Chapter 2
High-Quality Video Denoising
for Motion-Based Exposure Control

Li Zhang, Travis Portz and Hongrui Jiang

Abstract New digital cameras, such as Canon SD1100 and Nikon COOLPIX
S8100, have an autoexposure (AE) function that is based on motion estimation.
The motion estimation helps to set short exposure and high ISO for frames with fast
motion, thereby minimizing most motion blur in recorded videos. This AE function
largely turns video enhancement into a denoising problem. This paper studies the
problem of how to achieve high-quality video denoising in the context of motion-
based exposure control. Unlike previous denoising works which either avoid using
motion estimation, such as BM3D Dabov et al. TIP 16:2007, [1], or assume reliable
motion estimation as input, such as Liu, ECCYV, 2010, [2], our method evaluates the
reliability of flow at each pixel and uses the “lifespan” of reliable flow trajectories
as a weight to integrate spatial denoising and temporal denoising. This weighted
combination scheme makes our method robust to optical flow failure over regions
with repetitive texture or uniform color and combines the advantages of both spatial
and temporal denoising. Our method also exploits high-quality frames in a sequence
to effectively enhance noisier frames. In experiments using both synthetic and real
videos, our method outperforms the state-of-the art Dabov et al. TIP 16:2007, Liu,
ECCV, 2010, [1, 2].
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2.1 Introduction

In most automated vision systems and consumer cameras, it is desirable to
automatically determine an appropriate exposure time based on the scene; this func-
tion is known as autoexposure (AE). Traditionally, AE is mainly determined by
environment brightness: bright scenes lead to short exposure time. This control
scheme is simple to implement and has been widely adopted. However, when the
brightness level of a scene remains constant, this scheme does not consider camera
motion or subject motion and therefore often leads to motion blur.

As more computing power is put in digital cameras, new cameras, such as Canon
SD1100 and Nikon COOLPIX S8100, have an AE function that is based on motion
estimation. In a nutshell, the apparent motion estimated from two consecutive frames
is used to guide the exposure time and ISO setting for the next frame, so that blur is
minimized. In the captured video, most frames do not have blur, but those with short
exposure time will be noisy due to the high ISO setting. This AE function largely
turns video enhancement into a denoising problem.

This chapter presents a research work on the problem of how to achieve high-
quality video denoising in the context of motion-based exposure control. This prob-
lem is pertinent as motion deblurring in general is a challenging problem; achieving
high-quality denoising in this context may greatly reduce, although not eliminate,
the need of motion deblurring for video enhancement. This problem is promising as
Fig.2.1 shows; it is also difficult in its own ways.

e Within a sequence captured using motion-based AE, there are often high-quality
frames, which correspond to the frames with little apparent motion and captured
with relatively long exposure and low ISO.! Ideally, we would want to use the
high-quality frames to better enhance the noisier frames; at the same time, we
would not want the noisy frames to compromise the high-quality frames during
the denoising process.

e Noisy frames are captured with high ISO and short exposure because of fast motion.
To exploit high-quality frames to enhance noisy frames, we would need robust
motion estimation that can handle large displacement. In our experiments, we com-
monly found displacement of 70 or more, which confound even top-performing
optical flow methods that have been adopted in state-of-the-art video denoising.

In this chapter, we present a high-quality video denoising method in the context
of motion-based exposure control, by combining spatial denoising and temporal
denoising in a novel way. Our combination is based on an intuitive observation.
Specifically, spatial methods like BM3D [1] perform well if the image has abundant
locally similar structure. Its performance starts to degrade when the local structure
is unique. Motion-compensated filtering on the other hand works best when local
patches are unique, because the optical flow can be reliably estimated. Therefore,

For example, although it is hard to hold a camera perfectly still for a long period, it is also rare
that our hands would continuously shake a camera; shaky intervals are always intermingled with
steady moments.
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Fig. 2.1 The benefit of denoising videos captured with motion-based exposure control. Top: A
panoramic image from which we generate a synthetic video whose viewport (red box) moves along
the red zigzag curve with varying speed. Bottom: If a constant short exposure is applied to each
frame to minimize blur, the captured video has constant low PSNR (dashed red curve), and a state-
of-the-art video denoising [2] improves its PSNR to about 34dB (dashed black curve). If exposure
time is set adaptively based on motion estimation, the input video has higher PSNR (solid red
curve), and our denoising algorithm produces a much higher quality video with a total PSNR of
39 dB (solid black curve). Best viewed electronically in color

our idea is to detect the length of reliable flow trajectories for each pixel and use
the length as a weight to combine the results of BM3D and motion-compensated
filtering.

Unlike previous denoising works which either avoid using motion estimation, such
as BM3D [1], or assume reliable motion estimation as input, such as [2], our method
selectively operates in whichever regime works best. As a result, our algorithm
performs better than both VBM3D [3] and the latest video denoising algorithm [2].

Our flow reliability evaluation is based on a forward—backward consistency
check, which is a widely used technique in stereo and motion estimation. However,
this reliability measure of motion estimation has not been exploited for improving
video denoising performance in the literature, to the best of our knowledge.
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2.2 Related Work

Our work is most related to image and video denoising and enhancement.
Denoising

Image denoising has been studied for several decades. A complete review is beyond
the scope of this paper. We refer the readers to the previous work sections in [1, 4]
for excellent reviews of the literature. An incomplete list of recent works includes [1,
4-9]. In particular, the methods that are based on local self-similarity, such as nonlocal
means [4] and BM3D [1], are particularly notable because of their simple ideas and
impressive results. The nonlocal means and BM3D methods do not perform well
when local image patterns are unique.

Video denoising [2, 3, 10, 11] can address this limitation as the temporal dimen-
sion provides additional redundant data. Liu and Freeman [2] showed that the
spatial regularization in the optical flow can be used to ensure temporal coherence in
removing structured noise. Multi-view denoising [12—14] is another way of address-
ing this limitation, which exploits noisy measurements from multiple viewpoints to
reconstruct a clean image. Zhang et al. [14] observed that 3D depth can be used
as a constraint to find more reliable matches to further improve the performance of
multi-view image denoising.

Our work is most related to [2], in which the authors integrate robust optical flow
into a nonlocal means framework; their work assumes reliable flow as input. Our
work does not assume the flow is reliable. Rather, we evaluate the flow trajectory
reliability for each pixel and use the reliability measure as a weight to combine spatial
denoising and temporal denoising results.

Video Enhancement using Stills

Our work is also related to works that use high-quality digital photos to enhance low-
resolution videos. For example, Bhat et al. [15] and Schubert et al. [16] proposed an
approach to enhance low-resolution videos of a static scene using multi-view stereo to
compute correspondences between low-resolution video and high-resolution images;
Gupta et al. [17] use optical flow to compute correspondences and can therefore
handle dynamic scenes as well. Watanabe et al. [ 18] propagate high-frequency infor-
mation in high-resolution frames to low-resolution frames using motion compen-
sation. Nagahara et al. [19] take a similar approach but use morphing based on
feature matching instead of motion compensation. In our work, the frame resolution
is the same; what differs is the noise level. We do not assume reliable flow as input;
instead, we use the lifespan of reliable flow trajectory to combine spatial denoising
and temporal denoising.
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2.3 Denoising Algorithm

Our denoising algorithm is based on the following intuition. If an image region has
unique texture patterns, we would prefer to use temporal denoising, because optical
flow can be estimated reliably and spatial denoising usually does not work well. On
the other hand, if an image region has repetitive texture or uniform color, we would
prefer to use spatial denoising because optical flow is unreliable and self-similarity
makes spatial denoising work effectively. We do not judge the flow reliability using a
binary decision. Instead, we softly combine the spatial and temporal denoising result
using our reliability measure as weight. Next we explain our algorithm in detail.

Spatial Denoising

We use the single-image denoising method CBM3D [1] to perform our spatial
denoising: .
Is(z) = CBM3D(/, z), (2.1)

where [ is the input image and z is pixel location. We apply this single denoising
method to each frame using the corresponding frame noise variance as parameter. We
do not use CVBM3D, the video version of CBM3D, because CVMB3D only handles
constant noise variance across the whole video volume, which would compromise the
high-quality frames in the captured video. We choose CBM3D due to its performance,
efficiency, and public availability; other spatial denoising methods, such as nonlocal
means [4], can also be used instead.

Temporal Denoising Along Reliable Flow

Let I, be the frame we are currently denoising. We compute the optical flow over
a temporal window of +£H frames, where we use H =5 as in [2]. The flow may
not be reliable for every pixel and every frame in the temporal window. We use the
forward-backward consistency as a measure of flow reliability. If the flow vector
from a pixel in frame 7 to a pixel in frame j is denoted v;;, then the flow consistency
erroris ||v;; + vj; . We consider the flow to be consistent if the error is below some
threshold (1 and 3 are used in our synthetic and real experiments, respectively).

For each pixel in frame /;, we determine the number of frames of consistent
forward flow up to at most frame ¢ + H, and backward flow down to at most t — H.
If the per pixel flow is not consistent at frame ¢ 4 1, we do not consider frame ¢ 4- 2 for
that pixel. The number of consistent frames in the forward and backward directions
are denoted H, and H,, respectively. H; and H, are functions of the pixel under
consideration; however, we omit the function notation for simplicity.

Once we have determined the “lifespan” [t — Hj, t + H] of a reliable flow, the
temporal pixel estimate is computed by filtering along the optical flow:

t+Hy

A 1
@ =— > W) L), 22)

i=t—H,
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where Z is a normalization factor and W(z;) is given by:

(2.3)

3 _ . 2
W) = (8 + ) exp [_w] |

B2+ B2

where f; = g; - Bp with g; being the gain used to capture frame i and Sy being
proportional to the base noise level of the camera. In Eq. (2.3), we note

e The first term assigns larger weight to pixels from cleaner frames. This weight-
ing scheme facilitates using the high-quality frames to better enhance the noisier
frames; at the same time, it discourages using the noisy frames to compromise the
high-quality frames during the denoising process.

e The exponential term assigns smaller weight to pixels that came from optical flows
with poorer block matches. The distance between two patches is computed using
a weighted SSD as in [2].

In addition to having the exponential term based on the patch distance, we use a
threshold,
T =m-f + 7, 2.4

to reject pixels with large patch distances. The linear form and parameters for 7, were
determined empirically by maximizing the PSNR of a simulated video sequence.
With pixel intensities in the range [0,1], we used m = 0.40 and 1o = —5.3 - 107

Combining Spatial and Temporal Denoising

To combine the spatial and temporal denoising results, we linearly interpolate using
the number of consecutive frames of flow consistency Hj, + H as the weight:

) H;+ H, - Hy+ Hy\ -
[(z) = %IT(z) + (1 - %) Is(z). 2.5)

When a pixel does not have any consistent flows, we rely purely on the CBM3D
estimate. When a pixel has perfectly consistent flows (within the temporal window),
we rely purely on the temporal estimate.

2.3.1 Efficient Flow for Large Motion

Now we describe how we compute optical flow for denoising in our experiments.
Optical flow is not our technical contribution; we describe it so that our paper is
reproducible.

Inreal videos, we found that flow vectors can easily be 70 pixels or more. This large
motion easily confounds many top-performing flow algorithms evaluated in [20],
which typically handle flow magnitudes of 10 or fewer pixels. For example, we tried
the flow algorithm [21] used in [2] as input for video denoising. The algorithm does
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Frame 1 Frame 2 Frame 3

Liu [21] Our algorithm

Liu [21] Our algorithm

Fig. 2.2 Optical flow results for three consecutive frames in the mountain scene. Top: The dis-
placement between frames 1 and 2 is large, whereas the displacement between frames 2 and 3 is
small. Middle: Our optical flow outperforms the optical flow in [21] for large displacements. The
left to right motion causes the pixels on the left edge of frame 1 to be invisible in frame 2, which is
why our flow is inaccurate on that edge. Bottom: The optical flow in [21] outperforms our method
for small displacements by producing a smoother flow. Best viewed electronically in color
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not produce correct flow for a typical pair of frames with large motion as shown
in Fig.2.2. We believe this is because most flow algorithms use derivative-based
continuous optimization which is easily trapped in local minima, even if an image
pyramid is used. To handle large motions in our video, we fall back to a traditional
hierarchical block matching technique to compute our optical flow.

Suppose we are computing the optical flow from frame i to j. We start by con-
structing image pyramids of downsampled versions of /; and I; with L levels, where
the coarsest level has been downsample by a factor of 2°~!. We then compute a flow
field for the coarsest level by performing block matching between the two downsam-
pled images using search windows of size M x M. The choice of M determines the
size of motion the algorithm can handle. Performing the primary search at the coars-
est level effectively reduces the size of the search space necessary to find matches
for large motions. We use L = 3 and M = 61, allowing us to handle displacements
of up to 120 pixels between consecutive frames.

Next, we upsample the flow field by a factor of two and refine it by searching
within the next coarsest level of the pyramid. If v was a flow vector in the coarsest
level, then 2v is the flow vector in the next level. This upsampling and refinement
step is repeated until we have a flow field that is the same size as our original images.
The refinement step is necessary to obtain better resolution and accuracy in our flow
field than is possible using only the coarsest level. However, the search window used
during refinement can be much smaller than the window used at the coarsest level;
we use a 7 x 7 search window for refinement.

We first compute flow between neighboring frames, then concatenate the flow
to initialize motion estimation between the reference frame ¢ to any other frame i
between [t — H, t + H], and finally refine the initialization by block matching in the
finest resolution only. We found this simple method works quite well for handling
large motion; an example of the flow result is shown in Fig.2.2.

2.4 Experimental Results

Our results are best viewed electronically in color. More results, including videos,
are available in the supplementary material.

2.4.1 Synthetic Video

We first test our system on three different synthetic video sequences. Each sequence
is generated by moving a 512 x 512 window around a large panoramic image as
shown in Fig.2.3. The motion of the windows have speeds ranging from 0 to 750
pixels per second and undergo two changes of direction. Motion-based exposure
control is simulated on the sequences to determine the optimal exposure time 7 for



2 High-Quality Video Denoising for Motion-Based Exposure Control 53

City scene Mountain scene

Fig. 2.3 Our synthetic video sequences are generated from panoramic images. A 512 x 512 pixel
window follows the trajectory shown in red. The motion in each sequence has variable speed and
undergoes multiple direction changes. Best viewed electronically in color

each frame. If d is the displacement between the previous two frames and f is the

frame rate, then
1

T =——.
d-f

(2.6)

This results in one pixel of motion during the camera’s exposure time. The actual
exposure time is clamped between 1 ms and 1/f, where we use f = 7.5 frames per
second. Once the exposure time has been set, we set the gain to:

Tinax
g=— 2.7)

such that the video sequence maintains a constant brightness level. We then add white
Gaussian noise to the current frame with o = g - o9 where oy is chosen such that
o = 25 (out of 255) for the shortest exposure time. We also generate videos with
constant short and long exposure times for comparison.

We run the input sequences through CBM3D and Liu and Freeman [2] using
the known o parameters for each frame. For our algorithm, we use By = 0.1 in
Eq. (2.3) (with pixel intensities in the range [0,1]) and specify the gain values for the
individual frames. The value for By was found empirically to provide full denoising
power without sacrificing texture preservation.

The per frame PSNRs can be seen in Fig. 2.4 for the city and mountain sequences
and in Fig. 2.1 for the station sequence. Our algorithm provides higher PSNR than the
state-of-the-art algorithms for all of the frames containing significant noise levels.
Our results do have lower PSNR for frames that were very clean to begin with.
However, the difference is imperceptible with our results having a mean square error
of only about 1073 of an intensity level in the cleaner frames.

The improvements in our results over CBM3D are primarily made in the regions
with unique texture and structure, as can be seen in Figs. 2.5 and 2.6. In these regions,
the optical flow is reliable, thus temporal denoising is effective. The weights between
the temporal and spatial estimates are shown in Fig.2.7. In smooth regions where
our optical flow is unreliable, our denoising algorithm falls back on CBM3D which
performs well on smooth regions.
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Fig. 2.4 PSNR results for the synthetic video sequences. In frames with significant noise levels,
our algorithm outperforms other state-of-the-art denoising algorithms. Best viewed electronically
in color. a City scene. b Mountain scene
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Fig. 2.5 A close-up of results from the city sequence. The motion-based AE provides a sharp
but noisy image, shown in (b), as opposed to the blurry image captured with a constant exposure
time, shown in (a). Our denoising algorithm outperforms CBM3D [1] (applied to each individual
frame using corresponding frame noise variance) and Liu and Freeman [2] (using the known noise
variance for each individual frame). More detail is preserved in the tree while the building is still
properly smoothed. Best viewed electronically in color

2.4.2 Real Video

To test our system on a real video sequence, we first needed motion-based exposure
control. We implemented the motion estimation portion of the exposure control
algorithm using a standard hierarchical image registration technique. The remainder
of the exposure control algorithm works just as described for the synthetic video.
Since the image registration only tracks global translational motion, we designed
our real experiment to have primarily translational motion. We set up two cameras
facing out the side window of an automobile. We used one camera, a Canon EOS 7D,
to capture a video sequence with a constant exposure time of 1/30s and the other
camera, a Point Grey Grasshopper, to capture a video sequence with motion-based
exposure control. As shown in Fig. 2.8, our algorithm preserves detail better than [2],
because optical flow is hard to be estimated reliably in the presence of large motion,
multiple depth layers, and thin structure. Our method measures flow reliability and
is robust to inaccurate flow input.
More results are available in the supplementary material.
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Fig. 2.6 A close-up of results from the mountain sequence. CBM3D [1] loses some detail in the
yellow flowers, while [2] over-smooths the grass. Our algorithm performs better at denoising both
the flowers and the grass. Best viewed electronically in color. a Constant exposure time. b Noisy
input. ¢ CBM3D. d Liu and Freeman. e Our algorithm. f Ground truth

. <R W
Denoised frame Weight map Denoised frame Weight map

Fig.2.7 Two weight maps from the synthetic sequences. Lighter colors denote pixels that rely more
on temporal denoising than spatial denoising. The darker regions in the weight maps correspond to
smooth regions of the image where optical flow trajectory is less reliable. The horizontal motion in
the video sequences causes the sides of the image to be invisible in neighboring frames, which is
why we see the vertical bands of constant weight. Best viewed electronically in color
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(@) (b) (c)

Fig. 2.8 Results from the driving sequence. Our results are comparable to CBM3D [1], which
preserves the detail of the tree reasonably well. The tree branches and some of the other fine details
were over-smoothed by Liu and Freeman [2] due to inaccurate flow in the presence of large motion,
multiple depth layers, and thin structure. Best viewed electronically in color. a Constant exposure
time. b Noisy input. ¢ CBM3D. d Liu and Freeman. e Our algorithm. f Full denoised frame

2.5 Conclusion

In this chapter, we have proposed a high-quality video denoising algorithm in the
context of motion-based exposure control. Unlike previous denoising works which
either avoid using motion estimation, such as BM3D [1], or assume reliable motion
estimation as input, such as [2], our method uses the “lifespan” of reliable flow
trajectory as a weight to integrate spatial denoising and temporal denoising. This
weighted combination scheme (1) makes our method robust to optical flow failures
over regions with repetitive texture or uniform color, (2) combines the advantages of
both spatial and temporal denoising, and (3) outperform the state-of-the art. There
are several avenues for future research.

First, we would like to investigate better weighting schemes. In the current formu-
lation, when the lifespan of a reliable flow is zero, the algorithm resorts to CBM3D;
in this case, temporal coherence is not enforced. This differs from [2], which uses
smooth optical flow to obtain temporal consistency in the presence of structural noise.
However, as Figs. 2.5, 2.6, and 2.8 show, this temporal consistency is obtained at the
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expense of sacrificing texture details. Therefore our method is suited for higher qual-
ity cameras with little compression artifact, while [2] is more suited for low-quality
cameras with strong structured noise and compression artifacts. Furthermore, the
lack of temporal consistency in our results is not as noticeable since the motion-
based exposure control only produces noisy frames when there is large motion.
Nevertheless, a better weighting scheme would address this limitation.

Second, although motion-based AE reduces motion blur significantly, it does not
completely eliminate motion blur because exposure is set based on the motion of
previous frames; there is always a delay. It is desirable to use the noisy frames and/or
high-quality frames to enhance motion blur in a video captured with motion-based
AE.

Third, it will be useful to investigate a real-time implementation of this approach so
that denoising can be executed before compression. Our approach has the potential
to be implemented in real time as all components are block based; no complex
optimization, such as conjugate gradient, is involved in the optical flow estimation.
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