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mahapatd@vision.ee.ethz.ch

Abstract. We propose an active learning (AL) approach for prostate
segmentation from magnetic resonance (MR) images. Our label query
strategy is inspired from the principles of visual saliency that has similar
considerations for choosing the most salient region. These similarities
are encoded in a graph using classification maps and low level features.
Random walks identify the most informative node which is equivalent
to the label query sample in AL. Experimental results on the MICCAI
2012 Prostate segmentation challenge show the superior performance of
our approach to conventional methods using fully supervised learning.

1 Introduction

According to the American Cancer society, prostate cancer is the second lead-
ing cause of cancer death in American men, and early diagnosis can poten-
tially increase the survival rate amongst patients [1]. Accurate quantification
of prostate volume (PV), and location relative to adjacent organs is also an
essential part of image guided radiation therapy (IGRT). Magnetic resonance
imaging’s (MRI) popularity in treatment planning has increased due to high
spatial resolution, soft-tissue contrast and absence of ionising radiations.

Manual segmentation of the prostate in MRI is time consuming, and prone
to inter- and intra-expert variability. This necessitates the design of (semi-)
automated segmentation algorithms that can overcome challenges like: 1) vari-
ability of prostate size and shape between subjects; 2) variable image appear-
ance and intensity ranges from different MR scanning protocols; and 3) lack of
clear prostate boundaries due to similar intensity profiles of surrounding tissues.
Hence, machine learning (ML) methods have focused on learning discriminative
image features from manual annotations. However, manual annotations are very
expensive, time consuming and requires personnel with high expertise.

The growing importance of prostate MRI segmentation led to the prostate
segmentation challenge in MICCAI 2012. Different approaches in the challenge
include marginal space learning [2], multi-atlas segmentation [7] and ML [8].
Success of ML methods depends on the discriminative power of hand crafted
features. To overcome this shortcoming Liao et al. in [11] propose a deep learning
framework using independent subspace analysis (ISA) to automatically learn the
most discriminative features. A detailed overview of the different methods and
their performance is found in [12].
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In this paper we propose an active learning based segmentation method that
requires significantly fewer labeled samples, yet achieves higher segmentation
accuracy than conventional ML methods. The important contribution of this
paper is a visual saliency based approach to select the most informative sam-
ples for active learning (AL). We show that many of the principles of salient
image region detection are applicable to query selection in active learning. Hence
selecting the most informative region in MRI becomes a problem of salient region
detection by defining an appropriate measure of a region’s importance.

2 Image Features

We calculate the mean, variance, skewness and kurtosis of intensity, texture
and mean 3D curvature values from a 31 × 31 patch around every voxel. The
texture maps are calculated for each slice of the supervoxel using 2D Gabor
filters oriented at 0◦, 45◦, 90◦, 135◦ at the original scale. Thus each voxel gives a
24 dimensional feature vector.

3 Semi Supervised Learning With Random Forests

Random forests (RF) [3] have become increasingly popular in classification tasks
because of their computational efficiency for large training data and ability to
handle multiclass classification. Semi supervised learning techniques train clas-
sifiers with a few labeled samples [4] and many unlabeled samples. This is a
typical scenario in many medical applications where it is difficult to find qual-
ified experts to label the large number of medical images. A ‘single shot’ RF
method for SSL without the need for iterative retraining was introduced in [6].
We use this method for SSL as it is shown to outperform other approaches.

For labeled samples the information gain over data splits at each node is
maximised and encourages separation of the labeled data [3,6]. However for SSL
the objective function encourages separation of the labeled training data and
simultaneously separates different high density regions. It is achieved via the
following mixed information gain:

Ij = IU
j + βIS

j (1)

where IS
j = H(Sj)−

∑
i∈{L,R}

|Si
j |

|Sj |H(Si
j) is the information gain from the labeled

data; H is the entropy of training points, SL
j and SR

j the subsets going to the
left and right children of node j, and β is a user defined weight. IU

j depends on
both labeled and unlabeled data, and is defined using differential entropies over
continuous parameters as

IU
j = log |Λ(Sj)| −

∑

i∈{L,R}

|Si
j |

|Sj | log |Λ(Sj)| (2)

Λ is the covariance matrix of the assumed multivariate distributions at each
node. Further details are given in [6].
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4 SSL-AL Based Segmentation From MR Images

Initial Preprocessing. The given images are first bias-corrected using the
method in [5] and the intensities are then to [0, 1]. Learning starts with ran-
domly chosen labeled samples (voxels) of the first training dataset (set L). The
features of L and unlabeled voxels (set U from the remaining training datasets)
are used as inputs to an RF based SSL classifier (denoted as RF − SSL) which
predicts the class labels and probabilities of the unlabeled patches. The most
informative sample is added to set L and the classifier is updated using online
learning [15]. In online learning there is no need for retraining of classifiers. The
RF classifier is updated based on the newly labeled samples only. The query
strategy of AL is discussed in Section 4.1.

4.1 AL Query Strategy

Conventional query strategies like density weighting [16] use classification uncer-
tainty and weigh samples according to their similarity with other neighbors.
However conventional approaches do not exploit the contextual information over
neighborhoods. Our query strategy selects a sample: 1) with high classification
uncertainty to obtain novel information from each labeling instance; 2) situ-
ated in a dense region such that it is representative of many other samples;
and 3) minimal overlap of influence with previously labeled samples to min-
imize redundancy in labeling effort. Salient image regions have the following
characteristics: 1) feature values are significantly different from surroundings
(high local contrast); and 2) contrast magnitude is higher than other regions.
High contrast regions have maximum information and hence higher entropy [10].
High classification uncertainty also corresponds to high entropy, indicating a
correspondence between information content of salient regions and classification
uncertainty. Salient regions are located on regular objects (or dense regions of
the sample space) and different salient regions are far away from each other, i.e.
their influence areas have minimum overlap. Thus we see that the properties of
salient regions have similarities with the desired characteristics of query samples.
Hence saliency models can be adapted for active learning tasks using appropriate
similarity metrics.

Image patches are represented as nodes V of a graph G, and connected by
set of edges E. Based on the similarity between any two nodes i and j a weight
wij is given by

wij = exp

(
− ‖Fi − Fj‖2

σ2

)

, (3)

where Fi is the feature vector of node i or the informativeness Inf(i); σ = 1,
and ‖.‖ denotes L2 norm. Informativeness of node i (or voxel x) is given by

Inf(i) = {φ(i), γ, α} . (4)

φ is the classification uncertainty of i given by the entropy as
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φ(i) = −
∑

ŷ

P ((ŷ|i) log P ((ŷ|i) , (5)

where ŷ indicates all possible labels (in this case two) for i, and P ((ŷ|i) is cal-
culated by RF-SSL. High entropy indicates greater uncertainty. α incorporates
contextual information, and a is the collection of intensity, texture and curvature
differences defined as

γ = [Intij Texij Curvij ]. (6)

where Intij =
∑

j∈N e−|Inti−Intj |/σ2
is the sum of exponential of intensity dif-

ferences between node i and all unlabeled nodes j in N (a 48×48 neighborhood
of x), and σ = 1. For similar nodes, Intij takes higher values. Texij and Curvij

are the corresponding texture (from the oriented map at 90◦) and curvature
differences. Note that we do not average the feature differences over the neigh-
borhood. In a high density region γ is calculated by summing over more voxels
than in a sparsely populated region. Since γ is not divided by a normalization
constant its value is higher in a high density region.

Context Information for Informativeness: An unlabeled sample close to a
labeled sample is assigned lower importance because it has a higher probability
of having the same label than a sample far away. If the radiologist were to
annotate samples close to an already labeled sample it does not generally lead
to significant information gain. Thus α incorporates context information and is
equal to i’s distance from the nearest labeled sample

α = min
(∥
∥i − iL

∥
∥
)
. (7)

where iL denotes all the labeled samples (or nodes), and ‖.‖ denotes the
Euclidean distance based on voxel co-ordinates.

4.2 Random Walks and Most Salient Node

The weights wij (Eqn.3) are used to define the affinity matrix A as

Aij =

{
wij , i �= j

0, i = j.
(8)

The most salient node is identified by the random walks algorithm on the graph.
Let us denote as Ei(Tj) the expected number of steps to reach state j if a Markov
chain is started in state i at time t = 0. It is also known as the hitting time, and
can be derived from the fundamental matrix (Z) of an ergodic Markov chain and
its equilibrium probability distribution π. The global saliency of node i is given
by the sum of hitting times from all other nodes to node i on a complete graph,

Hi =
∑

j

Ej(Ti), (9)

and the most salient node is given by the maximum Hi as Ns = arg maxi Hi.
For details the reader is referred to [9]. Labels are queried for Ns.
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Stopping Criteria: Irrespective of the number of labeled samples, there will
always be one unlabeled sample with maximum informativeness. In order to
ensure that the label query does not continue indefinitely, we determine the
probability values of the two classes for the most informative sample. If the
probability value for any one class is less than 0.45 (or greater than 0.55 for
the other class) we do not query the label for that sample. If we encounter
such samples for 5 consecutive iterations then we stop the label query because
this indicates that the classifier has obtained sufficient samples to have high
confidence on its classification output.

4.3 Graph Cut Segmentation

A spatially smooth solution is obtained by formulating the segmentation as a
labeling problem within a second order Markov random field (MRF) cost func-
tion. The labels are obtained for each voxel and not the individual patches by
optimizing the cost function using graph cuts. A second order MRF energy func-
tion is given by

E(L) =
∑

s∈P

D(Ls) + λ
∑

(s,t)∈N

V (Ls, Lt), (10)

where P denotes the set of pixels and N is the set of neighboring pixels for pixel
s. λ is a weight that determines the relative contribution of penalty cost (D)
and smoothness cost (V ). D(Ls) is given by

D(Ls) = − log (Pr(Ls) + ε) , (11)

where Pr is the likelihood (from probability maps) previously obtained using
RF classifiers and ε = 0.00001 is a very small value to ensure that the cost is
a real number. The penalty cost encourages high label probability. V ensures a
spatially smooth solution by penalizing discontinuities and is defined as

V (Ls, Lt) = e− (Is−It)
2

2σ2 · 1
‖s − t‖ , (12)

I denotes the intensity. Smoothness cost is determined over a 8 neighborhood
system.

5 Experiments and Results

We apply our method on the MICCAI 2012 PROMISE prostate segmenta-
tion challenge (http://promise12.grand-challenge.org/). The training set con-
sisting of 50 patients is used to train our classifier, which is then applied on
the 30 test datasets of transversal T2-weighted MR images. We submit our
results to the online evaluation system and get feedback on our performance
as well as a ranking. The datasets are acquired under different clinical settings.
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They are multi-center and multi-vendor, and have different acquisition protocols
(e.g. differences in slice thickness, with/without endorectal coil). The volume
dimensions and voxel resolutions are different for different images. Each slice of
the different volumes is of size 512 × 512 (voxel resolution of 0.4 × 0.4 × 3.3) or
320 × 320 (resolution 0.6 × 0.6 × 3.6). Our whole pipeline was implemented in
MATLAB on a 2.66 GHz quad core CPU running Windows 7. The quality of
our segmentation results was evaluated by the organizers using: 1) Dice Metric
(DM) and 2) 95% Hausdorff Distance (HD). λ (Eqn. 10) was set to 0.02. Our
RF-SSL classifier had 50 trees with tree depth of 20. Due to space constraints
we provide results only on the test set which is used to rank each algorithm.

5.1 Results on MICCAI PROMISE12 Online Challenge Dataset

We train our SSL − AL classifier on all 50 volumes of the training data and sub-
mit our results for 30 challenge datasets for which the manual segmentations are
not available to the participants. The ranking methodology is explained in [12].
Our proposed SSL − AL method is ranked third among all the methods while a
competing fully supervised learning (FSL) based method [13] is ranked 14.

SSL − AL’s quantitative values are DM = 86.7 ± 4.9, 95%HD = 5.9 ± 1.9
mm, and boundary distance = 2.25 ± 0.77 mm. The corresponding values for
FSL are DM = 80.6 ± 6.5, 95%HD = 7.6 ± 1.7 mm, and boundary distance
= 3.38 ± 0.84 mm. A plot of DM and HD values for our method on individual
datasets is shown in Fig. 1.

[17]’s method is ranked first followed by [2] with the following scores: 1) [17] -
DM = 88.0±4.0, 95%HD = 5.94±2.14 mm, and boundary distance = 2.1±0.68
mm; and 2) [2] - DM = 87.0 ± 4.0, 95%HD = 5.58 ± 1.49 mm, and boundary
distance = 2.13 ± 0.48 mm. For DM , SSL − AL ranked fourth with [14] having
DM = 87.0 ± 4.0, ranked third. For all other metrics our method was ranked
third. Importantly, our method’s DM and HD values are very close to the two
methods ranked higher than us. The significant improvement in performance
of SSL − AL over FSL clearly indicates the advantage of using SSL and AL
in training a classifier. The difference in their performance is also significant
(p < 0.0001). Fig. 2 shows segmentation results on Patient 15 from the training
data using different methods. Since we do not have access to the manual segmen-
tations of the online challenge dataset, we are unable to show the comparative
performance of the difference methods.

5.2 Savings in Labeling Effort and Time

By querying labels of most informative patches we reduce the redundancy of
labels such that new labels provide truly novel information to the classifier. In
5−fold cross validation FSL uses approximately 80% of manual labels for train-
ing while SSL−AL requires 42% of manual annotations and still achieves higher
segmentation accuracy. Although FSL has access to more training samples it
performs poorly. More training samples does not necessarily translate to better
performance since they could introduce noise, particularly if the annotations are
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Fig. 1. Individual values for SSL − AL on 30 patients of the MICCAI 2012 online
challenge dataset: (a) DM; (b) 95% HD

(a) (b) (c) (d)

Fig. 2. Segmentation results for Patient 15. The manual annotations are shown in red
with the algorithm segmentations in green: (a) SSL − AL (b) FSL (c) SSL − ALnα

and (d) FSL−AL.

not accurate enough. In such a scenario it is beneficial to ask experts to label
only the most informative samples. This leads to savings in time, effort and also
improves algorithm’s performance.

Online learning leads to significant time savings. Updating the classifiers with
every new label requires about 0.03−0.1 seconds. On the other hand, lots of time
is required to retrain the entire classifier using the entire training set.The total
training time for the 50 training patients is 38 minutes using FSL (as reported
in [13]) and 20 minutes using SSL−AL. The lower training time for SSL−AL
is due to fewer training samples, leading to time savings of (1 − 20/38 =)47%.
However, FSL − AL takes a longer training time (32 minutes) than SSL − AL
since it does not make use of unlabeled samples. However it is still less than
FSL since many of the manually labeled samples are redundant.

6 Discussion and Conclusion

We have developed a novel query strategy for active learning based prostate seg-
mentation. The problem of query sample selection is similar to detecting visually
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salient regions on a graph. Our method combines semi supervised classification
and active learning to achieve higher segmentation accuracy than fully super-
vised methods, but with fewer labeled samples. Experimental results on real
patient prostate MR volumes from the public MICCAI 2012 Prostate segmen-
tation challenge dataset show our method is ranked third amongst 16 methods.
Our performance is quite close to the two methods ranked above us. This clearly
demonstrates the improvement in segmentation accuracy obtained using SSL
and AL even without knowledge of labels of the test image.
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