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Abstract. Automated planning is computationally hard even in its
most basic form as STRIPS planning. We are interested in numeric plan-
ning with instantaneous actions, a problem that is not decidable in gen-
eral. Relaxation is an approach to simplifying complex problems in order
to obtain guidance in the original problem. We present a relaxation app-
roach with intervals for numeric planning and show that plan existence
can be decided in polynomial time for tasks where dependencies between
numeric effects are acyclic.

1 Motivation

Automated planning can be used to solve many real world problems where a goal
is reached by applying operators that change the state of the world. In classi-
cal planning, the world is modeled with Boolean variables. Modeling of physical
properties (e.g. velocity) or resources (e.g. fuel level) requires real-valued vari-
ables instead. Unlike classical planning, which is PSPACE-complete [4], numeric
planning is undecidable [7]. Even though completeness of numeric planning algo-
rithms can therefore not be achieved in general, numeric planners can find plans
or an assurance that the problem is unsolvable for many practical tasks.

Heuristic search is a predominant approach to solve planning problems. One
way to obtain heuristic guidance is to ignore negative interactions between the
operators. The underlying assumption of a delete relaxation is that propositions
which are achieved once during planning can not be invalidated (deleted). More
recent planning systems are usually not restricted to propositional state vari-
ables. Instead they use the SAST formalism [2], which allows for (finite-domain)
multi-valued variables and a “delete relaxation” corresponds to variables that
can attain a set of values at the same time. Extending this concept for numeric
planning relaxes the set representation even further. A memory efficient approach
to capture possibly infinitely many values of a numeric variable is to consider
the interval that encloses the reached values. The methods to deal with intervals
have been studied in the field of interval arithmetic [10], which has been used
in mathematics for decades [9] and enables us to deal with intervals in terms of
basic numeric operations.

Extending classical delete relaxation heuristics to numeric problems has been
done before, albeit only for a subset of numeric tasks, where numeric variables
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can only be manipulated in a restricted way. The Metric-FF planning system
[8] tries to convert the planning task into a linear numeric task, which ensures
that variables can “grow” in only one direction. When high values of a variable
are beneficial to fulfill the preconditions, decrease effects are considered harm-
ful. Another approach to solve linear numeric planning problems is to encode
numeric variables in a linear program and solve constraints with an LP-solver.
Coles et al. [5] analyze the planning problem for consumers and producers of
resources to obtain a heuristic that ensures that resources are not more often
consumed than produced or initially available. The RANTANPLAN planner [3]
uses linear programs in the context of planning as satisfiability modulo theories.
In contrast, we are interested in approaching numeric planning supporting all
arithmetic base operations by generalizing relaxation heuristics.

2 Basics

In this section, we outline numeric planning with instantaneous actions, which is
expressible in PDDL2.1, layer 2 [6]. We describe interval arithmetic, the technique
we use to extend delete relaxation heuristics to numeric planning.

2.1 Numeric Planning with Instantaneous Actions

Given a set of variables V with domains dom(v) for all v € V, a state s is a
mapping of variables v to their respective domains. Throughout the paper, we
denote the value of a variable v in state s by s(v). Whenever the state s is not
essential, we use the same letter in different fonts to distinguish a variable or
expression (sans-serif) and its value or evaluation (italic), e.g. s(x) = x.

A numeric planning task IT = (Vp,Vn,0,Z,G) is a 5-tuple where Vp is a set
of propositional variables v, with domain {true, false}. Vn is a set of numeric
variables v, with domain Q* := QU {—o00,00}. O is a set of operators, Z the
initial state and G the goal condition. A numeric expression ejoe; is an arithmetic
expression with operators o € {+, —, x, =} and expressions e; and e, recursively
defined over variables Vy and constants from Q. A numeric constraint (e1 < ep)
compares numeric expressions e; and e, with 1 € {<, <, =, #}. A condition
is a conjunction of propositions and numeric constraints. A numeric effect is
a triple (v, o= e) where v, € Vy, o= € {i=,4=,—=,x=,+=} and e is a
numeric expression. Operators o € O are of the form (pre — eff) and consist of
a condition pre and a set of effects eff = {effy, ..., eff,;} containing at most one
numeric effect for each numeric variable and at most one truth assignment for
each propositional variable.

The semantics of a numeric planning task is straightforward. For constants
¢ € Q, s(c) = c. Numeric expressions (ej0ep) for o € {+, —, X, +} are recursively
evaluated in state s: s(e; o ex) = s(e1) o s(ep). Satisfaction of conditions in a state
s is defined as follows: for propositional variables vy, € Vp, s E v, iff s(v,) = true,
for numeric constraints (e; bx ez), with expressions e, e; and 1 € {<, <, =, #},
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s E (e1 > ep) iff s(e1) > s(ez) and finally, for conjunctive conditions s E p; A po
iff s Fp; and s F ps.

An operator o = (pre — eff) is applicable in s iff s F pre and if for none of
its numeric effects a division by zero occurs. The successor state app,(s) = s’
resulting from an application of o is defined as follows: if eff;, € {effy,... eff,,} is
a numeric effect v, o= e with o= € {+=, —=, x=, +=}, then s'(v,) = s(vy)os(e).
If eff; is a numeric effect v, := e, then §'(v,) = s(e). If eff; is a propositional
effect v, := e, with e, € {true, false}, then s'(v,) is the new truth value e,.
Finally, if a variable v does not occur in any effect, then s'(v) = s(v).

A plan 7 is a sequence of actions that leads from Z to a state satisfying G
such that each action is applicable in the state that follows by executing the
plan up to that action. We intend to relax numeric planning with the help of
intervals. The next section recalls the foundations of interval arithmetic.

2.2 Interval Arithmetic

Interval arithmetic uses an upper and a lower bound to enclose the actual value
of a number. Closed intervals [z,Z] = {g € Q> | z < ¢ < T} contain all rational
numbers from z to T. Throughout this paper we refer to the lower bound of an
interval z by x and to the upper bound by Z. The set I. = {[z,Z] | z < T}
contains all closed intervals. Numbers ¢ can be identified with the degenerate
interval [g, q]. In interval arithmetic, the basic operations are given as:

— addition: [z,7] + [y, 7]

Y = [@ +y,x+ ?]7
— subtraction: [z, T] — [y,

I ?] = [gi_ y7j _y]v

— multiplication: [z, 7] x [y, 7] = [min(ﬂ, 27, Ty, Ty ), max(zy, Y, Ty, @)] ,

~ division: [z, 7]+ [y, 7] = [min (¢/y,2/7,7/y,7/Y) ,max (z/y,2/9,7/y,7/9)]
if 0 ¢ [y,7]. Otherwise, at least one of the bounds diverges to £oo. We do

not explicate all cases of z, T,y and ¥ being positive, zero or negative, which
determine which of the bounds diverge and refer to the literature [9].

Analogously we define open intervals (z,%) = {¢ € Q> |z < ¢ < T} and the
set of open intervals I, = {(z,Z) | x < T}, as well as half open intervals [z,7)
={qeQ>|z<qg<T}and (z,7] = {g € Q®° |z < ¢ <T} and the respective
sets Ieo = {[z,Z) | z < T} and I,. = {(z,7] | z < T}. Finally the set of mixed-
bounded intervals is given as I,,, = I. UT, UT,. UI,,. Open and mixed-bounded
intervals follow the same arithmetic rules as closed intervals. Whenever open
and closed bounds contribute to the new interval bound, the bound is open.

Definition 1. Let x,y € 1, be intervals. The convex union u =z Uy is the
interval with w = min(z,y) and © = max(7,y). Whether the bounds of u are
open or closed depends on whether those of x and y are open or closed.

If Ny =0, u also includes intermediate values not present in either x or y.
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3 Delete Relaxation

In this section, we discuss extensions of delete relaxation to numeric planning.
The idea behind delete relaxation is that values of a variable that are achieved
once remain achieved. We discuss several ways to extend this concept to numeric
planning.

Accumulation Semantics. In the accumulation semantics, instead of changing
their values, variables accumulate all values achieved so far. The number of
accumulated values after k parallel steps is finite, but generally exponential in
k. Therefore, it quickly becomes infeasible to maintain the set of possible values,
as can be seen in the task with 0y = () — {x +=1}), 0o = () — {x +=2}) and
Z(x) = 0. Denoting by zy, k=0, ...,3, the possible values of x after k parallel
steps, we get 29 = {0}, z1 = {0,1}, z2 = {0,3,1,2} and 25 = {0,1,1,1,2,2,3}.
Besides this observation for bounded plan existence, one can also show that
unbounded plan existence wrt. the accumulation semantics is still undecidable.
To see this, we can adapt the undecidability proof for numeric planning by
Helmert [7]. A reduction of the search for solutions to Diophantine equations to
numeric planning wrt. the accumulation semantics shows that the latter problem
is undecidable, since solutions to Diophantine equations have to be integers and
the delete relaxation does not relax this property.

Accumulation Semantics for Positive Tasks. One possible approach to dealing
with the exploding number of accumulated values is the restriction to tasks where
higher values are always better. Then, instead of storing all values a variable has
attained so far, it is sufficient to store (an upper bound on) the highest value.
A sufficient criterion for this is that all preconditions and goals have the form
(x > ¢) or (x > ¢), where x is a numeric variable and ¢ a constant, and that all
numeric effects only add or subtract a positive constant to or from a variable.
The Metric-FF planner uses this type of relaxation, and Hoffmann [8] shows that
a large class of problems can be compiled into the required linear normal form.

Interval Relazation. One can handle a larger class of tasks with higher precision
by only making the assumption that one of the extreme values, the highest or
lowest, is best. This necessitates keeping track of two values for each variable,
a lower bound z and an upper bound Z. As long as preconditions and goals are
comparisons of variables to constants and effects only add or subtract constants,
it is insubstantial whether one considers the values between x and T reached
or not. By considering the entire interval reached in a relaxed sense, one can
handle even more expressive tasks. In particular, when allowing divisions in
effects, besides “higher values are better” and “lower values are better”, one
also has the objective “values closer to ¢ are better” for constants c. Then, if
c is in the interval between z and T, one may assume that values arbitrarily
close to ¢ can be reached, whereas otherwise, one can assess the proximity to ¢
achieved so far. Since the algebraic base operations that are allowed in PDDL are
also supported by interval arithmetic, we consider interval relaxation a viable
approach and focus on it in the following section.
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4 Interval Relaxation

This section elaborates on interval relaxation for numeric planning tasks. We
discuss the complexity of the plan existence problem for the presented semantics.

The interval relaxation of a numeric planning task differs only marginally
from the original task description on a syntactic level. The domains of variables
are change and propositional variables can now be both true and false at the
same time whereas numeric variables are mapped to closed intervals.

Definition 2. Let IT be a numeric planning task. The interval delete relaxation
oI+ = (V5 V5,01, IT,G%) of IT is a 5-tuple where V}; are the propositional
variables from IT with the domains replaced by dom(vy) = {true, false, both}
and VIT, are the numeric variables with the domains replaced by closed intervals
dom(v,) =1, for allv, € VIT,. The initial state ZT is derived from I by replacing
numbers I(vn) with degenerate intervals I (va) = [Z(vn),Z(vn)] and I (vp) =
Z(vp). Operators O = O and the goal condition G+ = G remain unchanged.

The semantics of IIt draws on interval arithmetic. Numeric expressions
are defined recursively. Constant expressions are interpreted as s*(c) = e, (]
and compound expressions e; and e, as st(e; o &) = sT(e;) o sT(ep) for
o € {+,—, X, +} where “o” now operates on intervals. For (goal and operator)
conditions, the relaxed semantics is defined as follows: let v, € V; be a proposi-
tional variable, then s E v, iff s7(vp) € {true, both}. For numeric constraints let
e; and ey be numeric expressions, and < € {<, <,=,#} a comparison operator.
Then s* F (e; > ep) iff Ig1 € sT(e1), g2 € sT(ep) with ¢; > go. This implies
that two intervals can be “greater” and “less” than each other at once.

The “values remain achieved” idea for numeric effects v, o= e is obtained
by the semantics in that v, keeps its old value and gains all values up to the
new value, which is an interval in the relaxation. The state appl(sT) = s'*
resulting from an application of o is then s'*(vy) = sT(va) L (st (va) 0 sT(e))
if eff; € {effy,...,eff,,} is a numeric effect. As we use the convex union from
Definition 1, s'*(v,) contains all values between the old value of v, and the
evaluated expression (st (vy) o s (e)). For propositional effects, s’ (v,) = both if
the effect changes the truth value eff;(vp) # s (vp) of vp, and s'* (vp) = sT(vp)
otherwise. Again, s'*(v) = st (v) if v occurs in no effect. A relaxed plan is defined
in the obvious way.

Ezample 1. Applying o = () — {x x= e}) in a state with z = [8,10] and
e = [—1, 1] leads to s'(x) = [8,10]LI([8, 10] x [ 3, ]) = [8, 10]U[-5,5] = [-5, 10].

To compute relaxed plans, we can proceed as in classical planning: there, a
relaxed plan can be found by iteratively applying all applicable operators to the
current relaxed state in parallel, and terminating if either a fix-point is reached or
the current relaxed state satisfies the goal condition. As no effect can invalidate
any condition in the relaxed task, the number of iterations is restricted by the
number of operators in the task. A serialized plan can be obtained by ordering
parallel actions arbitrarily.
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For interval relaxed numeric planning, we have to take into account that
numeric operators may have to be applied arbitrarily often. Our idea is to
transform the planning task into a semi-symbolic representation that captures
repeated application of operators with numeric effects. We define repetition
relazed planning tasks, where we simulate the behavior of applying numeric
effects arbitrarily often independently. As we will see later, the independence
assumption is not justified for numeric effects v, o= e where the expression of e
depends on the affected variable v,. However, we can find plans for tasks with
acyclic dependencies in polynomial time with our approach.

Repetition relaxed planning tasks use mixed-bounded intervals to capture
the attainable values of a numeric variable. We are interested in the behavior of
numeric effects in the limit. If an operator o has an additive effect x == e for
+= € {+=, —=} that can extend a bound of x once, it can extend that bound to
any value by applying o multiple times. The result of applying an additive effect
arbitrarily often in a state s only depends on whether e can be negative, zero
or positive. The behavior of multiplicative effects %= € {x=,+=} is slightly
more complex. Multiplicative effects x %= e can contract or expand depending
on whether e contains elements with absolute value greater one and switch signs
if e contains negative elements, resulting in up to seven different behaviors of e.

Definition 3. Let IIT be an interval relazed planning task. The repetition relax-
ation of IIT is a 5-tuple IT" = (V;,Vﬁ,O#,I#,gﬂ with propositional vari-
ables VP+ from IT't. The domains of numeric variables dom(v,) = I,, forv, € Vﬁ
are extended to mized-bounded intervals. The initial state I# maps variables to
the same truth (for propositional variables v, ) respectively the same closed degen-
erate interval (for numeric variables v,) from I%. Operators O% = Ot and the
goal condition G#* = Gt remain unchanged.

Again, the relaxations differ mainly in the semantics of numeric effects.
The semantics of numeric expressions is transferred directly from the interval
relaxation as interval arithmetic operations are also defined for mixed-bounded
intervals. The interpretation of a numeric expression is given as s¥(ej oep)
= 57 (e1) o 57 (ey) for expressions e; and e; and o € {+, —, x, +}. The semantics
of conditions is s¥ F v, iff s%(v,) € {true, both} for propositions v, € V#. For
numeric constraints, where e; and e, are expressions and <1 € {<, <, =,#} is a
comparison operator, s F (e; < ;) iff 3q1 € 57 (e1), Iy € 57 (eq) with gy < go.

The semantics of numeric effects captures the repeated application of actions.
We first define the repetition relazed semantics of x o= e for intervals z and
e with o= € {i=,+=,—=,x=,+=}. Let g =2 and xy; = xp U (x} 0e) for
k > 0 where (z : €) is defined as e for assign effects. Let succs (2, e) = Uy g Tk-
We are interested in the result of applying an operator arbitrarily often indi-
vidually for each effect, where the interval e is fixed even if the expression e
depends on x. As xp+1 D z by definition of the convex union and because all
x are convex, the resulting set succo(x,e) is an interval. However, open inter-

179

vals can be generated in the limit. The state appi (s*) = s'7 resulting from

an application of o with effect eff = {eff,...,eff,,} is again s’#(v) = s7#(v)if v



Complexity of Interval Relaxed Numeric Planning 25

Table 1. Partial behaviors for numeric effects

+= 5 = ¢
(_0070) {0} (0,00) (_OO’O) {0} (0700)

53‘(—00,00) (_OO7ED (]&»ED @7 OO) @‘(—O0,00) Q% OO) (]£7ED (—OO,ED

X= e

(=00, —1) {1} (=1,0) {0} (0,1) {1} (1,00)

(=00,0)[(=00,00) [(z, —z) [z, z~<¢) |(z,0] (z,0) (z, =) (=00,7)

z| {0} [0, 0]

(0,00) (700700) l(]ff7f[) l(]f va HO,fD ‘(075[) l(@jD [QL OO)

(zoo, -1 |{-1} 5—170) {0} (0,1) {1} (1, 00)

(—00,0)|(z,z€) |(z, —z) —00,00) |undefined |(—o0,Z) |(z,T) (z,0)
z| {0} [0, 0] undefined [0, 0]
(0,00) |(z+e,z) ‘(]—E,f[) ‘(—oo,oo) undefined | (z, o) ‘(]Q,ED ‘(O,ED

occurs in no effect, 5’#(vp) = both if eff;(vp) # s7(
changing the truth value of v, and s’#(vp) = s7(vp
effects eff; = (v o= €), 8’7 (vq) = succo (s (vq), s%(e)). Repetition relaxed plans
are defined in the obvious way.

Fixing expressions e of numeric effects to the interval e they evaluate to
in the previous state is beneficial to compute the successor, as changes in the
assignment (which can be an arbitrary arithmetic expression) do not have to be
considered immediately. The repetition relaxation IT# of a planning task relaxes
ITT further and plans for It are still plans for IT#. The reason is that each
operator application can only extend the interval of affected numeric variables.

We want to use the fix-point algorithm that applies all operators of a planning
task in parallel until a fix-point is reached to find a repetition relaxed plan. The
successors succo (z, €) of numeric effects are defined by the limit [ J;-, z; and we
are interested in determining the result of such an effect in constant time. The
result only depends on which of up to 21 symbolic behavior classes are covered
by z and e. The behavior classes for x are B, = {(—00,0), {0}, (0,00)}, and for e
they are B, = {(—o0,—1),{-1},(-1,0),{0},(0,1),{1},(1,00)}. We decompose
e and z into the behavior classes they hit, i.e, where e N é # @ for a behavior
class ¢ € B, and x N % # () for a behavior class & € B,, respectively. Table 1
contains partial behaviors 7 (z, e) for o= € {+=, —=, x=, +=} where To(z,¢€)
is only defined if x C Z € B, and e C é € B, and 7,(z,e) is the table entry
with column # and row € in the table with the corresponding o= operator.
We use “indeterminate” parentheses (-, =) to denote intervals whose openness
is determined by the contributing terms. For assignment effects := we do not
need a table as 7;(x,e) = (min(z, ¢), max(z, ¢)) for all classes. Division by zero
is undefined for degenerate intervals [0,0]. Otherwise, the union over partial
behaviors can ignore “undefined” entries. If a division by zero would occur in
the original problem, the causing operator is not applicable. Therefore, actual
division by zero neither occurs in the relaxation.

# Vvp) is a propositional effect
#(vp) otherwise. For numeric
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Theorem 1. The partial behaviors To(x,e) equal succo(z,e) for v C & € B,

and e C ¢ € B,. |
Theorem 1 is shown exemplarily for “x=", & = (0,00),¢ = (0,1) and
for “+=", & = (—00,0) and é = (—o0,—1) in the workshop version of this

paper [1]. For each ¢ € 75(z,e), we obtain a number of iterated assignments
sufficient to reach ¢ as a byproduct of the proof.

With such a decomposition, numeric effects can now be computed in constant
time. Unfortunately, the union of the partial behaviors of an effect does not equal
the succeeding interval according to the semantics.

Hypothesis 1. The successor succo(x,e) of an effect x o=e is the union of
the successors obtained by decomposition of the effect into behavior classes, i.e.
Usen, cep, Succo(z N T, e N E) = succo(z, e) for succs (B, e) = succo(z, () = 0.

Hypothesis 1 does not hold in general, as the following example illustrates.
The successor can grow into behavior classes which were not covered initially:

Ezample 2. Let o = () — {x x= e}) have an effect on x in a state with
z = [1,4] and e = [—3,2]. The partial behaviors are succy (z,[—3,0)) = [2,4],

succy (z,[0,0]) = [0,4], succx(z,(0,1)) = (0,4], succx(x,[1,1]) = [1,4] and
finally succy (, (1,2]) = [1, 00). However, the union | J B, Succx (zNZ, eNe)
= [-2, 00), differs from succy (z,e) = (—o0, 00).

T€B,,EE€

However, the number of behavior classes is restricted, and therefore, new
classes can only be hit a restricted number of times. We correct the hypothesis
by including the partial behaviors 75(x,e) of the classes hit by z in a nested
fix-point iteration: Let o = z and 241 = Uz¢p, sep, SUCCo(z; N, e N €) with
succo (0, e) = succo(z,0) = P for j > 0. Let succo(z,e) = U;z;. Now, newly
attained behavior classes become part of the decomposition in the next iteration.

Ezample 3. Recall Example 2 starting with xg = 2 = [1, 4] where the successor
succy (xo N &, eNé) equals [—2,00). The decomposition over the newly achieved
behavior classes with z; = [-2,00) and e = [—1,2] contains among others
the successor succy ([—2,0),(1,2]) = (—o00,0). The union still contains partial
behaviors that set the upper bound to oo, so succy(x1 NE,eNé) = (—oo,00).
Now, a fix-point is reached and succ,(x, e) = succo(x, €).

Lemma 1. The sequence of x; converges to succo (z, €) after at most 3 steps.

Proof sketch. The number of behaviors in each class is restricted to |B,| = 3 and
|B.] = 7. Most partial behaviors 75(z,e) either set a new bound to a certain
value (0 or +00), or leave a bound of z unchanged. The only unsafe cases are
multiplications or divisions of a bound with —1 or e. However, none of these
cases is problematic because e is fixed: T (z,e) with © C & = (—00,0) and
e C é = (—1,0) sets a new upper bound z x e > 0. However, for all classes
Tx(x,e) with  C & = (0,00), the upper bound is either set to co or it remains
the same. Therefore no problematic interactions occur. The same reasoning holds
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for Ty (z,e) with x C & = (0,00) and e C é = (—1,0) as well as 7. (x,e) with
e Cé=(—00,—1). As e remains fixed  can change at most 3 times. O
We reformulate the feasibility of the decomposition to the following Theorem:

Theorem 2. The successor succo(x,e) of an effect x o= e is the fiz-point of
the convex union of the successors obtained by decomposition of the effect into
behavior classes, i.e. succo(x, e) = succo(x, €).

Proof sketch. To see that succo(z,e) C succ,(z,e) consider the first iteration
determining succ, (x, e): all partial behaviors succ, (z N &, e N €) are operations on
subsets of x and e. As we use the convex union for effects, succ, (z, €) is monotone
in both arguments i.e. 1 C x93 Ae; C ea = succe(z1,e1) C succo(xa,eq).
During each iteration determining succ,(x, ), the decomposition can only grow
to behavior classes that were part of succ,(z,e) in the first place. The converse
direction succ,(x,e) 2 succo(z, €) is shown by contradiction. Let ¢ € succo(z, €)
but not in succ,(z, ). Both successor functions are defined recursively starting
with zyp = z. Therefore, ¢ ¢ xo. Let xo,z1,... be the sequence of intervals
defining succo(z, €). There has to be a k > 0 with ;41 = z, U (zx 0 €) so that
X, C Succo(x, €) but xx41 ¢ succo(x, e). After k steps, the bound of the successor
is extended beyond the decomposition succ,(x,e) for the first time. Obviously,
the new bound does not originate in xj but the new interval xy; is obtained
from (xjoe). The resulting interval depends on xy, T, €, € and in case of division
also on whether 0 € e. Each combination of these extreme bounds is contained
in one partial behavior 7 (xy, e). If (xj o e) hits a new behavior class or extends
the bounds within a behavior class, this is a contradiction to succ,(z, €) being a
fix-point. If (xj, o e) stays within a behavior, this is a contradiction to 7 (z, €)
being well defined (Theorem 1). Thus, such a k cannot be found, and therefore,
it is impossible for ¢ € succo(x, e) but not g € suce,(z, €). O

With the help of the decomposed successor succ,(z, e) we can compute the
result of applying an operator app? with the repetition relaxed semantics in
constant time. This allows us to use the parallel fix-point algorithm from the
classical case analogously: apply all applicable operators in parallel until a fix-
point is reached.

Theorem 3. The parallel fix-point algorithm for repetition relaxed planning is
sound, i.e. if the algorithm outputs an alleged plan, it is indeed a plan for II7.

Proof. Operators are only applied if the precondition is fulfilled. O

Unfortunately, the algorithm does not necessarily terminate. In the definition
of the semantics of a repetition relaxed planning task, we fix the effect e even if
it depends on x. However, this implicit independence assumption is not justified.
Inspecting the entries in Table 1 reveals critical entries (marked in bold gray)
for multiplicative effects that contract z and flip the arithmetic sign at the same
time. The same is true for assignment effects 7.(z,e) = (min(z, ), max (T, €))).
In these cases, the new value of x can have a different behavior, if e also depends
on x. As e can change when x changes, the algorithm does not necessarily
terminate.
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Ezample 4. Let o = () — {x x=e}) in a state with
r=[-1,-1],e=—* and goal G = {x > 1}.
Applying the operator arbitrarily often according to
the repetition semantics yields the progression for
k operator applications depicted to the right. Obvi-
ously, interval x does not only change a restricted
number of times, so the fix-point algorithm for
interval relaxed numeric planning will not termi-
nate.

If we succeeded in directly computing the fix-point to which the intervals con-
verge with a symbolic interval we could continue the fix-point algorithm from
here. In Example 4 we would set © = [-1,1) and e = (—1,0]. Unfortunately,
the authors did not succeed in finding a general approach to do so (or to prove
that such a general approach does not exist). Instead, we restrict the problem to
planning tasks where the aforementioned problem does not occur. The problem
in Example 4 is that e depends on x. Thus, we restrict planning tasks to con-
tain only effects where the assigned expression is independent from the affected
variable. We show that such planning tasks are solvable in polynomial time.

k X e

0 -1,—1  [0,0]

1 [-1,0] [-0.5,0]

2 [-1,0.5] [~0.75,0]

3 [-1,0.75] [-0.875,0]
4 [—1,0.875] [-0.9375, 0]

Definition 4. A numeric variable vy is directly dependent on a numeric vari-
able vy in task II if there exists an o € O with a numeric effect vi o= e so
that e contains vo. A planning task with acyclic direct dependency relation is an
acyclic dependency task.

Note that a variable can be directly dependent on itself. Also, the definition
of direct dependence does not consider operator applicability.

Theorem 4. The parallel fix-point algorithm for repetition relaxed planning ter-
minates for acyclic dependency tasks.

Proof. As the planning task has acyclic dependencies, the direct dependency rela-
tion induces a topology. Let a phase of the algorithm be a sequence of parallel
operator applications, where no new operator becomes applicable. During each
phase, we consider numeric effects in topological order concerning the depen-
dency graph. Let VI# tc VI# be the variables in dependency layer [. We iterate
over the layers k > 0 of the topology assuming that a fix-point is reached for all
variables V¥, Variables V¥ only depend on variables V' with 0 <1 < k or
on constants. A fix-point is reached for all those variables by induction hypothe-
sis. Inductively, we can assume that the expressions of numeric effects that alter
the variables of layer V]? F1 are fixed. Therefore, the successor succe (z, e) of an
effect (x o= e) with z = s7(x) and e = 57 (e) does not change the variable more
than once (or more than 3 times, if we also consider the variable updates of the
nested fix-point iteration from Lemma 1).

The number of phases is restricted, with the same argument as for the fix-
point algorithm in the classical case. Preconditions cannot be invalidated and
during each phase at least one previously inapplicable operator must become
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applicable. The number of phases is therefore restricted to the number of oper-
ators in the planning task. ad

Theorem 5. The fix-point algorithm for repetition relaxed planning is complete
for acyclic dependency tasks.

Proof. We prove completeness by contradiction and show that it is impossible
that the algorithm terminates and reports unsolvable although a plan exists. Now
assume there is a plan, but the algorithm terminates and reports unsolvable. All
operators are applied as soon as they are applicable, so a satisfiable condition
must have been unsatisfied. For propositional conditions, this is impossible, as
s%(vp) E vy if vp € {true, both} and no effect can set propositional variables to
false. Therefore, a satisfiable numeric constraint was not achieved by the algo-
rithm. This implies that an effect (v, o= e) would have been able to assign a
value to a variable that was not reached by our algorithm. Therefore, the suc-
cessor defined by the semantics succ, (57 (v, ), s7 (e)) has to be different from the
successor computed by the algorithm suce, (s# (v,), s% (e)), which is impossible
for numeric tasks with Theorem 2, a contradiction. a

Until now we have an algorithm which can compute parallel plans for repeti-
tion relaxed planning tasks in polynomial time for acyclic dependency tasks. As
intervals can only grow by applying an operator, the plan can be serialized by
applying parallel operators from the same layer in an arbitrary order. Beneficial
effects may make the application of some operators unnecessary, but it cannot
harm conditions. We are interested in plans for the interval relaxation without
the symbolic description of numeric variables. We will now show that we can
derive interval relaxed plans 7+ from repetition relaxed plans 77.

Theorem 6. Let (01,02,...,0,) be a repetition relaxed plan. Then, there exist
ki,...,kn € NT such that <0’f1,0§2, ..., 0% is an interval relaved plan, where
of" denotes a sequence of k; repetitions of operator o;. a

A proof of Theorem 6 can be found in the workshop version of this paper [1].
The idea is to explicate the number of operator applications from a plan obtained
by the fix-point algorithm for repetition relaxed planning. For each numeric
constraint we determine a target value in the open intervals, which is sufficient
to satisfy that constraint. The number of required operator applications k; to
reach the target value is obtained from the proof of Theorem 1.

Ezample 5. Let = [0,1), y = [0,1) and z = (1.7, 3] be the symbolic values of
variables x, y and z with a condition x+y > z. From e, = x+y — [0,2) and e, = z
we choose an arbitrary ¢, = 1.9 € s¥(e,) and an arbitrary q, = 1.8 € s7(ep)
from within the expression intervals so that the constraint is satisfied. We have
to recursively find appropriate g, and g, in the sub-expressions. A leeway of
2 — 1.9 = 0.1 can be distributed to the target values of the sub-expressions. We
could continue with target values 0.95 for x and y each. Let z = [0, 1) be obtained
from a repetition relaxed operator o; = () — {x := (a+ 1)}), a = [-1,—1],
which induces a target value of —0.05 for a. Let now o2 = () — {a == 2}) be
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the operator that manipulated a in the repetition relaxed plan. The explicated
number of operator applications for oy is obtained by solving —0.05 = —1 = 2F
so k =~ 4.3 and o5 has to be applied 5 times.

Theorem 7. The problem to generate an interval relaxed numeric plan is in P
for tasks with acyclic dependencies.

Proof. The fix-point algorithm for repetition relaxed planning tasks is sound
(Theorem 3), complete (Theorem 5) and terminates in polynomial time (Theo-
rem 4). Thus, generating a repetition relaxed plan 77 is in P. An interval relaxed
plan 7+ can be constructed from 7# (Theorem 6) in polynomial time. g

The definition of a relaxation is adequate [8] if it is admissible, i.e. any plan 7
for the original task II is also a relaxed plan for IIT, if it offers basic informed-
ness, i.e. the empty plan is a plan for IT iff it is a plan for IIT and finally the
plan existence problem for the relaxation is in P.

Theorem 8. The interval relaxation is adequate for acyclic dependency tasks.

Proof. Admissibility: After each step of the original plan 7, the propositional
variables are either equal in the relaxed and in the original state, or they assign
to both, which cannot invalidate any (goal or operator) conditions. For numeric
variables, the value of the original task is contained in the mapped interval.
Admissibility follows from the semantics of comparison constraints that hold if
they do for any pair of elements from the two intervals. Basic informedness:
No (goal or operator) conditions are dropped from the task. Relaxed numeric
variables are mapped to degenerate intervals that only contain one element.
Therefore, conditions in the original task x > gy correspond to interval con-
straints [z, z] > [y, y], which are satisfied iff they are satisfied in the relaxed
task. Polynomiality: As a corollary to Theorem 7, we can also conclude that
interval relaxed numeric plan existence is in P for tasks with acyclic dependen-
cies. O

5 Conclusion and Future Work

We presented interval algebra as a means to carry the concept of a delete relax-
ation from classical to numeric planning. We proved that this relaxation is ade-
quate for acyclic dependency tasks, tasks where the expressions of numeric effects
do not depend on the affected variable. The proposed relaxation advances the
state of the art even though adequacy of interval relaxation was only shown
for the restricted set of acyclic dependency tasks. However, the requirement of
acyclic dependency for numeric expressions is a proper generalization of expres-
sions e being required to be constant, a requirement for other state-of-the-art
approaches, e.g. [8], which is met in many practically relevant problems. The
complexity of the approach for arbitrary interval relaxed planning problems
remains an open research issue, though. It is imaginable that the fixpoint reached
by arbitrary operator repetitions can be found in polynomial time.
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In the future, we intend to adapt the well-known heuristics from classical

planning, hyax, hadd and hpp, to the interval relaxation framework.
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