

We have considered the statistical lemmatization problem in which lemmatizers
are trained on (word form, lemma) pairs, which enables them to learn the mor-
phological processes involved in lemmatization. We have investigated whether
general purpose string-to-string transduction models are suitable for this task,
and have seen that they typically perform (much) better than more restricted
lemmatization techniques/heuristics based on suffix transformations. We have
also investigated how the learned lemmatizers can complement lexicon-based
systems, e.g., by tackling the OOV and/or the disambiguation problem.

Our next step is to train the described lemmatizers on the full size of our
database, from which we expect huge accuracy gains, since they have concur-
rently been trained only on a tiny fraction of it (much less than 10 %). For the
CRF based models, training them on the full size of our database is actually a
scaling challenge since they must then learn hundreds of millions of features, but
this can be accommodated by training many subsystems on disjoint portions of
the data and a subsequent aggregation step. For real world lemmatization, this
also requires to train the systems on distributions that reflect those found in
‘real’ text rather than on random word pair lists retrieved from a lexicon, as
done here. Finally, by combining the so-enhanced lemmatizers with our lexicon,
very high accuracy lemmatizers can be expected.
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