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Abstract. Since introduced by Reiter in his seminal 1980 paper: ‘A
Logic for Default Reasoning’, the subject of reasoning with default rules
has been extensively dealt with in the literature on nonmonotonic reason-
ing. Yet, with some notable exceptions, the same cannot be said about its
proof theory. Aiming to contribute to the latter, we propose a tableaux
based proof calculus for a propositional variant of Reiter’s presentation
of reasoning with default rules. Our tableaux based proof calculus is
based on a reformulation of the semantics of Reiter’s view of a default
theory, i.e., a tuple comprised of a set of sentences and a set of default
rules, as a premiss structure. In this premiss structure, sentences stand
for definite assumptions, as normally found in the literature, and default
rules stand for tentative assumptions, as opposed to rules of inference, as
normally found in the literature. On this basis, a default consequence is
defined as being such relative to a premiss structure, as is our notion of a
default tableaux proof. In addition to its simplicity, as usual in tableaux
based proof calculi, our proof calculus allows for the discovery of the
non-existence of proofs by providing corresponding counterexamples.

1 Introduction

It is commonly recognized that the subject of reasoning with default rules, hence-
forth default reasoning, occupies a prominent role in the logical approach to
non-monotonic reasoning. Introduced by Reiter in his seminal 1980 paper, ‘A
Logic for reasoning with Default Rules’ (q.v. [1]), default reasoning has been
extensively investigated from a syntactical and semantical point of view, with
several variants to Reiter’s original ideas being proposed (q.v. [2]).

On the other hand, the proof theoretical aspects of default reasoning seem
to have received far less attention. More precisely, Reiter’s own discussion on
a proof theory for normal default rules, in the later sections of [1], does not
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necessarily formulate a proof calculus, for it gives no particular set of rules for
constructing proof-like objects. Instead, for us, this discussion is best understood
as another way of formally defining the concept of an extension, in this case for
default rules that are normal. In the context of tableaux methods, works such
as that of Risch in [3] and that of Amati et. al. in [4] are also focused on the
concept of an extension, extending the work of Reiter by providing tableaux
based definitions, and by proving some general properties, of its major variants.
However, in and of themselves, neither [3] nor [4] present a tableaux based proof
calculus, i.e., a mechanization of a consequence relation, for default reasoning.

In contrast, a noteworthy contribution in a rather traditional proof-theoretical
line of research is the work of Bonatti and Olivetti in [5]. Therein, the authors
present a sequent calculus for what they call skeptical default logic, a proposi-
tional variant of Reiter’s presentation of default reasoning where default conse-
quences are drawn skeptically. The work of Bonatti and Olivetti gains in interest
for it introduces a complete mechanization of a consequence relation for default
reasoning in proof-theoretical terms via the notion of an anti-sequent calculus.

In this work, also in a rather traditional proof-theoretical line of research, at
least when seen from the perspective of a standard presentation of a tableaux
method, we present a tableaux based proof calculus for a propositional variant of
Reiter’s presentation of default reasoning where default consequences are taken
skeptically. More precisely, we reformulate the semantics of Reiter’s view of a
default theory, i.e., a tuple comprised of a set of sentences and a set of default
rules, as a premiss structure. In this premiss structure, sentences stand for def-
inite assumptions, as commonly found in the literature on default reasoning,
and default rules stand for tentative assumptions, a departure from the common
treatment of default rules as rules of inference normally found in the literature
on default reasoning. It is on this basis that we propose our tableaux based proof
calculus. In doing this, we have two main goals in mind. First, we aim at con-
tributing to the mechanization of the notion of derivability for default reasoning.
Second, we view the tableaux based proof calculus that is presented here as a
first step towards an abstract definition of default tableaux proof calculi, i.e.,
one that is independent of the underlying logical system. To give an idea of the
latter, a tableau method for a logic L is a procedure for testing for the existence
of models for sets of formulas of L which can be used to construct canonical
models by applying rules for decomposing formulas into their components in a
structured and semantics preserving way. In the presence of negation,1 a tech-
nique for building models can be understood as a refutation mechanism for the
logic. This allows for tableaux methods to be used as proof calculi (for a set of
sentences Γ ∪ {σ} of L, proving σ from Γ , Γ �L σ, requires us to check that
there is no model of Γ ∪ {¬σ}). Model construction and provability as features
of a tableaux method for a logic L accommodate the use of default rules defined

1 A logic L defined on a language L is said to have negation if for any sentence σ in
L , there is a sentence σ′ in L , denoted as ¬σ, such that for any set Γ of sentences
in L , Γ |=L σ iff Γ �|=L ¬σ (where |=L indicates semantic entailment in L).
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on the language of L in the form of premiss assumptions that are only used
tentatively. These features set the context for a default tableaux method.

Structure of this work: §2 introduces the basics of a tableaux based proof calculus
for classical propositional logic and a propositional variant of Reiter’s presen-
tation of default reasoning; §3 introduces our proposed tableaux based proof
calculus for the propositional variant of Reiter’s presentation of default reason-
ing in question; §4 discusses our ideas; lastly, §5 offers some conclusions and
comment on some of the further work that we plan to undertake.

2 Preliminaries

2.1 Propositional Tableaux

Let L be the standard propositional language determined by a denumerable set
of propositional symbols p, q, . . . and the logical connectives of: � and ⊥ (‘truth’
and ‘falsity’); ¬ (‘negation’); ∧, ∨, and ⊃ (‘conjunction’, ‘disjunction’, and ‘ma-
terial implication’). Members of L , indicated by lowercase Greek letters, are
called sentences. A substitution is a mapping s from the propositional symbols
of L into L . It is a well-known result that any substitution s extends uniquely
to all members of L . A sentence σ is a substitution instance of another sentence
σ′ iff σ = s(σ′) for s a substitution. A sentence σ is: a literal if it is either a
propositional variable or a negation thereof; of linear type if it is a substitution
instance of p∧q, ¬(p∨q), ¬(p ⊃ q), or ¬¬p; of branching type if it is a substitution
instance of ¬(p∧q), p∨q, or p ⊃ q. The lowercase Greek letters α and β indicate
arbitrary sentences of linear and branching type, respectively. The components
of a sentence α of linear type, and of a sentence β of branching type, indicated
as α1 and α2, and as β1 and β2, respectively, are defined as usual – e.g., if α is a
substitution instance of p∧q, then, its components are the corresponding substi-
tution instances of p and q, respectively; if β is a substitution instance of p ⊃ q,
then, its components are the corresponding substitution instances of ¬p and q,
respectively. The previous unifying notation, quoting Smullyan, “will save us
considerable repetition of essentially the same arguments” (q.v. [6, pp. 20–21]).

Definition 1 (Tableau from Premisses). Let σ be a sentence and Γ be a
finite set of sentences; the set of all tableaux for σ with premisses in Γ is the
smallest set of labeled trees T that satisfies the following conditions:

R0 The unique one-node labeled tree with label {σ}∪Γ ′, where Γ ′ ⊆ Γ , is in T .
– Let τ be in T , l be a leaf of τ with label Γ ′, and τ ′ a labeled tree:

R1 If a sentence α of linear type belongs to Γ ′, and τ ′ is obtained from τ by
adding a new node n′ with label Γ ′ ∪ {α1, α2} as an immediate successor of
l, then, τ ′ belongs to T .

R2 If a sentence β of branching type belongs to Γ ′, and τ ′ is obtained from τ
by adding two new nodes n′ and n′′ with labels Γ ′ ∪ {β1} and Γ ′ ∪ {β2},
respectively, as immediate successors of l, then, τ ′ belongs to T .
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R3 For any sentence γ in Γ , if τ ′ is obtained from τ by adding a new node n′

with label Γ ′ ∪ {γ} as immediate successors of l, then, τ ′ belongs to T .

A labeled tree τ is a tableau for σ with premisses in Γ iff it is a member of T .

Definition 1 emphasizes the view of tableau constructions as proof-theoretical
objects, more precisely, proof attempts, i.e., we view a tableau for ¬σ with pre-
misses in Γ as an attempt at proving that σ is a consequence of the set of pre-
misses Γ , with any closed tableau for ¬σ with premisses in Γ being a successful
proof attempt, i.e., a proof. This view of a proof is made precise in Definition 3
with the aid of Definition 2.

Definition 2 (Closed Tableau). Let τ be a tableau for σ with premisses in
Γ ; a node n of τ with label Γ ′ is closed iff one of the following conditions holds:

– {⊥,¬�} ∩ Γ �= ∅.
– {σ,¬σ} ⊆ Γ for some sentence σ.

The node n is open iff it is not closed. The tableau τ is closed iff all its leaf nodes
are closed, otherwise τ is open.

Definition 3 (Proof). Let σ be a sentence and Γ a finite set of sentences; a
proof of σ from Γ is a closed tableau for ¬σ with premisses in Γ . The sentence σ
is provable from Γ iff there is a proof of σ from Γ . In addition, σ is a consequence
of Γ , or follows from Γ , indicated by Γ � σ, iff σ is provable from Γ .

(a) ¬r
p ⊃ (q ⊃ r)

(b) ¬r
p ⊃ (q ⊃ r)
¬p

(c) ¬r
p ⊃ (q ⊃ r)
q ⊃ r

(d) ¬r
p ⊃ (q ⊃ r)
¬p
p

(e) ¬r
p ⊃ (q ⊃ r)
q ⊃ r
¬q

(f) ¬r
p ⊃ (q ⊃ r)
q ⊃ r
r

(g) ¬r
p ⊃ (q ⊃ r)
q ⊃ r
¬q
q

Fig. 1. Tableau for ¬r with premisses in {p, q, p ⊃ (q ⊃ r)}

Fig. 1 depicts proof of r from {p, q, p ⊃ (q ⊃ r)}. In this figure, (a) is the initial
node from which τ is constructed as per R0 in Definition 1; nodes (b) and (c)
are added as immediate successors of (a) as per R2 in Definition 1; nodes (d) is
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added as an immediate successor of (b) as per R3 in Definition 1; nodes (e) and
(f) are added as immediate successors of (c) as per R2 in Definition 1; and lastly,
node (g) is added as an immediate successor of (e) as per R3 in Definition 1.

While finding a proof of σ from Γ is the same as finding that there are no
models of Γ ∪ {¬σ}, the latter being a more common use for tableau construc-
tions, we favor the view of tableau constructions as proof attempts for it more
readily construes the method of tableaux as a proof calculus. It is a well-known
result that such a proof calculus is both sound and complete with respect to the
standard model theory of classical propositional logic (q.v. [6]).

Moreover, there are two properties of the previous presentation of the method
of tableaux as a proof calculus that are worth noting: (i) it can be demonstrated
that any attempt at proving that σ follows form Γ can be extended to a successful
one if such a proof were to exist; and (ii) tableau constructions also make it
possible to discover the nonexistence of proofs by looking at some particular
tableau constructions. The second point is made precise below.

Definition 4 (Completed Tableau). Let τ be a tableau for σ with premisses
in Γ ; a node n of τ with label Γ ′ is completed iff the following conditions are
met:

– For any sentence α of linear type, if α ∈ Γ ′, then, {α1, α2} ⊆ Γ ′.
– For any sentence β of linear type, if β ∈ Γ ′, then, either β1 ∈ Γ ′ or β2 ∈ Γ ′.
– Γ ⊆ Γ ′.

The tableau τ is completed iff all leaf nodes of τ are completed.

(a) ¬r
p ∧ q ⊃ r

(b) ¬r
p ∧ q ⊃ r
¬(p ∧ q)

(c) ¬r
p ∧ q ⊃ r
r

(d) ¬r
p ∧ q ⊃ r
¬(p ∧ q)
¬p

(e) ¬r
p ∧ q ⊃ r
¬(p ∧ q)
¬q

(f) ¬r
p ∧ q ⊃ r
¬(p ∧ q)
¬p
p

(g) ¬r
p ∧ q ⊃ r
¬(p ∧ q)
¬q
p

Fig. 2. Tableau for ¬r with premisses in {p, p ∧ q ⊃ r}

From the perspective of a proof calculus, Definition 4 gains in interest for: (i)
it indicates to us when to stop in the construction of a sought after proof; and
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(ii) if a completed tableau is not closed, i.e., it has a leaf node that is open, then,
the set of sentences labeling this node is satisfiable (q.v. node (g) in Fig. 2).
This result, known as Hintikka’s lemma, q.v., [6, pp. 26–28], indicates that the
sought after proof does not exist (a result that will be used in the definition of
a tableaux method for default reasoning presented in Section 3). Non-existence
of proofs is made precise in Proposition 1.

Proposition 1. Let τ be a tableau for ¬σ with premisses in Γ ; if τ has a leaf
node that is open and complete, then, no expansion of τ results in a closed tableau
for ¬σ with premisses in Γ , i.e., a proof of σ from Γ .

2.2 Reasoning with Default Rules

The set D of all default rules defined on the standard propositional language L
is the set of all tuples

π : ρ

χ

where {π, ρ, χ} ⊆ L . Members of D , for inline formatting purposes displayed
as π : ρ / χ, are called default rules. In a default rule π : ρ / χ, the sentences
π, ρ, and χ are called: prerequisite, justification, and consequent, respectively.
For a set of default rules Δ, Π(Δ) indicates the set of all prerequisites of the
default rules in Δ, i.e., Π(Δ) = {π | π : ρ / χ ∈ Δ}; P (Δ) indicates the set
of all justifications of the default rules in Δ, i.e., P (Δ) = {ρ | π : ρ / χ ∈ Δ};
and X(Δ) indicates the set of all consequents of the default rules in Δ, i.e.,
X(Δ) = {χ | π : ρ / χ ∈ Δ}.

Departing from the position sustaining that a default rule is a defeasible
rule of inference, i.e., a rule of inference that is open to revision or annulment,
commonly found in the literature on default reasoning, we view a default rule
π : ρ / χ as indicating an assumption that is made tentatively: χ can be posited
provided that π is fulfilled and that ρ is not established (ρ acts as a rebuttal
condition). This view of default rules is based on the observation that they are
not logic defining rules of inference, but, instead, they are premiss-like objects
defined in the logic. On this basis, given a set of sentences Φ and a set of default
rules Δ, we reformulate Reiter’s view of 〈Φ,Δ〉 as a default theory, q.v. [1, p. 88],
as a premiss structure. In this premiss structure, the sentences in Φ stand for
definite assumptions and the default rules in Δ stand for tentative assumptions.

The notion of a default consequence δ of a premiss structure 〈Φ,Δ〉, indicated
by 〈Φ,Δ〉 |∼ δ, is then justified resorting to the notion of an extension. More
precisely, a sentence δ is a default consequence of a premiss structure 〈Φ,Δ〉 iff
for every extension E of 〈Φ,Δ〉, E � δ. In this respect, an extension is seen as
an interpretation structure of a syntactical kind, i.e., the usual role of a model
is taken up by an extension. The notion of an extension in question here is
introduced in Definition 7 with the aid of Definitions 5 and 6. Several other
variants of Reiter’s notion of an extension are presented in [2].

Definition 5. A set of default rules Δ is tentative w.r.t. a set of sentences Γ
iff every π : ρ / χ ∈ Δ is such that: (i) Γ � π, and (ii) Γ ∪X(Δ) �� ρ.



12 V. Cassano, C.G. Lopez Pombo, and T.S.E. Maibaum

Example 1. The set of default rules {p : q / r, r : s / t} is tentative w.r.t. the set
of sentences {p}, but not w.r.t. the set of sentences {p, q}.
Definition 6. A set of default rules Δ is sequentiable w.r.t. a set of sentences
Φ iff there is a chain C of subsets of Δ ordered by inclusion such that: (i) ∅ ∈ C;
(ii) let Δ′ ∈ C and δ ∈ Δ \Δ′, if Δ′ ∪ {δ} is tentative w.r.t. Φ ∪ X(Δ′), then
Δ′ ∪ {δ} ∈ C; and (iii) Δ =

⋃
Δ′∈C Δ′.

Example 2. The set of default rules {p : q / r, r : s / t} is sequentiable w.r.t. the
set of sentences {p}. The set of default rules {p : u / q ∧ t, p : t / r ∧ u} is not
sequentiable w.r.t. the set of sentences {p}.
Definition 7 (Extension). Let Φ be a set of sentences and Δ be a set of default
rules; the class E of extensions of 〈Φ,Δ〉 consists of all sets Φ ∪ X(Δ′), where
Δ′ is a subset of Δ such that: (i) Δ′ is sequentiable w.r.t. Φ; and (ii) for any
other Δ′′ ⊆ Δ that is sequentiable w.r.t. Φ, if Δ′ ⊆ Δ′′, then, Δ′′ = Δ′. A set E
of sentences is an extension of 〈Φ,Δ〉 iff E ∈ E .

Example 3. The class of extensions associated to the premiss structure 〈{p, p ⊃
(q ∨ r ⊃ s)}, {p : u / q ∧ t, p : t / r ∧ u}〉 consists of the sets E1 and E2 defined
as: E1 = {p, p ⊃ (q ∨ r ⊃ s), q ∧ t}, and E2 = {p, p ⊃ (q ∨ r ⊃ s), r ∧ u}.

Proposition 2 states two important properties that are satisfied by extensions
if defined as in Definition 7.

Proposition 2. For every premiss structure 〈Φ,Δ〉, the class E of extensions
of 〈Φ,Δ〉 is not empty. Moreover, extensions, as in Definition 7, satisfy the
property of semimonotonicity, i.e., for any two premiss structures 〈Φ,Δ〉 and
〈Φ,Δ ∪Δ′〉, every extension of 〈Φ,Δ〉 is included in some extension of 〈Φ,Δ′〉.

Examples 4 and 5 illustrate the way in which the notion of an extension
justifies the notion of a default consequence.

Example 4. Let 〈Φ,Δ〉 be the premiss structure of Example 3, the sentence s
is a default consequence of 〈Φ,Δ〉. To see why this is the case, observe that
the class of extensions associated to this premiss structure is comprised of the
extensions: E1 = {p, p ⊃ (q ∨ r ⊃ s), q ∧ t}, and E2 = {p, p ⊃ (q ∨ r ⊃ s), r ∧ u}.
Immediately, E1 � s and that E2 � s. Hence 〈Φ,Δ〉 |∼ s.

Example 5. At the same time, observe that if 〈Φ,Δ〉 is as in Example 3, the
sentence t is not a default consequence of 〈Φ,Δ〉. To see why this is the case,
observe that, whereas E1 � t, E2 �� t. Hence 〈Φ,Δ〉 �|∼ t.

It should be noted that, given the machinery presented above, determining
whether a sentence is a default consequence of a premiss structure requires an
enumeration-based approach, i.e., all extensions associated to the premiss struc-
ture in question must be constructed in order to check whether the alleged default
consequence is indeed so (something that may be done by constructing suitable
tableaux and checking whether they are closed, e.g., following the approaches
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proposed in [3] and in [4]). This enumeration-based approach is rather inefficient
for two main reasons. First, constructing all extensions associated to a premiss
structure is rather costly, the number of extensions associated with non-trivial
premiss structures being exponential in the number of default rules. Second, enu-
merating all extensions associated to a premiss structure requires us to consider
all default rules in this premiss structure. What is then needed is a systemati-
zation of the kind of reasoning involved in proving in all extensions, i.e., a proof
calculus for default reasoning. In that respect, being able to check that a sen-
tence is a default consequence of a premiss structure resorting only to a part of
this premiss structure is a highly desirable feature of a proof calculus for default
reasoning. Although this is not a trivially achieved, we incorporate it as a basic
guiding feature in the tableaux based proof calculus that we present in Section 3.

3 Default Tableaux

Definition 8 introduces the basic elements of the tableaux based proof calculus
for default reasoning, the notion of a default tableau.

Definition 8 (Default Tableau). Let σ be a sentence, and Φ and Δ be finite
sets of sentences and default rules, respectively; the set of all default tableaux for
σ with premisses in 〈Φ,Δ〉 is the smallest set Tdr of labeled trees that satisfies
the following conditions:

R0 The unique one-node labeled tree with label 〈Φ ∪ {σ}, ∅〉 is in Tdr.
– Let τ be in Tdr, l a leaf node of τ with label 〈Φ′, Δ′〉, and τ ′ a labeled tree:

R1 If a sentence α of linear type belongs to Φ′, and τ ′ is obtained from τ by
adding a new node n′ with label 〈Φ′∪{α1, α2}, Δ′〉 as an immediate successor
of l, then, τ ′ is in Tdr.

R2 If a sentence β of branching type belongs to Φ′, and τ ′ is obtained from τ by
adding two new nodes n′ and n′′ with labels 〈Φ′∪{β1}, Δ′〉 and 〈Φ′∪{β2}, Δ′〉,
respectively, as immediate successors of l, then, τ ′ is in Tdr.

– Let n be a node of τ with label 〈Φ′, Δ′〉:
R3 For any default rule π : ρ / χ in Δ, if τ ′ is obtained from τ by adding a new

node n′ with label 〈Φ′ ∪ {χ}, Δ′ ∪ {π : ρ / χ}〉 as an immediate successor of
n, then, τ ′ is in Tdr iff the following side conditions are satisfied:
(a) there is a closed tableau for ¬π with premisses in Φ ∪X(Δ′), and
(b) for every ρ′ ∈ P (Δ′) ∪ {ρ}, there is a tableau for ¬ρ′ with premisses in

Φ ∪X(Δ′) ∪ {χ} that is both complete and open.

A default tableau for σ with premisses in 〈Φ,Δ〉 is a labeled tree τ in Tdr.

In order to understand the basic ideas underpinning the formulation of a
default tableau, consider a situation in which we are required to prove that the
sentence s is a default consequence of the premiss structure 〈{p, p ⊃ (q ∨ r ⊃
s)}, {p : u / q ∧ t, p : t / r ∧ u}〉. In attempting such a proof by refutation, we
need to establish from the premiss structure in question that assuming ¬s leads
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to a contradiction. As a first step, we may attempt this proof by appealing
only to the sentences in {p, p ⊃ (q ∨ r ⊃ s)}. Given this initial standpoint, we
begin our proof with a labeled tree with a single node (a) labeled by L(a) =
{p, p ⊃ (q ∨ r ⊃ s),¬s}. Now, since p ⊃ (q ∨ r ⊃ s) belongs to L(a), we add
as immediate successors of (a) nodes (b) and (c) labeled by L(b) = L(a) ∪ {¬p}
and L(c) = L(a) ∪ {q ∨ r ⊃ s}, respectively. Then, since q ∨ r ⊃ s belongs
to L(c), we add as immediate successors of (c) nodes (d) and (e) labeled by
L(d) = L(c)∪{¬(q∨ r)} and L(e) = L(c)∪{s}, respectively. Lastly, since ¬(q∨ r)
belongs to L(d), we add as an immediate successor of (d) a node (f) labeled by
L(f) = L(d)∪{¬q,¬r}. The previous default tableau construction steps yield the
default tableau, a standard set of sentences labeled tableau, depicted in Fig. 3.

(a) p ⊃ (q ∨ r ⊃ s)
p
¬s

(b) p ⊃ (q ∨ r ⊃ s)
p
¬s
¬p

(c) p ⊃ (q ∨ r ⊃ s)
p
¬s
q ∨ r ⊃ s

(d) p ⊃ (q ∨ r ⊃ s)
p
¬s
q ∨ r ⊃ s
¬(q ∨ r)

(e) p ⊃ (q ∨ r ⊃ s)
p
¬s
q ∨ r ⊃ s
s

(f) p ⊃ (q ∨ r ⊃ s)
p
¬s
q ∨ r ⊃ s
¬(q ∨ r)
¬q
¬r

Fig. 3. Default tableau for ¬s with premisses in 〈{p, p ⊃ (q ∨ r ⊃ s)}, {p : u / q ∧ t,
p : t / r ∧ u}〉

At this point, it may be observed that (b) and (e) are leaf nodes that are
closed, and that (f) is a leaf node that is open and “completed”. However, since
we have not made use of the default rules in the premiss structure, (f) is only
“completed” w.r.t. the tableau construction rules for classical propositional logic.
Our proof is not done yet for we can proceed and use the default rules in the
premiss structure. Given that, as per R3 in Definition 8, the side conditions
hold for applying p : u / q ∧ t hold, we can add as an immediate successor of (f)
a new node (g) labeled by S(g) = S(f) ∪ {q ∧ t}, simultaneously recording that
p : u / q ∧ t has been used. Next, since q ∧ t belongs to S(g), we can add as an
immediate successor of (g) a new node (i) labeled by S(i) = S(g) ∪ {q, t}. It is
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immediate to check that the leaf node (i) is closed and completed in a default
tableau sense. (Given that, as per R3 in Definition 8, the side conditions for
p : t / r ∧ u do not hold, this branch cannot be extended further.)

Notwithstanding, even though (i) is closed and completed, our proof that s is
a default consequence of 〈{p, p ⊃ (q ∨ r ⊃ s)}, {p : u / q ∧ t, p : t / r ∧ u}〉 is still
unfinished, the reason being that the addition of (g) as an immediate successor
of (f) preempted the use of the other default rule in the premiss structure, i.e.,
of p : t / r ∧ u. Since the main idea underpinning a default tableau is that of
systematizing a notion of provability in all extensions, a default proof should
not depend on a particular selection of default rules to be applied. This means
that we are required to check what would have been the case had we chosen
to resort to p : t / r ∧ u instead of p : u / q ∧ t. Thus, given that, as per R3 in
Definition 8, the side conditions for applying p : t / r ∧ r hold, we need to add
as an immediate successor of (f) a new node (h) labeled by S(h) = S(f)∪{r∧u};
simultaneously recording that p : t / r ∧ r has now been used. This branch can
be completed, in a default tableau sense, by adding a new node (j) with label
S(j) = S(h)∪{r, u} as an immediate successor of (h). These tableau construction
steps yield the default tableau depicted in Fig. 4.

As with Definition 1, underpinning Definition 8 is the idea of emphasizing the
view of default tableau constructions as proof-theoretical objects; more precisely,
as proof-attempts (in this case, the focus is on proving that a sentence is a default
consequence of a finite premiss structure). This view of a default tableau as a
proof-theoretical object, and hence of the method of default tableau as a proof
calculus, is made precise in Definition 11, with the aid of Definitions 9 and 10.

Definition 9 (Closedness). Let τ be a default tableau for σ with premisses in
〈Φ,Δ〉; a node n of τ with label 〈Φ′, Δ′〉 is closed (otherwise it is open) iff either
of the following conditions holds:

– {⊥,¬�} ∩ Φ′ �= ∅.
– {σ,¬σ} ⊆ Φ′ for some sentence σ.

The default tableau τ is closed iff its leaf nodes are closed (otherwise τ is open).

Definition 10 (d-Saturation). Let τ be a default tableau for σ with premisses
in 〈Φ,Δ〉; a node n of τ with label 〈Φ′, Δ′〉 is d-branching iff it has an immediate
successor a node n′ with label 〈Φ′′, Δ′′〉 such that Δ′ ⊂ Δ′′. A d-branching node n
of τ is d-saturated iff adding a new node n′ with label 〈Φ′ ∪{χ}, Δ′∪{π : ρ / χ}〉
as an immediate successor of n, as per R3 in Definition 8, results in n having at
least two immediate successors labeled with the same label. The default tableau τ
is d-saturated iff all of its d-branching nodes are d-saturated.

Example 6. Node (f) in Fig. 4 is both d-branching and d-saturated.

Definition 11 (Default Proof). Let σ be a sentence, and Φ and Δ be finite
sets of sentences and default rules, respectively; a default proof of σ from 〈Φ,Δ〉
is a closed and d-saturated default tableau for ¬σ with premisses in 〈Φ,Δ〉. The
sentence σ is provable from 〈Φ,Δ〉 iff there is a default proof of σ from 〈Φ,Δ〉.
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...
(f) p ⊃ (q ∨ r ⊃ s)

p
¬s
q ∨ r ⊃ s
¬(q ∨ r)
¬q
¬r

(g) p ⊃ (q ∨ r ⊃ s) 〈p : u / q ∧ t〉
p
¬s
q ∨ r ⊃ s
¬(q ∨ r)
¬q
¬r
q ∧ t

(h) p ⊃ (q ∨ r ⊃ s) 〈p : t / r ∧ u〉
p
¬s
q ∨ r ⊃ s
¬(q ∨ r)
¬q
¬r
r ∧ u

(i) p ⊃ (q ∨ r ⊃ s) 〈p : u / q ∧ t〉
p
¬s
q ∨ r ⊃ s
¬(q ∨ r)
¬q
¬r
q ∧ t
q
t

(j) p ⊃ (q ∨ r ⊃ s) 〈p : t / r ∧ u〉
p
¬s
q ∨ r ⊃ s
¬(q ∨ r)
¬q
¬r
r ∧ u
r
u

Fig. 4. Default tableau for ¬s with premisses in 〈{p, p ⊃ (q ∨ r ⊃ s)}, {p : u / q ∧ t,
p : t / r ∧ u}〉

The view of default tableau constructions as constituting a proof calculus for
default reasoning conforms to the following rationale. For a sentence σ and a
finite premiss structure 〈Φ,Δ〉, we can think of any default tableau for ¬σ with
premisses in 〈Φ,Δ〉 as an attempt at proving that σ is a default consequence
of 〈Φ,Δ〉, with any default tableau for ¬σ with premisses in 〈Φ,Δ〉 that is d-
saturated and closed being a successful proof attempt, i.e., a proof that σ is a
default consequence of 〈Φ,Δ〉. By way of example, the default tableau depicted
in Fig. 4 constitutes a proof that s is a default consequence of 〈{p, p ⊃ (q ∨ r ⊃
s)}, {p : u / q ∧ t, p : t / r ∧ u}〉.

Perhaps requiring a bit of explanation is the idea of a node of a default
tableau being d-branching and d-saturated (q.v. Definition 10, exemplified by
node (f) in Fig. 4). While there is no similar concept in the construction of a
standard set labeled tableaux for classical propositional logic, its underpinning
rationale may be understood by drawing the following correspondence. Suppose
that in breaking down syntactically the sentences used in the construction of
a tableau τ we find ourselves dealing with a sentence β of branching type, if
instead of extending τ simultaneously with two nodes, whose labels correspond
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to the components of a sentence of branching type, for whatever reason, we
were restricted to expand τ one node at a time, then, we would not be able to
proceed solely at the level of leaves. In such a scenario, we would be required
to take note of which one of the components of a sentence of branching type
has been used in extending the tableau, and to consider what would be the case
had we used the other component, i.e., construct the alternative branch (at the
level of some intermediate node of τ). If a tableau is being constructed in this
way, then, it would be completed, in a branching sense, once both components
of a sentence of branching type have been used. Of course, this explanation is an
elaborate way of describing what otherwise is an extremely simple construction
which exhausts all possibilities for a sentence of branching type, i.e., “add two
different nodes as immediate successors of another one”. In this respect, there
seems to be no rationale for its preference. However, the situation is rather
different for default tableau constructions. In most cases it is necessary to have
the flexibility of considering default rules one at a time – recall from the example
shown in Section 3 how using one default rule prohibited the use of another, thus
restricting the extensions being reasoned about. In such scenarios, d-saturation
guarantees that all default rules have been considered (q.v. nodes (g) and (h) in
Fig. 4).

The correctness of default tableau constructions as constituting a proof cal-
culus for default reasoning is stated in Theorem 1.

Theorem 1 (Correctness). For any sentence σ, and for any finite sets Φ and
Δ of sentences and default rules, respectively, σ is provable from 〈Φ,Δ〉, i.e.,
there is a closed and d-saturated default tableau for ¬σ with premisses in 〈Φ,Δ〉,
iff 〈Φ,Δ〉 |∼ σ, i.e., iff for every extension E of 〈Φ,Δ〉, E � σ.

Proof (sketch). Let τ be a default tableau for ¬σ with premisses in 〈Φ,Δ〉, and let
l be any leaf node of τ with label 〈Γ ′, Δ′〉; to be noted first is that: (i) Φ∪X(Δ′) is
included in some extension E of 〈Φ,Δ〉, and (ii) Γ is a leaf node of a tableau for
¬σ with premisses in Φ ∪X(Δ′). In other words, if l is completed, constructing
τ is equivalent to constructing an extension E of 〈Φ,Δ〉 together with a leaf node
of a tableau for ¬σ with premisses in E. If l is closed, then, every leaf node of
a tableau for ¬σ with premisses in E, where E is an extension of 〈Φ,Δ〉 which
contains Φ∪X(Δ′), is also closed, i.e., E � σ. Semimontonicity and d-saturation
guarantee that all extensions of 〈Φ,Δ〉 have been considered.

From a proof-theoretical perspective, the view of default tableau constructions
as constituting a proof calculus further gains in interest for it makes it possible to
discover the nonexistence of default proofs by inspecting some particular cases of
proof attempts. For instance, the default tableau depicted in Fig. 5 indicates that
t is not a default consequence of 〈{p, p ⊃ (q∨r ⊃ s)}, {p : u / q ∧ t, p : t / r ∧ u}〉.
Definition 12 (Completed). Let τ be a default tableau for σ with premisses
in 〈Φ,Δ〉; a node n of τ with label 〈Φ′, Δ′〉 is completed iff:

– For every sentence α of linear type in Φ′, the components α1 and α2 of α
are also in Φ′.
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– For every sentence β of branching type in Φ′, at least one of the components
β1 or β2 of β is in Φ′.

– For every default rule π : ρ / χ in Δ, if π : ρ / χ meets the side conditions
of Definition 8(Rule c), then, χ is in Φ′ and π : ρ / χ is in Δ′.

The default tableau τ is complete iff all of its leaf nodes are completed.

The nonexistence of default proofs is made precise in Proposition 3 with the
aid of Definition 12.

Proposition 3. If a default tableau for ¬σ with premisses in 〈Φ,Δ〉 has a com-
plete leaf node that is also open, then, σ is not a default consequence of 〈Φ,Δ〉.
Proof (sketch). Let τ be a default tableau for ¬σ with premisses in 〈Φ,Δ〉, and let
l be any leaf node of τ with label 〈Γ ′, Δ′〉; to be noted first is that: (i) Φ∪X(Δ′) is
included in some extension E of 〈Φ,Δ〉, and (ii) Γ is a leaf node of a tableau for
¬σ with premisses in Φ ∪X(Δ′). If l is open and complete, then, there is a leaf
node of a tableau for ¬σ with premisses in E, where E is an extension of 〈Φ,Δ〉
which contains Φ∪X(Δ′), that is open, i.e., E �� σ. As a result, 〈Φ,Δ〉 �|∼ σ, i.e.,
σ is not a default consequence of 〈Φ,Δ〉.

In essence, a leaf node of a default tableau that is both complete and open
constructs an extension from which the alleged default consequence does not
follow. For the case of the default tableau depicted in Fig. 5, i.e., default tableau
for ¬t with premisses in 〈{p, p ⊃ (q ∨ r ⊃ s)}, {p : u / q ∧ t, p : t / r ∧ u}〉, said
extension, the set E2 = {p, p ⊃ (q ∨ r ⊃ s), r ∧ u}, is obtained from the second
component of the label of the leaf node (g) in Fig. 5 together with the set of
sentences of the premiss structure in question. That t is not a consequence of
this extension is also immediate from the information present in the leaf node
(g) in Fig. 5: the first component of this node corresponds to a leaf node of a
tableau for ¬t with premisses in E2.

4 Discussion

One of the most concise descriptions of the rationale underlying tableau methods
as proof methods is perhaps that provided by Fitting in [7]. In Fitting’s terms, a
tableau method is a formal proof procedure, existing in a variety of forms and for
several logics, but always having certain characteristics. First, it is a refutation
procedure. In order to prove that something is the case, the initial step is to
begin with a syntactical expression intended to assert the contrary. Successive
steps then syntactically break down this assertion into cases. Finally, there are
impossibility conditions for closing cases. If all cases are closed, then, the initial
assertion has been refuted. As a result, it is concluded that what had been taken
not to be case is actually the case.

The kind of default tableau constructions presented here operate in the way
just described. In order to prove that a sentence σ is a default consequence of
a premiss structure 〈Φ,Δ〉, we begin with a syntactical expression intended to
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(a) p ⊃ (q ∨ r ⊃ s)
p
¬t

(b) p ⊃ (q ∨ r ⊃ s)
p
¬t
¬p

(c) p ⊃ (q ∨ r ⊃ s)
p
¬t
q ∨ r ⊃ s

(d) p ⊃ (q ∨ r ⊃ s)
p
¬t
q ∨ r ⊃ s
¬(q ∨ r)

(e) p ⊃ (q ∨ r ⊃ s)
p
¬t
q ∨ r ⊃ s
s

(f) p ⊃ (q ∨ r ⊃ s) 〈p : t / r ∧ u〉
p
¬t
q ∨ r ⊃ s
s
r ∧ u

(g) p ⊃ (q ∨ r ⊃ s) 〈p : t / r ∧ u〉
p
¬t
q ∨ r ⊃ s
s
r ∧ u
r
u

Fig. 5. Default tableau for ¬t with premisses in 〈{p, p ⊃ (q ∨ r ⊃ s)}, {p : u / q ∧ t,
p : t / r ∧ u}〉

assert that this is not the case. In a default tableau, the set Φ ∪ {¬σ} is said
syntactical expression. Next, we syntactically break down the sentences in this
expression into their components according to rules R1 or R2 in Definition 8, i.e.,
depending on whether they are of linear or of branching type, respectively. R3
in Definition 8 corresponds to our view of default rules as premiss-like objects
and their corresponding usage in the construction of a default proof. Finally,
the closedness and d-saturation of a default tableau indicate the impossibility
conditions that are needed to establish whether what was asserted not to be the
case, that σ is not a default consequence of 〈Φ,Δ〉, is actually the case; altogether
establishing whether or not σ is a default consequence of 〈Φ,Δ〉.

The principles underpinning the definition and construction of a default
tableau may also be understood in comparison with those intuitions underlying
the definition and construction of a tableau for a set of sentences. For instance,
classically, every leaf node of a tableau for σ with premisses in Γ may be taken as
a partial syntactical description of a (canonical) model of Γ that is also a model
of σ; leaf nodes that are closed indicate that this description is an impossibility,
whereas leaf nodes that are open and complete indicate the contrary. In a default
tableau for σ with premisses in 〈Φ,Δ〉, the extensions of 〈Φ,Δ〉 play the role of
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models. In this respect, every leaf node of this default tableau may be taken
as a partial description of an extension E of 〈Φ,Δ〉 that has been enlarged by
incorporating σ into it; leaf nodes that are closed indicate that this enlargement
is an impossibility, whereas leaf nodes that are open and complete indicate the
contrary; d-saturation indicates that all extensions have been considered.

5 Conclusions and Further Work

In this work we have presented a tableaux based proof calculus for our reformu-
lation of Reiter’s original ideas on default reasoning. In summary and by way
of conclusion, in formulating a suitable notion of a default proof, we established
a proof-theoretical basis for mechanizing a consequence realtion for default rea-
soning. As a contribution to the proof theory of the latter, the main features of
our presentation of a proof calculus for default reasoning are: (i) its simplicity,
in that, as commented earlier on, it does not deviate from the standard pre-
sentation of a tableaux method; and (ii) the fact that, in certain cases, default
proofs may only involve part of a premiss structure (something which is also
true when it comes to showing their nonexistence). The advantages of (i) and
(ii) are immediate.

Evidently, there is much yet to be done. It is more or less immediate that,
in a worst case scenario, the complexity of a default proof inherits the com-
plexity of a tableau proof for classical propositional logic, with the add-on of
having to check for the application of all default rules. Definitely, tighter com-
plexity bounds for default proofs are worthy of study. Moreover, insofar as its
use is concerned, a machine implementation of the proof calculus that we have
presented is a sought after feature. More interestingly, matters related to the
development of strategies for systematizing default tableau proofs and proper-
ties of default tableau proofs must be investigated. An interesting direction for
further research also concerns an exploration of some of the variants of Reiter’s
original presentation of default reasoning and how well our tableaux based proof
calculus adapts to them. We view the latter as a first step towards an an ab-
stract definition of default tableaux proof calculi, i.e., one that is independent
of the underlying logical system. Additionally, the current presentation of the
default tableau method sets the basis for a systematic construction of a model
theory for a given default theory presentation as a fibred class of mathematical
structures that happen to be models for theory presentations in the underlying
logical language, where fibres are determined by the extensions constructed in
each of the branches of the tableau. However, these are just some preliminary
thoughts which have to be developed further.
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