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Abstract. A system that controls a team of autonomous vehicles should be able
to accurately predict the expected outcomes of various subtasks. For example,
this may involve estimating how well a vehicle will perform when searching a
designated area. We present CBE, a case-based estimation algorithm, and apply
it to the task of predicting the performance of autonomous vehicles using simu-
lators of varying fidelity and past performance. Since there are costs to evaluating
the performance in simulators (i.e., higher fidelity simulators are more computa-
tionally expensive) and in deployment (i.e., potential human injury and deploy-
ment expenses), CBE uses a variant of local linear regression to estimate values
that cannot be directly evaluated, and incrementally revises its case base. We
empirically evaluate CBE on Humanitarian Assistance/Disaster Relief (HA/DR)
scenarios and show it to be more accurate than several baselines and more efficient
than using a low fidelity simulator.

1 Introduction

Humanitarian Assistance/Disaster Relief (HA/DR) missions can occur without warning
and require a rapid response to minimize damage and preserve human life. Additionally,
they often occur in remote areas (e.g., an avalanche site) or dangerous locations (e.g.,
flooded towns, cities damaged by earthquakes, active wildfires), so it may be difficult
for human relief workers to safely assist. Instead, autonomous vehicles can be used in
place of, or in collaboration with, humans to allow for quicker and safer deployments.

We present Case-Based Estimator (CBE), a utility component of a larger HA/DR
system that assigns autonomous vehicles to search areas in disaster zones. CBE estimates
the performance of numerous vehicle-zone pairings and allows a human operator or auto-
mated mission manager to make informed decisions about how best to allocate the vehi-
cles. Missions vary in their properties (i.e., type of disaster, location, terrain, type of
vehicles, size of relief team). Thus, CBE may lack knowledge about how the autono-
mous vehicles will perform and must instead rely on simulators with varying fidelity.
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However, given the real-time nature of HA/DR missions there may not be time to eval-
uate every vehicle-zone pairing in every simulator. Instead, CBE will need to use infor-
mation from the lower fidelity, less computationally expensive simulators to predict
performance on the higher fidelity simulators and select a subset of vehicle-zone pairs to
examine in more detail. This process employs regression to estimate the performance in
successively higher fidelity simulators and allows the decision maker (e.g., Operator or
automated mission planner) to make informed decisions on which tasks to assign to vehi-
cles. We report an empirical study in which CBE yields more accurate results than lower
fidelity simulators and outperforms unfiltered regression approaches.

In this paper we describe CBE and how it uses data from simulators (introduced in
Sect. 3) of varying fidelity to predict the performance of autonomous vehicles.
Section 2 examines related work in the areas of case-based estimation and agent
deployment. Section 3 describes the HA/DR domain. Section 4 briefly summarizes our
HA/DR command system. Section 5 focuses on how we use CBR to estimate the
performance of autonomous HA/DR vehicles. We evaluate our approach in Sect. 6,
followed by a discussion of our results in Sect. 7 and concluding remarks in Sect. 8.

2 Related Work

Our current work focuses on online numeric prediction; we compute a linear regression
equation from a subset of the most similar cases’ outcomes using an online algorithm.
This is an example of locally weighted regression (LWR) (Cleveland and Devlin 1988),
and in particular of algorithms that compute local estimates of the regression surface
(Atkeson et al. 1997a). These popular algorithms have a long history of use in, for
example, robotics control tasks (Atkeson et al. 1997b). Many variants have been
examined in the CBR literature, including in the context of case-based reinforcement
learning techniques (e.g., Aha and Salzberg 1993; Gabel and Riedmiller 2007;
Molineaux et al. 2008). Given a problem p, LWR algorithms identify the set K of p’s
k-nearest neighbors and compute a linear or nonlinear regression equation from K’s
(numeric) solution values. These are often similarity-weighted, where the most similar
neighbors exert more influence on the derivation of the equation. This equation is then
used to predict a solution value for p. Our algorithm, CBE, computes a simple
unweighted linear regression model to make predictions, but where the value of k is
not fixed (it varies depending on which cases exceed a similarity threshold). We have
found it to perform well in our application, and leave the investigation of other LWR
methods for future work. There are also similarities to two-stage retrieval models such
as MAC/FAC in Forbus et al. (1995). It uses a simple similarity metric to identify a
subset of cases to evaluate with a more comprehensive structural analysis. This is
similar to CBE, which uses a function based estimate of simulation performance to
retrieve promising candidates for further evaluation using more rigorous simulation
models.

CBR has previously been studied for robotics applications. For example, Likhachev
et al. (2002) use CBR to learn parameter settings for the behavior-based control of a
ground robot in environments that change over time. While they focus on motion control
for a single robot, we instead focus on the high-level control of robot teams. Ros et al.
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(2009) focus on action selection for RoboCup soccer, and use a sophisticated represen-
tation and reasoning method. However, this body of research focuses on motion planning
for relatively short-term behaviors, whereas we focus on longer duration plans that are
monitored by a goal reasoning (GR) module (see Sect. 4).

GR agents that employ CBR techniques have been used for other control tasks, such
as formulating the goals for team coordination (Jaidee et al. 2013), predicting the
behavior of hostile agents (Borck et al. 2015), and recognizing the plans of an agent’s
teammates (Gillespie et al. 2015). However, in contrast to these other integrations, our
focus is on predicting the outcomes of a plan executed by a set of robots.

In (Auslander et al. 2014) we described a CBR algorithm that sets the parameter
values of complex HA/DR plans involving a heterogeneous set of unmanned autono-
mous vehicles that search multiple Areas of Interest (AOI). We represented cases using
a similar {problem, solution, outcome) tuple. Our algorithm found solution parameter
settings that performed well by adapting similar cases and using their outcome metrics
to vote on parameter settings. When executing plans generated using our case-based
algorithm on problems with high uncertainty, it outperformed plans generated using
baseline approaches. In this paper, we instead focus on a complementary problem: esti-
mating similar outcomes given a problem and solution parameter settings. These two
approaches can potentially be combined in the future to improve parameter setting by
estimating the performance of a proposed solution.

Finally, CBR has previously been studied for military applications, including
disaster response. For example, Abi-Zeid et al. (1999) studied incident prosecution,
including real time support for situation assessment in search and rescue missions. Their
ASISA system uses CBR to select hierarchical information-gathering plans for situation
assessment. Mufioz-Avila et al.’s (1999) HICAP instead uses conversational CBR to
assist operators with refining tasks in support of noncombatant evacuation operations.
SiN (Mufioz-Avila et al. 2001) is an extension that integrates a planner to automatically
decompose tasks where feasible. However, while these systems use planning modules
to support rescue operations, they do not predict the outcomes of a given plan’s execu-
tion, nor focus on coordinating robot team behaviors.

3 Humanitarian Assistance/Disaster Relief Operations

HA/DR operations (O’Connor 2012) are performed by several countries in response to
events such as Hurricane Katrina (August 2005), the Haiti earthquake (January 2010),
and Typhoon Haiyan (November 2013). Before any personnel can begin operations,
information about the Area of Operations must be acquired (e.g., locations of survivors,
infrastructure condition, viable ingress points, and evacuation routes). This information
will also need to be continuously updated as the situation develops. Each Area of Oper-
ation is composed of one or more Areas of Interest that need to be searched.

Current operations employ remotely controlled drones and human-piloted helicop-
ters to gather this information. We are developing methods for deploying a heteroge-
neous team of autonomous unmanned vehicles with appropriate sensor platforms to
automate much of this process, so as to reduce time and cost. This should enable
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responders to perform critical tasks more quickly for HA/DR operations. Independently
of which system is used, an Operator given a list of missions must be able to prioritize
which missions should be planned for and scheduled.

We focus on a method for comparing potential mission outcomes to enable the
Operator or mission planner to select which missions to perform. These missions can
be automatically generated from our goal reasoning system or provided by opera-
tors. This module’s task is to provide estimates of the outcome metrics, which can
be used to make more informed decisions on what to dispatch. This may yield better
plans.

We use three simulations of varying fidelity in the CBE: an inexpensive func-
tion-based approach, a quick low fidelity simulator, and a slower high fidelity simu-
lation. The first can estimate a metric without simulation (e.g., by computing the
path a vehicle might take and dividing the path length by the vehicle’s speed to
estimate time required). To ensure efficiency, these estimates do not account for
important factors such as wind and fuel levels, but they do provide instant, initial
results.

Our low fidelity simulation is MASON (Luke et al. 2005), a discrete-event multi-
agent simulator that models all physics behaviors and physicomimetics control
(Martinson et al. 2011). MASON models the physical movements of generic agents
acting in the environment. However, it lacks specific physical models of its actors
and does not account for detailed problem factors such as the effects of wind.
MASON’s low fidelity allows it to more quickly generate results, but these are likely
to be less accurate because it does not model all features.

Open AMASE (Duquette 2009) is the highest fidelity simulation we use, and in
this paper we use it as a substitute for a real-world environment. This simulation
models small tactical unmanned aircraft systems (STUAS) using a kinematic flight
dynamics model that includes environmental effects (e.g., wind) on performance.
AMASE also has facilities for modelling the field of view of cameras mounted on the
STUAS based on the vehicles’ six degree of freedom pose. This allows AMASE to
calculate a metric for coverage defined as the area the sensor observed at a specified
resolution. The lower fidelity models cannot produce this metric, and instead assume
the paths followed produced full coverage. Figure 1 displays an example problem
using both real-world data and AMASE’s representation.

4 Situated Decision Process

To intelligently act in domains like HA/DR, a team of autonomous agents must
continually monitor, evaluate, and dispatch new tasks or goals. To this end, we have
designed a system architecture called the Situated Decision Process (SDP) (Roberts
et al. 2015). In the SDP, a centralized Mission Manager subsystem assigns primitive
goals to teams of autonomous agents, based on the input of an Operator and the
vehicles’ observations during execution. Intelligent, autonomous evaluation and
selections of goals or tasks during execution requires rapid, accurate estimation of
multiple scenario parameters.
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Fig. 1. Left: Representation of a problem set using OpenStreetMap data. Right: Same problem
shown in AMASE with tracks for the airport region.

In HA/DR scenarios, the vehicles must quickly react to changes in the perceived
environment, as well as to changes to the Operator’s inputs. Doing so requires the
rapid evaluation of such changes; it requires the ability to predict the effect of
performing tasks more quickly than can be simulated with high fidelity and with
more accuracy than can be achieved with low fidelity. This led us to consider using
CBR to quickly and accurately estimate the parameter settings used by the Mission
Manager to intelligently evaluate the utility of the vehicles’ goals and tasks.

At the individual vehicle and sub-team level, CBE’s estimates can be used in
motivators for goal selection in a goal reasoning algorithm (Wilson et al. 2013). This
would help us implement the situated portion of the SDP by permitting decision
making on vehicles without direct access to the Mission Manager. This enables
vehicles to choose predictable actions that should provide locally optimal results.

5 Case-Based Performance Estimation

To provide the data necessary for the Mission Manager to make informed decisions
about its various vehicle deployment options, we use the CBE to evaluate mission
options in HA/DR scenarios. We describe its case representation in Sect. 5.1 and
case similarity metric in Sect. 5.2. The CBR algorithm and knowledge acquisition
technique are presented in Sect. 5.3.
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Table 1. CBE’s case representation

Case Component | Attribute Name Description

— Total Area of AOI Total area of AOI in m?

5 Problem Distance to AOI Distance from vehicle to AOlin m

Ej Description Wind Speed The speed of wind in m/s

= Wind Direction Wind angle relative to AOI orientation
& Solution STUAS Configuration

. 0 Duration Time to complete operation

g ¢ Energy Amount of energy consumed in Joules

2 0, Duration Time to complete operation

® Lostimate Energy Amount of energy consumed in Joules

g 0 Duration Time to complete operation

= h Coverage Percentage of area observed by sensor
< ftestimate Energy Amount of energy consumed in Joules

5.1 Case Representation

We represent a case C = (p, O;) as a problem p and the set of all outcomes O,; when
that problem is evaluated using models of different fidelity. In this paper, we use three
models of increasing complexity: an evaluation function, a low fidelity simulator
(MASON), and a high fidelity simulator (AMASE). Similarly, we are also interested in
estimating the performance when using the simulators (e.g., if the simulator is
unavailable or computationally expensive). As such, the case contains the outcomes
generated by the evaluation function (O,), the low fidelity simulator (O,), and the high
fidelity simulator (O,), and estimates of the low and high fidelity simulations
and0, ):C=(p,0,,0,0, ,0,0, ).

Table 1 provides detail on this representation. A problem p is composed of a problem
description and proposed solution. The problem description is further divided into four
features that characterize an aerial search task. Total Area of AOl is the total size of the area
of interest (AOI) (i.e., the area being searched) in square meters. The Distance to the AOI
is a measure of how far the search vehicle would have to travel to reach the center of the
area. This becomes important as the trip time becomes a significant cost of the operation.
Wind Speed is a measure of the magnitude of the wind in meters per second. Wind is a
large source of error between the low and high fidelity simulations and tracking it enables
a system to separate cases by the wind magnitude. Wind Direction is a measure of the
alignment of the wind relative to the search area; it is a value in [0°, 90°].

A solution represents the configuration of the search vehicles that will be assigned
to the search area (e.g., vehicle types, the number of vehicles, sensor configurations).
Here we focus on problems where a single vehicle of a fixed type is assigned to perform
the search. (See (Auslander et al. 2014) for more complex solutions.)

Initially, each case contains only the problem description with unknown values for
each outcome. As more information is obtained (i.e., evaluating the problem using the
evaluation function or one of the simulators, or estimating the outcomes), it is added to

) .
( lertlmute estimate estimate
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the case. Only promising problems identified from the performance estimates are eval-
uated at the higher, more computationally expensive fidelities, so not all cases will have
values for all outcomes. All outcomes have measurements for the search duration
(seconds) and search energy (joules), while search coverage (percent of area observed
with sensors) can be measured only by the high fidelity simulator and is therefore only
contained in its outcomes. The estimated values may be continually overwritten, if new
data becomes available that modifies these values, while the data obtained from simu-
lation is recorded only once. The estimates serve as an inexpensive temporary meas-
urement until the actual simulation is run; they are no longer used after the actual values
are known.

5.2 Case Similarity

Case similarity is calculated using a weighted comparison of the problem features
in two problems. Given two problems p, and p,, the similarity metric (Eq. 1) calcu-
lates a similarity between 0 and 1. Each problem contains n features, and each
feature f;is given a weight w; (maxValue(i) and minValue(i) represent the maximum
and minimum value the i feature can take). In CBE, there are four problem
features: Total Area of AOI, Distance to AOI, Wind Speed, and Wind Direction. Total
Area of AOI and Distance to AOI are assigned weights of 2.0, whereas other features
are assigned weights of 1.0 to enable better separation of regions of varying sizes and
locations. A weighted approach is used to allow more flexibility in discriminating
among cases (e.g., emphasizing the geometric properties of the domain).

sim (pl,p2) = n;zwi<l |pl'f;‘_p2'f;‘| ) (1)

i Wi =t " maxValue (i) — minValue (i)

5.3 Performance Estimation Algorithm

CBE (Algorithm 1) enables a computationally inexpensive and accurate evaluation
of potential configurations provided by the Mission Manager. Evaluating each poten-
tial configuration in the simulators can be expensive. Thus, CBE allows the Mission
Manager to provide feedback about which configurations should be evaluated in
more detail. To begin with, CBE receives a set of problems Probs representing
possible missions under consideration from the Mission Manager (MM). For each
problem p € Probs, it retrieves a similar case C from case base CB using
SimilarCase(p, A, CB), which examines all cases in CB that are above similarity 4 to
p using from Eq. 1 and returns the most similar case with a known O, (i.e., prefer-
ence is given to cases with more known values). If no above-threshold cases have a
known O, the most similar case is returned. If no cases are above threshold, a null
value is returned. If a case is retrieved, CBE uses it. Otherwise, CBE evaluates p
using the evaluation function (i.e., computing O,) and creates a new case (the values
for all other outcomes are set to null). The retrieved or created case is then added to
a set of cases to be further evaluated.
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Algorithm 1: Case-Based Estimator (CBE)

Inputs: probs = {p1, 2, .-, Pn}
Returns: CBg // Performance of problems in MM filtered subset of cases

Legend:
CB // The (entire) case base
CB; < {@} // Subset of cases to be evaluated

Function: FindBestProblem(probs) returns CBy
foreach p € probs do
C « SimilarCase(p, A, CB);
if C = @ then
0, < EvaluationFunction(p);
Cnew « (p! Oe' Q)' (Z)' (D' (D)'
CB < CB U Cpey;
CBg < CBg U Cpeys
else
CBy < CB; U C;
CBg < ComputeEstimates(CBg, CB);
CBy « MissionManagerFilter(CBg);
CBp « RunMASONAndReviseCases(CBg);
CBg < ComputeEstimates(CBg, CB);
return CBg;

Function: ComputeEstimates(CBg, CB)
foreach C € CBg do
if .0, = @ then
C.0 « EstimateMASON(C, CB);

*lestimate
if C.0, = @ then
C.Onyrimare < EstimateAMASE (C, CB);

return CBg

If the problem’s MASON and AMASE values are not known (i.e., the problem has
never been evaluated in the simulators), CBE then estimates the MASON and AMASE
values (i.e., 0, and0, ). Theresulting cases are then sent to the Mission Manager
for filtering because it is best able to choose what problems and metrics to optimize over
given the overall mission context.

estimate

The Mission Manager returns a subset of cases (CB;E) for further evaluation. For each
of these cases, if the actual MASON outcome values are not known, it is run in the
MASON simulator and its corresponding O, values are revised. Afterward, the estima-
tion routine is run again to generate new estimations for the AMASE outcome values
and the resulting subset is returned to the Mission Manager. Not shown in Algorithm 1
is once the Mission Manager has filtered the set of problems a subset of these are picked
to be deployed based on the Mission Manager’s criteria. The resulting AMASE outcome
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values are subsequently stored in the case (i.e., as O,) if the case did not previously have
AMASE outcome values. If AMASE outcome values already exist (e.g., for a repeated
surveillance task), rather than ignore the data a new case is created from the current
problem. Its MASON outcome values are also computed to ensure no cases have
AMASE outcome values without MASON outcome values.

The functions EstimateMason(C, CB) and EstimateAMASE(C, CB) are implemented
using a linear regression algorithm for each outcome attribute. For MASON, the linear
regression function takes the form (p, 06) — O; . Similarly, the AMASE regression

. These regression algorithms are trained using

function is of the form ( D, 01) - Ohm,-mm
cases that are above similarity 6 to the current case and have known O, (for MASON
regression) or O, (for AMASE regression) values. This similarity threshold ensures the
regression functions are generated using only data from similar problems, helping isolate
problems into clusters.

This is an online learning algorithm for estimation, with data acquired every time
the estimation system is run. For each problem, a new case can potentially be generated.
As the Operator selects problems to evaluate further, the MASON and AMASE outcome
metrics are added to the cases. As more values are known, the algorithm will have more
data to use for regression and should increase estimation accuracy.

6 Empirical Study

We empirically tested the following hypotheses:

H1: CBE’s estimate of a problem’s outcome approaches the actual outcome when
evaluated using the high fidelity simulation over time.

H2: CBE provides more accurate estimates than the evaluation function and low
fidelity simulator.

H3: CBE is more computationally efficient than the low fidelity simulator as the
number of cases increases.

H4: CBE’s filtered regression approach yields more accurate predictions than a non-
filtered regression.

In the following sections we describe the evaluation methods, algorithms tested and
metrics used.

6.1 Empirical Method

An objective of these tests is to verify that CBE accurately predicts the performance of
a configuration when run on a high fidelity simulation. Thus, our ideal performance
baseline is provided by the high-fidelity AMASE.

Problem sets were generated using a custom PostGIS system (Roberts et al. 2015).
Each problem was formed by choosing a random airport from the OpenStreetMaps data
set (Geofabrik 2014) and finding five random buildings within a 3—-5 km radius of the
airport. Each of these six locations is given a buffer region of 300 meters around their
perimeters and the result is the search area to use in a given problem. Each search area
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is also assigned a random wind speed between 0—20 meters per second. The six search
areas (i.e., airport and five nearby buildings) are stored as a search and rescue (S&R)
problem. We repeated this 100 times to obtain 100 S&R problems. Problem features
(e.g., Distance to AOI, Wind Direction) are derived from these problems at run time.

Each S&R problem was used to create a problem set that contains potential vehicle
assignments for the problem. In CBE, only one vehicle assignment was used (i.e., the
STUAS with default camera configuration). Future work will evaluate other vehicles
and configurations as parameters, such as the use of static cameras and multiple vehicles.
All problems in the problem set were run in AMASE to obtain ground truth data (i.e.,
how well that vehicle will perform when assigned to search a specific region).

A problem set run consists of giving an entire problem set to CBE and comparing
its estimates to the known ground truth. Because we cannot know what the Mission
Manager seeks at this level of abstraction, since it could be a human or intelligent
subsystem, our method for selecting a subset of cases to run on MASON randomly
selects 4 of the 6 cases. Similarly, when the final estimates are returned, 2 randomly
selected problems (among the 4 selected) will be evaluated in AMASE.

A test run consists of randomly ordering the 100 problem sets and sequentially giving
them as input to CBE, simulating 100 sequential uses of CBE. At the end of the 100
runs there will be 200 fully evaluated cases. We repeated this process 50 times and
aggregated the results. All regression calculations were computed using WEKA’s linear
regression implementation (Hall et al. 2009).

6.2 Algorithms and Baselines Tested

We used the following algorithms and baselines to evaluate CBE. Each was run using
the same evaluation problems presented in identical orderings.

o CBE: Wesetd = 0.75to allow discrimination between building searches and airport
searches. We set A = 0.99 so that cases are reused only when they are highly similar
to the problem.

e Func: Results obtained from running the estimation function on each problem.

o MASON: Results obtained by running MASON on each problem.

o FuncReg: Results obtained using linear regression to estimate AMASE’s outcomes
using problem features and the function estimate. This uses all available AMASE
data for regression (i.e., not only data from similar problems, as with the CBR
approach).

o MASONReg: Similar to FuncReg, but problem features and MASON outcomes are
used to estimate AMASE outcomes. This also uses all available AMASE data for
regression.

FuncReg and MASONReg use all data that is available to perform linear regression.
For example, for the 100™ input problem set 198 cases are used (since two AMASE
outcomes are determined from each of the previous 99 input sets) while the 1* problem
set will have no known AMASE outcomes. When any algorithm is unable to predict an
AMASE outcome (i.e., no data to perform regression) a default error of 200 % is used.
The Func and MASON baselines serve to show that using the values from only the lower
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fidelity simulators is inferior to using a mapping function such as the regression approach
of CBE.

6.3 Results and Analysis

We now describe whether our results support our hypotheses:

H1: Fig. 2 displays results showing support for H1. It graphs the mean error of CBE

over 50 runs after it has calculated its X AMASE outcome estimate (100 problem
sets with two estimates per set). As the number of problems evaluated increases, the
error decreases and eventually converges to approximately 20% error, which is an
improvement over our low fidelity estimate as shown in H2. The graph shows the
error when predicting Duration. Although not shown, Energy converges similarly.

H2: Fig. 2 also displays the performance of baselines MASON and Func. CBE consis-
tently outperforms the evaluation function and eventually outperforms MASON giving
support to H2. Table 2 confirms this; using a paired ¢-test we found that CBE significantly
outperforms Func for Energy and Duration. It also significantly outperforms MASON
overall for Energy and for Duration over the final 75 % of problems (i.e., after learning).

H3: CBE requires fewer problems to be evaluated than if every problem is evalu-
ated in MASON (only 4 of 6 are evaluated in MASON, so 67 % of the evaluations).
Reducing necessary simulations runs is a large reduction in run time considering
that, for an example run of an 18 min real world mission, the MASON simulation can
take 35 s while AMASE takes 95 s. Additionally, setting an appropriate value for A
can influence how often MASON is used by CBE. If there is a case that is similar to
an input problem, that problem does not need to be evaluated in MASON if the case
has a recorded MASON outcome. In the current evaluation about 23 cases per test
run were found to be similar enough to an input problem to be reused. If the Mission
Manager wanted evaluations for all of those problems (i.e., they were among the 4
of 6 selected for MASON evaluation), that would result in 23 fewer MASON eval-
uations out of 400. However, the Mission Manager may not require evaluations for
any of those problems and would instead evaluate other problems, resulting in no
additional improvements. Reducing 4 to 0.98 increases this to 107 reuses. This
hypothesis has some support, but further exploration of parameters is warranted to
find optimal values for this domain.

H4: Support of H4 is shown in Fig. 3 which graphs the results of CBE versus the two
full regression approaches (i.e., they use all the cases), which begin with no data for the
first two AMASE estimates and as such default to 200 % error. This accounts for the
highest error in the first two AMASE estimates. In contrast, CBE uses the estimation
function and MASON estimates, accounting for a lower initial error. For the remaining
AMASE estimates, all three algorithms converge towards approximately 20 % error.
Although CBE does not appear to converge faster, its errors are never as large as the
initial regression models. This could be due to case reuse or the filtering of non-similar
cases in the regression calculation.
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Fig. 2. Graph plotting percent error for CBE and the baseline algorithms across the 200 problems
on 50 runs.

CBE Regression vs Regression: Duration
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Fig. 3. The error of CBE and the regression algorithms for 200 problems over 50 runs.

Shown in Fig. 3, CBE’s performance is better than or equal to the other algorithms.
In the comparison of the 50 test run averages, CBE significantly outperformed both
alternatives using a paired ¢-test; see Table 2. Table 3 displays the mean number of times,
across all 50 runs, that CBE recorded lower error than the other algorithms. Additionally,
it shows the mean reduction in absolute error when using CBE across all test runs.



Table 2. Results of #-tests (p < value) showing CBE’s improvement vs. other algorithms

Learning to Estimate

CBE vs Duration Energy
Func 0.00000 0.00000
MASON 0.34228 (0.0 after 25% of the cases) 0.00000
FuncReg 0.00137 0.00446
MASONReg 0.00062 0.00130

Table 3. Improvement of CBE versus the regression algorithms

27

Duration Energy
CBE vs | # Improvements |Mean Error Reduction | # Improvements [Mean Error Reduction
FuncReg 54.69% 5.05% 54.05% 2.75%
MASONReg 55.09% 5.33% 55.03% 2.97%

7 Discussion

The results in Sect. 6 clearly indicate the benefits of CBE, which recorded a 5 % reduction
in Duration error and an almost 3 % reduction in Energy error. The reason for Energy’s
lower improvement could be differences with how the low and high fidelity simulators
are modelling recharging. In MASON a vehicle is supposed to remain still while
recharging, while AMASE (which was built to model fixed wing aircraft) does not
restrict movement as much while recharging. Future versions of these simulators will
address these discrepancies and also implement a procedure for returning to base and
landing to increase scenario realism.

We expect that further improvements to performance will be found as more discrim-
inating problem features are identified. For example, another type of vehicle would yield
entirely new data clusters as Energy burn rates, and flight profiles would differ. As more
data is collected over time the accuracy of the algorithms should increase and require
fewer simulation runs.

8 Conclusion

Most CBR systems that estimate functions, such as cost, attempt to find a similar case
and adapt their solution. We report on a novel online hybrid algorithm that can reuse
prior learned values from similar problems and creates new estimates for others. For the
scenarios in the domain we examine, the Case-Based Estimator (CBE) produced more
accurate estimates from less data than two other regression algorithms.

One of the next steps from these results is to combine the benefits of this approach
with the parameter selection approach from our previous investigation (Auslander et al.
2014). Benefits may include improving suggested solutions by estimating their actual
outcomes. Beyond this there are many ways to improve the CBE algorithm. One of the
most promising directions would be the exploration of non-linear regression models.
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It is likely that some of our problem features are not independent, and a model that
considers co-variance information may return more accurate results. We expect there to
be tradeoffs in performance with these new models (e.g., additional computational
resources required for increased training samples).

Over time the amount of data in the case base will become sufficiently large to
necessitate the use of case-base maintenance techniques. While in general the accuracy
of regression algorithms will increase given more data, improvements may also accrue
by removing anomalous cases. In addition, as more data is obtained it may be possible
to be more discriminative in case selection by increasing A and 6. Future research may
identify ways to scale these parameters with the data.
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