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Abstract. Cloud computing is a concept that is in use since late 2000s
related to consumption of distributed computer resources, namely servers
and networks for data storage and access. In the paper we examine
knowledge-based algorithms for agents that have access to a resource cen-
ter to use some of available discrete resources. We assume that resource
items are passive, they form a cloud, any item can be lend on demand
to any agent if and only if there is no races for this item with other
agents. All agents are rational and can communicate with each other
in P2P-manner, negotiate, flip and swap (change intentions) so that all
flips/swaps always must be rational for participating agents. The prob-
lem is to design a multiagent algorithm, which allows each agent sooner
or later to access some resource item. We present a uniform algorithm
scheme and then specialize for the following particular problems: Robots
in Space and Rational Agents at the Marketplace.

1 Introduction

The issues of trust aspects (functional correctness, safety, security, reliability,
credibility, usability) in multi-agent systems have received a lot of attention.
Methods to guarantee functional correctness, safety, and security as well as
techniques to ensure reliability in distributed, self-organizing systems are under
investigation by different research communities and (in particular) in a multia-
gent research paradigm.

In general, a paradigm is an approach to the formulation (formalization) of
problems and the ways to solve them. The term comes from Greek and means
pattern, example. A contemporary meaning of science paradigm is due to well-
known book [10] by T. Kuhn. Robert Floyd was the first who had explicitly
used the term paradigm in the Computer Science context in his Turing Award
Lecture in 1978.

Multiagent paradigm is a common name for several related research and
development approaches in Computer Science, in Artificial Intelligence, Informa-
tion Systems, etc. In this paper we are bound to Computer Science multiagent
paradigm as sketched below.
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A distributed system consists of multiple autonomous “computers” (programs
with distributed memory) that communicate through a network [20]. A multi-
agent system is a distributed system that consists of asynchronous (rational)
agents. An agent is an autonomous reactive and projective object (in OO-sense)
whose internal states may be characterized in terms of Beliefs (B), Desires (D),
and Intentions (I). (Agents of the described kind are usually called BDI-agents
[22].) A rational agent has clear “preferences” and always chooses the action
(in feasible actions) that leads to the “best” outcome for itself; in contrast, a
bounded rationality is “decision making” limited by the cognitive and deductive
abilities of agents or other constrains (e.g. amount of time they have to make
decisions). A multiagent algorithm is a distributed algorithm (protocol) [21] that
solves some problem by means of cooperative work of agents in a multiagent
system.

Agent’s beliefs represent its ideas and opinions about itself, other agents,
and the network; these ideas and opinions may be incomplete, inconsistent, and
(even) incorrect in contrast to agent knowledge. We distinguish belief and knowl-
edge notions according to the famous Plato thesis: Knowledge is true belief.
Thus our approach to knowledge and belief is not very formal like in [6], but
(we demonstrate in the paper that) it can be formalized in terms of interpreted
systems [4,11,19].

Agent’s desires represent its long-term aims, obligations and purposes (that
may be controversial). Agent’s intension is its plan how to implement its desires
or a short-term individual planning. Reactivity means that every agent could
change its beliefs, desires, and intentions after communication and interaction
with other agents (the environment). (In particular, some former beliefs may
transfer to knowledge about the environment, some may be refuted.) Projectivity
is agent’s ability to design/modify/adopt short-term plans (i.e. its intentions)
according to updated information about the environment.

Some other notions related to multiagent systems are defined below. A
autonomous agent changes its personal beliefs, desires and intentions by its own
reasons, the change can’t be decreed by any other agent. A rational agent has
clear preferences and always chooses the action (in feasible actions) that leads
to the best outcome for itself; a bounded rationality is decision making (basi-
cally planning) limited by the cognitive abilities of agents (e.g. the finite amount
of time they have to make decisions) [14]. Agent’s privacy is an opportunity to
hide in negotiations data that the agent supposes to be private. [5,7]; in contrast,
agent’s anonymity is its opportunity not to revile its identity in negotiations.

In this paper we study multiagent algorithms (protocols for multiagent sys-
tems) for solving instances of the following general problem that we call Discreet
Resources Allocation Problem (DRAP):

There is a cloud of discreet resources consisting of a fix number of items
(or pieces that are not dividable any more); there are also rational agents,
each of which pretends for individual exclusive access to an item (exactly
one); all agents can communicate and negotiate in peer-to-peer man-
ner; the problem is to define a belief- and rationality-based protocol of
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pairwise communications and negotiations, virtual flips/swaps of inten-
tions (i.e. items) between agents, a protocol that eventually leads every
agent to the knowledge about the individual resource item that belongs
to the agent; it will be an advantage if the resulting global resource
allocation will meet some global optimality criterion.

One can argue that DRAP can be solved by distributed consensus or leader
election algorithms [3]. It is true in a distributed paradigm, but not in the
multiagent paradigm, because sharing of private data is very legal in distributed
systems, but not in multiagent systems. In particular, it is possible to elect
a leader, pass it agents’ private data, then let the leader to assign individual
resource items to all agents according to some global optimality criterion. But
agents in that distributed algorithm are too passive in problem solving and they
send too much individual data to the leader. More over, in multiagent paradigm
every agent (including the leader) should care just about itself (i.e. its individual
knowledge about its individual safety and its individual resource item), but not
about other agents and the system.

Doctoral Dissertation [12] gives a general survey of the Distributed Resource
Allocation Problem in a frame of agent-based approach. Using standard ter-
minology we could distinguish the following features of our approach to the
problem.

– Resources are discreet, not dividable, not sharable, static, single-unit.
– Agents have quantitative preference structure, i.e. agents’ utility function

maps numbers to a set of resources.
– Resource allocations are evaluated by the utilitarian welfare which is the sum

of individual utilities.
– Our multi-agent systems handle homogeneous populations, where all agents

act according to the same behavior scenario.
– The social graph (i.e. agents’ communication graph) is complete: everybody

can talk with everyone.
– Any time each agent knows its own intention, but never the hole intentions

of all other agents.
– We use bilateral swap transactions (which involve only two agents at a time)

and individual flips.

In addition our algorithms are knowledge- and rational-based, privacy-preserving
but not anonymous (i.e. agents need to revile their identity).

The rest of the paper is organized as follows. In the next Sect. 2 we introduce
and discus particular examples of DRAP. Then, in Sect. 3, we present and discuss
the algorithm for DRAP and how to specialise it for two paerticular instances
of DRAP (from Sect. 2). In the concluding Sect. 4 we discuss relations of the
presented research to so called social computing [1] and/or social software [13].
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2 DRAP Special Cases

2.1 RinS: Robots in a Space

RinS problem formulated below is a multidimensional generalization of Mars
Robot Puzzle (MRP) that has been studied in [2,17]: MRP is just RinS in 2-
dimensional Euclidian space.

There are n > 0 autonomous robots and the same number of shelters in a
general position in a Euclidean space. A position of every shelter is fixed
and known to every robot. Every robot knows about existence of all other
robots, but does not know their locations. Robots can communicate in
peer-to-peer manner only. At some moment each robot stops and fixes
its current position. Then every robot should choose a shelter to move
in by a straight way. Robots should not collide. The problem: Design
a multiagent algorithm that guarantees that every robot will eventually
know an individual shelter such that its straight route to the selected
shelter never intersects with straight routes of other robots.

We would like to point out that RinS and MRP are related to Multi-Agent
Programming Contest (MAPC, http://multiagentcontest.org). In 2011 organiz-
ers of MAPC began the fourth phase with the definition of a new scenario:
“Agents on Mars”. The goal is to implement a team of cooperating agents with
different roles in order to occupy zones on planet Mars. The challenge of the
scenario is its increased complexity, that is that we have defined 5 roles of agents
with different properties and capabilities. But the difference between RinS/MRP
and MAPC is crucial: we care about straight routes and formal correctness.

2.2 RAM: Rational Agents at the Marketplace

RAM problem formulated below has been discussed first in [18].

At the Marketplace there are n > 0 buyers and m ≥ n salesman. Every
salesman sells a (single) unit of some indivisible good (“a piece of cake”)
by individual prices for different buyers. Salesmen are passive: they do
not care if their goods are sold out and who buy the goods. But every
buyer is rational: it has to purchase exactly one unit of goods and it
knows its individual prices from every salesman. Buyers can choose and
flip salesmen, negotiate pairwise, swap salesmen in pairs, make price
concessions. But every above action should benefit a buyer. A buyer can
make a deal with a salesman iff it knows that nobody pretends for a
deal with this salesman. The problem: Design a multiagent algorithm
for buyers which guarantees that every buyer eventually buy something.

The difference between RAM and RinS/MRP is manyfold. First, in RAM
agents are assumed to be rational, while in MRP agents do not care about their
benefits (preferences) at all. Next, MRP has a clear geometric interpretation,

http://multiagentcontest.org
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but it is not clear from the very beginning, whether any intersection-free set (of
routes) exists, and, hence it is not obvious that a desired protocol may exist.
Fortunately, the existence of these routes could be proved by contradiction, or
by reduction to the assignment problem in Graph Theory, or to the convex hull
problem in Combinatorial Geometry.

The RAM problem is related to the classic Cake Cutting Problem (CC-
problem, also known as Fair Division Problem) that has been introduced by
a group of Polish mathematicians, H. Steinhaus, B. Knaster and S. Banach [1].
The CC-problem is to divide an infinitely dividable resource (“cake”) in such a
way that all recipients believe that they have received a fair amount. A special
cases of the problem are proportional and envy-free division. Differences between
RAM and CC-problem are evident: in CC-problem a cake is an infinitely divid-
able resource, while in RAM-problem a “resource” has been cut already; solu-
tions of the CC-problem may be sequential, while solutions (if any) of RAM
must be multiagent (i.e. distributed, parallel and concurrent) by the problem
statement.

At the same time RAM problem is also closely related to the following Stable
Marriage Problem (SMP) [9]. Given n men and n women, where each person has
ranked all members of the opposite sex with a unique number between 1 and n
in order of preference, marry the men and women together such that there are
no two people of opposite sex who would both rather have each other than their
current partners. (If there are no such pairs, all the marriages are said to be
stable.) A non-deterministic but centralized and sequential algorithm has been
developed by D. Gale and L. Shapley for SMP [9]. It makes the difference between
SMP and RAM: SMP implicitly assumes a single sequential matchmaker, while
RAM explicitly states that the problem must be solved by agents themselves.

2.3 RaceP: Race for Processors

The following new problem is closely related to DARP but is not a special case
of the problem due to dynamics of arriving and served processes.

There is a resource center consisting of (1) n > 0 (different) proces-
sors, (2) a pool with m > 0 tasks, and (3) a monitor for processor’s
load and a state of the processers. The monitor have marked all tasks
in the pool by a time stamp upon their arrival (into the pool); assigns
instantly a free processor to some task, if the task requests the processor;
removes assigned tasks from the pool, and returns processors to the cen-
ter after task execution. Every task is an agent, that knows an individual
“wanted” process. The problem: Design a multiagent algorithm for tasks
which guarantees that every task in the pool eventually be assigned by
a processor to be performed.

3 Algorithm and Correctness

An unified multiagent algorithm SOpt (Search of Optimum) for DRAP is pre-
sented below in this section. It is a generalization of SMEx-algorithm [2,17] that
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solves MRP. Correctness of specialized algorithms for RinS/MRP and RAM
problems have been proved in [2,17], but its adjustment for RaceP is still an
open question. The correctness proofs follow main steps and are similar to the
proof of SMEx algorithm. Both protocols SMEx and SOpt rely upon the follow-
ing fairness communication assumption [17]: communication (in a multiagent
system) is said to be fair, if every agent which would like to communicate with
any other agent will communicate eventually. Fairness has been discussed in [8].

Algorithm SOpt for an individual agent can be described informally as fol-
lows. Any time every agent can ask a monitor about the set of Agents that
currently compete for resources. At every moment every agent has some partic-
ular resource item as its current intention; at the very beginning this intention
is defined by function INI : Agents → Resources. Conflicts between agents can
be checked by predicate Conf : Agents × Resources × Agents × Resources →
Boolean such that for all agents i �= j, for all resource items ui and uj ,
Conf(i, ui, j, uj) ⇔ Conf(j, uj , i, ui). Beliefs of every agent are represented by
several integer counters:

– NC for Number of Conflicts is used by instant and time agents,
– CF for Conflict-Free agents is used by time agents only.

We distinguish also instant and time agents: the former agent can catch (or
grab) the allocated piece immediately and instantly, the latter needs some time
to catch the allocated piece: an instant agent grabs its resource instantly as soon
NC = 0, while a time agent waits for all other agents, since acquiring of the
resource needs time (during which a new conflict may occur). NC represents
agent’s upper estimation of number of agents with whom it may have conflict,
and, respectively, CF represents its lower estimation of number of agents that
have no conflicts at all. In particular,

– the agent believes that it does not conflict with any other agent as soon as
NC = 0;

– the agent believes that there is no conflicts in the system as soon as NC = 0
and CF = 2 × (n− 1), i.e. it believes that it has no rivals, and it checks twice
that all other agents believe that they do not have conflicts also.

But in the case when two agents have a conflict, then they resolve the trouble by
non-deterministic function Sol : Agents × Resources × Agents × Resources →
Resources such that for all agents i �= j, for all resource units ui and uj , if
Conf(i, ui, j, uj) then Sol(i, ui, j, uj) and Sol(j, uj , i, ui) are different resource
unites.

Pseudocode of the SOpt-algorithm follows, but first we would like to comment
a meaning of some variables: Me is a variable for personal agent’s identification
number; cur un and par un are the variables for intentions of the agent and its
partner (i.e. for resource items); par bel is a variable for partner’s belief that the
partner is conflict-free; contacts is a variable for a set of agents. (The algorithm
is given for time agents. Please, ignore all instances of CF counter for instant
agents.)
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algorithm SOpt::
const Me: integer in [1..n]
var NC: integer in [1..(n-1)];
var CF: integer in [1..(n-1)];
var contacts: set of [1..n];
var partner: integer in [1..n];
var cur un, par un: integer in [1..n];
var par bel: boolean;
begin
1: NC:= (n - 1); CF:= 0;
2: cur un: = INI(Me);
3: repeat
4: if NC > 0 then NC:= (n - 1);
5: contacts:= Agents \{Me};
6: repeat
7: partner: = any agent in the contacts ready to communicate1;
8: start communication session with the partner:
9: { send (<cur un>;<(NC=0)?>) to partner ‖
10: receive (<par un>;<par bel>) from partner}
11: if Conf(Me, cur un, partner, par unit) then
12: {cur un:= Sol(Me, cur un, partner, par un);
13: NC:= (n - 1); CF:= 0}
14: else if NC > 0
15: then {NC:= (NC - 1); CF:= 0}
16: else if par bel
17: then CF:= CF + 1
18: else {NC:= (n - 1); CF:= 0}
19: close communication session with partner;
20: contacts:= remove partner from contacts;
21: until contacts becomes empty
22: until (NC = 0 ∧ CF = 2×(n - 1))
end.

Proposition 1. If a multiagent system consists of a fair communication sched-
uler and agents that all execute SOpt protocol, and system terminates, then all
agents will know their conflict-free pieces of the resource upon the termination.

A well-founded set is a partial order (D,≤) without infinite (strictly) decreas-
ing sequences. Let us say that a distributed system is well-founded, if there exists
a well-founded set (D,≤) and a well-mapping F from system configurations (i.e.
its global states) into D such that for all agents i �= j, for all resource units ui and
uj , Conf(i, ui, j, uj) implies that execution of Sol(i, ui, j, uj) and Sol(j, uj , i, ui)
in any order reduces the value of F .

1 A scheduler resolves this request.
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Proposition 2. If a multiagent system consists of a fair communication sched-
uler and agents that all execute SOpt protocol, and the system is well-founded
then the system eventually terminates.

The specialization of above general algorithm for the particular problems
RinS and RAM consists in a manner of recognizing and resolving conflicts. In
case of RinS

– predicate Conf is true iff routes of robots intersects,
– function Sol swaps shelters for robots, and
– well-mapping F maps system configurations into the sum of all distances from

robots to shelters.

In case of RAM

– predicate Conf is true iff there is a competition of buyers for the same
salesman,

– function Sol implements a game with better price as a gain, and
– well-mapping F maps system configurations into a total price for all goods.

4 Conclusion

4.1 Summary

In the paper we discussed multiagent approach to the discrete resource allocation
problem (DRAP), presented a multiagent algorithm that solves the problem
under assumption of communication fairness and well-foundness, and presented
particular examples of problems that can be solved on base of the our results.

We also have to remark that we considered very idealistic multiagent sys-
tems that consists of absolutely reliable (non-faulty) agents in a static situation.
Hence a topic for further research may be study of more realistic case of faulty
agents and dynamic systems. Anonymity could be studied also, since our SOpt
algorithm requires from agents to inform partners about their identity.

There exist sophisticated distributed algorithms for resource allocation prob-
lem, but formal functional correctness and etc. usually is out of scope of these
works. In contrast, a contribution of our paper is to study of this aspect (although
for idealized examples). We have to mention in this extended abstract that our
correctness proof is manual. But one can observe that the formal description of
the interpreted system for DRAP makes possible to verify the algorithm auto-
matically with aid of techniques developed in [16]. It will be a topic for further
research also.

4.2 Cloud vs. Crowd

We have mentioned in Sect. 2 that Ratioanl Agents at Marketplace (RAM) prob-
lem is closely related to the classic Cake Cutting Problem (CC-problem) and
discussed similarity and differences between these two problems. But in spite of
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these differences, RAM and CC problems have something in common since they
both are examples of a new research paradigm of that is called social computing
or social software [1,13]. The essence of this paradigm is sketched in the next
paragraph.

In the modern world very many social requirements and procedures have
algorithmic character. These requirements can be written as (semi-)formal spec-
ifications and procedures — software (in a pseudo-code). Then the properties
of these procedures can be analyzed and verified by formal methods. Well, the
results of the formal analysis or verification may be interpreted in socially signifi-
cant terms. And though about social computing/software started talking only in
a XXI century, but it is possible to consider as the first example of application
of this paradigm research of the Cake Cutting Problem by H. Shteinhaus, B.
Knaster and S. Banach.

In particular, Rational Agents at Marketplace can be considered as an exam-
ple of social computing/software research [15]. In social computing/software par-
adigm “crowd” with communication network and access to resources may be
considered as agents and cloud of resources. But in this context study of effi-
ciency, fairness, privacy and anonymity of multiagent algorithms get much more
importance than in this paper.
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