
A SDN Based Method of TCP Connection
Handover

Andrej Binder(&), Tomas Boros, and Ivan Kotuliak

Faculty of Informatics and Information Technologies,
Slovak University of Technology in Bratislava, Ilkovičova 2,

842 16 Bratislava, Slovakia
andrej@binder.sk, tomas.boros92@gmail.com,

ivan.kotuliak@stuba.sk

Abstract. Today, TCP is the go-to protocol for building resilient communi-
cation channels on the Internet. Without much overstatement, it can be said that
it runs the majority of communication on the planet. Its success only highlights
the fact that it also has some drawbacks, of which one of the oldest ones is the
inability to hand over running connections between participating hosts. This
paper introduces a method that relies on the advantages of Software Defined
Networks to overcome this limitation.

Keywords: Software Defined Networks � Network protocols � Transmission
control protocol � Telecommunications

1 Introduction

TCP handover is the act of handing over the role of one of the two communicating
endpoints to a third endpoint that was initially not a part of the communication.

The reasons for this can be for example:

• Load-balancing
• Traffic path optimization
• A transparent redirection mechanism
• Switchover of network interfaces

The common solution for this problem was to terminate the running connection and
re-initiate the connection with a new host. This is a common practice on the interned
today [5, 13].

The problems with this approach are:

• Latency caused by additional TCP handshake
• Needs to be implemented on application layer
• Non-transparent
• TCP-windows are reset resulting in sub-optimal performance

One area where this problem is especially apparent is the area of Content Delivery
Networks. Most CDN architectures leverage a redirect mechanism to initiate connec-
tion between a client and the most appropriate server to serve specific content.

© IFIP International Federation for Information Processing 2015
I. Khalil et al. (Eds.): ICT-EurAsia 2015 and CONFENIS 2015, LNCS 9357, pp. 13–19, 2015.
DOI: 10.1007/978-3-319-24315-3_2



Introducing delays in this step results in noticeably slower content playback startups
that are even more apparent in the case of CDN Federations where multiple redirects
often take place before the client can connect to the server [3, 6, 7, 8].

Our method to address this issue is to make use of Software Defined Network
technology. This technology makes it possible to enhance the network with the
functionality that not only allows TCP handovers but also makes them controllable by
the SDN controller itself [9, 15].

2 Software Defined Networks

The main disadvantage of traditional network technologies is lack of flexibility in
implementing new features. Because of requirements related to standardization, testing
and the drawbacks of deploying new code in a fully proprietary environment, new
features usually take years to be agreed upon. Even then they often face limited success
because of the difficulties and risks related to changing something in an environment
that was essentially designed to serve a very specific purpose. One example of such
technology is multicast that has existed for decades but did not succeed in being
globally distributed because of the reasons listed above [1, 10–12, 14].

Software Defined Networks (SDN) present a radically different approach to
designing networks that is built from ground up to make implementation of new
features and services as easy as possible. It achieves this by splitting the data plane
(responsible for forwarding traffic) and the control plane (responsible for higher level
decision-making and configuration of the data plane) into two separate entities. Fur-
thermore it also changes the logical placement of these entities. In traditional networks
both the control plane and the data plane was confined within a single networking
device, making development of complex control plane to control plane communication
protocols necessary. In SDNs the data plane stays distributed but the control plane is
removed from the physical device and placed into a centralized node responsible for
managing all the data planes in the network. This centralized control plane is called a
Controller in SDN terminology [2, 9].

The SDN Controller is a fully software-based element that does not have the burden
of having to communicate every single decision to any of its peers. This means that
new features can be quickly added to the controller and they will be instantly available
throughout the whole network that is under its control. The resources available in the
data plane under its controls are the Controller’s only limiting factor. It does not have to
follow a specific protocol that dictates exactly how these resources should be used [4].

3 TCP Handover Method in SDN Networks

Our approach to addressing TCP handover relies on the following features of Software
Defined Networks:

• The ability to intercept specific packets and redirect them for processing in the
control plane

14 A. Binder et al.



• The ability to modify the data plane in such a way that it rewrites the destination IP
address of a packet according to a rule defined by the control plane

• The fact that a SDN network is limited to a single autonomous system (administered
by a single organization), in which the occurrence of triangular routing is not
considered a problem as long as its fully controlled

In addition to these requirements at least one of the following features must also be
available:

• The ability to synchronize (increment or decrement according to a rule) TCP SEQ
and ACK numbers in the data plane

• The ability to synchronize (increment or decrement according to a rule) TCP SEQ
and ACK numbers in the host device

• The ability to be able to predict the SEQ number that would be chosen by a host for
a new incoming connection (described later)

The initial use case that this method was designed for was the implementation of a
transparent redirect mechanism for use in Content Delivery Networks so we will use
this environment to describe the method’s operating principle. We will later describe
how to use the method in any other scenario.

When a client initializes a new TCP connection to a server, it sends a TCP segment
encapsulated in IPv4 or IPv6 packet to a destination address that identifies the service
to be accessed. In the first TCP segment the client sets the SYN flag, chooses a initial
sequence number (SEQ), sets the ACK number to 0, sets the window size and
optionally sends some OPTION parameters. The server on the receiving side goes to
the SYN_RCVD state and sends back his TCP packet and parameters to the client. Sets
the SYN and the ACK flag, choses a sequence number and sets the ACK number to
sequence number + 1 of the client. Using this he acknowledges the client to send the
next TCP window. The server chooses a window size too and sets some optional
parameters in OPTION fields. The client then sends back an ACK message to
acknowledge the parameters of the server. At this moment the session goes to
ESTABLISHED state. Now the client may request the data (for example in a
HTTP GET message).

This happens normally in networks but lets say that the IP address that the client
was communicating with was not an IP address directly attached to a specific server but
an IP address defined in the network as and address used to identify a specific service.
Any TCP packets sent to this IP, that are meant to initiate a TCP connection with a
server, will not be delivered directly to a server but redirected to a SDN Controller for
further processing instead. The controller would then keep on acting on behalf on the
server up to the point when it can decide which actual server would be best to deliver
the service. In the context of CDN networks this means up until the point when the
Controller is aware of the HTTP URI that the client intends to access. It would then
modify the data plane to rewrite the destination IP address of all future packets from the
client to the IP address of the chosen server.

This would work perfectly in an UDP-based scenario where packets are considered
as separate atomic elements. In TCP environment all communication is treaded in the
context of sessions that are kept consistent by communicating the sequence numbers of

A SDN Based Method of TCP Connection Handover 15



packets in each transmission and acknowledging them on the other side. The problem
with this approach in context with our method is that we cannot control the initial SEQ
number that the client choses or the SEQ number that the final server would chose. This
means that, without addressing this issue, the communication would not work because
even if the source and destination addresses of the packets were correct, the TCP
session would not work because both sides would not be able to agree on which
sequence number should follow.

The full method is depicted in the following sequence diagram:

There are two basic ways to address this:

• Be able to synchronize the SEQ and ACK numbers by incrementing or decre-
menting them in the data plane

• Be able to predict the SEQ number that the server will chose so that the connection
from the controller can be started with a SEQ number that would be in sync with the
SEQ number that the server would chose right from the start

The first approach has the only disadvantage that the SDN data plane (also called
SDN Forwarder) closest to the server would need to have the capability to increment

16 A. Binder et al.



and decrement the SYN and ACK numbers according to a chosen rule. The fact is that
while rewriting of destination IP address is a standard SDN data plane function that is
available in basically all SDN Forwarders, the functions of incrementing or decre-
menting of SYN and ACK numbers are not standard functions. This means that most
hardware data plane elements would not be able to perform the operation.

This can be easily addressed in environments where we have the server under
control. We simply place a small SDN Forwarder in the operating system of the server
and link it to the controller. This small forwarder would be a data plane element only
capable of doing the operation of synchronizing the SYN/ACK numbers, an operation
that is very easy to implement in the all-software environment of a server.

The following figure depicts this scenario:

The second approach requires the modification of the TCP stack on the server.
The SEQ number the TCP stack choses would not be chosen randomly as it is usually
done, but it will be chosen according to a hash of the incoming SYN packet. This
means that when a SYN packet is sent to such server, the sender has the ability to
calculate and predict the initial SEQ number that the server will chose. In order to
maintain security, a shared secret (shared between the controller and the server) can
also be added to the SYN packet in order to make it harder for a third party to step into
the communication.

4 Implementation and Testing

To prove that the approach is fully functional, we have implemented a prototype and
tested it with real clients and servers in the environment of CDN networks.

We have created a new version of the Ofsoftswitch13 SDN Forwarder with the
additional TCP SEQ and ACK synchronization functions. We did this by adding a new
action based on to the SET_FIELD action defined by the OpenFlow 1.3 standard. We
called these actions SET_TCP_ACK and SET_TCP_SEQ in order to be able to modify
the ACK and SEQ numbers respectively.

For example if we install an action with SET_TCP_SEQ with argument 1000,
incoming TCP connection which matches the matching rule will have its Sequence
number incremented by 1000 on the outgoing interface. The same thing will happen for
the ACK number. Using correctly these actions we will be able to synchronize the TCP
sequence and acknowledge numbers for the two separate TCP connections.

In addition to the modified SDN Forwarder we also needed our own SDN Con-
troller that we could easily modify. In the end we chose the Ryu SDN controller. It is an

A SDN Based Method of TCP Connection Handover 17



open-source SDN controller that is freely available, well documented and easy to
modify. This controller also fully supports the OpenFlow 1.3 protocol which allowed
us to re-use most of the needed functionality. The controller was also modified to be
able to track the state of the session in order to get more visibility into what is
happening in the network.

These two components allowed us to fully test our method. The testing also shower
that in addition to proving that the method actually works, it also has the following
benefits:

• Faster session establishment and shorter interruption in comparison with
application-level redirect methods

• No need for extra DNS queries
• No need to implement application-level redirect mechanisms
• Fully transparent to the client

5 Conclusion

We designed, implemented and thoroughly tested a new method of TCP connection
handover in the environment of SDN networks.

We have created a prototype SDN Forwarder and a prototype SDN Controller that
we used to prove the functionality of the method.

Our tests using these prototypes proved that we can achieve faster handover times
as compared to traditional application-level redirect methods that require a complete
re-establishment of TCP sessions. Furthermore this was all done in a manner that is
fully transparent to the client and requires no modification of the server application.

In the end the method proves that SDN technology is a great platform for imple-
menting interesting new functions into the network environment.

Acknowledgements. This work is a result of the Research and Development Operational
Program for the projects Support of Center of Excellence for Smart Technologies, Systems and
Services, ITMS 26240120005 and for the projects Support of Center of Excellence for Smart
Technologies, Systems and Services II, ITMS 26240120029, co-funded by ERDF.

The authors would like to thank Oskar van Deventer and his team at the Dutch Organization
for Applied Scientific Research (TNO) for their invaluable help.

References

1. Feamster, N., Rexford, J., Zegura, E.: The road to SDN: an intellectual history of
programmable networks, December 2013

2. OPEN NETWORKING FOUNDATION.: OpenFlow Switch Specification: Version 1.3.0
Implemented (Wire Protocol 0x04) (2012)

3. Niven-Jenkins B., Le Faucheur F., Bitar N.: Content Distribution Network Interconnection
(CDNI) Problem Statement

18 A. Binder et al.



4. TEAM, RYU PROJECT. RYU: SDN Framework (Online). Ryu book. http://osrg.github.io/
ryu-book/en/Ryubook.pdf

5. Network Working Group. RFC: 2616 - Hypertext Transfer Protocol – HTTP/1.1
6. van der Ziel, S.: CDN interoperability reality check
7. ETSI TS 182 032 CDN Interconnection Architecture
8. Bertrand, G., Le Faucheur, F., Peterson, L.: Content Distribution Network Interconnection

(CDNI) Experiments, Internet Engineering Task Force, draft-bertrand-cdni-experiments, 02
February 2012. http://tools.ietf.org/id/draft-bertrand-cdni-experiments-02.txt

9. Kim, M.-K., Kim, H.-J., Chang, D., Kwon, T.: CDNI Request Routing with SDN, Internet
Engineering Task Force, draft-shin-cdni-request- routing-sdn-00, July 2012. http://tools.ietf.
org/id/draft-shin-cdni-request-routing-sdn-00.txt

10. Kokku, R., Rajamony, R., Alvisi, L., Vin, H.: Half-Pipe Anchoring: An Efficient Mechanism
for TCP Connection Handoff

11. Bonaventure, O., Handley, M., Raiciu, C.: An Overview of Multipath TCP
12. Beda, E., Ventura, N.: Socketless TCP - an end to end handover solution (2014)
13. IETF RFC 793.: Transmission control protocol, September 1981. http://www.ietf.org/rfc/

rfc793.txt
14. Kozemčák, A., Kováčik, T.: Different network traffic measurement techniques - possibilities

and results. In: Proceedings ELMAR-2012: 54th Symposium ELMAR-2012, pp. 93–96.
Society Electronics in Marine, Zadar, 12–14 September 2012. ISBN: 978-953-7044-13-8

15. Halagan, T., Kováčik, T.: Modification of TCP SYN flood (DoS) attack detection algorithm.
In: Numerical Modelling and Simulation : International Interdisciplinary PhD Workshop
IIPhDW, Tatranske Matliare, Slovak republic, 20–22 May 2014. 1. vyd. Warsaw :
Elektrotechnical institute, 2014, [4] s. ISBN: 978-83-61956-29-7

A SDN Based Method of TCP Connection Handover 19

http://osrg.github.io/ryu-book/en/Ryubook.pdf
http://osrg.github.io/ryu-book/en/Ryubook.pdf
http://tools.ietf.org/id/draft-bertrand-cdni-experiments-02.txt
http://tools.ietf.org/id/draft-shin-cdni-request-routing-sdn-00.txt
http://tools.ietf.org/id/draft-shin-cdni-request-routing-sdn-00.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc793.txt


http://www.springer.com/978-3-319-24314-6


	A SDN Based Method of TCP Connection Handover
	Abstract
	1 Introduction
	2 Software Defined Networks
	3 TCP Handover Method in SDN Networks
	4 Implementation and Testing
	5 Conclusion
	Acknowledgements
	References


