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Abstract. Many different sources of overheads impact the efficiency of
a scheduling strategy applied to a parallel loop within a scientific appli-
cation. In prior work, we handled these overheads using multiple loop
scheduling strategies, with each scheduling strategy focusing on mitigat-
ing a subset of the overheads. However, mitigating the impact of one
source of overhead can lead to an increase in the impact of another
source of overhead, and vice versa. In this work, we show that in order
to improve efficiency of loop scheduling strategies, one must adapt the
loop scheduling strategies so as to handle all overheads simultaneously.
To show this, we describe a composition of our existing loop schedul-
ing strategies, and experiment with the composed scheduling strategy
on standard benchmarks and application codes. Applying the composed
scheduling strategy to three MPI+OpenMP scientific codes run on a
cluster of SMPs improves performance an average of 31 % over standard
OpenMP static scheduling.

1 Introduction

Performance of scientific application code can be impacted by how efficiently
iterations of a parallel loop are scheduled to cores. Many different sources of
performance loss impact the efficiency of a scheduling strategy applied to a par-
allel loop, as we will show in Sect. 2. In prior work, we developed multiple loop
scheduling strategies, with each scheduling strategy focusing on mitigating a
subset of the overheads. However, mitigating the impact of one source of perfor-
mance loss can lead to an increase in the impact of another source of performance
loss, and vice versa. In this work, we show that in order to schedule loops effi-
ciently, we need to compose loop scheduling strategies so as to handle multiple
sources of performance loss simultaneously.

Our contribution, in addition to a specific composite scheduling strategy,
is a guide to combining scheduling strategies to handle multiple sources of the
overhead together, to handle the circumstances and challenges posed by an appli-
cation and architecture. Such a scheduling strategy can be beneficial to improve
performance of scientific applications on clusters of multi-cores, and can be ben-
eficial in the context of next-generation, e.g., exascale, clusters of SMPs.
© Springer International Publishing Switzerland 2015

C. Terboven et al. (Eds.): IWOMP 2015, LNCS 9342, pp. 18-29, 2015.
DOI: 10.1007/978-3-319-24595-9_2



Composing Low-Overhead Scheduling Strategies 19

In the sections that follow, we discuss implementation of a scheduling strat-
egy composition containing many different scheduling techniques implemented
up to this point. We show results for different scientific application codes, i.e.,
two CORAL benchmarks and one particle simulation application code, using
different types of scheduling strategies. Finally, we conclude the paper through
a discussion of scheduling techniques and the scheduling strategy composition
in the context of running applications on next-generation architectures.

2 Scheduling Strategies

Consider a common structure of scientific applications: outer iterations, e.g.,
timesteps, which enclose inner iterations that typically loop over data arrays.
For these codes, load balancing of the computational work across cores of a node
is necessary for obtaining high performance. Load balancing can be attained
through the use of OpenMP loop scheduling strategies. However, there are mul-
tiple sources of performance loss in parallel scientific applications, and different
schedulers affect these sources differently.

Figures1 and 2 show the sources of performance loss through a breakdown
of execution times for widely used loop scheduling strategies applied to two
different application codes: a Barnes-Hut code (left) with non-uniform iteration
times, i.e., load imbalance across iterations, and a NAS LU code (right) with
uniform iteration times. NAS LU can still benefit from dynamic load balancing
within a node because such load balancing can deal with imbalances caused by
noise, which are amplified in synchronous MPI codes [7]. The performance data
are for a node of a cluster of Intel Xeon 16-core processors. The execution time
breakdown is shown as a stacked bar graph in Fig. 1. Thread idle time is labeled
as ‘idle’ and cost of synchronization is labeled as ‘dq’. We measure the time
each thread waits at the barrier, and use the average over threads as the cost of
thread idle time. We estimate the cost of synchronization by using hpcToolkit to
obtain the time spent in the omp_lock () function. The computation time, labeled
‘comp’, is calculated by dividing the sequential execution time by the number
of threads. The remaining execution time is attributed to data movement and
labeled as ‘dm’. Note that this breakdown may not be exact, but it gives us an
adequate estimate to understand the impact of overheads to the efficiency of the
scheduling strategies. For obtaining the cache misses, we used PAPI counters
PAPI_L2_TCM and PAPI_L3_TCM for the L2 and L3 cache misses, respectively. We
measured cache misses for each OpenMP parallel loop for thread 0. In Fig. 2,
the L3 cache misses are shown.

Using static scheduling for these codes makes data movement small and elimi-
nates synchronization overhead, but does not mitigate load imbalance. For Barnes-
Hut, the thread idle time is 21 % of the total execution time. For NAS LU, idle time
shown is small, but not negligible, at 2.8 %. Using dynamic scheduling improves
load balance almost completely, but dynamic scheduling still causes data move-
ment and synchronization overhead. Also, the synchronization overhead is still
noticeable at 5.9% when dynamic scheduling is applied to the two codes.
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Fig. 1. Breakdown of execution time for NAS LU and n-body code.

Finally, guided scheduling can reduce synchronization overhead. However, guided
scheduling still incurs data movement across cores, as is seen by the large number
of cache misses for Barnes-Hut and NAS LU in Fig. 2.

We have identified three challenges to obtaining good performance using
dynamic load balancing within a node: (1) cost of load imbalance due to load
imbalances from the application or system noise, (2) data movement overhead,
and (3) synchronization overheads from runtimes. None of the scheduling strate-
gies examined was able to handle all sources of performance loss. This challenge
provides motivation for developing a new set of scheduling strategies.

To handle all 3 challenges, one could intelligently blend static and dynamic
scheduling strategies, where the first k£ loop iterations are scheduled statically
across threads, and the remaining n—k loop iterations are scheduled dynamically
across threads [4]. The parameter k is experimentally tuned. We define 2=£ as
the dynamic fraction fy. Correspondingly, the static fraction f; = 1 — f;. We
refer to this scheduling strategy as hybrid static/dynamic scheduling. Figure 3a
shows loop iterations scheduled statically across 4 cores during one invocation
of a threaded computation region. Figure 3b shows the corresponding diagram
for the hybrid static/dynamic scheduling strategy.

The 4 bars from the left in Fig.la and b show the execution time for
NAS LU and Barnes-Hut when the hybrid static/dynamic scheduling strategy,
labeled besf, is used. The hybrid static/dynamic scheduling strategy is the best
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Fig. 2. L3 cache misses for different OpenMP scheduling strategies.
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Fig. 3. Diagram of threaded computation region with different schedules applied to it.

performing of the four scheduling strategies shown. The reason is that data
movement overhead is reduced significantly compared to the dynamic scheduling
scheme, but the scheduling scheme does enough dynamic scheduling to handle
the cost of load imbalance. Using hybrid static/dynamic scheduling for NAS
LU does not improve performance significantly over OpenMP static scheduling,
but it does not degrade performance either. The hybrid static/dynamic schedul-
ing strategy reduces thread idle time for NAS LU, rather than increasing it.
Although NAS LU seems efficient with static scheduling, consider the situation
when it is running on a machine with significant OS noise, i.e., the interference
created by OS daemons. In this situation, amplification of noise across MPI
processes can cause large performance degradation, and dynamic scheduling of
loop iterations can potentially mitigate this impact of noise [7].

As we will see in the next section, different circumstances, including architec-
tural/OS and application charactersistics, require different scheduling techniques
to modify the above basic hybrid static/dynamic scheduling strategy. We next
show what those techniques are and how to compose the techniques into a single
effective scheduler.

3 Techniques for Composing Scheduling Strategies

In the context of the problem listed in the previous section, we design a schedul-
ing strategy that can handle the many different sources of performance loss and
the inefficiencies of the scheduling strategies. We first give a description of each
of the elemental scheduling strategies, which are based on existing scheduling
strategies from prior work; the existing scheduling strategies are adapted from
the perspective of composing the scheduling strategies together. We then show
a composition of the scheduling strategies described.

3.1 uSched

This scheduling strategy is designed to mitigate the impact of transient events
such as OS noise as well as application-induced imbalances. uSched first mea-
sures its parameters such as iteration time and noise duration [7]. It then uses a
model-guided determination of the dynamic fraction (considering both applica-
tion imbalance and imbalance due to noise) to determine a reasonable baseline
value of the static fraction fs, as described in [7]. After this, we conduct an
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exhaustive search in a small neighborhood around f,. We try different static
fractions in the range [fs — 0.05, fs + 0.05]. This increment can be adjusted by
the application programmer and requires knowledge of iteration granularity. The
resulting static fraction is fs,, .., which is the static fraction used for uSched.
This is the static fraction used for all nodes.

3.2 slackSched

This scheduling strategy is an optimization over uSched, as described in prior
work [7]. Tt uses a distinct static fraction for each node based on MPI slack.
MPI slack is the deadline that each process has to finish its work, before this
process extends the applications critical path thereby increasing the cost of appli-
cation execution. Because of the way collective calls are implemented in MPI,
the slack is different on different processors. We use the call-path method [7,12]
for predicting the slack for each collective call. In the context of the scheduling
strategy composition that we want to do, the scheduling strategy is put together
and works as follows:

1. On each process, start with the static fraction fs obtained in uSched.

(a) On each process, retrieve that process’s invocation of the last MPT collec-
tive, where the invocation of the last MPI collective is retrieved through
the callsite slack-prediction method, as shown in prior work [7].

(b) Given the identifier of the last the MPI collective call invoked, estimate
that collective call’s slack value from the history of slack values stored
by the slack-conscious runtime. The slack estimate is based on the slack
value recorded in the previous MPI collective invocation, as is done in
prior work [7].

2. On each process, adjust its dynamic fraction based on the slack value. This
adjustment is done using a performance model and theoretical analysis

described in prior work [7].

3.3 vSched

This scheduling strategy is based on prior work [8]. The motivation of this
scheduling strategy is to improve the spatial locality in the dynamically sched-
uled iterations. In the above schedulers, the dynamically allocated iterations are
grouped at the end of the iteration space. Here, we stagger them, so as to keep the
iterations executed by a thread contiguous as much as possible. Let p denote the
number of cores on one multi-core node. Let ¢ denote the thread with thread ID ¢.
Let n be the number of loop iterations of an OpenMP loop. The static iterations

assigned to each thread are from L"th to L%J, while dynamic iterations
associated with thread ¢ are from L%J +1 to L%J — 1. In the context

of the scheduling strategy composition that we want to do, we implement this
scheduling strategy by starting with the hybrid static/dynamic scheduling strat-
egy, and then apply the staggering of iterations to this hybrid static/dynamic
scheduling strategy.
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3.4 ComboSched

The comboSched scheduling strategy is vSched, i.e., locality-optimized schedul-
ing, with slackSched, i.e., slack-conscious scheduling, added into it. In other
words, one optimization over uSched, slackSched, is composed with another opti-
mization over uSched, vSched, to form the comboSched scheduling strategy. The
comboSched scheduling strategy is put together and works as follows:

Stagger the iterations, as specified in vSched.

Start with the static fraction obtained from the uSched scheduling strategy.
Specify the queue to steal from in the vSched scheduling strategy.

On each process, adjust its dynamic fraction based on the slack value, as
described in slackSched.

W=

In summary, we described a series of scheduling strategies, and showed the
design of a scheduling strategy composition using the features of these scheduling
strategies. We next show code transformation needed to use the scheduling strat-
egy composition and assess performance of the application of these scheduling
strategies and the scheduling strategy composition to three application codes.

4 Code Transformation

Below, we show the changes to a simple MPI4+OpenMP code needed to use our
scheduling strategy. Figure4 shows an application program containing a basic
OpenMP loop. Figure 5 shows the same application code containing the OpenMP
loop transformed to use our composed scheduler. The macro functions used for
invoking our library’s loop scheduling strategies are defined at lines 5-7 of Fig. 5,
and the parameter value ‘strat’ of the macro function indicates the scheduling
strategy to be used from our library. The sds parameter value in the macro
functions’ invocations at lines 24 and 27 specifies the staggered static/dynamic
scheduling strategy of our library, i.e., the vSched strategy described in Sect. 3.
The implementation changes needed for the composition are done within our
macro-invoked scheduler. The record struct variable is used to store informa-
tion about previous invocations of the threaded computation region in lines
25 and 26, and necessary for the slack-conscious scheduling strategy, i.e., the
slackSched strategy described in Sect. 3. Our scheduling strategy could equiva-
lently be implemented in an OpenMP runtime and offered as an OpenMP loop
schedule.

5 Results

With the above composition of schedulers, the question we ask is: does our com-
position of the schedulers and adjustment of the scheduler parameters help pro-
vide further performance improvement than each of the schedulers in isolation?

To answer the above, we experimented with three different MPI+OpenMP
application codes. The first application code is Rebound [11], an MPI+OpenMP
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#include "mpi.h"
#include <omp.h>
int main(int argc, charx argv[])
{
4Y oo
MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs) ;
MPI_Comm_rank (MPI_COMM_WORLD, &rank) ;
JY oo
while (timestep < 1000) {
#pragma omp parallel for
for (int i=0; i<n; i++)
cl[i] += alilx*b[i];
MPI_Allreduce (&sum, &global_sum,1,MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD) ;
timestep++;
}
MPI_Finalize();
}

Fig. 4. Code with OpenMP loop.

#include "mpi.h"

#include <omp.h>

#include "vSched.h"

JY oo

// In the macros below, strat specifies the sched strategy.

#define FORALL_BEGIN (strat, s, e, start, end, tid, numThds) loop_start_ ## strat (s, e, &start,
&end, tid, numThds); do {

#define FORALL_END (strat, start, end, tid) } while(loop_next_ ## strat (&start, &end, tid));
int main(int argc, charx argv[]){
/Y oo

int tid, numThrds, start, end = 0;
double fd, fs;
static LoopTimeRecord xrecord = NULL;
MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &énumprocs) ;
MPI_Comm_rank (MPI_COMM_WORLD, &rank) ;
vSched_init (numThrds) ;
/Y coo
while (timestep < 1000) {
fd = predict_dynamic_fraction(&record); fs = 1.0 - fd;
#pragma omp parallel
{
tid = omp_get_thread_num() ;
numThrds = omp_get_num_threads () ;
FORALL_BEGIN(sds, tid, numThrds, 0,n, start,end, £s)
for (int i=start;i<end;i++)
c[i] += alil*b[i];
FORALL_END (sds, tid, start, end)
}
end_timing(&record, n);
MPI_Allreduce (&sum, &global_sum, 1,MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD) ;
timestep++;
}
endLoop (&1r, (int) (nxfd));
vSched_finalize (numThrds) ;
MPI_Finalize();

Fig. 5. Code transformed to use composed scheduling strategy.

n-body simulation that simulates bio-molecular interactions. The second appli-
cation code is the CORAL SNAP code [13], regular mesh code which has com-
putation used in the context of heat diffusion. The third application code is the
CORAL miniFE code [6], an MPI4+OpenMP finite element code involving com-
putation on an unstructured mesh used in the context of earthquake simulations.
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We performed the experiments on Cab, an Intel Xeon cluster with 16 cores per
node, 2.66 GHz clock speed, a 32 KB L1 data cache, a 256 KB L2 cache, 24 MB
shared L3 cache, the TOSS operating system, an InfiniBand interconnect with
a fat-tree network topology. We ran each application code with 1 MPI process
per node and 16 OpenMP threads per MPI process.

Figure 6 shows the results for the MPI4+OpenMP n-body code Rebound [11]
run on Cab, with different schedulers applied to this code. In this code, every
particle loops through its neighborhood of particles to calculate forces applied
to it, identifying the position in the next application timestep; there is geometric
locality in this application. This geometric locality is reflected by the order in
which the particles are organized in the tree. For example, nearby particles tend
to interact with the same sets of particles with a few exceptions. Therefore, the
vSched strategy of keeping nearby iterations on the same thread in the dynamic
section provides performance benefits. The slackSched benefits are the generic
benefits of reducing the dynamic fraction and its associated overheads. The ben-
efits are not as large for other applications because of its relatively large grain
size of each iteration. For Rebound at 1024 nodes, the comboSched improves
performance 45 % over OpenMP static scheduling. The percent gains of each of
the scheduling strategies are significant even at low node counts. Specifically,
at 2 nodes, performance improves 35% over OpenMP static scheduling when
we apply only uSched to the Rebound code. Using slackSched on Rebound gets
limited gains of 5.6 % over the uSched scheduling strategy. Using vSched, perfor-
mance improves 8.5 % over uSched. This is likely because vSched can take advan-
tage of the geometric locality in this application. Using the comboSched strategy,
which combines slackSched and vSched, the Rebound code gets an overall 44 %
performance gain over the OpenMP static scheduled version of Rebound.

Figure 7 shows the results for miniFE [6] run on Cab, with different schedulers
applied to miniFE. Here, iteration-to-iteration spatial locality is relatively low
because of indirect access caused by the unstructured mesh; for unstructured
meshes, the spatial locality across iterations is not as strong as looping over a 1-D
array. However, with reasonable variable ordering of mesh elements, there is still
a significant amount of spatial locality that vSched exploits. Because of imperfect
data partitioning of the problem across nodes, moderate load imbalances across
nodes exist. Due to the law of large numbers, the imbalances across cores are
larger at larger number of nodes. Thus, dynamic or guided scheduling by itself
should be able to provide significant performance gains. Consider the results for
miniFE running at 1024 nodes of Cab. The vSched scheduling strategy gets 15 %
performance improvement over OpenMP static scheduling, while the slackSched
gets 19 % performance gain over OpenMP static scheduling. The comboStrat gets
23 % performance improvement over OpenMP static scheduling, and also gets
9.0% performance improvement over OpenMP guided scheduling. By putting
together vSched and slackSched, we are able to improve performance further, to
make our scheduling methodology perform better than guided. The benefits of
vSched and slackSched are not completely additive. Composing the scheduling
strategies along with tuning of parameters could increase performance benefits,
and could yield better performance for the comboSched.



26 V. Kale and W.D. Gropp

60

T T T T T T T T T T T
I OMP-Dynamic [ OMP-Guided WM uSched [ slackSched WM vSched [ comboSched

w
(=]
T

I
o
T

N
(=]
T

Percent Improvement
w
o

=
o
T

1 2 4 8 16 32 64 128 256 512 1024
Nodes

Fig. 6. Rebound (n-body): Performance improvement obtained over OpenMP static
scheduling.

Figure 8 shows the results for the regular mesh code SNAP [13] run on Cab,
with different schedulers applied to the SNAP code. The regular mesh compu-
tation has no application load imbalance; the only load imbalance during appli-
cation execution is that due to noise. Note that the regular mesh computation
has inherent spatial locality (because the computation’s sweep operation works
on contiguous array elements). At 1024 nodes of Cab, performance improves
10 % over OpenMP static with slackSched, and we get a reasonable performance
gain of 16 % over static scheduling with vSched. The comboSched scheduler gets
19 % performance improvement over OpenMP static scheduling. This result of
comboSched specifically helps to show that the optimizations of vSched and
slackSched composed in comboSched do not cancel out each other’s performance
benefits.
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Fig. 7. miniFE (finite element): Performance improvement obtained over OpenMP
static scheduling.
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Fig. 8. SNAP (regular mesh): Performance improvement obtained over OpenMP static
scheduling.

6 Related Work

The work in [1,9,10] attends to outer iteration locality by dynamically scheduling
the loop iterations so that each core tends to get the same inner loop iterations
over successive outer iterations. In contrast, our strategy sets aside iterations that
are scheduled statically without the locking overhead to maintain outer iteration
locality. The problem of amplification and the phenomenon of MPI slack arise
only in the context of a cluster of multiprocessors, and are absent from older work
which was focused on shared memory machines. Also, hybrid programming with
MPI and pthreads/OpenMP did not exist at the time of the work. Zhang and
Voss [14] present scheduling techniques based on runtime measurements, but the
techniques are designed specifically for the problems arising out of simultaneous
multi-threading (hyperthreads). For example, the techniques involve runtime
decisions about whether the number of threads should be equal to the number
of cores, or equal to the number of hyperthreads.

Loop iterations are a form of independent tasks. Several programming models
support creation of independent tasks directly. One of the primary shortcomings
of work-stealing [5] is that work-stealing incurs overhead due to the cost of
coherence cache misses, which depend on the number of cores and the shared
memory interconnect of the node architecture [2]. In contrast, our work focuses
on reducing coherence cache misses. Scalable work-stealing [3] can be beneficial
in a distributed memory context, but it mainly focuses on steals across a large
number of nodes. Our work is focused on within-node scheduling, and to that
extent is orthogonal to scalable work stealing.

7 Conclusions

In this work, we identified a number of scheduling strategies, each with different
features. We expect many of the features of the scheduling strategies to be rel-
evant for running parallel applications on current and future clusters of SMPs.
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We then provided a guide for composing these scheduling strategies together. Our
results showed on average 31 % performance improvements over static scheduling
for three scientific applications.

Many unknown circumstances will likely exist when running applications on
next-generation supercomputers, e.g., exascale machines. The composition of
existing scheduling strategies, as well as the invention of new scheduling strate-
gies inspired by specific circumstances of current and future clusters of SMPs,
could help ensure that the approach remains viable for these next-generation
supercomputers.
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