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Abstract. Functional near-infrared spectroscopy (fNIRS) has become
increasingly accessible in recent years, which allows this relatively low-
cost and portable brain sensing modality for the application of brain-
computer interfaces (BCI). Although there is a growing body of research
on fNIRS-based BCI utilising users’ covert psychophysiological activity,
there is comparably less research on active BCI, where users engage in
thinking strategies with the explicit intention of controlling the behaviour
of an interactive system. We draw on four empirical studies, where partic-
ipants received real-time neurofeedback (NF) of left-asymmetric increase
in activation in their dorsolateral prefrontal cortex (DL-PFC), which
has previously been identified as a correlate of approach-related moti-
vational tendencies. We discuss methodological considerations and chal-
lenges, and provide recommendations about brain-signal selection and
integration, NF protocol design, post-hoc and real-time applications of
NF success criteria, continuous visual feedback, and individualised feed-
back based on the variations of the brain-signal in a reference condition.

Keywords: Prefrontal asymmetry · Functional near-infrared spec-
troscopy · (Affective) brain-computer interfaces · Neurofeedback

1 Introduction

The development of affective brain-computer interfaces (BCI) is a relatively
recent trend [11], which has the potential to support new interactive systems,
human-robot interaction [9], and cultural [14] or entertainment applications. One
of the main challenges faced by affective BCI, especially if compared with BCI
based on motor areas, is to identify a clear mapping between a target affective
state and a BCI signal. This could be obtained from knowledge about the neural
localisation of affective states: however, such knowledge is particularly elusive,
as suggested by a recent review [15].

However, research in psychophysiology has identified a possible neural cor-
relate for a specific affective dimension, known as approach/withdrawal [4], in
the form of asymmetric activity in the prefrontal cortex (PFC). Approach/with-
drawal behaves as a high-level affective dimension, and has been shown to play
an important role in motivational processes, reward expectation, risk taking and
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depression. It has originally been explored through EEG studies, which have
defined asymmetry scores that can characterise this asymmetry. These behave
as individual traits but are also subject to dynamic variations: furthermore,
they can be controlled through neurofeedback (NF), as originally demonstrated
by Rosenfeld and colleagues [19]. The potential use of prefrontal asymmetry
to support affective BCI has been discussed in various reviews [17], although
without reporting specific implementations.

Early work on using prefrontal asymmetry for BCI was based mostly on
EEG signals. Wehbe et al. [27] reported passive measurement of EEG prefrontal
asymmetry during computer gameplay; however, they claimed to be using it
as a measure of arousal rather than approach. Karran et al. [14] explored the
role of the PFC in subjects’ aesthetic experiences. Our previous work explored
EEG-based NF in the alpha band, with simultaneous fMRI analysis over NF
epochs [12]. It confirmed that the affective strategies through which users con-
trolled PFC alpha asymmetry corresponded to asymmetric activity in prefrontal
regions (across areas BA9 and BA10), with no differences observed in pre-motor
areas. These experiments are difficult to interpret any further, due to the small
number of subjects, and the finding that the supine position is known to impair
the ability of subjects to properly express approach [4]. In further experiments
carried out in laboratory conditions, subjects achieved success rates of up to
73% with minimal training [7]. However, signal quality and stability during NF
epochs remains an issue, and a limiting factor.

We posit that functional near-infrared spectroscopy (fNIRS) can provide an
alternative, offering better signal quality and better resistance to motion arte-
facts, while also improving spatial resolution for the target brain areas. This is
also supported by the finding that areas relevant to approach/withdrawal include
the dorsolateral prefrontal cortex (DL-PFC) [25], whose localisation is accessible
to fNIRS. Sitaram et al. [23] were amongst the first to suggest that signals based
on metabolic activity could be equally suited to BCI than electrical signals. We
were also inspired by recent experiments by Zotev et al. [28], which reported
PFC-NF with both EEG and real-time fMRI. Finally, Naseer and Hong [18]
have also reviewed recent uses of fNIRS for NF.

In this paper, we discuss methodological aspects of deploying fNIRS to imple-
ment BCI based on prefrontal asymmetry, under a NF paradigm. These are based
on several experiments, one published [5] and the others accepted for publication
or under review, during which we explored various settings for controlling app-
roach, in affective contexts as diverse as empathy, anger or motivation. Rather
than reproducing these studies here, we shall concentrate on specific elements
of methodology, some common to all studies, such as optode selection and sig-
nal definition, and some more specific, such as the definition of baseline, control
tasks compared to NF epochs, and calculations of statistical significance, both
online and post hoc.



Using fNIRS for Prefrontal-Asymmetry Neurofeedback 9

2 Brain-Signal Acquisition, Selection and Integration

We used fNIRS to operationalise BCI input based on asymmetric functional
activation in the DL-PFC. Although the spatial resolution of fNIRS falls short
that of fMRI and is limited to scanning the outer cortex, it has a number of
advantages, such as lower susceptibility to motion artefacts and lower cost, that
make it appropriate for application in BCI [3]. We followed the recommendation
of Solovey et al. [24] for the use of fNIRS in HCI settings. We used an fNIR400
Optical Brain Imaging Station by Biopac Systems, with a 16-channel sensor
with fixed 2.5cm source-detector separation (see [20] for channel locations). Data
were collected with 2Hz sampling rate. This fNIRS device measures intensity
changes in two wavelengths (730nm and 850nm) over time to calculate the change
in oxygenated (HbO) and deoxygenated (HbR) haemoglobin concentration (in
units of µMol/L) using the modified Beer-Lambert Law [1]. In order to provide
real-time feedback based on brain activity measured by fNIRS, there is a need to
select a single metric: HbO, HbR, or HbT (total haemoglobin; the sum of HbO
and HbR). We conducted a pilot study to inform this decision.

The pilot study used a no-feedback paradigm including an approach task
(watching pictures of delicious food under the instructions to imagine reach-
ing out for the food and eating it) and a withdrawal task (watching pictures
of spiders under the instructions to imagine escaping from the situation)1. We
compared the metrics of HbO, HbR, and HbT to assess how well they are able
to discriminate between the tasks. Based on literature co-authored by the devel-
oper of the fNIRS system used in our experiments (e.g., Ruocco et al. [20]),
on literature applying HbO to affect-related manipulation in the DL-PFC [26],
and to approach/withdrawal-related experimental manipulation [16], and based
on our pilot study, we elected to use HbO for real-time application; we based
post-hoc analyses on the same metric for consistency.

The haemodynamic response measured by fNIRS takes several seconds [3].
We took two approaches to accommodate for this approximately 7s delay: we
either (a) simply removed the first 14 data points (corresponding to 7s sampled
at 2Hz) of each epoch on each channel, or we (b) also included the 14 data points
after the completion of the epoch (i.e., windowing; see Sarkheil et al. [22] for a
similar approach).

The complexity of measured changes in blood oxygenation associated with
the differential functional activation of the DL-PFC needs to be reduced to afford
effective BCI input. This consists in deriving a single asymmetry metric from the
continuous flow of oxygenation data from the input channels [8]. We averaged
HbO values over the four leftmost and four rightmost channels (located over
the left and right DL-PFC, respectively), then subtracted average Right from
average Left. This metric reflects the inter-hemispheric difference in HbO change

1 Pilot subjects (N = 4) confirmed positive attitude towards the food items and neg-
ative towards spiders. We additionally included an approach condition involving the
same spider pictures with instructions to imagine approaching the spiders in protec-
tive clothing and swatting them.
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in micromolar units (µMol/L). Note that this measure is relative to a baseline
[2], and more importantly, it lacks an absolute zero point, as opposed to, for
example, alpha-power asymmetry in EEG-based NF [6]. This has important
practical consequences in defining and quantifying NF success. For example, as
this operationalisation of asymmetry yields interval-level data, a ratio of task/no-
task signals for defining and quantifying success (e.g., [22]) cannot be applied.

3 Protocol Design Considerations

There is a growing body of research on fNIRS-based NF [18]; however, fMRI-
based NF research can also effectively inform fNIRS study design due to the
comparability of the haemodynamic signal measured by the two neuroimaging
modalities (see [3] for a comparison). We sought inspiration from fMRI-based
studies [22,28] to inform study design, because of their relevance to the target
mental activity (affective regulation), experimental task (up-regulation of activ-
ity in a target area using thinking strategies), and feedback operationalisation.

Protocols for experiments and interaction design for active BCI need to be
tailored for supporting a feedback strategy and applying a success criterion,
depending on the tasks the participants are required to carry out for interacting
with the system. The length of individual epochs (short time periods with a
specific task) and blocks (a sequence of epochs), and that of the entire protocol
(number of blocks), needs to be manageable for participants, while it also needs
to provide a sufficient quantity of data for the purpose of research and applica-
tion. These considerations place constraints on how much data is to be collected,
and how data collection can be structured in a way that it is most manageable
for participants.

With regards to the length of each block and the overall number of blocks,
the two main considerations are (a) the participants’ ability to maintain focus
on the mental activity, and (b) the amount of data necessary to support the use
of the success criterion. To address (a), we asked participants to provide sub-
jective difficulty ratings of each task involved in the experiments, and we also
conducted post-use interviews to gather qualitative data about their interaction
with the system. Regarding (b), when using a statistical success criterion, dis-
cussed in detail in the following section, we advise conducting a power analysis
to determine the number of observations required within each epoch to detect
an effect with a given magnitude (some data may need to be discarded in the
filtering process).

These considerations are inherently related to how feedback is provided and
NF success is defined. In the following sections, we illustrate the approach we
took to addressing these challenges through two sets of experiments.

4 Criterion for Neurofeedback Success

We applied a statistical criterion to determine NF success. Specifically, we char-
acterised NF success as a statistically significant increase in left-asymmetry dur-
ing a NF epoch, compared to either (a) a baseline or (b) a reference epoch.
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Since statistical significance depends on the sample size, or in the present case,
the number of observations in a time-series we refer to as an epoch, we also
calculated different effect-size measures (r and Cohen’s d) to characterise the
magnitude of NF success. We also implemented real-time, automated determi-
nation of NF success as well as post-hoc testing. Additionally, we explored if
applying a non-parametric approach (bootstrapping) delivers practical benefits.
We discuss the advantages and disadvantages of these approaches in the fol-
lowing sections through two sets of experiments. We describe the experimental
protocols designed to support the application of the statistical success criterion,
with variations along the following properties:

– Success evaluated against zero asymmetry or asymmetry during a reference
epoch;

– Success evaluated real-time or post-hoc;
– Treatment of delay (trimming or windowing);
– Threshold characterisation and feedback mapping (fixed or personalised).

4.1 Evaluating NF Success Against Baseline

With the fNIRS system we applied, baseline is measured over 10s, against which
the asymmetry scores collected during a NF epoch can be compared, without the
need for a reference epoch. Since this baseline measurement consists in collecting
light-intensity data on each channel as a reference for calculating oxygenation
changes [1], the asymmetry metric we derive from the channels is zero for the
baseline. Therefore, we determined NF success using the baseline criterion by
performing a one-sample t-test on the asymmetry scores collected during the
NF epoch against the test value zero. Performing this one-sample t-test [10] is
computationally simple and can be implemented real-time by calculating the t
value upon the completion of the NF epoch by dividing the mean of observed
asymmetry values by the estimate of the standard error (Fig. 1a), which is then
compared to a critical value to determine NF success.

We conducted two experiments using this success criterion (Fig. 2). In Exper-
iment 1a, success was determined real-time, based on unfiltered data, using a
parametric criterion, delay was treated by trimming, while threshold and map-
ping for the feedback channel were fixed (i.e. the same for each subject and each
experimental trial). By comparison, in Experiment 1b, success was determined
post-hoc, based on filtered data, using a distribution-free criterion, delay was
treated by windowing, while threshold and mapping were also fixed.

Experiment 1a used 33s long NF epochs that contained 66 observations (2Hz
sampling frequency), therefore we applied the t critical value for p = .05 (two-
tailed) with 65 degrees of freedom (df) for each block: tcrit(65) = 2.00. The
experimental software logged asymmetry values during the NF epoch, calcu-
lated the t value, and if it was larger than 2, the block was deemed successful.
The experimental software did not test the parametric assumption of normality;
however, post-hoc analyses using bootstrapping resampling method resulted in
accepting the same epochs as successful.
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Fig. 1. Equations used in real-time implementation of NF success, where x is the mean
of observed values, the test value µ0 is zero, SD is the standard deviation, n is the
number of observed values, and df is degrees of freedom. NF and Ref are the mean
of asymmetry values during NF and the reference epoch, respectively.

Fig. 2. Block design for Experiments 1a and 1b, where NF success is evaluated against
baseline. Note that in 1b, an inter-trial interval (ITI) is added to the end to allow for
windowing; baseline in 1b is measured during the reference task (see text), decreasing
block length.

We argue that the computationally more demanding bootstrapping method
should be favoured for post-hoc analysis, but in cases where real-time determi-
nation of NF success is important, the simple parametric criterion is sufficient.
Experiment 1a also used the magnitude of the NF signal in a successful epoch
as graded input to a computer system (mapped to the differential weighting of a
search algorithm [5]). This was achieved by characterising the magnitude of NF
success by calculating the effect-size measure r (Fig. 1b). Note that this calcula-
tion is not computationally demanding; therefore, it can be applied in real-time
too. The effect-size measure r is interpreted the same as the correlation coeffi-
cient, it mitigates the difficulty of comparing fNIRS signals across subjects and
blocks [21], and since its value is constrained between 0 and 1, it is convenient
for mapping to graded input.

Another advantage of calculating an effect-size measure when a statistical
criterion is applied to determine NF success is that it allows for evaluating the
sensitivity of the set-up to detect changes in the asymmetry signal by quantifying
the magnitude of increase in asymmetry the applied statistical criterion can
detect. For example, in Experiment 1a, the smallest effect-size associated with a
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Fig. 3. Examples of continuous visual feedback in (a) Experiment 1a and (b) Experi-
ment 2a.

successful block was r = .28, which demonstrates that we could reliably detect
medium effect-sizes with 33s long NF epochs. Issues related to low power (i.e.
asymmetry increases but it is not detected) can be mitigated by increasing the
number of observations in an NF epoch, either by increasing its length or the
sampling frequency.

Threshold for providing feedback during the NF epoch (i.e., the minimum
reinforced signal magnitude) and mapping the magnitude of the left-asymmetry
signal to feedback was fixed in both experiments, that is, each subject in each
trial received feedback using a set of pre-defined parameters. The visual feedback
channel in both experiments was a downward-pointing red triangle symbolising a
light beam, which could be narrowed by up-regulating left-asymmetry (Fig. 3a).
This feedback was conceptually related to the experimental context, which
involved speeding up an algorithmic search process using a BCI [5]2. As dis-
cussed above, the threshold was zero (i.e., no increase from baseline). We defined
the maximum value for feedback empirically in a pilot study (1.1µMol/L), using
a similar design under a no-feedback paradigm. Asymmetry values between the
threshold and maximum were mapped linearly to the width of the light beam
(updated with the same 2Hz frequency of the signal acquisition), which allows
for providing continuous feedback. We successfully applied a similar feedback
mapping strategy before in EEG-based NF [7].

A disadvantage of comparing asymmetry scores to a simple baseline to deter-
mine NF success is related to the difficulty of interpreting the increase in asym-
metry during the NF epoch. As mentioned above, we measured a 10s baseline
before each NF epoch, which defined the asymmetry as zero for the start of NF.
However, the appropriateness of this baseline is predicated on the assumption
that the asymmetry signal is at neutral level when the baseline is taken. Should
the baseline be measured when there is high left-asymmetry, the reference-point
zero at the start of NF would represent a state of already high left-asymmetry,
making it difficult to detect left-asymmetry increase during NF.

2 In short, this experiment used PFC left-asymmetry as an indicator of approach-
related motivational tendency, whose value was mapped to speeding up the behaviour
of a search algorithm.
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To overcome this, we designed data-collection blocks in Experiment 1a in
the following way. Each block consisted of three epochs: NF, Count and Rest
(Fig. 2a). Baseline for an NF epoch was measured in the last 10s of the preceding
Rest epoch, where subjects were instructed to look at a grey screen and relax.
An epoch with a mental counting task was included after each NF epoch to
distract subjects’ attention from the thinking strategy used during NF and to
promote asymmetry converging to baseline before baseline for the next block
would be taken. We elected to use a mental counting task (counting backwards
from a given number by increments of a given integer), because it is theoretically
unrelated to left-asymmetry and it is one of the most commonly used prefrontal
activities for fNIRS-based BCI [18].

In Experiment 1b, we modified the block design by excluding the Rest epoch
and measuring baseline for the next block in the last 10s of the Count epoch
following NF (Fig. 2b). This reduced block length, allowing for including more
blocks in the same protocol. Furthermore, including the counting task during
baseline measurement is a more strict control of subjects’ mental activity than
the rest instructions. Additionally, Experiment 1b did not use the NF signal for
graded input to modify the behaviour of a system; therefore we determined NF
success post-hoc using bootstrapping (1000 samples, 95% confidence intervals)
on filtered data: we applied sliding-window motion artefact detection (SMAR),
raw data were low-pass filtered using a finite impulse response (FIR) filter with
order 20 and 0.1Hz cut-off frequency [1].

In summary, determining NF success by comparing to baseline allows for a
simple block structure, but the baseline may not reflect a meaningful reference
point to determine NF success if thought processes are not controlled during
baseline measurement. Including a reference task for baseline may alleviate this,
but other potential issues remain, for example, the perceptual differences of the
stimulus subjects receive during baseline and NF, and having to rely on the same
(pre-defined) criteria across blocks and subjects to provide feedback. In the next
section, we discuss how including a reference epoch may improve study design.

4.2 Evaluating NF Success Against a Reference Epoch

As discussed above, although comparing an NF epoch to baseline for defining
success is simple and time efficient, it is still useful to include a reference task
either to promote up-regulated left-asymmetry to converge to baseline between
blocks (Experiment 1a), or to control thought processes during baseline (Exper-
iment 1b). However, both leave the data collected for the reference task under-
analysed. A step forward to better utilising the collected data is to include the
reference task in a separate epoch that is directly compared to the NF epoch.
We implemented this in two experiments.

In Experiment 2a (Fig. 4a), success was determined real-time, based on data
filtered for extreme values, using a parametric criterion, delay was treated by
trimming, while threshold and mapping for the feedback channel were individu-
alised (for each subject and each experimental trial). By comparison, in Exper-
iment 2b (Fig. 4b), success was determined post-hoc, on filtered data, using a
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Fig. 4. Experiments 2a and 2b, where NF success is evaluated against a reference
epoch. Note that in 2b, an inter-trial interval (ITI) is added to the end to allow for
windowing. Feedback range in the NF epoch is determined using the distribution of
asymmetry values during the reference epoch in each block to allow for individualised
feedback.

distribution-free criterion; delay was treated by windowing, with individualised
threshold and mapping. Both Experiments 2a and 2b applied the same visual
stimulus across reference and NF epochs (but the visual stimulus was different
across the experiments). The epochs were matched for length. Subjects rated
the perceived difficulty of both the counting and NF tasks; statistical analysis
revealed no significant difference in subjective difficulty, indicating that the two
tasks were adequately matched. Baseline was measured at the start of each block
under instructions to rest, but we defined NF success as a statistically significant
increase in asymmetry from the reference epoch to the NF epoch.

A notable advantage of this approach to determining NF success is that it
provides a control condition within the block; therefore, increase in asymmetry
in this case can be readily attributed to change in mental activity. Furthermore,
the asymmetry signal does not need to be at neutral level when the baseline
is measured, because the success criterion only considers difference between the
two epochs matched in length and stimulus.

Experiment 2a applied a real-time success criterion: the experimental soft-
ware conducted an independent-samples t-test upon the completion of both
epochs. Although the asymmetry values were collected from the same subject
within the same block (with the same baseline), an independent-samples design
is appropriate here, because the subject of analysis is the two population of
asymmetry scores. The t value was calculated using unfiltered data; however,
the experimental software removed outliers in each epoch (values outside three
standard deviations from the mean) for the calculation, which can effectively
remove noise resulting from movement artefacts [2]. Since effective epoch-length
was 15s (trimmed), which contained at least 29 observations for each epoch
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sampled at 2Hz, the software used the t critical value of 2.05 with 28 degrees of
freedom for p (two-tailed) = .05 as a threshold for success.

Conversely, Experiment 2b applied a post-hoc success criterion, where the
t-test was calculated on filtered data (40s effective epoch length, windowed).
In addition to the SMAR and FIR filters described in the previous section, we
applied linear detrending on data from each channel [1]. Significance testing was
conducted using a distribution-free approach.

In Experiments 1a and 1b, we used a ‘one-size-fits-all’ model for providing
feedback, based on an empirically determined threshold for maximum feedback
that was the same of each participant within each block. This approach promotes
comparability of asymmetry values across blocks and subjects, but it does not
consider individual differences, which can be quite substantial [21]. However, by
analysing the distribution of asymmetry scores in a reference epoch, it is possible
to devise personalised feedback within each block, taking into consideration the
normal fluctuation of the asymmetry signal during a reference task. We recom-
mend using a reference task (e.g., mental counting) for baseline if a simple set-up
is preferred or there is an emphasis on collecting a large number of blocks from
each participant. Otherwise, it is preferable to use a reference epoch with similar
perceptual properties as the NF task, but including a different mental activity;
this provides experimental control within a block, and allows for the application
of individualised feedback to promote decreasing noise and increasing NF success.
We implemented this in Experiments 2a and 2b in the following way.

We defined threshold for providing feedback during the NF epoch based on
the asymmetry values collected during the reference epoch within the same block
(Fig. 5). The threshold was defined as the mean of asymmetry values during the
reference epoch plus 1.28 times their standard deviation3. Assuming normally
distributed asymmetry values, this threshold would result in reinforcing only the
top 10% of asymmetry values in the reference epoch. This approach to determine
threshold is consistent with the original one of Rosenfeld et al. [19] for EEG-
based frontal-asymmetry NF.

We provided continuous feedback, based on real-time changes in the mag-
nitude of the asymmetry signal. For example, in Experiment 2a, the feedback
channel was the image transparency of a virtual character (Fig. 3b), who was
previously identified as mischievous, and the experimental subjects could make
his image disappear from a virtual scene by expressing anger towards him,
thereby up-regulating left-asymmetry [13]. Crossing the threshold during NF was
mapped to 10% transparency of the virtual character, while reaching an empiri-
cally determined maximum asymmetry was mapped to 100% transparency, effec-
tively removing the virtual character from the scene. The maximum asymmetry
value for mapping was defined as the threshold plus the variation range of the
asymmetry values during the reference epoch. Visual transparency was mapped
linearly between the threshold and maximum value, updated with the same 2Hz
frequency of the collection of asymmetry values.

3 Outliers were removed by the experimental software to avoid extreme values, likely
reflecting movement artefacts, exerting an unduly influence on the threshold.
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Fig. 5. Calculation of threshold (minimum) and maximum asymmetry values for linear
mapping to continuous feedback. Note that the minimum feedback value is set to 10%.

This approach of using a reference epoch to determine feedback range pro-
motes NF success by tailoring the feedback mechanism to the individual subject
by considering her own signal variation, with the additional benefit of determin-
ing the range of noise in the signal for which no feedback should be provided.
Note that in this approach the reference epoch necessarily precedes the NF
epoch.

Additionally, we calculated the Cohen’s d effect-size measure to quantify the
magnitude of NF success, which is characterised as the difference between mean
asymmetry during the two epochs divided by the pooled standard deviation. This
was also calculated real-time in Experiment 2a (Fig. 1c). The d value reflects the
distance between the distribution of asymmetry values between the reference and
NF epoch within the same block, which can be readily interpreted. For example,
average d in successful blocks in Experiment 2a was 2.40, which corresponds to
an average 23% overlap in asymmetry scores between NF and reference epochs,
and there is a 96% chance that an asymmetry value picked randomly from the NF
epoch will be larger than a randomly picked asymmetry value from the reference
epoch. Calculating these measures can be useful for illustrating the magnitude of
asymmetry up-regulation in NF. Although the magnitude of oxygenation changes
can differ substantially across subjects and blocks, this approach relies on the
distribution of observed asymmetry values within blocks, therefore data collected
from different individuals at different times are comparable.

5 Summary of Recommendations

We presented two sets of experiments where we applied variations on proto-
col design to support fNIRS-based PFC-asymmetry NF for active BCI. In this
section, we briefly summarise the key points and present recommendations for
protocol design. Table 1 illustrates these points through a comparison of two
experiments.

Protocol Length. NF demands focused attention and concentration (but it is also
rewarding and interesting), which leads to fatigue over time: approximately 40s
long epochs and 2min per block are manageable, provided there is enough rest
between the blocks. A total protocol length of approximately 10min is comfort-
able, where fatigue towards the end that does not significantly impair the quality
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Table 1. Summary of the key points inllustrated through contrasting two experiments.

Exp. 1a Exp. 2b

Reference epoch No Yes (counting)
Threshold 0 asymmetry Dynamic (M + 1.28 · SD)
Maximum Fixed (1.1) Dynamic (min+range)
Statistical test Parametric Bootstrapping
Success test Real-time Post-hoc
Filtering No Yes (FIR, SMAR, detrending)
Delay treatment Remove 7s Windowing

Practice 3 blocks 1 block
Number of blocks 6 8
Number of subjects 11 10
Success rate1 73% 70%
1 Indicates the percentage of subjects achieving NF success in

at least half of the completed experimental blocks [5,7].

of data (analysis revealed that NF success was not significantly less likely towards
the end of the protocol in the studies). A shorter block length is generally prefer-
able, which allows for including more blocks in a protocol. Based on post-use
interviews with 42 subjects who participated in our experiments, we advise to
determine the length and number of blocks so that data collection fits within
approximately 15–20min with instructions, practice, set-up and calibration.

Compensate for Delay in the Haemodynamic Response. This can be achieved by
simply removing initial observations in an epoch or bywindowing. Simple removing
may be considered a safer solution when it is important to make sure that each
data point was collected when feedback was present, but windowing helps to better
utilise the collected data by boosting statistical power with increased sample size.

Using a Reference Task. We recommend using a reference task (e.g., mental
counting) for baseline if a simple set-up is preferred or there is an emphasis
on collecting a large number of blocks from each participant. Otherwise, it is
preferable to use a reference epoch with similar perceptual properties as the
NF task; this provides experimental control within a block, and allows for the
application of individualised feedback.

UsingaStatistical SuccessCriterion.Rather than relying solely on statistical signif-
icance, we advise to quantify NF success (e.g., by calculating effect-size measures).
If the NF signal also serves as input and a real-time success criterion is required, a
parametric approach is sufficiently robust, but simple data-screening should still
be applied (e.g., removing outliers). Otherwise, a post-hoc success criterion should
be preferred onfiltereddata andusing adistribution-freemethod.Conduct a power
analysis to inform the necessary length for the NF epoch.

Continuous, Real-Time Feedback. Feedback can be provided with the same fre-
quency as the input signal is collected. With an empirically determined thresh-
old and signal range, the feedback can reflect continuous variations of the input
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signal, as opposed to a limited set of categories. We recommend using a feedback
channel that is conceptually or perceptually related to the NF task. Participants
can accommodate delay in the feedback, but they need to be informed in advance
to expect some delay. Additionally, we found it useful to instruct participants
that some jitter may be also present in the feedback; however, this was not prob-
lematic enough to introduce smoothing to reduce fluctuations in the NF signal
(e.g., moving average [6,28]).
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