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Abstract. PBLib is an easy-to-use and efficient library, written in C++,
for translating pseudo-Boolean (PB) constraints into CNF. We have
implemented fifteen different encodings of PB constraints. Our aim is to
use efficient encodings, in terms of formula size and whether unit propa-
gation maintains generalized arc consistency. Moreover, PBLib normal-
izes PB constraints and automatically uses a suitable encoder for the
translation. We also support incremental strengthening for optimization
problems, where the tighter bound is realized with few additional clauses,
as well as conditions for PB constraints.

1 Introduction

Many applications such as hardware verification and model checking benefit
from the impressive developments in the area of SAT solving by translating
high level descriptions into propositional formulas in conjunctive normal form
(CNF) [24,30]. Pseudo-Boolean (PB) constraints are expressions of the form∑n

i=1 wi ·xi�k and require that the weighted sum over the literals xi is �-related
with k. They frequently occur in scheduling, planning, and translations of prob-
lems from languages like CSP, ASP or integer programming. Moreover, optimiza-
tion problems like MaxSAT, minimal unsatisfiable core extraction, maximal sat-
isfying subformulas, and PB optimization itself, rely on good translations from
PB constraints into CNF [4,5,18,21,22]. However, there is no straightforward
translation into CNF [6,11,15,16,25].

In this paper, we present PBLib, an easy-to-use and efficient library, writ-
ten in C++, and distributed under the MIT license1. The library contains fifteen
different encodings for PB constraints, which differ in the number of clauses, aux-
iliary variables and further properties. For instance, generalized arc consistency
(GAC), a notion developed in the area of constraint programming [25], allows to
cut off the search space as soon as possible. Therefore, maintaining generalized
arc consistency by unit propagation is an important property of encodings. A
weaker property than GAC is that unit propagation detects inconsistent assign-
ments. The size of an encoding is another performance criteria, since SAT solvers
often perform better when the number of clauses is small [8,19,29]. Additionally,
1 available at http://tools.computational-logic.org/content/pblib.php
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PBLib performs constraint normalization, and supports incremental strengthen-
ing as well as conditionals. Experiments have shown that PBLib performs better
than minisat+ [10].

The rest of this paper is structured as follows: We formally introduce the
concept of encodings and generalized arc consistency in Sect. 2. Afterwards, we
describe the concepts in PBLib and present code examples in Sect. 3. In Sect. 4,
we give an overview of the tools included in PBLib. Then, we evaluate different
encodings and compare PBLib with minisat+ in Sect. 5. Finally, we conclude in
Sect. 6.

2 Pseudo-Boolean Constraints and Encodings

We assume that the reader is familiar with the concepts in propositional logic.
Pseudo-Boolean (PB) constraints are expressions of the form

∑n
i=1 wi · xi � k,

where xi are literals, wi ∈ Z are the associated weights for the literals xi for
every i ∈ {1, . . . , n}, k ∈ Z, and � ∈ {=,≤,≥} is the comparator. A cardinality
constraint is a PB constraint, where all weights are equal to 1. Depending on
the comparator, we call a cardinality constraint an at-most-one, at-least-one or
exactly-one constraint, if k = 1.

Formally, the formula F encodes the original formula G iff 1) F entails G,
and 2) for every model I of the formula G there is a model I ′ of F such that
I(x) = I ′(x) for every variable x occurring in G. The first condition states
that every model of the encoding is a model of the original formula. The second
condition states that every model of the original formula can be transformed to a
model of the encoding by modifying the interpretation of the auxiliary variables.

We consider the following two structural properties: generalized arc consis-
tency (GAC) and inconsistency detection. Both are important inference rules in
constraint programming and can significantly reduce the search space [25]. As
in [23], we describe the notions of GAC and inconsistency detection in terms of
the entailment relation. An assignment J is a consistent set of literals. We say
that J is consistent w.r.t. a constraint C iff the formula (

∧
x∈J x) ∧ C is satisfi-

able. Otherwise, J is inconsistent w.r.t. C. An encoding detects inconsistencies
by unit propagation if unit propagation in the encoding derives the empty clause,
if the assignment J is inconsistent w.r.t. C. Informally, an assignment is GAC,
if the assignment contains all entailed literals. Formally, a consistent assignment
J is GAC w.r.t. the constraint C iff for every variable y occurring in C, y ∈ J
whenever (

∧
x∈J x) ∧ C |= y, and ¬y ∈ J , whenever (

∧
x∈J x) ∧ C |= ¬y. Unit

propagation maintains GAC, if unit propagation transforms a consistent assign-
ment to generalized arc consistent assignment.

3 Description of the PBLib

Table 1 presents the encodings offered by PBLib. Unit propagation in the offered
encodings, except sorting and adder networks, detects inconsistent assignment
and maintains generalized arc consistency. We also offer a variant of the watchdog
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Table 1. A catalog of encodings offered by PBLib, categorized into different fragments
of PB constraints.

at-most-one cardinality pseudo-Boolean

sequential counter1 [27] BDD2 [10,14] BDD [10,14]
bimander [13] cardinality networks [1] adder networks [10]
commander [17] adder networks [10] watchdog [23]
k-product [7] sorting networks [10]
binary [2] binary merge [20]
pairwise sequential weight counter3 [12]
nested

1 similar to BDD, latter and regular encoding,2 similar to sequential counter
3 similar to BDD but useful for incremental encoding

and binary merge encoding for which unit propagation detects only inconsistent
assignments, with the advantage of fewer clauses.

3.1 Components of the PBLib

PB constraints. In the PBLib, a PB constraint
∑n

i=1 wi ·xi�k is specified with a
list of weighted literals, a comparator and an integer k, where every 64 bit integer
is accepted as weight and as k. The comparator can be either less equal, greater
equal, or a combination of both. Hence it is possible to specify a single constraint
like

∑n
i=1 wi · xi ≤ k1 ∧ ∑n

i=1 wi · xi ≥ k2. Note that GAC and inconsistency
detection refers to single PB constraint using ≤ or ≥ as comparator.

PreEncoder. The PreEncoder normalizes PB constraints such that the follow-
ing holds: 1. n > 0, 2. 1 ≤ wi ≤ k for every i ∈ {1, . . . , n}, 3. no literal in a
constraint occurs twice, and 4. the comparator is either less equal or both: less
equal and greater equal. Moreover, it detects trivial constraints such as units
and tautologies, directly encodes them, and applies some simplifications such as
removing unnecessary comparators.

ClauseDatabase. As container for the clauses in a formula a ClauseDatabase
is used. The PBLib contains different instances of ClauseDatabases such as a
VectorClauseDatabase that stores each clause in a vector, and a SATSolver-
ClauseDatabase that stores each clause in a minisat-like [9] SAT solver. The
ClauseDatabase is a simple interface, requiring only an implementation for the
addition method for single clauses. This makes it easy to integrate PBLib in
projects. Moreover, every ClauseDatabase can process minisat+ like Boolean
circuits [10] by translating them into clauses.

AuxVarManager. For handling auxiliary variables, PBLib uses an auxiliary
variable manager, called AuxVarManager. Initialized with a fresh variable, Aux-
VarManager returns the next free variable upon request. It is possible to reset
already used auxiliary variables as well as marking individual variables as fresh
variables. Hence the AuxVarManager helps to keep the set of used variables tight.
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Encoder. The PBLib contains 15 different encoders, where each produces dif-
ferent clause sets. Some encoders are only applicable for specific subsets of PB
constraint, e.g. at-most-one or cardinality constraints. In the framework of the
PBLib, it is easy to extend the set of encoders with new encodings.

IncrementalData. It is required to use the class IncPBConstraint to repre-
sent PB constraints that supports incrementally strengthening. After the ini-
tial encoding of such a constraint, the IncPBConstraint stores IncrementalData
internally that allows to restrict the constraint with a tighter bound. This allows
the implementation of an easy to handle SAT-based linear optimization algo-
rithm.

Conditionals. PB and incremental PB constraints can be augmented with con-
ditions, i.e. finite conjunctions of literals. This is achieved by adding the comple-
mentary literals to all activation clauses of the encoding. For example, we can
express the following constraint with a single constraint in PBLib:

(x5 ∧ x6) → (−3 ≤ −7x1 + 5x2 + 9x3 − 3x10 + 7x10 ≤ 8)

PB2CNF. The PB2CNF class handles constructed PB constraints: It normal-
izes the constraint, classifies it, and chooses a suitable encoding depending on
the kind and size of the constraint. Produced clauses are stored in the given
ClauseDatabase and auxiliary variables are managed by the AuxVarManager.

3.2 Example

We demonstrate how to encode the constraint 3x1 − 2x2 + 7x3 ≥ −4 in the
following example. First, we reserve space for two vectors containing the decision
literals and their associated weights, and for the resulting formula, which is
a vector of vectors of literals. Moreover, we specify the first free variable in
firstAuxVar. Finally, we call the method encodeGeq that encodes the constraint
and stores the result in formula.

#include "PB2CNF.h"
int main() {

PBLib::PB2CNF pb2cnf;
vector< int64_t > weights = {3, -2, 7};
vector< int32_t > literals = {-1, -2, 3};
vector< vector< int32_t > > formula;
int32_t firstAuxVar = 4;
int64_t k = -4;
pb2cnf.encodeGeq(weights, literals, k, formula, firstAuxVar);

}

You can also add a less equal and a greater equal comparator, as well as incre-
mental constraints. For the latter one, we need the generic formula container
ClauseDatabase and an instance of AuxVarManager. Moreover, we have to use
the configurations class of the PBLib. In the following example, the constraint
−5 ≤ −7x1 + 5x2 + 9x3 − 3x10 + 7x10 ≤ 100 is encoded:
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using namespace PBLib;
PBConfig config = make_shared< PBConfigClass >();
VectorClauseDatabase formula(config);
PB2CNF pb2cnf(config);
AuxVarManager auxvars(11);
vector< WeightedLit > literals =

{WeightedLit(1, -7), WeightedLit(-2, 5), WeightedLit(-3, 9),
WeightedLit(-10, -3), WeightedLit(10, 7)};

IncPBConstraint constraint(literals, BOTH, 100, -5);
pb2cnf.encodeIncInital(constraint, formula, auxvars);

We can increase the bounds:

constraint.encodeNewGeq(3, formula, auxvars);
constraint.encodeNewLeq(8, formula, auxvars);

The constraint −3 ≤ −7x1 + 5x2 + 9x3 − 3x10 + 7x10 ≤ 8 is encoded with the
code above in combination with the formula encoded with encodeIncInital.

4 Included Tools

The PBLib includes the following programs: pbencoder, pbsolver and a fuzzer.
pbencoder takes as input a list of PB constraints in the OPB format [26] and
encodes them into CNF. The result is printed on the standard output. pbsolver
solves a OPB instance by translating the PB constraints and afterwards solving
the resulting CNF formula with a back-end SAT solver such as minisat 2.2 [28].
For optimization instances, pbsolver iteratively encodes upper bounds until the
optimum is reached. The program fuzzer randomly generates PB constraints,
and afterwards encode them with different configurations. This program helps
to find bugs in new or customized implementations.

5 Empirical Evaluation and Related Work

We evaluated pbsolver on all new instances in the PB competition 2012, in
total 2782 instances2. Note that the most recent PB competition was held in
the year 2012. Besides various encodings inside the PBLib, we compared the
performance of minisat+ [10] on this benchmark. The evaluation was performed
on a PC cluster with Intel E5-2690 CPUs (2.90 GHz) and 2 GB RAM.

minisat+ follows the same approach for solving PB constraints: It translates
them into CNF and applies an iterative solving strategy for optimization prob-
lems. In contrast to PBLib, minisat+ uses only three encodings: BDDs, sorting
networks and adder networks. BDDs in minisat+ are encoded with three clauses
per BDD node instead of only two as in the PBLib and presented in [14]. For
a fair comparison, we used minisat 2.2 as back-end SAT solver in pbsolver and
in minisat+. Figure 1 shows the results of the evaluation. Adder and sorting
2 available at http://www.cril.univ-artois.fr/PB12/

http://www.cril.univ-artois.fr/PB12/
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Fig. 1. A comparison of different encodings in the PBLib and minisat+ using 2782
new instances in the PB competition 2012

networks have the least number of clauses, but the worst runtime, because in
both encodings unit propagation neither detects inconsistent assignments nor
maintains generalized arc consistency. We observe that the plot for the default
configuration and the use of BDDs for general PB constraint are nearly the
same. This can be explained since PBLib decides for the BDD encoding due to
the low number of clauses. In contrast to minisat+, PBLib in pbsolver solves sig-
nificantly more instances in the timeout of 1800 seconds. This has two reasons:
First, PBLib uses a better BDD encoding. Second, minisat+ does not distinguish
between at-most-one, at-most-k and PB constraint. Therefore, all constraints,
but clauses, are handled in the same way. Instead, PBLib detects these special
cases and chooses a more appropriate encoding.

The Java library Boolvar/PB [3] is also related to the PBLib: It uses basically
the same encodings as minisat+, but sorting networks have been replaced by the
watchdog encoding.

6 Conclusion

In this paper, we presented PBLib, an efficient and easy-to-use library for encod-
ing PB constraints into clause sets. It normalizes PB constraints before encod-
ing them, and can automatically choose between fifteen different encodings that
vary in size and propagation properties. Moreover, PBLib supports incremental
strengthening and conditional PB constraints. Experiments have shown that our
library outperforms minisat+ in the recent benchmark of the PB evaluation. It
is distributed under the MIT license.

In future, we plan to implement more encodings, and to increase confidence
in the tools by mechanically verifying them.
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