A Model-Based Framework for SLA
Management and Dynamic Reconfiguration

Mahin Abbasipour! ®) | Ferhat Khendek!, and Maria Toeroe?

! ECE, Concordia University, Montréal, Canada
{mah_abb,khendek}@encs.concordia.ca
2 Ericsson Inc., Montréal, Canada
maria.toeroe@ericsson.com

Abstract. A Service Level Agreement (SLA) is a contract between a
service provider and a customer that defines the expected quality of
the provided services, the responsibilities of each party, and the penal-
ties in case of violations. In the cloud environment where elasticity is an
inherent characteristic, a service provider can cater for workload changes
and adapt its service provisioning capacity dynamically. Using this fea-
ture one may provide only as many resources as required to satisfy the
current workload and SLAs, the system can shrink and expand as the
workload changes. In this paper, we introduce a model-based SLA mon-
itoring framework, which aims at avoiding SLA violations from the ser-
vice provider side while using only the necessary resources. We use UML
models to describe all the artifacts in the monitoring framework. The
UML models not only increase the level of abstraction but they are also
reused from the system design/generation phase. For this purpose, we
develop metamodels for SLAs and for monitoring. In the monitoring
framework, all abstract SLA models are transformed into an SLA com-
pliance model which is used for checking the compliance to SLAs. To
avoid SLA violations as well as resource wasting, dynamic reconfigura-
tions are triggered as appropriate based on the predefined Object Con-
straint Language (OCL) constraints using thresholds.

Keywords: Monitoring - Elasticity + SLA violation avoidance + Model
driven engineering - OCL constraints

1 Introduction

A Service Level Agreement (SLA) is a contract between a customer and a service
provider that aims at describing the level of service quality and the obligations
of each party in the agreement. An SLA violation occurs when any of the parties
fails to meet their obligations [14]. A violation may be associated with a penalty.

During the operation of a system its workload changes dynamically, which
results in variable resource usage. To increase revenue, instead of allocating a
fixed amount of resources, providers try to allocate only as much as required
to satisfy the current customer needs and adapt subsequently to the workload

© Springer International Publishing Switzerland 2015
J. Fischer et al. (Eds.): SDL 2015, LNCS 9369, pp. 19-26, 2015.
DOI: 10.1007/978-3-319-24912-4_2

20 M. Abbasipour et al.

changes. This could be challenging as one would like to provision resources not
too early or too much to avoid the waste of resources, and not too late or inade-
quately to avoid SLA violations. To accurately adapt the system at runtime, the
system should be monitored: The metrics or events of interest are collected and
after evaluation actions are triggered to modify the managed system accordingly.

Figure 1 gives an overall view of our SLA management framework. In this
framework, the system is scaled according to the workload variations while avoid-
ing SLA violations. For this, the system configuration and the related elasticity
rules are generated offline during the design phase and determine the configu-
ration changes needed to scale up/down (adding/removing resources of a node)
and in/out (removing/adding a node). In this framework, all the SLAs, their cor-
responding measurements and the thresholds are combined into an SLA compli-
ance model. The validation of the SLA compliance model may generate triggers
for scaling down and/or in the system to save resources when the workload
decreases or for increasing the resources when workload goes up to avoid SLA
violations. The monitoring system feeds the framework with the measured data.
The thresholds are related to the maximum and the minimum capacity of the
current system configuration and are used to check if the system needs recon-
figuration. Accordingly, the values for the thresholds are re-evaluated with each
reconfiguration of the system. To map the measured data to SLA parameters
and to generate the triggers for the reconfiguration OCL [10] constraints have
been defined. When a trigger is generated the appropriate elasticity rules are
invoked to reconfigure the system with the minimum required resources. In this
short paper we target primarily, but not limited to, component based systems
deployed on a number of virtual machines typical for cloud computing. Further-
more, we focus on the modeling aspects and the use of OCL constraints to trigger
dynamic reconfiguration.

Monitoring System

SLA Compliance Model

Measured System
Data Threshold

SLA Models
K

SLA_1 . .« .| SLAn

1 L

Elasticity
Rules

1 |

Reconfigures

OCL

Configuration —> Reconfiguration

Fig. 1. SLA compliance management and dynamic reconfiguration

A Model-Based Framework for SLA Management 21

In this short paper, we introduce the principles of our approach for SLA
compliance monitoring and dynamic reconfiguration. The rest of the paper is
organized as follows. In Sect. 2, the metamodels for SLA and SLA compliance
are presented. Section 3 explains how OCL constraints are used to generate
dynamic reconfiguration triggers. We discuss the related work in Sect. 4 and
conclude in Sect. 5.

2 Modeling for SLA Compliance Management

To manage the compliance to SLAs, the running system needs to be monitored,
data has to be collected and the SLAs checked periodically. We adopt a model
driven approach not only to facilitate the understanding, design and maintenance
of the system [9], but also to reuse the models generated during the system
design phase such as the system configuration, and to build on existing tools. We
define our metamodels using Papyrus [5]. The Atlas Transformation Language
(ATL) [6] is used to combine all SLA models into an SLA compliance model. In
this section, we introduce the metamodels for SLA and for SLA compliance.

2.1 SLA Metamodel

The SLA metamodel is shown in Fig. 2. Each SLA has an ID and is an agreement
between a provider and a customer. A third party may also participate to verify
the agreed Service Level Objectives (SLO) and play the monitoring role [7]. An
SLA is applicable for a specific time duration and has a cost. This cost can be
a constant value or it can be a function based on the usage of the services. An
SLA includes some service functionalities that the provider agrees to provide
with specific Quality of Service (QoS). An abstract stereotype SlaParameter
captures the different types of QoS the customer and the provider agree on.
The agreed values are represented by mazAgreed Value and minAgreed Value in
the figure. For example, the maxAgreed Value in the SLA parameter DataRate
represents the maximum number of requests per second the customer may send
for the specific service.

The monitoring system measures each metric (MeasuredMetric) at a prede-
fined frequency. Customers may also want to specify how often the SLA parame-
ters are monitored and checked. This customization is represented by SlaMetric
stereotype. However, it should be compatible with the capability of the moni-
toring system. In other words, the frequency agreed on in the SLA must be less
or equal to the frequency of measurements of the monitoring system.

2.2 SLA Compliance Metamodel

An SLA compliance model is the combination of all SLA models, part of the
configuration model and the measurements obtained from the monitoring sys-
tem. The main reason for merging all SLA models into one model is that we

22 M. Abbasipour et al.
+provider SLA
Party -startDate Metric
-duration
st
o1 l eustomer -id -frequency: Real
N -price f }
+thirdParty P
Obliged +composite ’ 1..% Measured
o ServiceFunctionality ‘ SlaMetric Metric
" 0.5 RelatedTo 0..% 1..% |+measuredMetric
Penalty | ; SlaParameter customizedBy
N - Wi -maxAgreedValue:Real MansT
-fee ssociated Wit -minAgreedValue:Real aps0

Fig. 2. SLA metamodel

want to be able not only to avoid violations in each individual SLA but also to

trigger elasticity rules which are related to all customers resource usage.

The SLA compliance metamodel is shown in Fig. 3. The same service with the
same or different SLA parameters is generally offered to multiple customers. The
MeasuredMetric stereotype represents the value the monitoring system measures
per service for each customer or per node of the system. When an SLA parameter
related to a service is not respected, the BelongsTo relation indicates which SLA

has been violated.

<<Enumeration>> SLA 1.* +provider
Goal |.x | -startDate .
. Obliged
-Minimize -duration +customer | Party 2
-Maximize -id L.
-price +thirdParty| (|
1. |
Node ContainedService | L*
* SupportedBy * ServiceFunctionality DecomposedTo
-capacity
-maxThreshold -currentCapacity: Real
-minThreshold -systemCapacity: Real 0..%
-maxCurrentThreshold: Real
-minCurrentThreshold: Real
17| +measuredMetric
Metric MeasuredMetric +measuredMetric RelaedTo|
0..*
-frequency R i 1% SlaParameter
measuredValue: Real “mappedValue: Real Penal
/ E -goal: Goal 0.1 Y
-maxAgreedVale:Real fee
0. -minAgreedValue: Real
SlaMetric - DefiniedBy -slaThreshold: Real
|O..* BelongsTo

Fig. 3. SLA compliance metamodel

A Model-Based Framework for SLA Management 23

The monitoring system collects raw metrics. Some of these metrics (e.g. ser-
vice up/down time) and the SLA parameters perceived by the customers (e.g.
availability of service) are not at the same level. To bridge the gap between the
measured values and SLA parameters, OCL constraints have been defined as
mapping rules. The attribute mapped Value represents the value of such mapped
measurements. A service may be a composition of different service functionali-
ties, which may be mapped similarly or measured at the composite level.

The attribute goal of an SLA parameter specifies the parameters optimiza-
tion goal. For some SLA parameters, like availability, the optimization goal is
maximization while for others like response time, the goal is minimization. We
categorize our OCL constraints for SLA violation avoidance based on these opti-
mization goals. When a new SLA parameter is introduced and taken into con-
sideration, there is no need for new OCL constraints as long as its optimization
goal fits into one of the aforementioned categories.

3 Dynamic Reconfiguration

In the proposed framework, OCL constraints are used to trigger dynamic recon-
figuration. The OCL constraints are defined on a number of attributes: The
attribute currentCapacity in the ServiceFunctionality stereotype specifies the
maximum workload (e.g. requests/second) the system in its current configura-
tion can handle for a specific service. The attribute systemCapacity is defined
at the design phase as the maximum system capacity for the service. This is
the maximum capacity the system can be expanded to without major changes
(e.g. upgrade/re-design). As mentioned earlier to avoid SLA violations and trig-
ger reconfiguration, we use thresholds. Some of the thresholds are related to
all customers (aggregate) resource usage while others are related to individual
SLAs.

— mazCurrentThreshold and minCurrent Threshold: For each service, the sys-
tem is dimensioned dynamically with a currentCapacity to handle a certain
workload. In order to avoid SLA violations, i.e. workload exceeding current-
Capacity, we define a maxCurrentThreshold point (with mazCurrent Thresh-
old < currentCapacity) at which the system capacity is increased by scaling
it up/out to a new currentCapacity and for which a new mazCurrent Thresh-
old is defined. Therefore, the relation workload < maxCurrent Threshold must
be respected. Not to waste resources we also define a minCurrentThreshold
where we scale down/in the capacity of the system to a lower capacity (i.e. the
relation workload > minCurrent Threshold must be respected). We use OCL
constraints to define these restrictions. As a result the violation of the defined
OCL constraints triggers the scaling of the system. In this paper, we assume
that the service workload is distributed evenly in the system.

— slaThreshold: Some SLA parameters like service availability are set on a per
customer basis. Therefore, to avoid SLA violations, we need to watch the SLAs
separately using a slaThreshold for each SLA. These parameters behave simi-
larly with respect to violation. Some of them like availability and throughput

24 M. Abbasipour et al.

for which a higher value is preferable (i.e. the attribute goal is equal to Maxi-
mize) will be violated by a service provider when in the SLA compliance model,
the experienced quality is less than the slaThreshold (i.e. the relation mapped-
Value > slaThreshold must be respected all the time if goal=Mazimize); while
for others like response time, the violation happens from the service provider
side when the measured response time is greater than the slaThreshold (i.e. the
relation mappedValue < slaThreshold must be respected if goal=Minimize).
Again, we use OCL constraints to define these restrictions. By violation of
these OCL constraints, triggers will be generated to avoid SLA violations.

The following thresholds are related to the node resource utilization:

— mazThreshold and minThreshold: To avoid SLA violations because of node
limitations, e.g. the load on a node exceeding its capacity, we define the maz-
Threshold point at which we allocate more resources to the node (e.g. virtual
machine, hyper scale system) or add more nodes to the system (i.e. the relation
load < mazThreshold should be respected). To avoid the wasting of resources,
the minThreshold is used to reduce the node resources, for example, by remov-
ing a node or decreasing the virtual resources of a virtual machine. The addi-
tion/removal of resources to/from the node increases/reduces the capacity of
the node and therefore new thresholds are defined. The maxThreshold and
minThreshold are vectors where different types of node resources (e.g. CPU,
RAM, etc.) are taken into account.

To obtain the SLA compliance model from the individual SLA models, we use
model transformation. As the number of SLA models varies over time, SLAs may
be added or removed, we use different model transformations. For the addition,
the initial SLA compliance model is obtained directly from the first SLA model
by transformation that creates all the model elements. Subsequent SLA models
are added incrementally using another transformation which takes into account
the already existing elements of the SLA compliance model. Similarly, when an
SLA is removed, the elements related to only this SLA should be removed from
the SLA compliance model together with their measurements. This is achieved
with a different transformation that takes the SLA to be removed and the SLA
compliance model as input and generates a new SLA compliance model. In the
current prototype implementation the addition and removal of SLAs are done
offline.

4 Related Work

There are a number of works that define languages for modeling SLAs. Most
of the languages are for a specific domain. For example in [14,15], the authors
define SLAng suitable for network services. Others like [7,12] focus on web ser-
vices. QML [4] allows customers to define the SLA parameters to be measured
for monitoring purposes. Since a customer defined parameter may not be observ-
able for a specific system and an agreement needs a common understanding of

A Model-Based Framework for SLA Management 25

parameters between parties, this can result in inconsistency with the monitoring
systems capability. In our proposal, not only do we allow customers to customize
their SLAs but we also make sure that this customization is compatible with the
capabilities of the monitoring system.

In [2], a metamodel for SLA description and monitoring is proposed but it
is not clear how the compliance to SLAs is checked. In [11], a timed automata
is used to detect violations with respect to response time. The work in [14] is
closely related to this paper. In [14], to detect SLA violations, different OCL
constraints for different SLA parameters have been defined. However, to add
a new parameter to an SLA a new OCL constraint for the violation detection
has to be added as well, which is not the case in our framework. In [14], SLA
compliance is the only goal, while in our case we want to achieve this goal with
the minimum amount of resources needed for the workload at any given time
and to grow/shrink the system according to the workload variations.

Monitoring and scaling of cloud systems based on the demand has been exten-
sively investigated. However, only a few works have looked into SLA compliance
at an abstract level. In [3], a framework for monitoring SLAs is proposed. It
consists of three components: a monitoring system for providing measurements,
LoM2HiS for mapping monitored data to parameters in the SLAs, and a knowl-
edge database which uses past experience to solve current SLA related issues.
This framework is suitable for the infrastructure layer of the cloud. Similarly, [1]
focuses on the infrastructure level only but nothing is done at the other lay-
ers to respond to application level workload variations. In our framework both,
infrastructure and application, levels are handled. On the other hand, [8,13] for
instance do not take SLAs into account.

5 Conclusion and Future Work

Service providers aim at increasing their revenue by operating a system with
the minimum amount of resources necessary to avoid SLA violation penalties.
For this purpose, there is a need for an SLA management and dynamic recon-
figuration framework that scales the system (up/down and in/out) according to
the workload changes while avoiding SLA violations. In this paper, we proposed
such a framework. It is model driven, it is at the right level of abstraction. OCL
constraints are written for categories of parameters and are not specific for each
parameter, which eases future extension. More important, the proposed frame-
work reuses models developed at the system design stage. This work is at an
early stage, more investigations are required, for instance, to generate the elas-
ticity rules automatically and to handle the correlation of the generated triggers.
We also need to investigate the challenging issue of SLA compliance model evo-
lution at run time, i.e. addition and removal of SLA models while the system
is in operation. The performance of such a model based framework needs to be
assessed as well.

Acknowledgments. This work has been partially supported by Natural Sciences and
Engineering Research Council of Canada (NSERC) and Ericsson.

26 M. Abbasipour et al.
References
1. Ali-Eldin, A., Tordsson, J., Elmroth, E.: An adaptive hybrid elasticity controller

12.

13.

14.

15.

for cloud infrastructures. In: Network Operations and Management Symposium
(NOMS), pp. 204-212. IEEE (2012)

Debusmann, M., Kroger, R., Geihs, K.: Unifying service level management using
an MDA-based approach. In: Network Operations and Management Symposium
(NOMS), IEEE/IFIP, Vol. 1, pp. 801-814. IEEE (2004)

Emeakaroha, V.C., et al.: Towards autonomic detection of SLA violations in cloud
infrastructures. Future Gener. Comput. Syst. 28(7), 1017-1029 (2012). Elsevier
Frolund, S., Koistinen, J.,; Qml: a language for quality of service specification.
Hewlett-Packard Laboratories (1998)

Gérard, S., Dumoulin, C., Tessier, P., Selic, B.: 19 Papyrus: a UML2 tool for
domain-specific language modeling. In: Giese, H., Karsai, G., Lee, E., Rumpe,
B., Schéatz, B. (eds.) Model-Based Engineering of Embedded Real-Time Systems.
LNCS, vol. 6100, pp. 361-368. Springer, Heidelberg (2010)

Jouault, F., Kurtev, L.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128-138. Springer, Heidelberg (2006)
Keller, A., Ludwig, H.: The WSLA framework: specifying and monitoring service
level agreements for web services. J. Netw. Syst. Manag. 11(1), 57-81 (2003).
Springer

Konig, B., Calero, J.A., Kirschnick, J.: Elastic monitoring framework for cloud
infrastructures. IET Commun, 6(10), 1306-1315 (2012)

. MDA User Guide, version 1.0.0, OMG (2003)
10.
11.

OMG Object Constraint Language (OCL), version 2.3.1, OMG, January 2012
Raimondi, F. et al.: A Methodology for on-line monitoring non-functional specifi-
cations of web-services. In: First International Workshop on Property Verification
for Software Components and Services (PROVECS), pp. 50-59 (2007)

Sahai, A., Machiraju, V., Sayal, M., van Moorsel, A., Casati, F.: Automated SLA
monitoring for web services. In: Feridun, M., Kropf, P.G., Babin, G. (eds.) DSOM
2002. LNCS, vol. 2506, pp. 28-41. Springer, Heidelberg (2002)

Sedaghat, M., Hernandez-Rodriguez, F., Elmroth, E.: A virtual machine re-packing
approach to the horizontal vs. vertical elasticity trade-off for cloud autoscaling. In:
2013 ACM Cloud and Autonomic Computing Conference (2013)

Skene, J., Emmerich, W.: Generating a contract checker for an SLA lan-
guage (2004). https://www.researchgate.net/publication/32885283_Generating_a_
contract_checker_for_an_SLA language

Skene, J., Lamanna, D.D., Emmerich, W.: Precise service level agreements. In: 26th
International Conference on Software Engineering, pp. 179-188. IEEE Computer
Society (2004)

https://www.researchgate.net/publication/32885283_Generating_a_contract_checker_for_an_SLA_language
https://www.researchgate.net/publication/32885283_Generating_a_contract_checker_for_an_SLA_language

2 Springer
http://www.springer.com/978-3-319-24911-7

SOL 2015: Model-Driven Engineering for Smart Cities
17th International SOL Forum, Berlin, Germany, Cctober
12-14, 2015, Proceedings

Fischer,].; Scheidgen, M.; Schieferdecker, |.; Reed, R.
(Eds.)

2015, XN, 285 p. 90 illus. in color., Softcover

ISBM: 978-3-319-24911-7

	A Model-Based Framework for SLA Management and Dynamic Reconfiguration
	1 Introduction
	2 Modeling for SLA Compliance Management
	2.1 SLA Metamodel
	2.2 SLA Compliance Metamodel

	3 Dynamic Reconfiguration
	4 Related Work
	5 Conclusion and Future Work
	References

