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Abstract. In this paper we describe a new approach that uses multi-
criteria decision making and the analytic hierarchy process (AHP) for
integrating privacy and safety criteria into planning tasks. We apply the
approach to the journey planning using two criteria: (i) a willingness-to-
share-data (WSD) metric to control data disclosure, and (ii) the number
of unsatisfied safety preferences (USP) metric to mitigate risky journeys.
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1 Introduction

Smart cities aim to increase the quality of life in cities by addressing problems
such as traffic congestion, air pollution, and energy consumption. To help achieve
this, information and communication technologies need to be integrated into the
infrastructure of the city, to improve its functionality and efficiency [8,20,23].
In this paper we consider the provision of transportation services that provide
flexible transportation options to efficiently move people around the city. The
challenge is to be able to provide individual journeys that are efficient in terms
of city-level parameters (e.g. energy consumptions, environmental impact) as
well as to satisfy individual preferences and constraints. The latter are typically
modelled using a utility function defined over the cost and duration of journeys,
and the preferred modes of transportation. However, there can be other consid-
erations, such as, seeking journeys suitable for people with special needs (e.g. the
elderly, disabled), avoiding particular areas of the cities (e.g. with a high crime
rate, crowded or uncrowded, areas with high pollution levels), not wanting to
be tracked (e.g. by video surveillance cameras, MAC address tracking by pub-
lic WiFi hotspots), not wanting to disclose unnecessary private data (e.g. date
of birth to service providers). Such preferences may also be contextual - only
apply in particular situations. The aim is to be able to fuse context information
with user requirements and then to use the resulting knowledge to make smart
(automatic or semi-automatic) decisions for users.

Our overall contribution is to demonstrate that the analytic hierarchy process
(AHP), a multi-criteria decision making approach, is able to integrate privacy
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and safety! criteria into planning tasks. We demonstrate this for the classical
journey planning task taking into account the traditional utility of the jour-
ney plus two additional user-defined criteria, newly introduced in this paper:
(i) a novel willingness-to-share-data (WSD) metric that reflects the users per-
ceived sensitivity of their personal data and (ii) the number of unsatisfied safety
preferences (USP) which allows users to minimize safety risks.

This paper is organised as follows. Section 2 describes related work. Section 3
outlines our approach to decision making for planning tasks incorporating pri-
vacy and safety criteria. Section4 introduces AHP and shows how to apply it
to the journey planning task. The decision making criteria we use (utility, USP,
and WSD) are discussed in Sect. 5. This section also provides detailed examples
of setting up the criteria and evaluating them for the journey planning task.
Section 6 describes a study on how different ratios of the importance of criteria
affect the final ranking of journey alternatives. Possible extentions and modifi-
cations of the USP and WSD criteria are discussed in Sect.7 . Finally, Sect.8
concludes the paper and outlines our future work.

2 Related Work

Privacy and Safety in Smart Cities. Research related to privacy and safety
of individuals in smart city services has focused on what the city infrastructure,
technology and management can do to ensure an individual’s privacy and safety.
For example, utilising video surveillance systems to detect and identify abnormal
activities, which can help to reduce the level of crime and speed up the response
of emergency services [7,21].

In [12] quantitative risk assessment is used to support the design of physi-
cal security systems by optimizing the coverage of protection mechanisms. The
features that influence fear of crime (e.g. low lighting, desolation, lack of oppor-
tunities for surveillance by the general public, etc.), and the ways of reducing the
levels of crime and fear of crime (e.g. criminal justice systems, problem-oriented
policing, environmental criminology, situational crime prevention) are identified
and discussed in [16]. These are important problems for cities to solve. However,
they all address the problem “in the large”, by reducing the overall levels of
crime and harassment (hence, the risk and fear to become a victim), rather then
helping individuals to satisfy their personal safety requirements which may differ
from those of the city in kind and/or in degree.

Ferraz and Ferraz [11] identify nine risks associated with information sharing
including access to information from applications, information tracking, citizen
tracking, and user/citizen data loss. Martinez-Balleste et al. [19] define a citizens’
privacy model based on five dimensions: identity privacy, query privacy, location
privacy, footprint privacy and owner privacy. For each dimension they show
how existing privacy enhancing techniques (e.g. statistical disclosure control,
private information retrieval, privacy-preserving data mining, etc.) can be used

1 'We use term safety to encompass physical security, physiological harm (pollution),
physical harm (attack), psychological fear (crowding), etc.
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to maintain citizens’ privacy. De Cristofaro and Di Pietro [9] focus on query
privacy in urban sensing systems. These papers focus on protecting information
that is already collected from sensors, users and mobile devices, rather than
controlling which data can be sensed, collected, or shared at the first place. The
need for usable privacy policies and user interfaces that maximise user control
based on their perception of privacy risks is highlighted in [6].

Criteria for Journey Planning. There are a growing number of studies ded-
icated to understanding travellers’ attitudes and criteria for evaluating service
quality from a user’s perspective (see e.g. [1,5,10,18]). Eboli and Mazzulla [10]
report on the importance of service quality indicators, such as reliability, punc-
tuality, pollution, and comfort. In [18] 29 different criteria of users perception
of a bus service are grouped into service design, access to service, operation,
information and facilities, ticket price and safety. Lynch and Atkins discovered
high levels of perceived insecurity for walking at night, in parks and subways and
when waiting for public transport services in isolated areas [17] . These studies
highlight the importance of user’s perceptions of city services. However, none of
them show how the considered criteria can be applied in practice, for the evalu-
ation and selection of journeys in a given context. Existing journey planners do
not allow any other criteria apart from the preferred modes of transport (e.g.
bus, metro), maximum walking time or the need for step free access. Further-
more, they only use these criteria to filter out journey alternatives and rank
journeys by travel time only.

The use of utility functions for evaluating and ranking journeys is explored in
[2,15] where different types of utility functions are used based on travel time and
cost. Kim et al. [14] proposes a more complex utility function based on various
latent variables, such as comfort, convenience, environmental preferences, that is
used for building a general choice modelling framework for analysing travellers’
choice behaviour rather than planning of an individual journey.

3 Approach

Our approach accounts for both privacy and safety criteria in the decision mak-
ing process for planning tasks, particularly for journey planning. This approach
allows the user to address two crucial aspects: (i) what personal data is sensi-
tive and the degree of data sensitivity, and (ii) what situations are consider as
safe/unsafe and which level of safety should be achieved.

The approach can be generalised into any user privacy and safety criteria and
any planning task. Our overall approach is shown in Fig. 1. Given a user query
and a set of criteria, a set of alternative plans satisfying the query are generated
by a planner and passed to ranking process that evaluates all generated plans
according to the criteria, for example, the utility of the plan, safety, privacy,
reliability, comfort. After ranking, an ordered list of the plans is returned to the
user alongside values of metrics that represent the quality of the plans and that
can help the user (or user’s agent) to select or reject plans.
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Fig. 1. Multi-criteria planning

As an example, consider a user query “Find the best journey from A to
B” and a set of privacy and safety criteria defined by the user. Based on the
request, the journey planner generates a list of alternative journeys from A to
B that fulfil the user query. We then use AHP to evaluate and rank journey
alternatives according to the following three criteria:

— wutility of a journey based on the time and ticket price (see Sect.5.1)

— number of unsatisfied safety preferences (USP) that allows users to avoid areas
with high-crime rates, crowded buses, providers with a bad safety record (see
Sect. 5.2)

— wvalue of a willingness-to-share-data metric (WSD) that reflects willingness of
a customer to share personal information required by a service provider in
order to provide a requested service (see Sect. 5.3)

Sections 5.2 and 5.3 also provide the details on how users can define privacy
and safety criteria, respectively.

This problem can be tackled using composite objective functions as the
weighted sum of all objectives. However, this approach have two major dis-
advantages. First, solutions are very dependent on the weight-vectors used and
in different situations different weight-vectors have to be used [24]. Secondly the
values of composite objective functions are often difficult to interpret for com-
plex problems with many criteria. We address these issues by considering all
criteria separately and using AHP (see Sect. 4) for ranking alternative solutions.
Using AHP in our approach provides (i) means of deriving the weights of the
criteria from a series of pairwise comparisons that are more understandable by
users - this is importance because the overall ranking is dependent on the relative
importance of criteria w.r.t. to the goal (ii) tolerance to minor inconsistencies in
defining criteria importance, (iii) the ability to deal with both qualitative and
quantitative criteria based on either subjective user opinion or actual measure-
ments, (iv) an elegant method to incorporate diverse criteria, such as privacy,
safety, comfort level and punctuality.
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4 The Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP) was introduced by Thomas Saaty [22]
and is a multi-criteria decision making approach that allows decisions to be made
based on priorities using pairwise comparisons. AHP is widely used in supplier
selection [13] and logistics [4]. AHP works as follows: Assume there are n eval-
uation criteria, and m alternative solutions that have to be ranked according to
these criteria. First, weights of criteria are calculated based on pairwise compar-
isons of the importance of criteria; higher weights correspond to more important
criteria. Then, all alternatives are compared pairwise with respect to each crite-
rion separately. Finally the results of both series of comparisons are synthesised
to give a final ranking of alternatives.

4.1 AHP Hierarchy

The first step in AHP involves decomposition of the problem into a hierarchy
of criteria and alternatives. In the AHP hierarchy for planning a journey (see
Fig. 2), the goal is to choose the best journey. We consider the following criteria
for decision making:

— utility of a journey for the user (to be maximized);
— number of unsatisfied safety preferences (USP) (to be minimized);
— value of the willingness-to-share-data (WSD) metric (to be minimized).

Goal Find the best journey
Criteria Utility UsP WSsD
Alternatives Journey 1 Journey 2 Journey 3 | .. | Journeym

Fig. 2. AHP hierarchy for journey selection.

4.2 Relative Importance of Criteria

To capture the relative importance of criteria, a matrix C of pairwise compar-
isons of criteria is created. The matrix C = (¢, ) is of dimension n x n, where n
is a number of criteria and each element c;j, is the relative importance of the jth
criterion to the kth criterion with respect to the goal. The elements c;;, satisfy
the constraint

Cjk X Ckj = 1, (1)
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Table 1. Scale of relative importance of criteria

Level of relative importance | Definition

1 Equal importance

3 Moderate importance

5 Essential or strong importance

7 Very strong importance

9 Extreme importance (the highest possible)
2,4,6,8 Intermediate values

1.1, 1.2,1.3, Very close importance

where c¢j; > 1 indicates that the jth criterion is more important than the kth
criterion. Consequently, in the case where the jth criterion is less important than
kth criterion, we have cj, < 1, and if the two criteria are indifferent we have
¢ji = 1; which also implies that ¢j; = 1. Saaty [22] suggests a numerical scale
between 1 and 9 to express the importance of one criterion over another (see
Table 1). Pairwise comparisons can be done by the user when defining criteria
for journey planning.

A useful advantage of AHP is that it tolerates minor inconsistencies in the
comparisons. For example, assume we have three criteria where criterion #1 is
slightly more important than criterion #2, and criterion #2 is slightly more
important than criterion #3. If the user asserts that criterion #1 is much more
important than criterion #3, then these comparisons are consistent. A minor
inconsistency can be induced if the user asserts that criterion #1 is slightly
more important then criterion #3; AHP would tolerate this inconsistency. An
unacceptable inconsistency would be one where the user asserts that criteria #1
and #3 are indifferent.

Once the criterion importance matrix C has been established, it can be used
to derive the criteria weight vector w using the equation

_ Z?:l Cjt

- 2)

W
— n . . . .
where ¢j; = ¢j;/ > )_, ¢ri is the normalized relative importance.

4.3 Ranking of Alternative Plans

At this step we have to score all generated alternative plans with respect to each
criteria. To derive these scores we calculate a matrix of pairwise comparisons of
alternative plans B/ = (b%,), where b7, is the evaluation of the ith alternative
plan compared to the hth alternative plan with respect to the jth criterion.

Let ] and z;, be the values of the jth criterion for alternative plans 7 and h
respectively.

If the jth criterion has to be maximized, then for all alternative plans ¢ and
h with @] > 27, the element b/, can be computed as
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where x7 and =7 . are the maximum and minimum values of the jth criterion.
max mwn

Similarly, if the jth criterion has to be minimized, then for all alternative
plans ¢ and h with 2] < z7, the element b}, can be computed as
J J
V. Th — X5
b, =8——t—t— 41 (4)
Tmaz — Lipin
Similar to the criterion importance matrix C, the elements of alternative com-
parison matrix B’ have to satisfy the constraint b, x bj. = 1.

Having obtained B’, we can now calculate the score vectors y’ for alternative
plans with respect to each criterion j € [1,7]. This calculation is done using Eq. 2
but replacing the terms ¢;; with b7, .

The score vectors are then used to create a score matrix Y = [y!,y?,...,y"],

from which a plan ranking vector v = (v;),¢ € [1,n], is calculated by
v=Y -w (5)

The greater the value v;, the more preferable the ith alternative plan is.

5 Criteria

We demonstrate application of our approach for the classic journey planning
task. In this section we describe three criteria we use to evaluate journey alter-
natives generated by the journey planner: utility of a journey alternative, the
USP and WSD metrics. Detailed examples of setting up the privacy and safety
preferences and evaluating the USP and WSD criteria are also included.

5.1 Utility

Journey planners typically rank journeys based on either journey time, walking
distance or number of changes. For example, in [2] the authors use a utility
function for journey ranking and selection: for each journey i generated by the
journey planner, the utility function value is calculated based on the total travel
time and ticket price:
o(t—T1)/60

ui(t, Ty, ¢i) = [ T.1/607 /100 (6)
where u;(t,T;,c¢;) € [0,1] is the utility, ¢ the desired travel time as defined by
the user, T; the travel time of the ith journey, and ¢; the total cost of the ith
journey. The objective is to find a journey with the highest utility. In this formula
if t —T; > 0 (i.e. the traveler arrives in time), then the utility is constant with
respect to T;. If t —T; < O (i.e. the traveler arrives late), then the travelers utility
decreases as T; increases.
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In this paper we introduce a penalty for longer journeys even if the traveler
is on time, hence our revised utility is:

1

wilt, Ty ) = —me—ros )

Of course, one could devise a more complex utility function. However, we
kept the function simple, because AHP uses pairwise comparisons of the journey
alternatives with respect to this criteria rather than a very accurate value of the
utility function for each alternative plan.

5.2 Unsatisfied Safety Preferences (USP)

Consider the following. Alice is traveling late at night. Suppose that there are
two alternative journeys with similar ticket price and travel time, but the first
alternative includes walking through an undesirable area. If Alice is aware of
this area and concerned about her safety, then she is likely to choose the second
option. However, if Alice is not familiar with this area, then she might choose
the undesirable area but would have preferred the other alternative.

To address this kind of requirement we propose to include personal safety
preferences to other requirements the user can set when starting or changing a
journey. For example:

(i) avoiding areas with high-crime rates, or are sparsely-lit or sparsely-populated,

(ii) avoiding using trains or buses carrying a low number of passengers for fear
of attack,

(iii) avoiding crowded areas or crowded trains or buses,

(iv) avoiding service providers with poor safety records or a bad reputation.

All solutions generated by the journey planner have to be evaluated with
respect to all safety preferences defined by the user. The number of unsatisfied
safety preferences (USP) is then used as an criterion in the ranking of alternative
plans and choice of a journey.

Example 1

Alice arranges a dinner with a friend for 8pm next to Paddington train station.
Because she is travelling alone, she wants to avoid crowded areas and crowded
transportation as well as sparsely populated areas and transportation. She sends
a request to the Journey Planning Service with the following data:

— Starting point: : 180 Queen’s Gate, London SW7 2RH, UK

— Destination point: Paddington Station, Praed St, London W2, UK

— Arrival time: 20:00

— Safety preferences: (i) Avoid sparsely populated areas & transport (i) Avoid
crowded areas & transport
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Table 2. List of journey alternatives

Alternative 1 7:28 PM-7:51 PM | (1) walk — 5min — Hixley Bldg to Royal Albert Hall
23 min, cost £3.80 (2)bus 9 — 5min — Royal Albert Hall to High Street Kensington
(3) walk — 3min — from High Street Kensington to High Street
Kensington Underground station
(4) the Underground, Circle line — 6 min — High Street Kensington
Underground station to Paddington
Alternative 2 7:28 PM-7:57 PM | (1) walk — 2min — Huxley Bld to Imperial College Elvaston Pl
29 min, cost:£1.50 (2) bus 70 — 17 min — Imperial College Elvaston Pl to Queensway
Westbourne Grove

(3) walk — 10 min — Queensway Westbourne Grove to Paddington
Station

Alternative 3 27 min, cost: £0 (1) walk — 27 min — from Huxley Bld to Paddington Station via

Queens Gate

Alternative 4 30 min, cost: £0 (1) walk — 30 min — from Huxley Bld to Paddington Station via
Queens Gate
Alternative 5 27 min, cost: £0 (1) walk — 27 min — from Huxley Bld to Paddington Station via
Queens Gate

Alternative 6 13 min, cost: £0 (1) cycle — 13 min — from Huxley Bld to Paddington Station via Broad

Walk

Alternative 7 13 min, cost: £0 (1) cycle — 13 min — from Huxley Bld to Paddington Station via W
Carriage

Alternative 8 9 min, cost: £11 (1) taxi — from Huxley Bld to Paddington Station

Alternative 9 9 min, cost: £7-9 (1) Uber — from Huxley Bld to Paddington Station

Fig. 3. Example of journey alternatives for the journey planning problem in the urban
mobility scenario



Integrating Privacy and Safety Criteria into Planning Tasks 29

We simulated the result of this request using Google Maps, taxi services and
the Uber application. The generated list of journey alternatives is presented in
Table 2.

Alternatives 1, 2, 7, 8 and 9 satisfy both safety preferences. Alternatives 3—6
do not satisfy “Avoiding sparsely populated areas/transport” as all of them are
passing through a big park area (Kensington Gardens) as shown in Fig. 3. This
area is sparsely populated at the time the request was made because it gets dark
early at that time of the year. Hence, alternatives 1, 2, 7, 8 and 9 are preferable
to alternatives 3—6 if satisfaction of safety preferences is important for Alice.

5.3 Willingness-to-Share-Data (WSD)

The willingness-to-share-data (WSD) metric is used to control the disclosure of
personal data to others, e.g. to service providers. We define the sensitivity of per-
sonal data by how much a person values the data in case of a possible harm due
to misuse, loss or disclosure by a recipient of the data, such as service provider.
We allow different data attributes to be of different sensitivity (for example,
a person can define an email address as less sensitive than a phone number or a
postal address). Moreover, sensitivity may be dependent on a recipient: the user
may trust some recipient to handle their data more than others, and thus may
be more willing to provide it.

We define the sensitivity of a certain data attribute as a function s : (a,p) —
[0,1], where a is a data attribute and p is a recipient (service provider). Higher
values of sensitivity correspond to data that the user prefers not to share.

Given the sensitivity levels for all personal data attributes defined by the user,
we define a willingness-to-share-data (WSD) metric that indicates the sensitivity
of the whole set of attributes requested by a service provider in order to complete
a transaction when ordering a service. We propose the following metric:

m

Zs a;,p) X rj (8)

Jj=1

d.(a,r,p) i
m
where a = (aq, ..., a, ) is a vector of data attributes (e.g. name, address, etc.) that
can be possibly requested by a service provider p in order to provide a service,
and s(aj,p) € [0, 1] is a user-specified level of sensitivity of sharing information
related to the jth data attribute with a provider p. The vector r = (71, ...,7m)
represents the data request mask, and consists of values r; = 1 if the jth data
attribute is requested by a provider p, and r; = 0 otherwise.

Users can define the sensitivity of their personal data by completing a form
on a mobile application. For this the user has to select a degree of sensitivity
ranging from “not sensitive” to “extremely sensitive” (see Table3 for possible
degrees of sensitivity) that are then translated to a value in the range [0,1]. For
each information attribute, the user can assign a configuration of providers using
one of the following options:
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Table 3. Scale of data sensitivity

Sensitivity | Definition

0 not sensitive

0.25 slightly sensitive
0.5 sensitive

0.75 very sensitive

1 extremely sensitive

1. Apply a specified sensitivity level to all service providers.
2. Define different levels of sensitivity for two of the following categories of
service providers based on a certain level of trust:
— level of trust greater or equal to x;
— level of trust lower than z;
Levels of trust z are specified in the range [0,1], where higher values cor-
respond to more trustworthy service providers. The trustworthiness of each
service provider is calculated based on feedback of all registered users. For
the first category of service providers the level of sensitivity must be higher
than for the second category.
3. Define a sensitivity level for a specified list of providers (the user has to create
the list herself), and set a different sensitivity level for other service providers
that do not belong to this list.

Note that the WSD metric can be used to express a user’s preferences in
the case where data sharing is negotiable. If the user does not want to share
any data attributes, hard constraints need to be introduced. If a particular jour-
ney alternative contains any violation of these constraints, then it is discarded
immediately.

Example 2

In this example we calculate the values of the WSD metric s for the scenario
described in Example 1. Assume the data attributes a = (aq, ..., a,,) ={name,
date of birth, email, phone number, postal code, address, GPS location data, pay-
ment details} to be the personal data attributes that could possibly be requested.
The following service providers p are available to fulfil Alice’s request: the bus
service, the Underground, taxis, and Uber. Suppose, regardless of the service
provider p, Alice defines her date of birth, address and phone number as sensi-
tive data, her phone number, GPS location and payment details as very sensitive,
and all other attributes she defines as not sensitive. For Table3 this will yield
the following sensitivity levels:

s(name, p) = s(email, p) = s(postal code,p) = 0,
s(date of birth,p) = s(address,p) = 0.5
s(phone number,p) = s(GPS,p) = s(payment details,p) = 0.75
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Some services, such as the bus service and the Underground, do not require
any personal data about passengers. For these, we have a data request mask
of r = (0,0,0,0,0,0,0,0) and a WSD metric of d.(a,r,Underground) =
dc(a,r,bus) = 0.

A taxi service typically requires the phone number to be provided, or rf®** =
(0,0,0,1,0,0,0,0). Therefore, d.(a, r'* taxi) = (0-0+0.5-0+0-0+0.75-1+
0-0+05-0+0.5-0+0.5-0)/8 ~ 0.094.

Uber requires name, email, the phone number, postal code, payment details
and GPS location data to register to their service. Hence, for this service we
have rV%" = {1,0,1,1,1,0,0,0} and the WSD metric of d.(a,rV%" Uber) =
(0-1405-0+0-1+0.75-1+0-14+0-0+0.5-04+0.75-140.75-1) /8 = 0.281.

Example 3

Bob lives in a city with smart transportation system that allows people to use the
following transportation modes: (i) public transport (public buses, trams, taxis),
(ii) FlexiBuses whose routes and stops are determined by passenger require-
ments, and (iii) car pooling with people sharing a car to save fuel costs and/or
gain access to car pooling lanes [3].

Assume the data attributes are the same as for the previous example: a =
(a1, ..., am) ={name, date of birth, email, phone number, postal code, address,
GPS location data, payment details}

Bob defines the sensitivity of his data as follows:

— name — not sensitive regardless of the provider: s(name, p) = 0;

— date of birth — sensitive regardless of the provider: s(date of birth,p) = 0.5;

— email — slightly sensitive regardless of the provider: s(email, p) = 0.25;

— phone number — very sensitive for providers a level of trust greater than or
equal to 0.8 and extremely sensitive for providers with a level of trust lower
than 0.8:

0.75, if trust(p) > 0.8

1, if trust(p) < 0.8

— postal code, address and payment details — extremely sensitive regardless of
the provider: s(postal code, p) =s(address,p)=s(payment details,p) = 1;

— GPS location data — slightly sensitive for the taxi and FlexiBus providers and
extremely sensitive for all other providers:

s(GPs,p) = 2> ifp € {tawi, FlewiBus}
e L, otherwise

s(phone number, p) = {

For this example assume that there are only two providers, FlexiBus (with
trust level 0.9) and car pooling (with trust level 0.75) able to fulfill Bob’s
request. FlexiBus requires name, email, phone number, GPS data, and car pool-
ing provider requires name, phone number and GPS data. The WSD metric
values for these two providers are as follows:

For FlexiBus : d.(a, (1,0,1,1,0,0,1,0), FlexiBus) =0-1+0.5-0+0.25-1+
0.75-14+1-04+1-0+0.25-1+1-0=(0.25+0.75+0.25)/8 = 0.156
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For car pooling: d.(a,(1,0,0,1,0,0,1,0),car pooling) = 0 -1 + 0.5
0+025-04+1-1+1-0+1-041-14+1-0=(1+4+1)/8=0.25

We can see that although the FlexiBus service is more demanding in terms
of the personal data wanted, Bob is more willing to provide his data to this
company rather than to the car pooling provider that requires less data but is
less trustworthy.

6 The Influence of Criteria Importance Ratios

Based on the scenario described in Examples 1 and 2 we conducted a small study
on how different ratios in criteria importance affect the final ranking of journey
alternatives. We considered the following cases:

Case 0: Only the utility value is used for decision making. For AHP this means
that a single criterion, or n = 1, is used for ranking journey alternatives.

Case 1: Utility is very much more important than USP and WSD, which have
equal importance.

Case 2: All criteria are of equal importance.

Case 3: All criteria are of equal importance.

Case 4: Utility is slightly less important than USP but equally important to
WSD. USP is equally important to WSD (this is a case of moderate
inconsistency in criteria ranking).

Case 5: Utility is much less important than USP and WSD, while USP and
WSD are of equal importance.

Case 6: Utility is very much less important than USP and WSD, while USP
and WSD are of equal importance.

For all cases, the utility values of all alternatives are calculated based on Eq. 7.
For alternatives 5 to 8, the USP value is equal to 1, while it is equal to 0 for the
other alternatives. The values of the WSD metric were calculated as explained
in Example 2. The final vectors of global scores of all journey alternatives and
considered cases are presented in Table 4.

We can see from the results that both cycling alternatives (alternatives
6 and 7) have the best (highest) scores when ranking is done based on the
utility values only (case 0). This is because they are fast journeys and do not
involve any cost. However, when the importance of the USP metric rises (see
cases 1 to 6), then the ranking of alternative 6 (also 3 to 5) drops down as
it has one unsatisfied preference (which is avoiding an empty area/transport).
Similarly, while alternatives 8 and 9 have the same (low) score for case 0 (they
are the most expensive alternatives), alternative 8 outperforms alternative 9 as
the WSD metric becomes more important. This pattern is due to alternative 8
(taxi) requesting less data from the user to provide a service.

As expected, the scores of alternatives 1 and 2 grow as the importance of
utility is decreasing compared to two other criteria. This is due to the fact that
these alternatives satisty the safety preferences specified by the user and do not
require any personal information. Nevertheless, these alternatives have lower
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Table 4. Global scores of alternatives for the journey planning problem with changing
criteria importance

Global scores of alternatives

1 2 3 4 5 6 7 8 9
case0 | 0.021|0.033 | 0.123 | 0.108 | 0.123 | 0.248 | 0.248 | 0.019 | 0.019
casel | 0.039|0.049 | 0.112 | 0.099 | 0.112| 0.214 | 0.225 | 0.031 | 0.029
case2 | 0.060 | 0.068 | 0.098 | 0.089 | 0.098 | 0.173 | 0.197 | 0.045 | 0.041
case3 | 0.087 | 0.091 | 0.081 | 0.076 | 0.081|0.123 | 0.163 | 0.062 | 0.055
case4 | 0.100 | 0.102 | 0.069 | 0.065 | 0.069 | 0.097 | 0.151 | 0.076 | 0.069
caseb | 0.111]0.112 | 0.066 | 0.065 | 0.066 | 0.078 | 0.132 | 0.078 | 0.068
case6 | 0.115/0.116 | 0.064 | 0.063 | 0.064 | 0.070 | 0.127 | 0.080 | 0.070

scores than alternative 7 because utility, yet very low in importance, is still used
in the calculation of the final scores.

Interesting results are the final scores of alternatives 4 and 9 for cases 4 to 6.
Alternative 9 has a higher final score than alternative 4, although alternative 9
has the worst scores with respect to both the first (utility) and the third (value
of the WSD metric) criteria, while alternative 4 is the worst with respect to the
second criterion (USP) only. Moreover, the second and the third criteria have the
same importance, and feature values of bg’ 4= big = 9 in the pairwise comparison
matrices. Nevertheless, the reason that alternative 9 has a higher final score than
alternative 4 is due to the way the score vectors of alternatives are calculated
(the sum of the scores of all alternatives for each criterion is equal 1), as the
difference in scores with respect to the second criteria is greater than first and
the third combined.

7 Discussion

Our approach advocates the use of privacy and safety criteria into decision mak-
ing in planning alongside the common utility of the solutions. Of course, the
criteria used for ranking of alternatives can be modified and extended.

The preferences used for calculating the USP metric are related to personal
safety. However, there can be various other reasons why a particular user might
want to avoid (or not avoid) certain areas or transport. For example, a tourist
may want to pass as many places of interest as possible. Similar preferences could
also be used for other applications where safety preferences are beneficial, such as
hotel booking or choosing a neighbourhood to live in. Moreover, the preferences
can be of different importance (for example, for a particular commuter avoiding
unsafe areas is more important than avoiding crowded areas). In these cases the
weighted sum can be used instead of number of unsatisfied preferences. By using
AHP for ranking of alternative solutions there is no need for normalization of
the criteria, because all alternatives are compared to each other with respect to
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each criteria separately (see Egs.3 and 4). Learning user preferences and their
relative importance based on the decisions (the final selections) made by a user
can further improve the quality of ranking alternatives where there are hidden
or context-dependant preferences. We can also organise criteria into a hierarchy
to reduce the number of pairwise comparisons.

One can also think about an alternative to the WSD metric to control the
information shared with service providers. WSD (see Eq. 8) reflects an “average
harm” of sharing all requested by a provider data and might not be effective in
cases when providers request not many, but very sensitive data attributes. Using
max s(a;,p) X r;j in such situations would help to protect the most sensitive data

J

attributes by giving in the less sensitive attributes.

8 Conclusion and Future Work

In this paper we proposed an approach for directly incorporating the privacy
and safety criteria into decision making in planning. The approach was illus-
trated using the classic journey planning task. Our approach allows a user to
define their own criteria and their relative importance. AHP was used to rank
solutions incorporating two criteria, the number of unsatisfied safety preferences
(USP) and a willingness-to-share-data (WSD) metric, plus a utility. The com-
bination of these criteria helps users to find the safer journeys and to control
the information they share with providers as well as achieve the required utility.
Applying AHP allows to produce not only the ranked list of alternative plans,
but also scores for those alternative plans, which can help users to understand
why some alternatives are preferable to others, and in some cases select the
alternative not from the top of the list.

To conduct some user trials we plan to develop a mobile phone application
that combines the approach and criteria we described in this paper with existing
journey planning services (e.g. The Google Directions API). For this integration
we need to define parameters and contextual data associated with journey alter-
natives that can be used to calculate USP metric, in particular: assign safety
levels to areas and routes, define context-dependent sparseness/crowdedness of
areas and routes.
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