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Abstract. In this paper we report on the ongoing research of our team
Comète on location privacy. In particular, we focus on the problem of pro-
tecting the privacy of the user when dealing with location-based services.
The starting point of our approach is the principle of geo-indistinguisha-
bility, a formal notion of privacy that protects the user’s exact location,
while allowing approximate information – typically needed to obtain a
certain desired service – to be released. Then, we discuss the problem
that raise in the case of traces, when the user makes consecutive uses of
the location based system, while moving along a path: since the points
of a trace are correlated, a simple repetition of the mechanism would
cause a rapid decrease of the level of privacy. We then show a method to
limit such degradation, based on the idea of predicting a point from pre-
viously reported points, instead of generating a new noisy point. Finally,
we discuss a method to make our mechanism more flexible over space:
we start from the observation that space is not uniform from the point of
view of location hiding, and we propose an approach to adapt the level
of privacy to each zone.

1 Introduction

In recent years, the increasing availability of location information about indi-
viduals has led to a growing use of systems that record and process location
data, generally referred to as “location-based systems”. Examples of these sys-
tems include Location Based Services (LBSs), location-data mining algorithms
to determine points of interest, and location-based machine learning algorithms
to predict traffic patterns.

While location-based systems have demonstrated to provide enormous ben-
efits to individuals and society, the growing exposure of users’ location informa-
tion raises important privacy issues. First of all, location information itself may
be considered as sensitive. Furthermore, it can be easily linked to a variety of
other information that an individual usually wishes to protect: by collecting and
processing accurate location data on a regular basis, it is possible to infer an
individual’s home or work location, sexual preferences, political views, religious
inclinations, etc.
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It is therefore important to design and implement methods for protecting the
user’s privacy while preserving the utility and the dependability of location data
for their use in location-based systems. In this paper, we report on the research
of the INRIA Comète team on this field.

A characteristics of our approach is that we focus on the problem of protecting
the user’s location, rather than the user’s anonymity. The latter is based on the
idea of hiding the association between the user’s location data and his name.
However, there have been several examples of attacks showing that anonymity
is not sufficient to protect the user: in the large majority of cases, location data
can be re-identified by using correlated information.

Furthermore, we focus on methods that provide privacy guarantees which are
(a) based on solid mathematical basis, (b) independent from the adversary side
information, and (c) robust with respect to composition of attacks.

Our approach is based on the notion of geo-indistinguishability, which is
a property similar to that of differential privacy [8]. Basically, the idea is to
obfuscate the real location by reporting an approximate one, using some random
noise. The idea is that from the reported location, the attacker may be able to
make a good guess of the area where the user is actually located, but it should
not be able to make a good guess of the exact location of the user within this
area. This meachanism can be implemented by using a noise with a Laplacian
distribution, that is a negative exponential with respect to the distance from
the real location, like in the case of differential privacy. This method provides a
good level of robustness with respect to composition of attacks, in that the level
of privacy decreases in a controlled way (linearly).

When the user makes several repeated applications of the mechanism from
related points (typically in the case of a trace), however, even a linear decrease
of the level of privacy poses a tall too high to the privacy level. To address this
problem, we propose a predictive mechanism, which avoids the application of the
mechanism when a new (noisy) point can be derived from the previous ones.

Finally, we consider the problem that raises when the space is not uniform
with respect to the hiding value: the point is that in different zones the number of
locations where the user could be located may vary a lot, and as a consequence
these zones should have a different privacy parameter. We address this prob-
lem by proposing an elastic mechanism, which is based on a notion of distance
adapted to the different zones.

1.1 Related Work

Most location privacy mechanisms proposed in the literature involve obfuscation
of the real location. The simplest methods are those based on variants of the cloak-
ing technique, which consists in hiding the real location within a region of possi-
ble locations, for instance by reporting the area around the real location, or by
using dummy locations [2,6,7,11,14,17]. Unfortunately, cloacking methods are
not robust with respect to composition. For instance, reporting the area is sub-
ject to triangulation attacks. Furthermore, they require assumptions about the
attacker’s side information. For example, dummy locations are only useful if they
look equally likely to be the real location from the point of view of the attacker.
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A second class of location obfuscation mechanisms involve the generation of
controlled noise for Bayesian adversaries. We mention in particular [10] and [15]:
The first obtains a perturbation mechanism by crossing paths of individual users,
thus rendering the task of tracking individual paths challenging. The second
obtains an optimal mechanism (i.e., achieving maximum level of privacy for the
user) by solving a linear program in which the constraints are determined by the
quality of service and by the user’s profile.

1.2 Plan of the Paper

In the next section we present our basic approach to location privacy, based o
the notion of geo-indistinguishability. In Sect. 3 we then discuss the problems
that raise when we repeatedly use the mechanism along a trace, and when the
space is not uniform from the point of view of location hiding, and we illustrate
our approach to address these problems. Finally, Sect. 4 presents some future
work.

2 Geo-Indistinguishability

Fig. 1. The prob. density functions
of two planar Laplacians, centered on
the (real) locations (−2,−4) and (5, 3)
respectively.

Our approach is based on the property of
geo-indistinguishability [1], which guaran-
tees that the user’s location is protected,
within a radius r, with a level of noise that
decreases with r, at a rate that depends
on the desired level of privacy. Intuitively,
this means that the real location is highly
indistinguishable from the locations that
are close, and gradually more distinguish-
able from those that are far away. This
characteristics allows us to obtain a good
level of privacy without significant loss of
utility.

From a technical point of view,
geo-indistinguishability is a particular
instance of d-privacy [4], an extension of
differential privacy [8] to arbitrary metric

domains, obtained by replacing the Hamming distance, implicit in the definition
of differential privacy, with the intended distance – namely the geographical
distance in our case. Like differential privacy, geo-indistinguishability is inde-
pendent from the side knowledge of the adversary and robust with respect to
composition of attacks.

We have implemented geo-indistinguishability by adding random noise drawn
from a planar Laplace distribution, see Fig. 1. In [1] we have compared this mech-
anism with the representatives of the other methods proposed in the literature
(the cloaking and the linear programming mechanisms), using the privacy metric
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proposed in [15]. It turns out that our mechanism offers the best privacy guar-
antees, for the same utility, among all those which do not depend on the prior
knowledge of the adversary. The advantages of the independence from the prior
are obvious: first, the mechanism is designed once and for all (i.e. it does not need
to be recomputed every time the adversary changes, it works also in simultane-
ous presence of different adversaries, etc.). Second, and even more important, it
is applicable also when we do not know the prior.

Our technique can be used to enhance any application for location-based
services with privacy guarantees, and can be implemented on the client side
of the application. To this purpose, we are developing a tool, called Location
Guard.

2.1 Location Guard

Location Guard [https://github.com/chatziko/location-guard] is an open source
web browser extension based on geo-indistinguishability, that provides location
privacy when using the HTML5 geolocation API (Fig. 2).

Fig. 2. Privacy level config-
uration on Android, ru in
purple and rp in pink.

When a page is loaded and before any
other code is executed, Location Guard injects
a small snippet of JavaScript that redefines
geolocation.getCurrentPosition, the main func-
tion provided by the Geolocation API to retrieve the
current position. When the rest of the page code
runs and tries to access this function, it gets inter-
cepted by Location Guard, which in turn obtains
the real location from the browser, sanitizes it and
returns it to the page.

The location is sanitized through the use of ran-
dom noise drawn from a Planar Laplace distribu-
tion. The amount of noise added can be configured
easily with a single parameter, the privacy level.
Location guard provides three predefined levels
{high,medium,low} and the user is also free to pick
any other value. Additionally the privacy level can
be adjusted per domain, so that different protec-
tion can be applied to different services: a larger
amount of noise can be added to a weather service
as opposed to a point of interest search engine.

An advantage of geo-indistinguishability is that it is relatively intuitive to
explain to the user the effect of changing the levels on privacy and utility. For
a certain privacy level we can compute two radiuses rp and ru, respectively the
radius of privacy protection and of utility. rp is the area of locations highly indis-
tinguishable from the actual one, i.e. all locations producing the same sanitized
one with similar probabilities. ru is the area in which the reported location lies
with high probability, thus giving an idea of the utility that the user can expect.

https://github.com/chatziko/location-guard
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Both these radiuses can be easily plotted on a map to give the user a direct
impression of privacy and utility, according to the level of protection chosen.

Location Guard has reached considerable popularity since its release in Fall
2014, covering Chrome, Firefox and Opera browsers, and more recently moving
to mobile devices with Firefox for Android. As of June 2015 Location Guard
counts 9,800 active users in Google Chrome, 29,400 in Mozilla Firefox (including
Android) and 5,000 downloads in Opera. Adoption has been mainly through the
browser extension stores, as well as through technology blogs covering Location
Guard [3,13]. In June 2015 it was chosen as “Pick of the Month” in Mozilla
Add-ons Blog [16].

3 Making Geo-Indistinguishability Flexible
Over Time and Space.

Geo-indistinguishability and its current implementation Location Guard are
just a preliminary approach to location privacy, and they present two main
limitations. First, when used repeatedly, there is a linear degradation of the
user’s privacy that limits the use of the mechanism over time. Second, the level
of noise of the Laplacian mechanism has to be fixed in advance independently
of the movements of the user, providing the same protection in areas with very
different privacy characteristic, like a dense city or a sparse countryside. This
limits the flexibility of the mechanism over space.

In this section we present two extensions that we developed to overcome these
issues as well as future challenges that we plan to tackle. Many of techniques
presented are currently being introduced into Location Guard, in order to extend
its range of applications and at the same time provide a realistic experimentation
platform to evaluate them.

3.1 Repeated Use Over Time

The main limitation of Location Guard is that, so far, it works well when used
sporadically, to protect a single location, for instance when querying an LBS to
find some point of interest (restaurants, cinemas,. . . ) in the vicinity.

We aim at extending the range of applications by handling traces (sequences
of location points). This is a very challenging task. Note, in fact, that the naive
approach of applying the noise at every step would cause a dramatic privacy
degradation, due to the large number of points. Intuitively, in the extreme case
when the user never moves (which corresponds to maximum correlation), the
reported locations would be centered around the real one, thus revealing it more
and more precisely as the number of queries increases. Technically, the indepen-
dent mechanism applying ε-geo-indistinguishable noise (where ε is the privacy
parameter) to n locations can be shown to satisfy nε-geo-indistinguishability.
This is a typical phenomenon in the framework of differential privacy, and con-
sequently nε is thought as a privacy budget, consumed by each query. This lin-
ear increase makes the mechanism applicable only when the number of queries
remains small.
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Fig. 3. Original trace (red),
sampled trace (light blue) and
reported trace (yellow) (Color
figure online).

In [5] we explore a trace obfuscation mech-
anism with a smaller budget consumption rate
than the one produced by applying independent
noise. We show that correlation in the trace can
be in fact exploited through a prediction func-
tion that tries to guess the new location based
on the previously reported locations. Predicted
points are safe to report directly (the adversary
would have guessed them in any case) and thus
have a smaller footprint on the privacy budget,
because they reduce the need of applying the
noise at every step. However the inclusion of the
prediction function in a privacy mechanism has
to be private itself, leading to additional costs for
the privacy budget of the user. If there is consid-
erable correlation in the input trace, our carefully
designed budget managers handle this balance
of costs, producing a more efficient predictive
mechanism.

The mechanism is evaluated using the Geo-
life and T-Drive datasets, containing traces of
thousands of users in the Beijing area. The users
are modeled as accessing a location-based service

while moving around the city. The prediction function used is simply behaving
like a cache: It predicts that the user doesn’t move and that the next location
will be the same as the last one. This prediction function has the advantages of
being trivial to implement, independent of the user profile and proved to be very
effective in our evaluation.

Example of Sanitized Trace. Fig. 3 displays one of Geolife trajectories sanitized
with fixed utility. The original trace, in red, starts south with low speed, moves
north on a high speed road and then turns around Tsinghua University for some
time. In order to model a user’s sporadic behavior we sample the trace obtaining
the 9 light blue dots, which are locations where the user queries the LBS. Finally
in yellow we have the reported trace, sanitized by the predictive mechanism, with
only 3 locations. The first used once for the point at the bottom, the second 7
times for the one in the middle and the third twice for point in the top. In this
example the mechanism needed to sanitize with noise only 3 locations, using
them as prediction for the other 6.

3.2 Highly Recurrent Locations

Even with the budget savings of the predictive mechanism, the user’s privacy is
bound to be breached in the long run in those locations that are highly recurrent,
such as home and work. We propose a simple construction to model “geographic
fences”: Areas around highly recurrent locations where the mechanism reports
uniformly, effectively stopping the privacy erosion. On one side the user has to
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Fig. 4. Probability distribution of reported location inside and outside the fence.
Darker colors indicate more likely values (Color figure online).

release publicly the position of her fences but on the other the budget cost when
reporting from inside them is zero, leading to a practical solution that can be
used in combination with the predictive mechanism.

In Fig. 4 we can see an example of fence introduced in an elastic metric. On
the left we have the distribution of reported locations inside the fence, that is
perfectly uniform, covering a few blocks and proving an adequate level of privacy
while costing zero on the budget. On the right we can see the distribution of
reported locations of a point right outside, the fence is clearly visible and the
mechanism reports right around it.

3.3 Flexible Behavior Over Space

Another shortcoming of standard geo-indistinguishability is that the privacy level
has to be fixed independently of the user location. For example, once set to have
a protection in a radius of 200m, that is sufficient in a dense urban environment,
the same protection will be provided when the user moves outside the city,
possibly in sparsely populated area. The problem is described in more depth in
[12], where we propose an elastic mechanism that adapts the level of noise to
the semantic characteristics of each location, such as population and presence
of POIs. We perform an extensive evaluation of our technique by building an
elastic mechanism for Paris’ wide metropolitan area, using semantic information
from the OpenStreetMap database.

The resulting privacy mass of each location is shown in Fig. 5a, where white
color indicates a small mass while yellow, red and black indicate increasingly
greater mass. The figure is just a small extract of the whole grid depicting the
two smaller areas used in the evaluation: central Paris and the nearby suburb of
Nanterre. Note that the colors alone depict a fairly clear picture of the city: in
white we can see the river traversing horizontally, the main ring-road and several
spots mark parks and gardens. In yellow colors we find low density areas as well
as roads and railways while red colors are present in residential areas. Finally
dark colors indicate densely populated areas with presence of POIs.
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(a) Privacy mass of each location (b) Expected error at each location

Fig. 5. Paris’ center (right) and the nearby suburb of Nanterre (left)

Figure 5b shows our utility per location, computed as the expected distance
between the real and the reported location. Compared to Fig. 5a it is clear that
areas with higher privacy mass result to less noise. Populated areas present a
good and uniform error that starts to increase on the river and ring-road. On
the other hand, the large low-density areas, especially in the Nanterre suburb,
have a higher error because they need to report over larger areas to reach the
needed amount of privacy.

We compare the resulting mechanism against the Planar Laplace mechanism
satisfying standard geo-indistinguishability, using two real-world datasets from
the Gowalla and Brightkite location-based social networks. The results show that
the elastic mechanism adapts well to the semantics of each area, adjusting the
noise as we move outside the city center, hence offering better overall privacy.

3.4 A Tiled Mechanism

The extreme flexibility of the elastic mechanism, that can change its behavior
for locations just 100 meters apart, comes with the cost of a heavy phase of pre-
processing to build its semantic map, which is not suitable for Location Guard.

For this reason we propose a lighter version of the elastic mechanism, that
requires no pre-computation of the metric, and is thus suitable for lower end
devices and for an easier inclusion in existing systems. Of course this tiled mech-
anism provides less flexibility: Instead of adapting the noise differently in loca-
tions tens of meters apart, it can only adapt to large areas of a city, covering
tens of square kilometers. These areas, that we call tiles, area small enough to
distinguish a park from a residential area, but still easily computable. In order to
build the set of tiles, we query two online geographical services, overpass-turbo
and dbpedia to obtain a set of polygons together with a quantitative description
of the amount of privacy they provide. This dataset should cover an area large
enough to contain most of the user usual movement and it can easily reach a
few tens of kilometers while retaining a small size. Once this small dataset is
build, we would have a mapping from tiles to their privacy mass, and we would
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Fig. 6. Polygons computed for New York and Paris

use it to define a function � that, for each location, finds the containing polygon
and returns a privacy level adapted to the privacy mass provided by the tile.
Examples of the kind of maps that we aim at obtaining with this method are
shown in Fig. 6.

The mechanism described above, despite achieving the flexible behavior we
needed, would not satisfy geo-indistinguishability. It is enough to notice that
the level of protection, a public information of the mechanism, depends on the
current location of the user, which is sensitive. In order to solve this problem we
would need to make � itself differentially private. A simple way to do it could
be to first sanitize the current location with a fixed privacy level and then feed
it to �. Post processing a sanitized location does not pose any threat to privacy
and would allow the mechanism to reduce sharply the amount of noise added to
location in very private area.

4 Future Work

Regarding the geographic fences we are currently evaluating how to automati-
cally configure their position and size. The user input would be the best option,
however they could also be inferred and suggested automatically. In [9] the
authors developed an attack to identify POI of a specific user, from a set of
mobility traces. A similar technique could be employed on the user’s phone, over
a training period, to collect and analyze her movements for a few days. The
mechanism would then automatically detect recurrent locations and suggest the
user to fence them, possibly detecting more than just home/work locations.

With the use of geolocated queries, such as those used to extract privacy
mass of the elastic mechanism, we could determine the size of the fence so to
include a reasonable amount of buildings for home and other POIs for work.

Concerning the elastic mechanism in some cases we might want to tailor our
mechanism to a specific group of users, to increase the performance in terms of
both privacy and utility. In this case, given a prior probability distribution over
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the grid of locations, we can use it to influence the privacy mass of each cell. For
instance, if we know that our users never cross some locations or certain kind of
POIs, we can reduce their privacy mass.

Moreover, we are interested in queries that reward variety other that richness
e.g. a location with 50 restaurants should be considered less private than one
with 25 restaurant and 25 shops.

Finally, different grids could be computed for certain periods of the day or
of the year. For instance, our user could use the map described above during
the day, feeling private in a road with shops, but in the evening only a subset
of the tags should be used as many activities are closed, making a road with
many restaurants a much better choice. The same could be applied to seasons,
imagine for example how snow affects human activities in many regions.

Additionally we are also actively working on the tiled mechanism in order to
provide both a formal proof of privacy as well as an efficient implementation to
include in Location Guard.
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