
Reengineering an Approach to Model-Driven
Development of Business Apps

Tim A. Majchrzak1(B) and Jan Ernsting2

1 ERCIS, University of Agder, Kristiansand, Norway
tima@ercis.de

2 ERCIS, University of Münster, Münster, Germany
jan.ernsting@ercis.de

Abstract. Despite a perceived convergence in mobile application devel-
opment, platforms such as Android and iOS remain largely incompatible.
Supporting multiple platforms currently requires either separate native
development (for each system) or utilization of a cross-platform devel-
opment framework. While many such frameworks have been developed,
only few are mature and even less are used widely, let alone commercially.
Moreover, they typically are limited with regard to performance and to
preserving a native look & feel. Worst of all, their usefulness for busi-
ness apps is limited due to their low level of abstraction. In this paper,
we take a closer look at an academic prototype that employs model-
driven software development (MDSD) for a cross-platform framework
that facilitates business app development. We discuss lessons learned
from its development and early application, reengineering it with busi-
ness producibility in mind. We aim at closing a design-oriented research
gap: we describe what the approach to employ MDSD in mobile comput-
ing is and to what extent it might be useful in general. These findings are
embedded in a case-study inspired discussion of the aims of reengineering
the approach.

Keywords: MDSD · App · Mobile computing · Model-driven

1 Introduction

Within a few years, mobile devices such as smartphones and tables have become
commonplace (cf. [1]). Even technology forecasts from the mid-2000s (e.g. by
[65]) have been outpaced by rapid progress. Mobile devices are also increas-
ingly used for business purposes [49]. Their platforms remain largely incompat-
ible, though [45]. Software development kits (SDK), programming languages,
frameworks, design guidelines and development standards for platforms such as
Android, iOS and Windows Phone differ greatly [55]. However, these platforms
enable applications (apps) to use a device to its full capabilities and – from a
business viewpoint – to facilitate the adoption of mobile computing for business
process improvements.

c© Springer International Publishing Switzerland 2015
S. Wrycza (Ed.): SIGSAND/PLAIS 2015, LNBIP 232, pp. 15–31, 2015.
DOI: 10.1007/978-3-319-24366-5 2

16 T.A. Majchrzak and J. Ernsting

Supporting multiple platforms currently requires either separate native devel-
opment or utilization of a cross-platform development framework. Strictly speak-
ing, also Webapps can be used. HTML5 [7] is rather mature [18,31] yet limited
compared to cross-platform development frameworks [29,32]. Thus, Webapps are
not necessarily considered when comparing cross-platform approaches [52].

In case of native development, design and programming effort increases almost
linearly with the number of supported platforms [34,55]. In case of using a cross-
platform approach, the actual choice is quite limited. Despite a multitude of dif-
ferent possibilities, only so called hybrid approaches are widely used [32] – in fact,
PhoneGap [8] a.k.a. Apache Cordova [4] arguably is the most widely used frame-
work. Hybrid approaches are based on Web technology and enable rapid develop-
ment for multiple devices [32]. They are limited with regard to performance and
do not offer a native look & feel, though. A user interface that represents or at
least resembles a native one has been described as very important for the use in
business apps [47]. Business apps characterize a subset of applications for mobile
devices; they typically are form-based and data-driven [34].

Cross-platform development approaches and the native SDKs alike pose an
additional flaw when it comes to business app development: a low-level of abstrac-
tion. In case of native development, programming languages such as Java and
Objective-C are used to tell the app programmatically how a problem is solved.
Hybrid frameworks employ Web technologies such as HTML5 and JavaScript.
This stills means that the focus is on how an app works. However, business apps
typically are rather simple in functionality. They support or enable a business
process but usually rely on (priorly existing) backend systems, which they use
e.g. for computation [47]. Consequently, the desired way of developing a business
app utilizes a high level of abstraction, i.e. you instruct an app what to do but
let the framework decide how it is done. The latter can be different on each tar-
get platform. Hence, this amenity applies to both cross-platform work and for a
single platform: refraining from programming but enabling app development for
domain experts is always desirable.

We have closely observed the development of a scientific prototype for model-
driven app development. MD2 uses a domain-specific language (DSL) of its own
and has been developed to facilitate the creation of business apps [33,34]. Since
this approach is new to mobile computing, we revisit the design of MD2. The
research question for our work is: how can model-driven software development
(MDSD) be used for IS research? With this intentionally broad question we
transport – and hopefully motivate for IS activities – a thread of research that
has been discussed for software development for at least 15 years [40].

We will answer our research question with a focus on mobile computing. As
steps towards this objective, we describe the background of MD2’s development
(Sect. 2) and sketch the design method used (Sect. 3). Moreover, we present novel
ideas that we deem feasible for reengineering the approach with business pro-
ducibility in mind (Sect. 4). Based on this, we discuss our findings and generalize
them (Sect. 5). Finally, we draw a conclusion (Sect. 6).

Reengineering an Approach to Model-Driven Development of Business Apps 17

This paper makes several contributions. Firstly, we summarize MD2 taking
a third-party look and abstracting from the technical papers that describe its
implementation. Secondly, we propose a design method for employing MDSD in
IS research. Thirdly, we present reengineering ideas that underline the method.
Fourthly, we highlight generalizable findings to give an outlook that should prove
useful beyond our own work.

2 Background

Rightfully, the majority of development approaches describe how an app works
i.e. in which – ideally innovative – way it solves a given problem. Yet, when
engaging with different platforms stakeholders are faced with various approaches
that vary not only in syntax but in underlying paradigms including aspects such
as memory management and user interface components (widgets).

MD2 provides a DSL that organises its element following the widely-used
Model-View-Controller (MVC) design pattern [25]. By means of the MD2 DSL,
developers express what their app should resemble. MD2 models describe rel-
evant entities (model), their display (view), and behaviour. This is done with
regard to both display induced manipulations, e.g. user triggered actions to per-
sist an entity, and data dependent checks, e.g. checking an input’s conformance
and ensuring that in depth checks are required for certain tasks (controller).

MD2 DSL is neither specific to any platform nor does it rely on Web tech-
nology: it resembles a generative approach. For that generative purpose, the
language is composed using Xtext [10]. It allows defining arbitrary languages
in a syntax similar to that of the Extended Backus Naur Form (EBNF) [67].
Xtext instances are automatically converted into Eclipse Modeling Framework
[61] models (a.k.a. EMF models). Typically, these models are then transformed
to target platform code. This transformation draws from Xtend [9], a dialect
for Java that among other features provides template expressions and dispatch
methods that seamlessly blend in with Xtext and Java.

Other than Web-based approaches, MD2 is not constrained to Web elements
in terms of enhancing their namespace. Instead, MD2 DSL is tailored to describe
business apps. This is highlighted by its focus on data; in fact, the elements it
provides are data-driven. For example, views may be generated from a given
entity as shown in Listing 1. When an entity definition is combined with an auto
generating view element, a view such as the one in Fig. 1 is created; here it is
exemplarily shown for Android, but an according iOS view is created as well.
Alternatively, each field of the resulting view can be defined manually.

1 package crm . contac t s . models
2

3 entity Contact {
4 f i r s tname : string
5 surname : string
6 phone : integer (optional)
7 emai l : string (optional)

18 T.A. Majchrzak and J. Ernsting

Fig. 1. View of a MD2 generated app

8 address : string (optional)
9 s t a t e : AcquisitionState

10 }
11

12 enum AcquisitionState {
13 ”Prospec t i v e ” , ”Acquir ing ” ,
14 ”Acquired” , ”Rejec ted ”
15 }

Listing 1. MD2 entity definition.

MD2 adheres to the convention of configuration paradigm: while it is possi-
ble to adjust certain aspects, sane configurations are provided and enacted by
default. This relieves modellers from dealing with tedious configurations whilst
they could focus on the central aspects of their model. For example, the auto
generating view element can be told to use only selected attributes or exclude
certain attributes from the resulting view. Thus, little model code is required to
produce apps. Though lines of code may have limited explanatory value, MD2’s
lightweight models produce apps with useful features per default. These include
device local persistence, network communications for remote interactions and
persistence that are based on a well-defined RESTful Web service interface [66].

While only one of us was involved in the development of MD2, we were able to
closely survey its development process. The development of the MD2 generators
is based on the reference implementation proposed by [60]. Therefore, apps for
the selected platforms (iOS and Android) were developed from scratch. These
apps featured common elements that are required in business apps. On that basis,
commonalities of the platforms were identified and problems due to different
approaches on the platforms were solved. Most of all, the paradigm mismatch
of the Objective-C and Java programming languages as well as the platform
conventions caused difficulties in the identification process. Nonetheless, feasible
abstractions for all platforms were identified and are represented in MD2 DSL.

Reengineering an Approach to Model-Driven Development of Business Apps 19

For a more elaborate discussion of MD2 with a focus on technological details,
please refer to the respective papers from the designers and developers [33–35].

3 Methodology

This section serves two purposes. Firstly, it explains the approach to writing this
paper. Secondly, it sketches the methodology behind developing MD2 with the
goal of giving generalizable advice. We deem this of particular relevance since the
software engineering research [48] presented with MD2 follows a method typical
for that kind of research without explaining too much of it.

The foundation for our aim of contributing to the theory of mode-driven soft-
ware development in IS research is the prototype described in the prior section.
It is not in a commercial-ready state yet sophisticated enough to leave the tech-
nological perspective of its authors. This scrutinisation of an MDSD project
allows to consider its development process. To avoid being stuck in prior work,
we amend our paper with a discussion of improvements. The idea is to present
another main iteration whereas developing MD2 has been incremental and iter-
ative already. This serves a methodological aim: while from the technological
perspective small iterations lead to the fulfilment of functional requirements,
large iterations – i.e. reengineering – facilitates the fulfilment of non-functional
requirements. This in particularly concerns business aims.

The leading method behind MD2 is the common approach followed in proto-
type development in computer science (CS). It closely aligns with design science
as the arguably most profound methodology for design-oriented artefact con-
struction in IS research [38]. In fact, software engineering as the particular CS
discipline is specifically suited for integration with design science [50]. Applying
a sound methodological approach to a problem of profound industry relevance
is a precondition to be both rigorous and relevant. After the initial, very rough
idea of applying MDSD to cross-platform development was discussed, develop-
ment of MD2 was carried out iteratively. It thereby followed the design science
cycle of building and evaluating a prototype as described in [39].1

The realization of MD2 roughly followed the design science research process
[54]. We retroactively apply the steps to MD2 in a similar fashion. Part of the infor-
mation we use here can be derived from the published papers on MD2 but we also
draw from our contact to the developers.

Firstly, a problem was identified and motivated. When work on MD2 was ini-
tiated, the available frameworks for cross-platform development were much less
mature than today and the demand for cross-platform solutions was rising [36].
As a particular motivation, an approach was sought that would be suitable to
businesses by refraining from low-level programming and by offering the pos-
sibility to align with business processes (for early thoughts on MDSD business
process aligning cf. with the work by [57]). MDSD appeared to be a natural
choice here; at the same time its feasibility for mobile computing had hardly
1 From the viewpoint of the natural sciences, the approach might also be called engi-
neering science as rather aggressively proposed by Gruner and Groeze [27].

20 T.A. Majchrzak and J. Ernsting

been assessed scientifically and not exhaustively tried out by practitioners (cf.
also with the discussion of related work in [34]).

Secondly, objectives for a solution were defined. In case of MD2, these were
the choice of MDSD and the limitation to business apps, which were a com-
promise of the approaches’ general value and technological obstacles that would
need to be overcome. While most objectives were qualitative, also quantitative
objectives could be identified, such as a faster time-to-market for apps [55] and
a reduction in lines of code to be written, both in comparison to native develop-
ment. The objectives were considered for the design and development, which is
the third activity that is proposed in [54]. Strictly speaking, the result was not a
single artefact but several artefacts such as the generators and other components,
which have value beside their role as part of MD2.

Fourthly, MD2 was demonstrated in several ways. Following internal experi-
ments by the development team, a case study was implemented in cooperation
with a business partner using an actual case from one of their customers – a
tariff calculator [34]. As the next step, the technological progress was presented
in a number of papers that addressed both computer science [34,35,37] and
information systems [33] audiences.

As a consequence, the fourth activity overlapped with the fifth and the sixth
activity proposed in [54]: evaluation and communication, respectively. Experi-
ments also served as a first benchmark. The successive implementation of the
tariff calculator led to further insights. Finally, presentation at conferences stim-
ulated discussion and at the same time allowed disseminating the findings.

Finishing the first experiments, a continuous cycle of refinements was started
(repeating activities three through six). Observed implications lead to smaller
refinements [38, p. 5], particularly concerning the user interface of generated
apps and the generators. However, it did not comprise of changes to the domain
specific language save small amendments. This was a deliberate choice: changing
the DSL would render most (probably all) prior applications of it useless.2 In
contradiction to application programming interfaces, where new methods might
be implemented while marking the old ones as deprecated, changing the DSL
typically is not downward compatible.

We propose that the consequence for MD2 – as well as for other uses of MDSD
in IS – is to have a design science process nested in a design science process. We
have illustrated this idea in Fig. 2. There is an outer cycle of design and evaluate
whereas its design phase comprises of an inner cycle of design and evaluate itself
as well as a reengineering phase. In our view, MD2 should now finish its first
round in the inner cycle and enter the reengineering phase, allowing fundamental
changes based on the gained insights. It then needs to undergo an exhaustive
evaluation that initiates the second inner circle of small design changes and
detailed evaluation with several methods and in several settings.

2 Apps implemented in the then old version of the DSL would be incompatible with
the new generators, as would apps implemented with the new version of the DSL be
with the old generators.

Reengineering an Approach to Model-Driven Development of Business Apps 21

R
ee

ng
ine

er

E

valuate

D
esig

n

Design

Evaluate

Fig. 2. Nested design science cycle

It might be argued that it is inherent to design science research to have smaller
and larger iterations. For example, the cross-platform framework applause
[14, p. 126] has explicitly been developed in an iterative process. It might even be
argued that this approach is routinely followed in prototype development in com-
puter science, even though evaluation is typically conducted as experiments. Nev-
ertheless, we deem the idea of a fundamental cycle and a nested small-steps cycle to
be particular to MDSD projects. In fact, there is not simply an alternating process
of small and large changes. The small steps eventually facilitate amilestone, which
is finalized when ending a cycle. While reengineering is a design activity as well, it
is different in scope and in aims. Even with taking account all lessons learned from
the prior activities, reengineering puts the stakes much higher. By yielding a new
prototype that is neither downwards nor upwards compatible to the former version,
this design activity is a leap compared to the steps undertaken in the inner circle.
Moreover,while steps canbewell anticipated, ideally avoiding any ill choice, reengi-
neering always poses the risk of introducing a fundamental flaw. This can mostly
be avoided by arduous work, but nevertheless reengineering will always lead to new
challenges that have to be overcome. This can be seen as a consequence of applying
changes to the original idea.

To motivate an example for changes to the DSL: ideally, anything the result-
ing application is capable of should be expressible in the DSL. However, particu-
larly when the platforms that native code is generated for differ greatly, finding a
kind of lowest common denominator becomes cumbersome. In fact, it might hin-
der effective usage of the DSL. To overcome such problems, the generation gap
pattern [24, pp. 571ff.] can be used. Simply speaking, it allows to specify gaps at
which code can be freely inserted in the generated code. Typically, design of a
DSL would start without considering gaps. If they become necessary – e.g. when
extending the DSL but realizing that not all desired extensions can reasonably
be implemented – reengineering rather than simply adding them is the natural
choice due to the fundamental impact of the change.

22 T.A. Majchrzak and J. Ernsting

At this point, an intermediary conclusion can be drawn. It also serves as the
transition to the next section, which describes the first steps towards a cycle
of reengineering. The process of developing MD2 well aligns with design science
research. As best practices were followed with regard to the employed tools,
the construction of generators, and the design of the DSL, the process stands
as an example of a MDSD project in mobile computing. The solved problem
comes from the domain of IS research. Thus, we even deem the process to be
exemplarily for MDSD in IS research. As a consequence, we propose the nested
process with explicit reengineering for similar projects. While most parts of the
projects would do well with the core design science process, DSL design demands
explicit and deliberate reengineering rather than incremental design.

4 Reengineering

Besides discussing shortcomings in the MD2 DSL, this section also goes beyond
the scope of currently supported platforms and touches upon an advanced pre-
processing to reduce the burden of implementing generators for new platforms
as well as easing the maintenance for existing generators. As motivated earlier,
the proposed changes are not mere steps but require reengineering.

MD2 can be criticized for its approach of defining input elements in view dec-
larations with regard to two aspects. First, text input definitions were not only
used for text but also for numbers, dates, time, and timestamps (in conjunction
with validators). Secondly, despite platforms such as iOS lacking these, input
declarations for Boolean values are represented as so called check boxes. Origi-
nally, this naming convention stemmed from Android; yet, in the latest Android
release, check boxes were replaced by switches [3]. This causes a divergence in
meaning and introduces ambiguity where explicitness could be employed.

Given its data-driven nature, providing direct correspondences for each data
type when declaring views – i.e. offering dedicated input elements for numbers,
dates, time, and timestamps – constitutes a straightforward improvement to
MD2. In the first place, MD2 required both the input declaration and an accord-
ing validator to determine the input element that best suits the corresponding
platform. Table 1 shows the reengineered input notation for non-textual inputs,
which no longer require accompanying validators.

Furthermore, the reengineered notation enables the provision of improved
editor validation as incompatible data types and input elements are highlighted.
Instead of having to wait for a full transformation and deploy process to finish,
users receive instant feedback concerning invalidly used input elements.

For utilization by businesses, i.e. users wanting to generate apps for their
respective target platform(s), MD2’s generation step is a vital component to
adjust. However, MD2’s developers consider the development and maintenance
of generators a laborious and time consuming endeavour [22]. So far, generators
perform the transformations from model to code. An intermediate preprocessing
stage already helps to enrich the original model with model to model transfor-
mation. This reduces the overall work that generators perform. Preprocessing

Reengineering an Approach to Model-Driven Development of Business Apps 23

Table 1. Comparison of the Original and the Reengineered Notation for Input Fields

Data type Original notation Reengineered notation

string TextInput ID TextInput ID

integer TextInput ID + IsIntegerValidator IntegerInput ID

float TextInput ID + IsNumberValidator NumberInput ID

boolean CheckBox ID BooleanInput ID

date TextInput ID {type date} +
DateFormatValidator

DateInput ID

time TextInput ID {type time} +
DateFormatValidator

TimeInput ID

datetime TextInput ID {type datetime} +
DateFormatValidator

DatetimeInput ID

Enum SelectBox ID OptionInput ID

allows to introduce novel language elements that necessitate any changes to the
generators. For example, the introduction of auto generative views – which pro-
vide input fields for a given entity without further ado – is one case where the
language elements for the auto generative views do not have to be considered
by generators as they can be converted into well-defined views by preprocessing.
Preprocessing also includes the inference of correct inputs to use (cf. the above
discussion of input elements) as well as the transformation of sequences of views
that could be nested into flattened sequences.

To further ease generator maintenance and development, minimising the
number of elements generators have to support reduces overall effort. A subset
of MD2 language elements was identified for that purpose. This subset suffices
to represent more complex language elements such as “workflows” and condi-
tional event handling. To identify the sweet spot, all language elements require
investigation to determine whether they could be represented through others.

We identified several core language elements that suffice to represent com-
plex components such as view sequences, conditional events, combined actions,
and validators. For example, validation of string lengths can be automatically
transformed to reuse regular expression validators.

To demonstrate the effectiveness of the improved preprocessing, MD2’s lan-
guage elements used for describing sequences of views were tuned to support
advanced flows of views. Despite adding the capability for conditional branching,
generators were not required to account for this addition at all. In fact, elements
that describe view sequences were removed from the preprocessed model alto-
gether, i.e. generators no longer need to take care of these elements. As a result
of the improved preprocessing, generators have to support the core language
elements only. The overall number of elements in a preprocessed model certainly
exceeds that of its original model. This, however, does not pose a problem since
the preprocessed model is intended for fully automatic generation. These core
language elements not only represent a subset of the overall MD2 DSL, but

24 T.A. Majchrzak and J. Ernsting

can also be characterised and described in an unambiguous way, such that the
generated apps exhibit consistent behaviour across different platforms.

Reengineering might go beyond the above sketched ideas. With Xbase,
Efftinge et al. propose means to include behavioural aspects in DSLs [21]. The
idea is to keep the high level of abstraction DSLs provide while not being forced
to “fall back” to general purpose programming languages. With “language inher-
itance” from Xtend [21], Xbase could provide new means to extend MD2’s Java
backend. That way, extending the backend’s capabilities would no longer require
modifications to the generated backend code or utilising means such as the gen-
eration gap (cf. Sect. 3). Instead, adjustments are dealt with as first class model
artefacts.

5 Discussion

The presented background and insights allow for a discussion. We first highlight
related work. Then we apply our understanding of MDSD to IS research in
general. This subsequently allows to name limitations and to draw an outlook.

5.1 Related Work

Related approaches have already been named throughout the paper. Neverthe-
less, some light should be shed on closely related work.

Behrens [14] motivates MDSD for creating iPhone apps using applause.
Although its support was extended to Windows Phone and Android, it remains
limited to displaying data. The development process appears to be comparable
to that of MD2 – it is not motivated from a design science perspective, though.
AXIOM [41] takes a more technical way; it features aspects of UML and uses
the programming language Groovy. Employing a graphic modelling interface,
Modagile [2] follows a different approach altogether. However, both Modagile and
AXIOM require manually performed adjustments such as adding code for con-
trol logic or creating mappings for the transformation process. Current progress
has been reported for AXIOM [42], which is promising. Keeping track of the
parallel development of AXIOM and MD2 might yield further insights in the
near future.

Literature on model-driven development of apps is vast; at the same time,
almost all articles only loosely relate to our work for they neither focus on cross-
platform development nor highlight the underlying process. Thereby, they can
also be seen as additional motivation for our work.

Balagtas-Fernandez and Hussmann [11] proposed in 2008 that MDSD is feasi-
ble for mobile computing. Considering the year of publication, this is particularly
notable for closely aligning with the breakthrough of smartphones. Their main
concern, however, were graphical interfaces. Thus, their work can be attributed
to the domain of human computer interaction (HCI). The same is true for the
work by Diep, Tran and Tran [19]. Notable is their focus on cross-platform user
interface generation.

Reengineering an Approach to Model-Driven Development of Business Apps 25

In alignment with our ideas but with a variety of different focuses, other
authors suggest a higher level of abstraction. This can be recorded for mobile
architectures [20], testing [56], self-adaptivity [26,58], and context-awareness [16,
30]. Some authors also propose specific applications. Examples are a work on
healthcare apps [43] and the general approach of [53] for Android-based devices.

5.2 MDSD in Information Systems Research

MDSD is broadly applied in computer science research. Models are a key concept
in information systems (IS) research. As a consequence, we propose to utilize
MDSD much more in IS projects. In particular, we suggest that modelling in
business terms – e.g. as part of business process modelling (BPM) [12] – and
MDSD are integrated. For the case of MD2, this could e.g. mean that workflows
as modelled in enterprises can be incorporated as the workflow in apps.

The idea to use MDSD in IS research is not new. Castro and colleagues [17]
propose an alignment with “high level business models” in the context of service-
oriented information systems. Despite a different focus, this idea is very close
to ours. Unfortunately, such threads of research do not seem to have been sus-
tainably followed. Moreover, most work explicitly highlights its technical con-
tribution (cf. [64]). This (i.e. the technical contribution) has much merit; in
fact, this paper would not have been written without the technological progress
described as a result from developing MD2. However, it is highly desirable to con-
tribute to theory besides technological progress. In fact, technological progress
and advancements in IS methods can go hand-in-hand.

MDSD in information systems development has been particularly considered
in the area of security [13,23]. Whereas security is a topic within IS research, typ-
ical papers can rather be attributed to computer science and do not much focus
on methodology; generalization consequently focuses on security, not MDSD.

MDSD offers a particularly good background for projects that facilitate
“learning via making” [51, p. 111]. Moreover, it is adequate for coming up with
solutions relevant for business, yet satisficing [59] from a scientific point of view.
In other words: while there are good reasons just from a problem-solving point
of view already, MDSD can iteratively be applied to gain new insights. Business
interest in MDSD had risen [15],3 which helps to disseminate progress beyond
the scientific literature. Moreover, it is very helpful to be able to gain real cases
from enterprises.

MDSD research can draw from a profound theoretical base. At the same
time, its application to so far undiscovered fields only needs to rely on this basis
with regard to methodology or by means of analogies. It thereby aligns with
a strength of design science research in general, i.e. to enable insights without
necessarily relying on a broad theoretical base [63].

Tool support for MDSD is very advanced [44]. As explained for MD2, with
the availability of tools such as Xtext and Xtend many formerly laborious steps

3 Cases are particularly reported for model-driven architecture (MDA) [28], which can
be used in combination with MDSD and underlines the interest.

26 T.A. Majchrzak and J. Ernsting

are eased; much manual work can be avoided and MDSD prototypes can be
created with a focus on high-level work. In our eyes this is yet another argument
for using MDSD more widely.

The above arguments in combination with our proposal of a nested design
science process (see Sect. 3) led us to a conclusion. We deem MDSD to be very
appropriate for design-oriented research projects in IS research. Reflecting on
the development of MD2, there without question is room for improvement. Nev-
ertheless, the general approach is sound.

5.3 Limitations

Limitations have to be considered from two perspectives. First, some limitations
lie in the approach we took in this paper. Second, there are limitations that are
inherent to MDSD for IS research.

MD2 is a research prototype. As a direct consequence, it inherently has a
work-in-progress character although papers present milestones, which, by their
contribution, mark finished work. The main limitation of MD2 as the case for
our paper thus is the fact that business producibility has not yet been reached.

There are two limitations this paper poses. Firstly, it relies on one main
case and is not quantitatively verified. However, since we present novel ideas,
which should be discussed in detail, we deem a quantitative assessment to be
way too early. Secondly, this paper combines two contributions, one concern-
ing method and one concerning a prototype’s reengineering. An elaborate paper
on the reengineering alone would have made a sound contribution – but for a
computer science audience. A method paper without motivation and case would
have been purely theoretical. Therefore, we have combined method and innov-
ative case. This deliberate choice is a strength of this paper but a weakness at
the same time due to the presentation of more than one message at a time.

Identifying the general limitations of MDSD in IS research is not straightfor-
ward. In fact, the lack of work on this topic is a limitation by itself. Drawing the
border of MDSD for IS would be merely speculative at this point. Therefore, we
will tackle this topic as future work. However, neither do the limitations of our
research hinder its merits nor are the boundaries of MDSD “show stoppers” in
terms of the applicability to IS.

5.4 Outlook and Future Work

As a consequence from our findings, and based on the presented discussion, an
outlook has to be drawn. Much future work remains to be done.

With regard to cross-platform development approaches based on MDSD,
many iterations of designing and iterating will be required before business
producible tools will be available. Moreover, extended qualitative assessment
followed by quantitative studies is required.

While we are convinced of the feasibility of MDSD in app development, it
remains to be seen what future approaches will look like. In fact, in the few years

Reengineering an Approach to Model-Driven Development of Business Apps 27

of widespread usage of smartphones and tablets, the landscape of development
methods, tools, and frameworks has changed dramatically. Whether platforms
will converge so much that cross-platform development becomes unnecessary,
HTML5-based development or a Hybrid approach such as PhoneGap win the
race, or a completely different approach – such as MDSD – taking the lead is
impossible to anticipate. However, the dynamic of change makes research in this
field not only challenging but also exciting.

As a side note, it will also be important to monitor other paradigms. We have
argued that Webapps are appropriate for cross-platform development in some
cases, but problematic in others. Walker, Turnbull, and Sim suggest that users
prefer browsing “normal” Web pages to those that have mobile versions [65]. It
would be interesting to check whether this also applies to using Web technology
as part of cross-platform frameworks that do not use native elements.

There are other approaches that should be closely monitored for further
development. One example is Google Inbox [62]. Based on a Java data model that
is used natively on Android, compilation to JavaScript is performed using the
Google Widget Toolkit [6]. Then cross-compiling to Objective-C using J2ObjC [5]
is conducted. Their conclusion is also true for an MDSD approach. To become
an option, apps need “significant UI independent client logic”, support multiple
platforms, and “must not compromise on user experience and polish” [62].

Besides this general look at mobile computing, we are looking forward to
seeing more IS projects that employ MDSD. Whether we and others can actually
stimulate an increased consideration remains to be seen.

Our own work will continue in several threads of research. Firstly, we will
contribute to the development of MD2, aiming at a new version based on the
reengineering. We also intend to work with partners from industry on its eval-
uation, ideally (and eventually) achieving a version that can be released for
first commercial projects. Secondly, we will continue work on the IS and busi-
ness perspective on cross-platform app development [46]. We seek to foster the
understanding of business apps and of the integration of business processes with
app development and deployment. Thirdly, we plan to intensify our contribution
to the research of methodology for we consider MDSD to be underrepresented
in IS research despite IS’s strong focus on models and modelling.

6 Conclusion

In this paper we presented the background of MD2, an academic prototype for the
model-driven development of cross-platform apps. We highlighted insights con-
cerning the development process and propose its suitability for MDSD project in
information systems research. Moreover, we discussed the reengineering of MD2,
thereby demonstrating the process and contributing to the theory on MDSD in
mobile computing. We amended our paper with arguments and thoughts concern-
ing the status quo of MDSD in IS. While we seek to discuss our ideas, several
threads of future work could also be identified.

28 T.A. Majchrzak and J. Ernsting

Acknowledgements. We would like to thank Sören Evers and con terra GmbH for
their contribution to the reengineering of MD2. Sören’s work is particularly reflected
in Table 1. Additionally, we would like to thank Klaus Fleerkötter, Daniel Kemper,
Sandro Mesterheide and Jannis Strodtkötter for their contribution to the first version
of MD2.

References

1. Gartner Press Release, February 2013. http://gartner.com/newsroom/id/2665715
2. Modagile Mobile (2013). http://www.modagile-mobile.de/
3. Android Styleguide (2014). https://developer.android.com/design/building-blocks/

switches.html
4. Apache Cordova (2014). http://cordova.apache.org/
5. google/j2objc (2014). https://github.com/google/j2objc
6. GWT (2014). http://www.gwtproject.org/
7. HTML5 (2014). http://www.w3.org/TR/html5/
8. PhoneGap (2014). http://phonegap.com/
9. Xtend (2014). http://www.eclipse.org/xtend/

10. Xtext (2014). http://www.eclipse.org/Xtext/
11. Balagtas-Fernandez, F.T., Hussmann, H.: Model-driven development of mobile

applications. In: Proceedings of the 2008 23rd IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE 2008, pp. 509–512. IEEE Computer
Society, Washington, DC (2008)

12. Barjis, J.: The importance of business process modeling in software systems design.
Sci. Comput. Program. 71(1), 73–87 (2008)

13. Basin, D., Clavel, M., Egea, M.: A decade of model-driven security. In: Proceed-
ings of the 16th ACM Symposium on Access Control Models and Technologies,
SACMAT 2011, pp. 1–10. ACM, New York (2011)

14. Behrens, H.: MDSD for the iPhone: developing a domain-specific language and ide
tooling to produce real world applications for mobile devices. In: Proceedings of
the ACM International Conference Companion on Object Oriented Programming
Systems Languages and Applications Companion, pp. 123–128. ACM, New York
(2010)

15. Brambilla, M., Cabot, J., Wimmer, M.: Model Driven Software Engineering in
Practice. Morgan & Claypool, USA (2012)

16. Carton, A., Clarke, S., Senart, A., Cahill, V.: Aspect-oriented model-driven devel-
opment for mobile context-aware computing. In: Proceedings of the 29th Interna-
tional Conference on Software Engineering Workshops, ICSEW 2007, pp. 191–198.
IEEE Computer Society, Washington, DC (2007)

17. Castro, V.d., Mesa, J.M.V., Herrmann, E., Marcos, E.: A model driven approach
for the alignment of business and information systems models. In: Proceedings of
the 2008 Mexican International Conference on Computer Science, ENC 2008, pp.
33–43. IEEE Computer Society, Washington, DC (2008)

18. Curran, K., Bond, A., Fisher, G.: HTML5 and the mobile web. Int. J. Innov. Digit.
Econ. (IJIDE) 3(2), 40–56 (2012)

19. Diep, C.K., Tran, Q.N., Tran, M.T.: Online model-driven ide to design guis for
cross-platform mobile applications. In: Proceedings of the Fourth Symposium on
Information and Communication Technology, SoICT 2013, pp. 294–300. ACM,
New York (2013)

http://gartner.com/newsroom/id/2665715
http://www.modagile-mobile.de/
https://developer.android.com/design/building-blocks/switches.html
https://developer.android.com/design/building-blocks/switches.html
http://cordova.apache.org/
https://github.com/google/j2objc
http://www.gwtproject.org/
http://www.w3.org/TR/html5/
http://phonegap.com/
http://www.eclipse.org/xtend/
http://www.eclipse.org/Xtext/

Reengineering an Approach to Model-Driven Development of Business Apps 29

20. Dunkel, J., Bruns, R.: Model-driven architecture for mobile applications. In:
Abramowicz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 464–477. Springer,
Heidelberg (2007)

21. Efftinge, S., Eysholdt, M., Köhnlein, J., Zarnekow, S., von Massow, R.,
Hasselbring, W., Hanus, M.: Xbase: implementing domain-specific languages for
Java. SIGPLAN Not. 48(3), 112–121 (2012)

22. Evers, S., Fleerkötter, K., Kemper, D., Mesterheide, S., Strodtkötter, J.: MD2

model-driven mobile development (2012). http://wwu-pi.github.io/md2-web/res/
MD2-Documentation.pdf

23. Fernández-Medina, E., Jurjens, J., Trujillo, J., Jajodia, S.: Editorial: model-driven
development for secure information systems. Inf. Softw. Technol. 51(5), 809–814
(2009)

24. Fowler, M.: Domain-Specific Languages. Addison-Wesley Pearson Education,
Upper Saddle River (2011)

25. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston (1995)

26. Geihs, K., Reichle, R., Khan, M.U., Solberg, A., Hallsteinsen, S.: Model-driven
development of self-adaptive applications for mobile devices: (research summary).
In: Proceedings of the 2006 International Workshop on Self-adaptation and Self-
managing Systems, SEAMS 2006, pp. 95–95. ACM, New York (2006)

27. Gruner, S., Kroeze, J.: On the shortage of engineering in recent information sys-
tems research. In: Proceedings of the 25th Australasian Conference on Information
Systems. ACIS (2014)

28. Guttman, M., Parodi, J.: Real-Life MDA: Solving Business Problems with Model
Driven Architecture. Morgan Kaufmann Publishers Inc., San Francisco (2007)

29. Hallem, S.: overcoming html5’s limitations (2013). http://drdobbs.com/web-
development/overcoming-html5s-limitations/240159696

30. Harchay, A., Cheniti-Belcadhi, L., Braham, R.: A model driven infrastructure for
context-awareness mobile assessment personalization. In: Proceedings of the 2012
IEEE 11th International Conference on Trust, Security and Privacy in Computing
and Communications, TRUSTCOM 2012, pp. 1676–1683. IEEE Computer Society,
Washington, DC (2012)

31. Harjono, J., Ng, G., Kong, D., Lo, J.: Building smarter web applications with
HTML5. In: Proceedings of the 2010 Conference of the Center for Advanced Studies
on Collaborative Research, pp. 402–403. ACM, New York (2010)

32. Heitkötter, H., Hanschke, S., Majchrzak, T.A.: Evaluating cross-platform develop-
ment approaches for mobile applications. In: Cordeiro, J., Krempels, K.-H. (eds.)
WEBIST 2012. LNBIP, vol. 140, pp. 120–138. Springer, Heidelberg (2013)

33. Heitkötter, H., Majchrzak, T.A.: Cross-platform development of business apps with
MD2. In: vom Brocke, J., Hekkala, R., Ram, S., Rossi, M. (eds.) DESRIST 2013.
LNCS, vol. 7939, pp. 405–411. Springer, Heidelberg (2013)

34. Heitkötter, H., Majchrzak, T.A., Kuchen, H.: Cross-platform model-driven devel-
opment of mobile applications with MD2. In: Proceedings SAC 2013, pp. 526–533.
ACM (2013)

35. Heitkötter, H., Majchrzak, T.A., Kuchen, H.: MD2-DSL - eine domänenspezifische
Sprache zur Beschreibung und Generierung mobiler Anwendungen. In: Wagner, S.,
Lichter, H. (eds.) ATPS 2013. LNI, vol. 215, pp. 91–106. GI, Bonn (2013)

36. Heitkötter, H., Majchrzak, T.A., Wolffgang, U., Kuchen, H.: Business Apps:
Grundlagen und Status quo. No. 4 in Working Papers, Förderkreis der Ange-
wandten Informatik an der WWU Münster e.V. (2012)

http://wwu-pi.github.io/md2-web/res/MD2-Documentation.pdf
http://wwu-pi.github.io/md2-web/res/MD2-Documentation.pdf
http://drdobbs.com/web-development/overcoming-html5s-limitations/240159696
http://drdobbs.com/web-development/overcoming-html5s-limitations/240159696

30 T.A. Majchrzak and J. Ernsting

37. Heitkötter, H., Kuchen, H., Majchrzak, T.A.: Extending a model-driven cross-
platform development approach for business apps. Sci. Comput. Program. 97, Part
1(0), 31–36 (2015)

38. Hevner, A.R., Chatterjee, S.: Design Research in Information Systems: Theory and
Practice. Springer, Heidelberg (2010)

39. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS Q. 28(1), 75–105 (2004)

40. Humm, B., Schreier, U., Siedersleben, J.: Model-driven development — hot spots
in business information systems. In: Hartman, A., Kreische, D. (eds.) Model Driven
Architecture – Foundations and Applications. LNCS, vol. 3748, pp. 103–114.
Springer, Heidelberg (2005)

41. Jia, X., Jones, C.: AXIOM: a model-driven approach to cross-platform application
development. In: ICSOFT 2012 - Proceedings of the 7th International Conference
on Software Paradigm Trends, pp. 24–33 (2012)

42. Jones, C., Jia, X.: The AXIOM model framework - transforming requirements
to native code for cross-platform mobile applications. In: Filipe, J., Maciaszek,
L.A. (eds.) ENASE 2014 - Proceedings of the 9th International Conference on
Evaluation of Novel Approaches to Software Engineering, pp. 26–37. SciTePress
(2014)

43. Khambati, A., Grundy, J., Warren, J., Hosking, J.: Model-driven development
of mobile personal health care applications. In: Proceedings of the 2008 23rd
IEEE/ACM International Conference on Automated Software Engineering, ASE
2008, pp. 467–470. IEEE Computer Society, Washington, DC (2008)

44. Kurtev, I., Bézivin, J., Jouault, F., Valduriez, P.: Model-based DSL frameworks.
In: Companion to the 21st ACM SIGPLAN Symposium on Object-oriented Pro-
gramming Systems. Languages, and Applications, pp. 602–616. ACM, New York
(2006)

45. Lin, F., Ye, W.: Operating system battle in the ecosystem of smartphone industry.
In: Proceedings 2009 International Symposium on Information Engineering and
Electronic Commerce (IEEC), pp. 617–621. IEEE CS (2009)

46. Majchrzak, T.A., Ernsting, J., Kuchen, H.: Achieving business practicability of
model-driven cross-platform apps. Open J. Inf. Syst. (OJIS) 2(2), 3–14 (2015)

47. Majchrzak, T.A., Heitkötter, H.: Status quo and best practices of app develop-
ment in regional companies. In: Krempels, K.-H., Stocker, A. (eds.) WEBIST 2013.
LNBIP, vol. 189, pp. 189–206. Springer, Heidelberg (2014)

48. Marcos, E.: Software engineering research versus software development. SIGSOFT
Softw. Eng. Notes 30(4), 1–7 (2005)

49. McLellan, C.: enterprise mobility in 2014: App-ocalypse now? (2014). http://www.
zdnet.com/enterprise-mobility-in-2014-app-ocalypse-now-7000028499/

50. Morrison, J., George, J.: Exploring the software engineering component in MIS
research. Commun. ACM 38(7), 80–91 (1995)

51. Oates, B.J.: Researching Information Systems and Computing. Sage Publications,
London (2005)

52. Ohrt, J., Turau, V.: Cross-platform development tools for smartphone applications.
IEEE Comput. 45(9), 72–79 (2012)

53. Parada, A.G., Brisolara, L.B.D.: A model driven approach for android applications
development. In: Proceedings of the 2012 Brazilian Symposium on Computing Sys-
tem Engineering, SBESC 2012, pp. 192–197. IEEE Computer Society, Washington,
DC (2012)

http://www.zdnet.com/enterprise-mobility-in-2014-app-ocalypse-now-7000028499/
http://www.zdnet.com/enterprise-mobility-in-2014-app-ocalypse-now-7000028499/

Reengineering an Approach to Model-Driven Development of Business Apps 31

54. Peffers, K., Tuunanen, T., Rothenberger, M., Chatterjee, S.: A design science
research methodology for information systems research. J. Manag. Inf. Syst. 24(3),
45–77 (2007)

55. Ribeiro, A., da Silva, A.R.: Survey on cross-platforms and languages for mobile
apps. In: Proceedings of the 2012 Eighth International Conference on the Quality of
Information and Communications Technology, QUATIC 2012, pp. 255–260. IEEE
Computer Society, Washington, DC (2012)

56. Ridene, Y., Barbier, F.: A model-driven approach for automating mobile applica-
tions testing. In: Proceedings of the 5th European Conference on Software Archi-
tecture: Companion Volume, ECSA 2011, pp. 9:1–9:7. ACM, New York (2011)

57. Ruokonen, A., Pajunen, L., Systa, T.: On model-driven development of mobile
business processes. In: Proceedings of the 2008 Sixth International Conference on
Software Engineering Research, Management and Applications, SERA 2008, pp.
59–66. IEEE Computer Society, Washington, DC (2008)

58. Schmidt, H., Dang, C.T., Gessler, S., Hauck, F.J.: Model-driven development of
adaptive applications with self-adaptive mobile processes. In: Meersman, R., Dillon,
T., Herrero, P. (eds.) OTM 2009, Part I. LNCS, vol. 5870, pp. 726–743. Springer,
Heidelberg (2009)

59. Simon, H.A.: The Sciences of the Artificial, 3rd edn. MIT Press, Cambridge (1996)
60. Stahl, T., Völter, M.: Model-Driven Software Development. Wiley, New York

(2006)
61. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling

Framework, 2nd edn. Addison-Wesley, Boston (2009)
62. Toubassi, G.: Going under the hood of inbox (2014). http://gmailblog.blogspot.

de/2014/11/going-under-hood-of-inbox.html
63. Vaishnavi, V.K., Kuechler Jr, W.: Design Science Research Methods and Patterns:

Innovating Information and Communication Technology. Auerbach Publications,
Boston (2007)

64. Vara, J.M., Marcos, E.: A framework for model-driven development of information
systems: technical decisions and lessons learned. J. Syst. Softw. 85(10), 2368–2384
(2012)

65. Walker, M., Turnbull, R., Sim, N.: Future mobile devices: an overview of emerging
device trends, and the impact on future converged services. BT Technol. J. 25(2),
120–125 (2007)

66. Webber, J., Parastatidis, S., Robinson, I.: REST in Practice. Hypermedia and
Systems Architecture. O’Reilly, Cambridge (2010)

67. Wirth, N.: What can we do about the unnecessary diversity of notation for syntactic
definitions? Commun. ACM 20(11), 822–823 (1977)

http://gmailblog.blogspot.de/2014/11/going-under-hood-of-inbox.html
http://gmailblog.blogspot.de/2014/11/going-under-hood-of-inbox.html

http://www.springer.com/978-3-319-24365-8

	Reengineering an Approach to Model-Driven Development of Business Apps
	1 Introduction
	2 Background
	3 Methodology
	4 Reengineering
	5 Discussion
	5.1 Related Work
	5.2 MDSD in Information Systems Research
	5.3 Limitations
	5.4 Outlook and Future Work

	6 Conclusion
	References

