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Abstract. Managing complex applications over heterogeneous clouds
is one of the emerging problems in the cloud era. The OASIS Topology
and Orchestration Specification for Cloud Applications (TOSCA) aims
at solving this problem by providing a language to describe and man-
age complex cloud applications in a portable and vendor-agnostic way.
TOSCA permits to define an application as an orchestration of com-
ponents, whose types can specify states, requirements, capabilities and
management operations — but not how they interact with each other.

In this paper we propose a simple extension of TOSCA that permits to
specify the behaviour of management operations and their relations with
states, requirements, and capabilities. We show how such an extension
permits to automate various useful analyses, like determining the validity
of a management plan, which are its effects, or which plans reach certain
system configurations. Finally, we illustrate a proof-of-concept graphi-
cal interface that permits to edit and analyse management protocols in
TOSCA applications.

1 Introduction

Cloud computing has revolutionized IT, by allowing to run on-demand dis-
tributed software systems at a fraction of the cost of just a few years ago.
However, due to the lack of standardization, how to flexibly manage applica-
tions over heterogeneous clouds is still an open issue.

In this scenario, OASIS released TOSCA (Topology and Orchestration
Specification for Cloud Applications [15,17]), astandard to support the automated
management of complex cloud-based applications. TOSCA provides a modelling
language to describe, in a portable and vendor-agnostic way, a cloud application
and its management. An application is defined by instantiating component types,
and by connecting a component’s requirements to the capabilities of other compo-
nents. Its management can then be described by orchestrating the operations of
its components (like configure, install, start, etc.) into workflow plans.

Unfortunately, the current version of TOSCA [15] does not permit to specify
the behaviour of a cloud application’s management operations. More precisely,
it is not possible to describe the order in which the management operations of
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a component must be invoked, nor how those operations depend on the require-
ments or how they affect the capabilities of that component (and hence the
requirements of other components they are connected to). This implies that
the verification of whether a management plan is valid can only be performed
manually, with a time-consuming and error-prone process.

In this paper we first propose a simple extension of TOSCA that permits to
specify the behaviour of management operations and their relations with states,
requirements, and capabilities. We define how to describe the management pro-
tocols of TOSCA components by means of finite state machines whose states and
transitions are associated with conditions on the component’s requirements and
capabilities. Intuitively speaking, the objective of those conditions is to define
the consistency of component’s states and to constrain the executability of com-
ponent’s operations to the satisfaction of their requirements.

We then show how to the proposed extension of TOSCA permits to auto-
mate various analyses of management protocols, like determining whether man-
agement plans are valid, which are their effects, or which plans permit to reach
certain system configurations.

Finally, we illustrate the feasibility of our approach by describing a proof-of-
concept web-based application that permits to edit the management protocols
of TOSCA application components, and to analyse plans describing the man-
agement of a whole application.

The rest of the paper is organized as follows. Sect. 2 introduces TOSCA,
while Sect. 3 illustrates a scenario motivating the need for an explicit, machine-
readable representation of management protocols. Sect. 4 describes how TOSCA
can be extended to model the behaviour of management operations, and how
the proposed modelling permits to automate different types of analysis. Sect. 5
illustrates our proof-of-concept. Related work is discussed in Sect. 6, while some
concluding remarks are drawn in Sect. 7.

2 Background: TOSCA

TOSCA [15] is an emerging standard aimed at enabling the specification of
portable cloud applications and the automation of their management. To do
so, TOSCA provides a modelling language to describe the structure of a cloud
application as a typed topology graph, and its tasks as plans. More precisely,
each cloud application is represented as a ServiceTemplate (Fig. 1), consisting
of a mandatory TopologyTemplate and of optional management Plans. Generic
type definitions are also contained in the document defining the ServiceTem-
plate as they are referred to by the elements in its topology.

The TopologyTemplate is a typed directed graph describing the structure
of the composite cloud application. Its nodes (NodeTemplates) model the appli-
cation components, while its edges (RelationshipTemplates) model the rela-
tions among those components. NodeTemplates and RelationshipTemplates
are typed by means of NodeTypes and RelationshipTypes, respectively. A No—
deType defines (i) the observable properties of an application component, (ii)
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Fig.1. TOSCA ServiceTemplate.

the possible states of its instances, (iii) its requirements, (iv) the capabilities it
offers to satisfy other components’ requirements, and (v) its management oper-
ations. RelationshipTypes describe the properties of relationships occurring
among components. Syntactically, properties are described by PropertiesDefi-
nition, states by InstanceStates, requirements by RequirementDefinitions
(of certain RequirementTypes), capabilities by CapabilityDefinitions (of cer-
tain CapabilityTypes), and operations by Interfaces and Operations.

Plans instead allow to describe the management aspects of a ServiceTem-
plate. More precisely, each Plan is a workflow orchestrating the management
Operations offered by the application components to address (part of) the man-
agement of the whole cloud application®.

3 Motivating Scenario

Consider two utility web services, Translator and Convertor, and suppose that we
want to manage them on a TOSCA-compliant cloud platform. After describing
the services in TOSCA, we have to specify the third-party application compo-
nents needed to properly host them. For instance, we may indicate that they have
to run on an Apache server installed on a Debian operating system, which in turn
runs on an VM Ware virtual machine. Fig. 2 illustrates the resulting Topology-
Template, according to the graphical notation introduced by Winery [14]. For
the sake of readability, we focus only on the lifecycle interfaces [8] of each Node-
Type instantiated in the topology (i.e., the interfaces containing the operations
to install, configure, start, stop, and uninstall a component).

Suppose now that we want to specify the deployment of the Translator and
Convertor services by writing a TOSCA Plan. It is worth noting that, since
TOSCA does not include any representation of the management protocols of
(third-party) NodeTypes, one may produce invalid Plans. For instance, while
Fig. 3 illustrates three seemingly valid BPMN Plans, only (c) is a valid Plan.

! A more detailed and self-contained introduction to TOSCA can be found in [8].
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Fig. 3. Examples of deployment Plans.

Plan (a) is not valid since Apache’s Configure operation cannot be executed
before Apache itself is running, while Plan (b) is not valid since Apache cannot
be installed if the Debian operating system is not running.

While the validity of P1lans can be manually verified, this is a time-consuming
and error-prone process. In order to enable the automated verification of the
validity of Plans, TOSCA needs to be extended with an explicit, machine-
readable representation of NodeTypes’ management protocols.

4 Management Protocols for Cloud Applications

TOSCA NodeTypes can be described by means of their states, requirements,
capabilities, and management operations, but there is currently no way to specify
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how management operations affect states, how operations or states depend on
requirements, or which capabilities are concretely provided in a certain state.

In this section we propose an extension of TOSCA that permits to specify
the behaviour of management operations and their relations with states, require-
ments, and capabilities.

4.1 Definition of Management Protocols

Let N be a TOSCA NodeType, and let us denote its states, requirements, capa-
bilities, and management operations with Sy, Ry, Cn, and Oy, respectively.

We want to describe whether and how the management operations of N
depend on (i) other operations of the same node and/or on (ii) operations of
other nodes providing the capabilities that satisfy the requirements of V.

(i) The first kind of dependencies can be easily described by specifying the rela-
tionship between states and management operations of N. More precisely,
to describe the order with which the operations of NV can be executed, we
introduce a transition relation 7 specifying whether an operation o can be
executed in a state s, and which state is reached by executing o in s.

(ii) The second kind of dependencies can be described by associating transi-
tions and states with (possibly empty) sets of requirements to indicate that
the corresponding capabilities are assumed to be provided. More precisely,
the requirements associated with a transition ¢ specify which are the capa-
bilities that must be offered to allow the execution of . The requirements
associated with a state of a NodeType N specify which are the capabili-
ties that must (continue to) be offered by other nodes in order for N to
(continue to) work properly.

To complete the description, we also associate to each state s of a NodeType N
the capabilities provided by N in s.

Definition 1. Let N = (Sn, Ry, Cn,On, My) be a NodeType, where Sy, Ry,
Cn, and Opn are the finite sets of its states, requirements, capabilities, and man-
agement operations. My = (Sn, pN, XN, TN) s the management protocol of N,
where

— SN € Sy is the initial state,

- pN i$ a function indicating, for each state s € Sy, which conditions on
requirements must hold (i.e., pn(s) C Rn),

- XN 18 a function indicating which capabilities of N are concretely offered in
a state s € Sy (i.e., xn(s) C Cn), and

— 78 € Sy X 288 x On x Sy is a set of quadruples modelling the transition
relation (i.e., (s,H,o0,s") € 75 means that in state s, and if condition H
holds, o is executable and leads to state s’ ).

Syntactically, to represent My we slightly extend the syntax? for describing
a TOSCA NodeType. First, we enrich the description of InstanceStates by

2 A more detailed syntax for extended NodeTypes can be found in [5].
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introducing the nested elements ReliesOn and Offers. ReliesOn defines py by
enabling the association between states and conditions on requirements, while
0ffers defines y by indicating the capabilities offered in a state. Furthermore,
we introduce the element ManagementProtocol, to specify the InitialState S
of a protocol, as well as the Transitions defining its transition relation 7.
The management protocols of the NodeTypes in our motivating scenario
(Sect. 3) are shown in Fig. 4, where M g is the management protocol for Web-
Services, Mg for Server, M pg for OperatingSystem, and My, for Virtual-
Machine. Consider for instance the management protocol Mg of the Server No-

{WSRuntime} Deploy {} Start {OSCont} Install {OSCont} Start

Available
R:{}
C:{}

Notlnstalled
R:{}
C:{}

Running
R: {OSCont}
C:{SoftwareC}

NotDeployed Deployed

R:{} R:{WSRuntime}
G}

{WSRuntime} Undeploy  {} Stop {OSCont} Uninstall {OSCont} Shutdown
Muws Mos
{ServerCont} Setup {ServerCont} Run {} Start
Unavailable Stopped Working § Up
R:{} R:{} R: {ServerCont} | | 3, R:{}
C:f} C:f} C:{WebAppR} / | C:{Container}
(0]
{ServerCont} Uninstall {} Stop {} Stop
Ms Myvum

Fig. 4. Management protocols of the NodeTypes in our motivating scenario.

deType, typing a Tomcat server. Its states Sg are Unavailable (initial), Stop-
ped, and Working, the only requirement in Rg is ServerContainer, the only
capability in Cg is WebAppRuntime, its management operations Og are Setup,
Uninstall, Run, Stop, and Configure. States Unavailable and Stopped are
not associated with any requirement or capability. State Working instead speci-
fies that the capability corresponding to the ServerContainer requirement must
be provided in order for Server to (continue to) work properly. State Working
also specifies that Server provides the WebAppRuntime capability when in such
state. Finally, all transitions (but those involving operations Stop and Confi-
gure) bind their executability to the availability of the capability that satisfies
the ServerContainer requirement.

Management protocols (as per Def. 1) allow operations to have non-determi-
nistic effects (e.g., a state may have two outgoing transitions corresponding to the
same operation and leading to different states®). This form of non-determinism
is not acceptable when managing TOSCA applications [8]. We will thus focus

3 Note that the conditions of the two transitions may both hold even if the sets of
requirements they refer to are disjoint. Hence the state obtained by performing the
operation would be non-deterministic.
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on deterministic management protocols (i.e., protocols ensuring deterministic
effects when performing an operation in a state).

Definition 2. Let N = (Sy,Rn,Cn,On, My) be a NodeType. The manage-
ment protocol My = (SN, pN, XN, Tn) s deterministic if and only if

V(s1, H1,01,8)), (s2, Ha,09,85) € Ty : (51 = 82 A 01 = 02) = 8] = 54

4.2 Analysis of Management Protocols

In this section we describe different analyses that can be performed on the man-
agement protocol of a TOSCA application, such as checking the validity of a
Plan, determining its effects, or discovering Plans that allow to reach certain
system configurations.

We first define an intensional operational semantics of the management pro-
tocol of a single component (viz., a TOSCA NodeType), which models all possible
sequences of management operations that could be performed on a component
if the conditions on the needed requirements were satisfied by the environment.
Formally, the intensional semantics of the management protocol of a NodeType
N can be defined by a labelled transition system over configurations that are
the states of N.

Definition 3. Let N = (Sy, Ry,Cn,On, M) be a NodeType. The intensional
semantics of the management protocol My of N is modelled by a labelled tran-
sition system whose set of configurations is Sy and where the transition relation
1s defined by the following inference rule:

N = (SN,RN,CN,ON, Mpy) My = (5N, N XN,TN)  (s,H,0,8') € Ty

(H,0) /
s ——N S

.- s H, .
Intuitively, a transition s AH, ~ s denotes that operation o can be executed

on N when N is in state s, and under the hypothesis that condition H holds,
making N evolve into state s’.

The intensional semantics of the management protocol of a single
NodeType permits to determine the conditions that must hold in the environment
for sequences of management operations such as

(Hy,01) (Hz,02) (Hn,on)
50 N S1 N N Sh

to be effectively executable on a NodeTemplate of such NodeType.

We can now define the semantics of the management protocol of a whole
application (viz., a TOSCA ServiceTemplate) by suitably composing the inten-
sional semantics of the management protocols of the components (NodeTempla-
tes) that form such application. Formally, the semantics of the management
protocol of a ServiceTemplate S can be defined by a labelled transition system
over configurations that denote the states of the NodeTemplates of S. Intuitively,
a transition

(o,N;)
=,

G s G
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denotes that operation o can be executed on NodeTemplate INV; when the “global”
state of S is G, making S evolve into the new global state G’.

We first formally define the notion of global state of a ServiceTemplate
and introduce a shorthand notation to denote the capability connected to a
requirement in a ServiceTemplate (e.g., to denote Container as the capability
connected to the 0SContainer requirement in our motivating scenario — Fig. 2).

Definition 4. A global state of ServiceTemplate S is denoted by a set
{(Nla Sl)a ) (Nm; 3m)}

where Ny, ..., Np, is the set of NodeTemplates in S, and where s; is a state of
N;. We denote by G the initial global state S in which each NodeTemplate is in

its initial state (viz., G = {(N1,51), ..., (Nm,Sm)}).

We also denote by caps(r) the (partial) function associating a requirement r
with the capability connected to r in S by means of a RelationshipTemplate.

We can now formally define the semantics of the management protocols in a
ServiceTemplate S. Intuitively, a management operation o can be executed on
a NodeTemplate N; only if all the requirements needed by N; to perform o are
satisfied by the capabilities provided by (other) NodeTemplates in S.

Definition 5. The semantics of the management protocols in a ServiceTem—
plate S is modelled by a labelled transition system whose configurations are the
global states of S, and where the transition relation is defined by the following
inference rule:

G = {(Nl,sl), ey (Ni,si)7 ey (Nm,sm)}
G ={(N1,s1)s---,(Ni,85), ..., (N, Sm) }

i M]\/i sy Vr e H:caps(r) is defined A caps(r) € U xn,(s5)
i=1
G <OaN7L> g G/

Definition 5 permits to model the evolution of a ServiceTemplate when a
sequence of management operations is executed:

(01,Niy) (02,Ni,) (on,Ni, )
FREE

Go s Gi s Gp.
It is worth observing that while Definition 5 checks that the requirements needed
by a NodeTemplate N, to perform an operation o are satisfied by the capabilities
provided by the (other) NodeTemplates in .S, it does not check whether after
performing o the requirements assumed by (the states of) all NodeTemplates
will continue to be satisfied. We hence introduce the notion of consistent global
state of a ServiceTemplate.

Definition 6. A global state {(N1,$1), ..., (Nm, Sm)} of a ServiceTemplate S
1s consistent if and only if

m

Vi € {1.m},Vr € pn,(s:) : caps(r) is defined A capg(r) € U X, (55)-
j=1
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Definitions 5 and 6 allow us to formally characterize the validity of a sequence

of management operations.

Definition 7. A sequence 0105 ...0, of management operations is valid from a
global state Gy of a ServiceTemplate S if and only if:

o01,N; 02,N; on,N;
Go<1 1>SG1<2 2>S"'< Nn>SGn

and each G; is a consistent global state.

The validity of a TOSCA Plan descends immediately from Def. 7.

Definition 8. Let G be a global state of a ServiceTemplate S. A Plan P for
S is valid from G if and only if all its sequential traces are valid in G.

It is easy to see now that the deployment plan (c) of Fig. 3 is valid since, by
starting from the initial global state, all its sequential traces are valid (and reach
the same global state). Conversely, Plans (a) and (b) in Fig. 3 are not valid as
their traces are not valid. More precisely, Plan (a) is not valid since all its
sequential traces produce the derivation shown in Fig. 5, and Apache:Configure

VMWare Debian Apache Translator Convertor
Down NotInstalled | Unavailable | NotDeployed NotDeployed
l VMare : Start
VMWare Debian Apache Translator Convertor
Up Notinstalled | Unavailable | NotDeployed NotDeployed
% Debian : Install
VMWare Debian Apache Translator Convertor
Up Available Unavailable | NotDeployed = NotDeployed
% Debian : Start
VMWare Debian Apache Translator Convertor
Up Running Unavailable | NotDeployed = NotDeployed
u Apache : Setup
VMWare Debian Apache Translator Convertor
Up Running Stopped NotDeployed = NotDeployed

Fig. 5. Initial evolution according to Plan (a) in Fig. 3.

cannot be executed in the reached global state (because it requires Apache to
be in state Working, instead of Stopped). On the other hand, Plan (b) is not
valid since all its traces start as shown in Fig. 6, and Apache:Setup cannot be
executed in the reached global state. It indeed requires the capability satisfying
Apache’s ServerContainer to be provided, but that capability is not provided
when Debian is not in state Running.

The introduced modelling can be exploited for various other purposes besides
checking Plans validity. For instance, valid Plans may not be enough, as their
sequential traces may reach different global states. It is thus interesting to char-
acterize deterministic Plans.



28 A. Brogi et al.

VMWare Debian Apache Translator Convertor
Down Notlnstalled | Unavailable | NotDeployed NotDeployed
& VMare : Start
VMWare Debian Apache Translator Convertor
Up NotInstalled | Unavailable | NotDeployed NotDeployed
l Debian : Install
VMWare Debian Apache Translator Convertor
Up Available Unavailable = NotDeployed NotDeployed

Fig. 6. Initial evolution according to Plan (b) in Fig. 3.

Definition 9. Let G be a global state of a ServiceTemplate S. A walid Plan
P for S is deterministic from G if and only if all its sequential traces reach the
same global state G'.

It is also interesting to compute the effects of a valid P1lan P on the states of the
components of a TOSCA ServiceTemplate, as well as on the requirements that
are satisfied and the capabilities that are available. Such effects can be directly
determined from the global state(s) reached by performing the sequential traces
of P. Moreover, the problem of finding whether there is a deployment Plan
which starts from the initial global state G and achieves a specific goal (e.g.,
bringing some components of an application to specific states or making some
capabilities available) can be solved with a breadth-first search of the reachable
global states. The same approach also works in the case of generic management
plans (i.e., plans starting from a generic global state G), and it permits to find the
sequential Plans (if any) allowing to reach a certain goal from whatever starting
G. It also allows to characterize an interesting property that a ServiceTemplate
may exhibit: if it is possible to reach the intial global state G from any G that
is reachable from G itself, then it is always possible to generate a plan for any
(reachable) goal from any (reachable) global state. This ensures reversibility of
actions, meaning that whatever G we reach from G, we can always get back to

G, thus always permitting a (soft) reset of the application.

5 Proof-of-Concept Implementation

We now illustrate the feasibility of our approach by introducing BARREL, a web-
based application* that permits to edit and analyse management protocols in
TOSCA applications. In the following, we shall not deepen into implementation
details, but rather focus on how BARREL can be used to edit and analyse existing
TOSCA applications.

4 BARREL’s interface is written in HTML5, while its back-end is written in JavaScript.
The application can be accessed at http://ranmad2.github.io/MProt/ with any mod-
ern web-browser, like Google Chrome or Mozilla Firefox. The source code is publicly
available at https://github.com/ranma42/MProt.


http://ranma42.github.io/MProt/
https://github.com/ranma42/MProt

Modelling and Analysing Cloud Application Management 29

The very first step is to import a CSAR package® containing a ServiceTem-
plate, as well as the NodeTypes instantiated in its TopologyTemplate. Once
the CSAR is loaded, the NodeTypes’ names appear in the left hand pane of
BARREL’s interface (Available NodeTypes), and by selecting one of them the user
can start editing its management protocol (Fig. 7). The management protocol

IMPORT CSAR EXPORT CSAR ANALYZE info

Available TOOLBOX

NodeTypes
2 Available

VirtualMachine & Set as initial state

OperatingSystem ie::?:;wement
WebService - Remove requirement..
Server ! Lifecycle:install R e
—---=- Lass : {OSCentainer} “ Add capability..
Show XML ! Re\ilelzeg:d(ec:)‘sjggr‘wﬁ:en 1 e i

_____ Running Outgoing transitions:

peRson: “ Add transition.

- OSContainer -

et Offers: “ Remove transition..
- SoftwareContainer

T ——
Lifecycle:Start

Available
Relies on:
Offers:

Lifecycle:Shutdown

Fig. 7. Screenshot of BARREL: Editing mode.

is visualized in the central pane, by displaying the selected NodeType’ states
and the transitions among these states (if any). By clicking on a state s, a
dedicated TOOLBOX opens in the right pane. This TOOLBOX permits editing
the current values of p(s), x(s), and 7(s), by allowing the user to update the
set of requirements on which the selected state s relies, the set of capabilities it
offers, and its outgoing transitions. Such updates can also be viewed directly in
the XML source of the current NodeType, by clicking on the Show XML button in
the left pane. Once the NodeTypes’ management protocols have been edited, the
updated CSAR can be downloaded through the EXPORT CSAR functionality.
Users can also analyse the behaviour of the management operations appear-
ing in the imported ServiceTemplate by selecting the ANALYZE option in the
top menu. As a result, BARREL pops out a window showing the current global
state of the application topology (Fig. 8). More precisely, the window lists all the
NodeTemplates in the TopologyTemplate, each associated with its current state,
the requirements it relies on, the capabilities it offers and the operation actually
available. Each operation is highlighted in green if all the capabilities connected

5 A CSAR (Cloud Service ARchive) is a compressed zip file containing the TOSCA
definitions describing the cloud application, along with the concrete artefacts imple-
menting its components [15].
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IMPORT CSAR EXPORT CSAR ANALYZE

ANALYZER

VMWare [VirtualMachine]
State: Up Capabilities: { Container} Requirements: {}

Lifecycle:Stop

Debian [OperatingSystem]
State: Running _ Capabilities: { SoftwareContainer} Requirements: { OSContainer}

Lifecycle:Shutdown

Apache [Server]
State: Stopped Capabilities: {} Requirements: {}

Lifecycle:Run| |Lifecycle:Uninstall

Convertor [WebService]
State: NotDeployed Capabilities: { } Requirements: { }

Translator [WebService_2]
State: NotDeployed Capabilities: { } Requirements: { }

Fig. 8. Screenshot of BARREL: Analysis mode.

to the requirements needed to execute it are currently available, otherwise it
is highlighted in yellow. By clicking on a (green) operation users can simulate
its execution, thus updating the current global state and then the ANALYZER
window. If the reached state is inconsistent, a warning banner is displayed.

With the simple, interactive ANALYZER of BARREL, users can perform the
analyses described in Sect. 4.2. For instance, to check whether a Plan is valid,
they just need to simulate its sequential traces and check that no inconsistent
state is traversed. They can also compute the effects of a valid Plan on states,
capabilities and requirements by looking at the initial and final configurations
displayed by the ANALYZER window. In this first version of BARREL, developers
can only perform these analyses interactively, by manually clicking on the (green)
operations and by looking at how they affect the global state®.

It is worth noting that BARREL is already partially integrated with the Open-
TOSCA open source ecosystem [3,14]. BARREL is indeed able to process CSARs
developed with the visual editor Winery [14], and it produces CSARs that can
be imported in Winery”.

6 As part of our future work, we intend to extend BARREL in a working prototype
capable of automatically performing all the aforementioned analyses.

7 While Winery imports the CSARs generated by Barrel, it does not properly process
the information concerning management protocols. This is obviously because the
extension to TOSCA we propose is not yet part of the TOSCA standard, and hence
not (yet) supported in the OpenTOSCA open source environment.
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6 Related Work

The problem of automating application management is well-known in computer
science. In the cloud era, it has become even more prominent because of the
complexity of both applications and platforms [9]. This is witnessed by the pro-
liferation of so-called “configuration management systems”, like Chef [10] or
Puppet [18]. These management systems provide domain-specific languages to
model the desired configuration for a software solution, and employ a client-
server model to ensure that such configuration is met. However, the lack of a
machine-readable representation of how to effectively manage cloud application
components inhibits the possibility of performing automated analyses on com-
ponents’ configurations and dependencies.

A first attempt to model the deployment of cloud-based applications was the
Aeolus component model [11]. The Aeolus model shares our objective of describ-
ing various characteristics of cloud applications’ components, including the possi-
bility that component interfaces may vary depending on the internal component
state. However, the Aeolus model only permits specifying what is offered and
required in a state. Our approach instead allows developers to distinguish the
requirements ensuring the consistency of a state from those constraining the
applicability of a management operation. This permits to express transitions
whose requirements concerns only the applicability of an operation and not the
consistency of a state (e.g., the transition (Unavailable, {ServerContainer},
Setup, Stopped) of the protocol Mg in Fig. 4). Such kind of transitions can-
not be directly modelled in Aelous (without introducing dummy intermediate
states). Furthermore, Aelous and other emerging solutions, like Juju [13] or
Engage [12], differ from our approach since so far they focus on the deployment
of a cloud application, rather than on its whole management. Aelous, Juju, and
Engage also differ from our approach since they are currently not integrated
with any cloud interoperability standard.

TOSCA'’s rich type system has been exploited to devise various techniques
that facilitate the the reuse of available services, like [4,7,19]. Those techniques
permit to match and adapt (fragments of) existing ServiceTemplates to imple-
ment a desired NodeType by checking that the features of the latter are all pro-
vided by the former. While those techniques are capable of overcoming various
syntactical differences, they do not take into account the behaviour of man-
agement operations. Namely, they do not check whether the behaviour of a
(fragment of) ServiceTemplate is compatible with the desired behaviour of
a NodeType. As our proposal extends TOSCA’s type system, it can be natu-
rally exploited to extend the reuse techniques based on TOSCA, like [4,7,19], to
account for management behaviour.

Finally, we have investigated the possibility of employing composition-ori-
ented automata (like interface autonata [1]) to model valid plans directly as
the language accepted by the automaton obtained by composing the automata
modelling the management protocols of the components of an application. The
main drawbacks of such an approach are the size of the obtained automaton
(which grows exponentially with the number of application components and
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hence makes the automaton scarcely readable even for simple applications), and
the need of recomputing the automaton whenever a new component is added or
its management protocol is modified.

7 Conclusions

In this paper we have proposed an extension of TOSCA to model the behaviour
of management operations and their relations with states, requirements, and
capabilities. We have then illustrated how such modelling permits to automate
different analyses, such as determining whether a management Plan is valid,
which are its effects, or which Plans allow to reach certain system configura-
tions. To illustrate the feasibility of the proposed approach, we have developed
a proof-of-concept graphical interface that permits to edit NodeTypes’ manage-
ment protocols and to analyze ServiceTemplates’ Plans.

It is worth noting that, even if some of the behaviour-aware analyses dis-
cussed in Sect. 4.2 have exponential time complexity in the worst case, they
still constitute a significant improvement with respect to the state-of-the-art, as
currently the development and validation of Plans is performed manually, after
delving through the documentation of the application’s components.

It is also worth observing that our approach builds on top of, but is not
limited to, TOSCA. It can indeed be adapted to other languages for specifying
cloud applications (e.g., like CAMP [16] or GENTL [2]), and more in general
to any stateful behaviour model of systems that describe states, requirements,
capabilities, and operations.

We are currently investigating the possibility of modelling management pro-
tocols for cloud-based applications with Petri nets [6], with the objective of
expressing some of the analyses described in Sect. 4.2 in terms of well-known
Petri net notions (e.g., expressing Plan’s validity in terms of firing sequences,
or reducing Plan determination to coverability) and hence to possibly exploit
some of the many available tools supporting the analyses of Petri nets. We see
two other directions for immediate future work. On the one hand, we intend
to extend our proof-of-concept BARREL into a working prototype supporting
all the analyses described in Sect. 4.2, and to fully integrate it with the Open-
TOSCA open source environment [3,14]. On the other hand, as we anticipated
in Sect. 6, another interesting direction for future work is to extend the matching
and adaptation reuse techniques based on TOSCA [4,7,19] to take into account
the management behaviour of cloud-based applications.
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