Generating Event Logs Through the Simulation
of Declare Models

Claudio Di Ciccio', Mario Luca Bernardi?, Marta Cimitile3,
and Fabrizio Maria Maggi*(®)
! Vienna University of Economics and Business, Vienna, Austria
claudio.di.ciccio@wu.ac.at
2 University of Sannio, Benevento, Italy
mlbernar@unisannio.it
3 Unitelma Sapienza University, Rome, Ttaly
marta.cimitile@unitelma.it
4 University of Tartu, Tartu, Estonia
f.m.maggi@ut.ee

Abstract. In the process mining field, several techniques have been
developed during the last years, for the discovery of declarative process
models from event logs. This type of models describes processes on the
basis of temporal constraints. Every behavior that does not violate such
constraints is allowed, and such characteristic has proven to be suitable
for representing highly flexible processes. One way to test a process dis-
covery technique is to generate an event log by simulating a process
model, and then verify that the process discovered from such a log
matches the original one. For this reason, a tool for generating event logs
starting from declarative process models becomes vital for the evalua-
tion of declarative process discovery techniques. In this paper, we present
an approach for the automated generation of event logs, starting from
process models that are based on Declare, one of the most used declara-
tive modeling languages in the process mining literature. Our framework
bases upon the translation of Declare constraints into regular expressions
and on the utilization of Finite State Automata for the simulation. An
evaluation of the implemented tool is presented, showing its effectiveness
in both the generation of new logs and the replication of the behavior of
existing ones. The presented evaluation also shows the capability of the
tool of generating very large logs in a reasonably small amount of time,
and its integration with state-of-the-art Declare modeling and discovery
tools.

Keywords: Declare - Regular expressions - Declarative process models -
Process simulation - Log generation

1 Introduction

Process mining is a rising research discipline allowing for the analysis of business
processes starting from event logs. XES (eXtensible Event Stream) [1] has been

© Springer International Publishing Switzerland 2015
J. Barjis et al. (Eds.): EOMAS 2015, LNBIP 231, pp. 20-36, 2015.
DOI: 10.1007/978-3-319-24626-0_2

Generating Event Logs Through the Simulation of Declare Models 21

recently developed as the standard for storing, exchanging and analyzing event
logs. In this standard, each event refers to an activity (i.e., a well-defined step in
some process) [2,3] and is related to a particular case (i.e., a process instance).
The events belonging to a case are ordered and can be seen as one execution
of the process (often referred to as a trace of events). Event logs may store
additional information about events such as the resource (i.e., person or device)
executing or initiating the activity, the timestamp of the event, or data elements
recorded with the event.

One of the main branches of process mining is the automated discovery of
process models from event logs. The main idea of process discovery is to extract
knowledge from logs concerning control flow, data, organizational and social
structures. Therefore, testing and evaluation of process discovery techniques and
tools require the availability of event logs. There are several real life logs pub-
licly available that can be used for this purpose [4,5]. However, these logs usually
contain imperfections and have some missing information that can alter the eval-
uation of the discovery algorithms (e.g., they can be incomplete and/or contain
noise). For this reason, a common approach adopted for testing process discovery
algorithms is based on the use of synthetic logs created via simulation. Simula-
tions can produce event logs with different predefined characteristics and allow
the researchers to have more control on the experimental settings to fine tune
the developed algorithms.

Starting from these needs, several model simulators and log generators have
been developed and are available in the literature [6-9]. However, all these tools
generate synthetic logs through the simulation of a procedural process model.
This makes them not suitable for the evaluation of process discovery techniques
based on declarative process models. Such techniques have recently attracted
the attention of the process mining community and are useful to mine processes
working in dynamic environments [10-16]. Indeed, differently from procedural
process models that work in a closed world assumption and explicitly specify
all the allowed behaviors, declarative models are open. Therefore, they enjoy
flexibility and are more suitable to describe highly variable behaviors in a com-
pact way.

To test process discovery techniques based on declarative models, tools for
the generation of event logs based on the simulation of declarative models are
needed and, to the best of our knowledge, they are not available in the literature.
To close this gap, in this paper, we present a tool for log generation based
on Declare models [17]. This model simulator is based on the translation of
Declare constraints into regular expressions and the utilization of Finite State
Automata for the simulation of declarative processes. The tool allows the user
to generate logs with predefined characteristics (e.g., number and length of the
process instances), which is compliant with a given Declare model.

The paper is structured as follows. In Sect.2, some background concepts
are discussed. Section 3 describes the proposed approach. Section4 reports the
experimental setup and the results of the experiments. Section discusses the
related work. Section 6 contains conclusive remarks and briefly presents future
work.

22 C. Di Ciccio et al.

2 Background

In this section, we describe some background elements of our proposed research,
i.e., the concepts of event log, Declare-based modeling of processes, and essential
theoretical notions about regular expressions and Finite State Automata.

2.1 Event Logs

A basic functionality of the core component of Business Process Management
Systems (BPMSs) is the recording, in the so-called event logs [18], of reporting
information during the execution of a workflow [19]. An event log is a structured
text file documenting the executions of a single process. Each event log indeed
contains a collection of traces, each representing the enactment of a unique case (a
process instance). Traces are in turn sequences of events, i.e., single data entries
related to the carry-out of an activity, within the process instance evolution.
In 2010, the IEEE Task Force on Process Mining has adopted XES (eXtensible
Event Stream) [1] as the standard for storing, exchanging and analyzing event
logs. Event logs are typically stored during the Business Process Management
System (BPMS)-aided execution of a process. Therefore, logs tend to respect
the process model that the BPMS’s execution engine loads to coordinate the
workflow. In the next section, we introduce Declare, a process modeling notation
that is alternative to the older well-established procedural languages, such as
Petri nets [20], Workflow Nets [21], YAWL [22] and BPMN [19].

2.2 Declare

In this work, the process models are meant to be defined using Declare, a declar-
ative process modeling language introduced by Pesic and van der Aalst in [24].
Declare is qualified as “declarative” because it does not explicitly specify every
possible sequence of activities leading from the start to the end of a process
execution. Instead, it bases models upon a set of constraints, which must hold
true during the enactment. All behaviors that respect the constraints are thus
allowed. Constraints are meant to be exerted on sets of activities and mainly
pertain to their temporal ordering. In particular, Declare specifies an extensible
set of standard templates (see Table 1) that a process analyst can use to model
a process. Constraints are concrete instantiations of templates. The adoption
of templates makes the model comprehension independent of the logic-based
formalization. Indeed, analysts can work with the graphical representation of
templates while the underlying formulas remain hidden. Graphically, a Declare
process model is a diagram, where activities are presented as nodes (labeled
rectangles), and constraints as arcs between activities.

Compared with procedural approaches, Declare models are more suitable to
describe processes working in unstable environments and characterized by many
exceptional behaviors. Since all what is not explicitly specified is allowed, few
constraints can specify many possible behaviors at once.

Generating Event Logs Through the Simulation of Declare Models 23

Table 1. Semantics of Declare templates as POSIX regular expressions [23].

Template Regular Expression Notation
Participation (a) [~al*(a[~al*) [~al* E
Existence AtMostOne(a) ["al*(a)?["al* H
.
Init(a) a.* H
i) s 2]
RespondedExistence(a, b) ["al*((a.*b.*) | (b.*a.*))*["al* . .
Response(a, b) [~al*(a.*b)*["al* . .
AlternateResponse(a, b) ["al*(al~al*b[~al*)*[*al* B H
Relation E n
ChainResponse(a, b) [~al*(ab[~al*)*x["al*
Precedence(a, b) ["b]*(a.*b)*["b] * . .
AlternatePrecedence(a, b) ["bl*(al["bl*b[“bl*)*[~b]* H n
ChainPrecedence(a, b) ["b]*(ab["bl*) *["b]* H n
CoEristence(a,b) [~abl*((a.*b.%) | (b.¥a.*))*[~ab]* . .
Coupling Relation Succession(a, b) [“abl*(a.*b)*[“ab]+ . '.
AlternateSuccession(a, b) [~abl*(a[~abl*b[~abl*)*["ab] * B n
ChainSuccession(a, b) [~abl*(ab[~ab]l*)*[~ab]* B n
NotChainSuccession(a, b) [al*(aax[ab] ["al*)*([*al*|a) E) n
Negative Relation NotSuccession(a, b) [al*(al"b]*)*["ab]* .) .
NotCoEzistence(a, b) [~ab]l*((al"bl*) | (b["al*))? . .

Declare templates can be divided into two main groups: existence templates
and relation templates. The former is a set of unary templates. They can be
expressed as predicates over one variable. The latter comprises rules that are
imposed on target activities, when activation tasks occur. Relation templates
thus correspond to binary predicates over two variables. Starting from the first
row of Table 1, Participation(a) is an existence template, which requires the exe-
cution of a at least once in every process instance. AtMostOne(a) is its dual, as
it details that a is not executed more than once in a process instance. Init(a)
and End(a) specify that a occurs in every case as the first and the last activity,
respectively. RespondedExistence(a,b) is a relation template imposing that if a is
performed at least once during the process execution, b must occur at least once
as well, either in the future or in the past, with respect to a. Response(a,b) adds
to RespondedExistence(a,b) the condition that b must occur eventually after a.
AlternateResponse(a,b) adds to Response(a,b) the condition that no other a’s
occur between an execution of a and a subsequent b. ChainResponse(a, b) is even
stronger and specifies that whenever a occurs, b must occur immediately after.
Precedence(a, b) specifies that a must occur before b. AlternatePrecedence(a,b)

—

~—

24 C. Di Ciccio et al.

perform reposition

check X ray risk perform X ray apply cast remove cast
alternate
perform surgery prescribe rehabilitation

Fig. 1. The Declare model for a fracture treatment process.

adds to Precedence(a,b) the condition that no other b’s occur between an exe-
cution of b and a precedent a. ChainPrecedence(a,b) specifies that whenever b
occurs, a must occur immediately before.

Two specializations of the relation templates are coupling relation templates
and negative relation templates. In the first group there are templates where
both the constrained activities are together activation and target. For instance,
CoFEzistence(a,b) is a coupling relation template requiring that if a is executed,
then b must be performed as well, and vice-versa. In the second group, the
occurrence of one activity excludes the occurrence of the other. For instance,
NotCoFEzistence(a, b) is a negative relation template requiring that if a is exe-
cuted, then b cannot be performed in the same trace, and vice-versa.

An example of Declare process model (fracture treatment) is depicted in Fig. 1.
The process comprises activities examine patient, check X ray risk, perform X
ray, perform reposition, apply cast, remove cast, perform surgey, and prescribe
rehabilitation. Its behavior is specified by the following constraints C7;—Cr:

Cy Init(examine patient)

Cy AlternatePrecedence(check X ray risk, perform X ray)
Cs5 Precedence(perform X ray, perform reposition)

Cy Precedence(perform X ray, apply cast)

Cs Succession(apply cast, remove cast)

C¢ Precedence(perform X ray, perform surgery)

C'7 Response(perform surgery, prescribe rehabilitation)

According to these constraints, every process instance starts with activity exam-
ine patient. Moreover, if activity perform X ray occurs, then check X ray risk
must be carried out before it, without other occurrences of perform X ray in
between. Activities perform reposition, apply cast and perform surgery require
that perform X ray occurs before they are executed. If perform surgery occurs,
then prescribe rehabilitation occurs eventually after it. Finally, after every exe-
cution of apply cast, eventually remove cast occurs and, vice-versa, before every
occurrence of remove cast, apply cast must be carried out.

Declare templates semantics have been expressed in the literature as formu-
lations of several formal languages: as Linear Temporal Logic over Finite Traces

Generating Event Logs Through the Simulation of Declare Models 25

(LTLy) formulas [25], as shown in [26]; in the form of SCIFF integrity constraints
[27], as exploited in [28]; as First Order Logic (FOL) formulas interpreted over
finite traces, as described in [13,25]. In this work, we use regular expressions
(REs), as described in [23]. Table 1 reports the translation of Declare constraints
into regular expressions (REs).

2.3 Regular Expressions

Regular expressions are a formal notation to compactly express finite sequences
of characters, a.k.a. matching patterns. The syntax of REs consists of any jux-
taposition of characters of a given alphabet, optionally grouped by enclosing
parentheses (and), to which the following well-known operators can be applied:
the binary alternation | and concatenation, and the unary Kleene star *. Thus,
the regular expression a(bc)*d|e identifies any string starting with a, followed
by any number of repetitions of the pattern (sub-string) bc (optionally, none),
and closed by either d or e, such as ad, abcd, abcbce and ae. Table1 adopts
the POSIX standard for the following additional shortcut notations: (i) . and
[~x] respectively denote any character, or any character but x, (i) the + and ?
operators respectively match from one to any, and none to one occurrences of the
preceding pattern. In the reminder of this paper, we will also make use of (iii)
the parametric quantifier {,m}, with m integer higher than 0, which specifies the
maximum number of repetitions of the preceding pattern, and (iv) the paramet-
ric quantifier {n, }, with n integer higher than or equal to 0, which specifies the
minimum number of repetitions of the preceding pattern. We recall here that
(i) REs are closed under the conjuction operation & [29], and () the expressive
power of REs completely covers regular languages, thus (i) for every RE, a
corresponding deterministc Finite State Automaton (FSA) exists, accepting all
and only the matching strings.

2.4 Finite State Automata

A deterministc FSA is a labeled transition system A = (A, S, 0, so,S¢) defined
over states S and an alphabet A, having § : S x A — S as transition function,
i.e., a function that, given a starting state and a character, returns the target
state (if defined). so € S is the initial state of A, and S¢ C S is the non-empty
set of its accepting states (St # 0). For the sake of simplicity, we will omit the
qualification “deterministic” in the remainder of this paper. A finite path 7 of
length n over A is a sequence © = (', ..., 7") of tuples 7° = (s"~!, 0%, s") €4,
for which the following conditions hold true: (i) 7!, the first tuple, is such that
s% = so (it starts from the initial state of A), and (%) the starting state of
7' is the target state of 7'~ 1: 7 = <<so, ol 51> , <81,02, 52> e <s”_1, o™, s">>.
A finite string of length n > 1, i.e., a concatenation ¢t =¢; ...t, of characters
t; € A is accepted by A if a path 7 of length n is defined over A and is such
that (i) for every i € [1,n], 7 = <si’1,ti7si>, and (i) 7" = <sif1,tn, s”> is s.t.
s" e St

26 C. Di Ciccio et al.

el G
model o

dictionary

. additional
max. length num. of traces . !
information
M| M|)

+3 +3 N
g;)H () T)

constraints
to
REs

SJUIRIISUOD

activity names
to
characters

product characters
to of

FSAs FSAs

generation 2
of to event log
strings events

sSuLns

Yoquydpe Sof

VS, 1onpord

Fig. 2. The log-generation framework.

FSAs are closed under the product operation x. A product of two FSAs
accepts the intersection of languages (sets of accepted strings) accepted by each
operand. The product of FSAs is an isomorphism for the conjunction of RE;, i.e.,
the product of two FSAs respectively corresponding to two REs is equivalent to
the FSA that derives from the conjunction of the two REs.

3 Approach

Figure 2 sketches the modular framework upon which our approach is based. The
output is an event log L, synthesized on the basis of a Declare process model
that must regulate the composition of the traces. The input indeed consists of
(i) the set of activity names of the process, henceforth activity dictionary D,
(ii) a Declare model M, i.e., a set of constraints C1, ..., Cjr expressed on the
activities of the process, (i) the minimum and maximum number of events per
trace, respectively m and mj, and (%) the number N of traces that the output
event log must contain.

The overall approach goes through six consecutive steps, as listed below. The
idea is to create a Finite State Automaton that accepts all and only those traces
complying with the conditions imposed by the user. The event log will result in
a collection of traces, generated by running paths along the automaton, from its
initial state, to an accepting one.

From Activity Names to Characters. The first step is the mapping of process
activity names to single terminal characters, henceforth process alphabet ¥, by
means of the function . : D — Y. .Z is bijective, i.e., every activity maps to a
distinct character, and all characters can be referenced to the related activity.
Therefore, it admits an inverse function #~! : ¥ — D. In the example of
Fig. 1, activities of the process are apply cast, check X ray risk, examine patient,
perform X ray, perform reposition, perform surgery, prescribe rehabilitation, and
remove cast in D, respectively mapped by . to a, b, ¢, d, e, f, g, and h in ¥.
Thus, e.g., .Z (perform surgery) = f, and .# ~1(g) = prescribe rehabilitation.

From Constraints to Regular Expressions. Every constraint is thereafter trans-
lated into the corresponding RE during the second step, as per Tablel [23].
The translation function is henceforth indicated with &g. In the example,

Generating Event Logs Through the Simulation of Declare Models 27

Ereg (Response(f,g)) = [T£1*(£f.xg)*["£]*, being f = & (perform surgery) and
g = S (prescribe rehabilitation).

For the generation of logs, an additional regular expression is considered,
specifying that accepted strings can only comprise those characters that belong
to the process alphabet [30]: [0102...015|| %, for all 03 € ¥,i € [1,|Z]]. In the
example, such RE is [abcdefgh] . By means of regular expressions, we also
specify (a) the minimum, and (b) the maximum length of traces. Given the
user-defined parameters m; and my, such REs are (a) .*{n,}, and (b) .*{,m}.

Therefore, the specification of the traces for the fracture treatment process
M consisting of constraints C;—C; (Fig. 1, Sect. 2.2) defined over activities in D,
where the length of traces ranges between n; = 3 and m; = 20, would result in
the following list of REs, R1—Ri¢:

Ry *xc = &eg(Ch) R [M£1x(d.*£)*["£]1% = Eieg(Co)

R [dlx(bl7dlxd["d]x)«["d]x Re [£1%(t *[gD)*["£]* = 810s(Cr)
= gre (CQ)

Rs [e] f(d.*e)*[“e]* = g (C) Rs [abcdefghl *

Ry ["al*(d.*a)*["al* = &eg(Ca) Ry .*{3,}

Rs ["ahl*(a.*h)*["ahl* = ®(Cs) Rio .*{,20}

Out of these regular expressions, R1—R7 are the respective translation of con-
straints C1—C7 given in Sect.2.2. Rg defines the characters that are admissible
for the strings, whilst Rg and Rj limit their length. The output of this phase is
thus a set of M| + 3 REs.

From Regular Ezxpressions to Finite State Automata. For each RE, a FSA accept-
ing all and only the matching strings is derived, by means of function . Figure 3
shows the FSAs deriving from those regular expressions that express the rela-
tion constraint templates in our example model (AlternatePrecedence, Response,
Precedence and Succession). In particular, Ay = o7 (Rs) is depicted in Fig. 3a,
A7 = &/ (Ry) in Fig.3b, Ay = &/(R4) in Fig. 3¢, and A5 = &/(R5) in Fig. 3d,
respectively referring to constraints Cs, C7, Cy, and Cs. Hence, the outcome of
this phase is a set of [M| + 3 FSAs, i.e., A1,... Ajr43-

Product of Finite State Automata. The constraints representing the process
behavior, and the conditions on the length of traces must hold true at the same
time. This entails that the conjunction of all regular expressions R1—R1¢ must be
verified. In turn, this means that the product of the derived FSAs is the generator
of the traces. We will denote this automaton with A* = A; x - X Ajaq)43-

Generation of Strings. The traces of the event log are created on the basis of
the strings accepted by A*. To this extent, a random path is chosen along A*
that terminates in an accepting state, and characters of traversed transitions are
concatenated. The resulting string corresponds to the backbone of a trace for
the event log. The strings are indeed made of characters that uniquely identify
activities, in a sequence that complies with the constraints of the input model M.

28 C. Di Ciccio et al.

ocexX\{a,h} ocex\{a}

ceX\{b,d} cex\{d} oceX\{f} ceX\{g} sex\{ad} s
S R S N !
d

g
oex\{h}
(a) Alt.Prec.(b,d) (b) Response(f,g) (c) Precedence(d,a) (d) Succession(a,h)

Fig. 3. FSAs accepting the traces that verify Declare constraints.

From Strings to Fvent Log. We create traces in the event log by deriving the cor-
responding activities from each character in the strings, keeping the sequences
unaltered. Each activity is retrieved through the application of the inverse trans-
lation mapping function .# ~! to the single-character identifiers. Further informa-
tion such as timestamps can also be specified for the events: custom attributes
can indeed be seamlessly added to enhance the information conveyed by the
event log. However, such enrichment goes beyond the scope of this paper.

This procedure is repeated N times, being N the user-specified parameter
indicating the number of desired traces in the log. At the end of the N iterations,
the log is returned. This last step concludes the overall approach.

4 FEvaluation

Our framework has been implemented as a working prototype integrated within
the modeling tool Declare designer [17].! Figure 4 shows a screenshot of its main
dialog window, where the user can specify the input parameters affecting the
length and the number of the traces in the generated log, once the model has
been drawn or loaded from an external Declare XML specification file. The
output log can be either encoded using XES [1] or MXML (another XML-based
standard format for logs), or as plain text.

In order to evaluate the efficiency of the proposed approach, we have run
an extensive set of experiments to assess the time to generate event logs of
different sizes, following the trailing example provided in Sect. 2.2. The results are
described in Sect. 4.1. To validate it from the perspective of the effectiveness, we
have used as reference models the fracture treatment example process of Fig. 1,
and a real case study. We have generated an event log on the basis of each model,
and run two different Declare discovery algorithms, in order to check whether the
simulated and the discovered models match. The tests confirm the compliance
of the log w.r.t. the input model, as detailed in Sect. 4.2.

All tests have been conducted on a machine equipped with an Intel i7 CPU
quad processor at 2.8 Ghz and 12 GB of dedicated RAM. We have used Java SE
1.7 as the coding language for the implementation of the framework.

! https://github.com /processmining/synthetic-log-generator.

https://github.com/processmining/synthetic-log-generator

Generating Event Logs Through the Simulation of Declare Models

Model System Window _Help

6006 Il - new model

&) [Zconoec|: W[[m[RTATR

I people | data |

Generation Wizard

Min Size 2000
Max Size 3000 50000|

Output Format:
@ Xs O Plain Text O MXML

check X ray risk s

preceddnce

Select Model | /home/eomas/models /running xml

Select

Number of Traces to generate

Cancel | | Generate

= = &

examine patient

erform surge habil
P gery kespoT’{we“"be rehabilitati.

40000 T T T T T

Traces
35000 |- 10
100 —x—
30000 |- 1000 —*
10000 &
100000 o

25000 - 1000000 —&—

20000 -

Time [sec]

15000 +

10000 -

5000

0 500 1000 1500 2000 2500

3000 3500 4000 4500 5000

Trace length [events|

Fig. 5. Generation times with respect to number of traces and trace size.

4.1 Efficiency

29

In order to assess the performance of the log generation approach, we consid-
ered as reference model the sample process described in Sect. 2.2 and depicted in
Fig. 1. A set of logs with different characteristics has been generated. In particu-
lar, we have sampled the generation times that resulted by varying the following
user parameters: (4) the number of events per trace, keeping minimum and max-
imum values equal (n = my), and (i7) the number of traces in the log N. In
order to show that the generator can be used in real contexts also to generate
very large logs within acceptable times, we increased the number of traces from
10 to 10° at a base-10 logarithmic step, and raised the length of each trace from

30 C. Di Ciccio et al.

Table 2. The computation time (in seconds) w.r.t. the size of the log.

Log size | Trace length Log size | Trace length

500 | 2500 | 5000 500 | 2500 | 5000
10 2| 51| 19110000 |242 5875 |22477
100 8211992 | 7620 | 100000 |323|7816 | 29906
1000 162 | 3933 | 15049 | 1000000 | 403 | 9757 | 37335

10 to 5,000 events, at a step of 500 units. The number of total events per log
ranged from 100 up to 5 - 10°.

In Fig. 5, each curve reports the computation time needed w.r.t. the incre-
mented number of events per trace. Curves are parametric w.r.t. the number of
traces per log. The shown trend is a flattened branch of parabola. Table 2 lists
the sampled times w.r.t. the logarithmic progression of the number of traces
instead, fixing three values for the trace length (500, 2500, and 5,000). As the
reader can notice, values increase linearly w.r.t. to the exponentially increasing
number of traces in the log, for all three fixed trace lengths. We can thus con-
clude that the performance increases logarithmically in the number of traces.
The moderated ascent of the parabola in Fig.5 is here confirmed, e.g., by the
fact that 242 seconds (approx. 4 min) are sufficient to generate a very big log
containing 5 - 10% events, distributed along 10,000 traces of 500 events each.

4.2 Effectiveness

To evaluate the effectiveness of the log generation approach, we have carried
out two different experiments. In the first experiment, we have used the fracture
treatment example process of Fig.1 to generate a log containing 1,000 traces
of length comprised between 2 and 100 events. We exported the log in XES
format. Then, we have used the Declare Miner, a ProM plug-in? for the discovery
of Declare models [14,15], to mine the log and check whether the discovered
Declare model was in line with the simulated one. The discovered model is shown
in Fig. 6. The figure shows the list of constraints that are satisfied in 100 % of
the cases. The model contains the same constraints as the simulated one, thus
experimentally confirming the correctness of the generated log.

In our second experiment, we have tried to reproduce with our tool the
behavior of a real-life log. To this aim, we have used the log provided for the
BPI challenge 2014 by Rabobank Netherlands Group ICT [31]. The log pertains
to the management of calls or mails from customers to the Service Desk con-
cerning disruptions of ICT-services. The log contains 46,616 traces and amounts
to 466,737 events referring to 39 different activities. We have used the Declare
Miner to discover a model from this log. The discovered model is shown in Fig. 7.
Starting from this model, we generated a log with 46,616 cases of length between

2 www.processmining.org/prom/start.

http://www.processmining.org/prom/start

Generating Event Logs Through the Simulation of Declare Models 31

apply cast examine patient

perform reposition
perform surgery

perform X ray

prescribe rehabilitation

check X ray risk

Fig. 6. Discovered model from the log generated starting from the fracture treatment
process model.

1 and 173. These parameters were chosen according to the characteristics of the
original real life log. We exported the log in XES format. Figure8 shows the
ProM log visualizer dashboard window, listing the main statistics about the
loaded log. In this second experiment, we have used MINERful [32] to rediscover
the model. Using again the option that in this tool allows the user to discover
only the constraints always satisfied, we obtain the same model shown in Fig. 7.

We can conclude that the logs generated by our approach reproduce exactly
the behavior of the input models, regardless of the discovery algorithm adopted
to verify it, and irrespectively of whether the aim is to simulate a hand made
reference model, or rather to replicate the behavior of an existing real life event
log. Furthermore, our tool is highly integrated with the state-of-the-art software
for modeling and mining Declare processes.

5 Related Work

The automated generation of event logs to test process mining algorithms has
been studied extensively in the context of procedural modeling languages. The
work of Hee and Liu [8] introduces a framework for the automated generation of
classes of Petri nets (PNs), according to user-defined topological rules. Gener-
ated Petri nets (PNs) are meant to be used as benchmarks for algorithms. This
work is of inspiration for us, in that we also create a graph-based structure as
a means to create benchmarking data (event logs). In [33], an approach based

32 C. Di Ciccio et al.

Incident reproduction

Reassignment

Problem Closure
Operator Update m

P"%aused By CI

Status Change

alert stage 1 Callback Request
Problem Workaround

Fig. 7. Discovered model from the log provided for the BPI challenge 2014.

Synthetic log O @ ®>m e

2623975

Fig. 8. Information about the log generated starting from the Declare model in Fig. 7.

on CPN Tools [7] is described, to generate XML event logs by the simulation of
a Colored Petri net (CPN). In [6], Burattin and Sperduti propose an approach
for the generation of logs. Process descriptions are meant to be provided via
a (stochastic) context-free grammar, whose definition is based on well-known
process patterns. The work of [6] relates to the one presented in this paper in

Generating Event Logs Through the Simulation of Declare Models 33

that we adopt regular expressions to generate logs, and the REs express regular
languages, hence, languages accepted by left-linear context-free grammars. How-
ever, we use REs as translations of business rules, and not as production rules
for the topology of the process.

All the approaches described so far support indeed only procedural business
process models. Procedural business process models show some limitations when
the represented process is characterized by several possible execution paths, high
variability and continuous changes [11], as in the case of knowledge-intensive
processes [34]. In this context, declarative process models such as Declare [35]
are proven to perform better in terms of compactness [36] and customizabil-
ity [37]. The newest version of CPN Tools [38] allows the user to graphically
add Declare constraints to the transitions of a CPN, thus obtaining hybrid mod-
els. The simulation tool allows both user-driven and random executions of such
models. Our framework differs from CPN Tools in that it is not an extension of a
procedural-based modeler, but inherently a tool for the management of Declare
process models, specialized in the generation of event logs. For instance, the
number of traces to be generated is here a parameter. In CPN Tools, instead, a
workaround would be needed, resorting on the initial marking of user-specified
fictitious places linked to process activities/transitions. In addition, notions out-
side the Declare specification are needed for simulation (marking, places, tokens),
and a Declare model could not thus be simply loaded to generate the logs.

Preliminary versions of log generators based on Declare models were pre-
sented in [13,32,39,40] for testing the time performance of the proposed process
mining tools. A discussion on the adoption of a product of FSAs to represent a
conjunction of declarative constraints can also be found in [30]. Here, we present
the complete approach, which is detached from any discovery algorithm and can
be used for the creation of platform-independent benchmarks.

6 Conclusions and Future Work

In this paper, we have presented an approach for generating event logs based
on the simulation of declarative models. The proposed approach is based on
the translation of Declare constraints into regular expressions. The framework
has been presented in its execution flow, which undergoes a sequence of steps
leading from a set of Declare constraints to a simulation automaton, to the final
event log. The evaluation has shown that the implemented solution, integrated
within the Declare designer tool, correctly reproduces user-defined models and
replicates the behavior of existing logs. Two experiments have been conducted as
an experimental evidence of such claims, respectively using as input an example
reference model, and a model stemming from the BPI Challenge 2014 benchmark
event log. The generated logs have been subject to the processing of two different
declarative process discovery techniques, and in both cases the retrieved model
matched the input one. Performance tests also showed that the algorithm is
capable of generating very large logs in a fairly small amount of time. It is in
the future plans to extend the framework towards the creation of logs containing
user specified data attributes and complex activity life-cycles.

34

C. Di Ciccio et al.

Acknowledgments. The work of Claudio Di Ciccio has received funding from the
EU Seventh Framework Programme (FP7/2007-2013) under grant agreement 318275
(GET Service).

References

10.

11.

12.

13.

14.

15.

. Verbeek, HM.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.:

XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010.
LNBIP, vol. 72, pp. 60-75. Springer, Heidelberg (2011)

. Scheer, A.-W., Niittgens, M.: ARIS Architecture and reference models for business

process management. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Busi-
ness Process Management. LNCS, vol. 1806, p. 376. Springer, Heidelberg (2000)
Scheer, A.: ARIS toolset: a software product is born. Inf. Syst. 19(8), 607-624
(1994)

van Dongen, B.: BPI challenge 2011 (2011)

van Dongen, B.: BPI challenge 2012 (2012)

Burattin, A., Sperduti, A.: PLG: a framework for the generation of business process
models and their execution logs. In: Muehlen, M., Su, J. (eds.) BPM 2010 Work-
shops. LNBIP, vol. 66, pp. 214-219. Springer, Heidelberg (2011)

Jensen, K., Kristensen, L.M., Wells, L.: Coloured petri nets and cpn tools for mod-
elling and validation of concurrent systems. Int. J. Softw. Tools Technol. Transf.
9(3), 213-254 (2007)

Hee, K.V, Liu, Z.: Generating benchmarks by random stepwise refinement of petri
nets. In: Donatelli, S., Kleijn, J., Machado, R., Fernandes, J. (eds.) PETRI NETS
2010, pp. 403-417. CEUR~ws.org (2012)

Bergmann, G., Horvath, A., Rath, I., Varré, D.: A benchmark evaluation of incre-
mental pattern matching in graph transformation. In: Ehrig, H., Heckel, R.., Rozen-
berg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 396-410. Springer,
Heidelberg (2008)

Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business
processes management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006.
LNCS, vol. 4103, pp. 169-180. Springer, Heidelberg (2006)

Fahland, D., Liibke, D., Mendling, J., Reijers, H., Weber, B., Weidlich, M., Zugal,
S.: Declarative versus imperative process modeling languages: the issue of under-
standability. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R.,
Soffer, P., Ukor, R. (eds.) Enterprise, Business-Process and Information Systems
Modeling. LNBIP, vol. 29, pp. 353-366. Springer, Heidelberg (2009)

Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Impera-
tive versus declarative process modeling languages: an empirical investigation. In:
Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP,
vol. 99, pp. 383-394. Springer, Heidelberg (2012)

Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful
processes. ACM Trans. Manage. Inf. Syst. 5(4), 24:1-24:37 (2015)

Maggi, F.M.: Declarative process mining with the Declare component of ProM. In:
BPM (Demos) (2013)

Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of under-
standable declarative process models from event logs. In: Ralyté, J., Franch, X.,
Brinkkemper, S., Wrycza, S. (eds.) CAIiSE 2012. LNCS, vol. 7328, pp. 270-285.
Springer, Heidelberg (2012)

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Generating Event Logs Through the Simulation of Declare Models 35

Bernardi, M.L., Cimitile, M., Di Francescomarino, C., Maggi, F.M.: Using dis-
criminative rule mining to discover declarative process models with non-atomic
activities. In: Bikakis, A., Fodor, P., Roman, D. (eds.) RuleML 2014. LNCS, vol.
8620, pp. 281-295. Springer, Heidelberg (2014)

Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for
loosely-structured processes. In: EDOC, pp. 287-300 (2007)

van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer, New York (2011)

Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management. Springer, Heidelberg (2013)

van der Aalst, W.M.P.: The application of petri nets to workflow management. J.
Circ. Syst. Comput. 8(1), 21-66 (1998)

van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G.
(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407-426. Springer, Heidelberg (1997)
van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: yet another workflow lan-
guage. Inf. Syst. 30(4), 245-275 (2005)

Di Ciccio, C., Mecella, M., Scannapieco, M., Zardetto, D., Catarci, T.: MailOfMine
— analyzing mail messages for mining artful collaborative processes. In: Aberer, K.,
Damiani, E., Dillon, T. (eds.) SIMPDA 2011. LNBIP, vol. 116, pp. 55-81. Springer,
Heidelberg (2012)

van der Aalst, W., Pesic, M., Schonenberg, H.: Declarative workflows: balancing
between flexibility and support. Computer Science - R&D 23, 99-113 (2009)

De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: IJCAT (2013)

De Giacomo, G., De Masellis, R., Montali, M.: Reasoning on 1tl on finite traces:
Insensitivity to infiniteness. In: AAAT (2014)

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifi-
able agent interaction in abductive logic programming: the sciff framework. ACM
Trans. Comput. Log. 9(4), 29:1-29:43 (2008)

Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting
inductive logic programming techniques for declarative process mining. In: Jensen,
K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models of
Concurrency II. LNCS, vol. 5460, pp. 278-295. Springer, Heidelberg (2009)
Gisburg, S., Rose, G.F.: Preservation of languages by transducers. Inf. Control
9(2), 153-176 (1966)

Prescher, J., Di Ciccio, C., Mendling, J.: From declarative processes to imperative
models. In: SIMPDA, pp. 162-173, CEUR-WS.org (2014)

van Dongen, B.: BPI challenge 2014 (2014)

Di Ciccio, C., Mecella, M.: A two-step fast algorithm for the automated discovery
of declarative workflows. In: CIDM, IEEE, pp. 135-142 (2013)

de Medeiros, A.A., Glinther, C.W.: Process mining: Using CPN tools to create test
logs for mining algorithms. In: Proceedings of the sixth workshop on the practical
use of coloured Petri nets and CPN tools (CPN 2005), vol. 576 (2005)

Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive Processes: Characteris-
tics, requirements and analysis of contemporary approaches. J. Data Semant. 4(1),
29-57 (2015)

van der Aalst, W.M.P., Pesic, M.: DecSerFlow: towards a truly declarative service
flow language. In: Bravetti, M., Nunez, M., Zavattaro, G. (eds.) WS-FM 2006.
LNCS, vol. 4184, pp. 1-23. Springer, Heidelberg (2006)

van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balanc-
ing between flexibility and support. Comput. Sci. R&D 23(2), 99-113 (2009)

36

37.

38.

39.

40.

C. Di Ciccio et al.

Schunselaar, D.M.M., Maggi, F.M., Sidorova, N., van der Aalst, W.M.P.: Config-
urable declare: designing customisable flexible process models. In: Meersman, R.,
et al. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 20-37. Springer, Heidelberg
(2012)

Westergaard, M., Slaats, T.: Cpn tools 4: A process modeling tool combining
declarative and imperative paradigms. In: BPM (Demos) (2013)

Di Ciccio, C., Maggi, F.M., Mendling, J.: Discovering target-branched declare con-
straints. In: Sadiq, S., Soffer, P., Vélzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp.
34-50. Springer, Heidelberg (2014)

Di Ciccio, C., Mecella, M., Mendling, J.: The effect of noise on mined declarative
constraints. In: Ceravolo, P., Accorsi, R., Cudre-Mauroux, P. (eds.) SIMPDA 2013.
LNBIP, vol. 203, pp. 1-24. Springer, Heidelberg (2015)

2 Springer
http://www.springer.com/978-3-319-24625-3

Enterprise and Organizational Modeling and Simulation
11th International Workshop, EOMAS 2015, Held at
CAISE 2015, Stockholm, Sweden, June 8-, 2015,
Selected Papers

Barjis, J.; Pergl, R.; Babkin, E. (Eds.)

2015, X, 233 p. 83 illus., Softcover

ISBM: 978-3-319-24625-3

	Generating Event Logs Through the Simulation of Declare Models
	1 Introduction
	2 Background
	2.1 Event Logs
	2.2 Declare
	2.3 Regular Expressions
	2.4 Finite State Automata

	3 Approach
	4 Evaluation
	4.1 Efficiency
	4.2 Effectiveness

	5 Related Work
	6 Conclusions and Future Work
	References

