
Models in Software Architecture Derivation
and Evaluation: Challenges and Opportunities

Javier Gonzalez-Huerta, Emilio Insfran, and Silvia Abrahão(&)

ISSI Research Group, Universitat Politècnica de València,
Camino de Vera, s/n, 46022 Valencia, Spain

{jagonzalez,einsfran,sabrahao}@dsic.upv.es

Abstract. Software architecture derivation and evaluation are complex and error
prone activities that still represent an open problem with many challenges and
opportunities where model-driven software development can play a leading role.
In software product line development, the use of model-driven principles could
help by providing a richer semantic representation of a product line and by
capturing the architectural design decisions and its impact on the product quality
attributes. In this chapter, we analyze the main challenges and opportunities
surrounding the product architecture derivation and evaluation and introduce
QuaDAI, a method for the derivation, evaluation, and improvement of product
architectures in model-driven software product line development environments.
The method comprises a multimodel, which represents the different viewpoints of
a software product line, and a process conducted by model transformations that
automate the derivation, evaluation, and improvement of product architectures.

Keywords: Software architectures � Software product lines � Model-driven
development � Quality assurance

1 Introduction

Software architecture derivation and evaluation in Software Product Line (SPL) devel-
opment environments is a complex and error-prone process [1] that still represents an
open problem with many challenges and opportunities where Model-Driven Software
Development (MDSD) can play a leading role. MDSD advocates the use of models not
only to document the software development lifecycle but also to obtain the final product
as a result of a model transformation chain. MDSD has been traditionally applied in the
development of SPLs, especially for solving the configuration and product architecture
derivation problem. A SPL is a set of software-intensive systems sharing a common,
managed set of features that satisfy the specific needs of a particular market segment or
mission and that are developed from a common set of core assets in a prescribed way
[2]. SPLs emerged as a promising approach to improve software development processes
so as to reduce costs and enhance productivity and product quality.

Quality assurance is a crucial activity for the success of any software development
effort, but is even more important in SPL development since a defect in a core asset
may impact negatively on the quality of the whole set of products within the product
line. This fact is especially relevant when dealing with the software architecture.
Software architecture is a key asset in SPL development and plays a dual role: on the

© Springer International Publishing Switzerland 2015
S. Hammoudi et al. (Eds.): MODELSWARD 2014, CCIS 506, pp. 12–31, 2015.
DOI: 10.1007/978-3-319-25156-1_2

one hand, the product line architecture (PLA) should provide variation mechanisms that
help to achieve a set of explicitly allowed variations and, on the other hand, the product
architecture (PA) is derived from the PLA by exercising its built-in architectural var-
iation points [2]. Software architectures are the means for the attainment of the
non-functional requirements (NFRs) of the products that will be derived from the
product line, and thus assuring the achievement of those NFRs during the architecture
derivation process is a critical activity in the development process.

In the last few years, MDSD has been applied in several research works to face the
product architecture derivation problem in SPL environments (e.g., [3–17]) although
the majority of these approaches do not properly integrate NFRs in the derivation
process. It is surprising that being quality one of the main reasons for the adoption of
the SPL approach, it has been often neglected in such a critical and complex process
[18]. In addition, in those cases in which the derived PA is evaluated after its deri-
vation, this evaluation is carried out by using software architecture evaluation methods
that have not been specially defined for SPLs (e.g., ATAM [19], SAAM [20]). We
believe that the use of model-driven principles could help by providing a richer
semantic representation of a software product line and by capturing the architectural
design decisions and its impact on the product quality attributes.

In this chapter, we first discuss the challenges identified in the area of architecture
derivation and evaluation in Model-Driven Software Product Line Engineering
(MD-SPLE), and then introduce QuaDAI [21, 22], an integrated method for the der-
ivation, evaluation, and improvement of product architectures in MD-SPLE environ-
ments. The method comprises a multimodel, which represents the different viewpoints
of the software product line, and a process conducted by model transformations that
automate the derivation, evaluation, and improvement of product architectures.

The remainder of the chapter is structured as follows. Section 2 discusses existing
approaches that deal with the derivation and evaluation of architectures in SPL
development. Section 3 introduces QuaDAI, a method to support the derivation,
evaluation and improvement of product architectures in MD-SPLE environments.
Finally, Sect. 4 provides our conclusions and final remarks.

2 Existing Approaches for Architecture Derivation
and Evaluation in MD-SPLE

In this section, we analyze the approaches that support the derivation and quality eval-
uation of product architectures in MD-SPLE. Section 2.1 analyzes existing approaches for
product architecture derivation in MD-SPLE. Section 2.2 analyzes existing software
architecture evaluation methods that allow the quality evaluation and analysis of product
architectures in SPL development. Finally, Sect. 2.3 summarizes the main findings.

2.1 Product Architecture Derivation in MD-SPLE

Despite the huge number of research work dealing with architecture derivation in SPL
development, the introduction of quality concerns in this process has not received a

Models in Software Architecture Derivation and Evaluation 13

proper coverage. In Table 2, we show a summary of the classification of these
approaches by applying an extension of the classification criteria defined by Rabiser
et al. [1] (see Table 1).

Given a set of architectural variation points for a product line architecture one of the
main challenges is how to decide which variation points should be selected and which
ones should not taking into account not only functional but also non-functional
requirements. For these reason, we have suggested the criteria on Table 1.

The analysis show that there is a lack of approaches that: (i) can be applied
regardless the architectural description language or architectural viewpoint; (ii) allow
the explicitly representation of the architectural variability; (iii) allow the explicit
representation of the NFRs as well as the relationships among the NFRs and the
features that represent the SPL external variability but also the architectural variants
that realize this external variability; (iv) allow to configure the product by considering
both the features and the NFRs that the product must satisfy; (v) solve the architectural
variability automatically by using model transformations.

2.2 Architecture Evaluation in MD-SPLE

Over the last years, several approaches that allow the quality evaluation and assessment
of SPL product architectures have been proposed (e.g., [19, 23, 25–37]). In Table 4, we
show the summary of the classification of these approaches by applying the classifi-
cation criteria shown in Table 3.

Table 1. Architecture derivation classification criteria.

Criteria Description

C1* Non-functional requirements (NFRs) support
C2* Explicit representation of NFRs/quality attributes and their relationships with the

features (SPL external variability) or the architectural variants
C3** Configuration support
C4** Automated derivation support
C5*** Adaptability and extensibility (i.e., metamodel support, extension points for the

integration of domain specific generators)
C6*** Flexible and user-specific visualizations of variability (filtering, classification and

ordering support based on tasks, users, roles etc.)
C7 Explicit representation of architectural variability
C8 Architectural views support
C9 ADL/Modeling language support
C10 Configuration consistency checking

*C1 and C2: Adapted from the “Application requirements management support” criterion
described in [1]
**C3 and C4: Adapted from the “Automated and interactive variability resolution” criterion
described in [1]
***C5 and C6: Proposed at the systematic review by Rabiser et al. [1]

14 J. Gonzalez-Huerta et al.

An analysis of these approaches reveals that the majority of them have not been
proposed specifically for SPL development and only few of them provide coverage to
the evaluation of product architecture at derivation-time (e.g., [23, 33–37]). The majority

Table 2. Classification of architecture derivation approaches.

Approach C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Koalish [4] − − + − + − + C&C Own −

Cabello et al. [6] − − + + + − + + Own +
Botterweck et al.
[5]

− − + + + − + (FM/C) C&C + + (FM/C)

Duran-Limon
et al. [8]

− − + + − − + (OWL
and
FM)

C&C + + (FM)

Guana and
Correal [23]

+ − + + + − + C&C + −

Czarnecki and
Antkiewicz [9]

− − + + + − + + + + (FM)

Ziadi and
Jézéquel [10]

+ − + + + − Model + UML +

PLUS-EE [11] − − + + − − Model Multiple
viewpoints

UML +

Perrouin et al.
[12]

− − + + + − + − UML +

Schaefer et al.
[13]

− − + + + − + CoBoxes CoBoxes −

Tawhid and
Petriu [14]

− − − + − − Model Structure Marte −

Sánchez et al.
[15]

− − − + + − + + + −

FeatureMapper
[16]

− − + + + − + (FM and
Model)

+ + +

Haugen et al.
[24]

− − + + + − + + + +

Legend: FM: Feature Model; C&C: Component and Connector; FM/C: Feature Model and
Component Model; +: Supported; −: Not Supported; ± Partially Supported

Table 3. Architecture evaluation classification criteria.

Criteria Description

C1 Defined for evaluating product architectures (PA)
C2 Multi-attribute support
C3 Objective evaluation (e.g., metric-based evaluation)/Subjective evaluation

(e.g., scenario-based evaluation)
C4 Multi-architectural viewpoint/Multi-architectural description language
C5 Derivation-time evaluation

Models in Software Architecture Derivation and Evaluation 15

only provide scenario-based subjective evaluation (e.g., [19, 23, 25–28, 30, 31, 35–37])
and only few of them provide software metrics that allow to perform an objective
evaluation of the derived product architecture through measurement processes (e.g., [29,
32–34]). However, these approaches only cover performance metrics (e.g., [32–34]) or
do not cover the evaluation of product architectures (e.g., [29]). None of the approaches
allow the explicit representation of design decisions and their impact on the product
quality attributes.

The main finding of this analysis is that the architecture evaluation in MD-SPLE is
not sufficiently covered by methods that allow the evaluation of product architectures
regardless the set of quality attributes or the nature of the architecture being evaluated.
In addition, we observed a lack of metric-based product architecture evaluation
methods that can be applied at derivation time. In SPLE development, variability in
quality attribute levels is also possible and thus the application of metric-based eval-
uation methods at derivation-time will allow us to analyze whether the measured values
for a specific configuration are within the limits established for the product line or not.
The evaluation of quality attributes after the derivation (or during derivation time)
allows us the early detection of potential problems, reducing costs and enhancing
productivity and product quality.

2.3 Discussion

The main finding of the analysis of existing works in the field is that there is lack of
methods that support the derivation, evaluation and improvement of product architectures
in an integrated manner, by means of evaluation mechanisms that allow us to ensure the
fulfillment of the desired quality attribute levels at derivation and evaluation time.

Table 4. Classification of architecture evaluation approaches.

Method C1 C2 C3 C4 C5

ATAM [19] − + − + −

FAAM [25] − + − + −

D-SAAM [26] − + − + −

ALMA [27] − − (Modifiability) − + −

AQA [28] − + − + −

Alves et al. [29] − + + + −

Gannod and Lutz [30] − + − + −

Maccari [31] − − (Evolution) − + −

Riva and Rosso [32] − − (Evolution) + + −

Tawhid and Petriu [33] + − (Performance) + − +
Alonso et al. [34] + − (Performance) + + +
Guana and Correal [20] + + − + +
E-ATAM [35] + (PLA/PA) + − + +
HoPLAA [36] + (PLA/PA) + − + +
CaLiPro [37] + (PLA/PA) + − + +

16 J. Gonzalez-Huerta et al.

A lot of effort have been spent in obtaining optimal solutions for the configuration
problem [38–40], but these efforts are meaningless if the product obtained after the
derivation do not fulfill the quality attribute levels that it is supposed to have. Fur-
thermore, in many occasions the evaluations do not take into account the unpredict-
ability of certain quality attributes [41] which makes that certain properties could not be
modeled as the sum of the properties of their parts. This introduces a degree of
uncertainty that can only be solved through the measurement of the actual values of
these properties once the software artifacts have been obtained. Finally, the majority of
the approaches have been tailored for a specific modeling language or architectural
description language, or for a specific architectural viewpoint.

All the problems described above is what has motivated us to define QuaDAI as an
integrated product architecture derivation, evaluation and improvement method that is
applicable regardless the quality attributes to be evaluated or the architectural
description languages used to specify the architecture or the architectural viewpoints of
interest. We have also faced the problem of empirically validate the usefulness of the
method through a family of experiments reported in [22].

3 A Multimodel Approach for the Derivation, Evaluation
and Improvement of Product Architectures

QuaDAI is a generic, integrated method for the derivation, evaluation and improvement
of product architectures regardless the architectural description language in which they
are expressed or the domain. It is based in a multimodel [42]) that represents the
different SPL viewpoints and a process consisting of a set of activities conducted by
model transformations.

The approach is supported by a prototype1 that gives support to the configuration,
consistency checking and generation of the product architecture. The prototype allows
to import feature models and specifications defined using third party tools and to
establish the relationships among them so as to automate the product architecture
derivation.

The rest of the section is structured as follows: Sect. 3.1 introduces the example we
use to illustrate the method; Sect. 3.2 presents the multimodel for representing SPLs;
Sect. 3.3 introduces the main activities of the QuaDAI process; Sect. 3.4 describes the
details of the product architecture derivation; and finally, Sect. 3.5 describes the
product architecture derivation and improvement activities.

3.1 An Illustrative Example

The different activities of the approach are illustrated through the use of a running
example: a SPL from the automotive domain that comprises the safety critical
embedded software systems responsible for controlling a car. This SPL comprises

1 The prototype is available for download at: http://users.dsic.upv.es/*jagonzalez/CarCarSPL/index.
html.

Models in Software Architecture Derivation and Evaluation 17

http://users.dsic.upv.es/%7ejagonzalez/CarCarSPL/index.html
http://users.dsic.upv.es/%7ejagonzalez/CarCarSPL/index.html

several features such as Antilock Braking System, Traction Control System, Stability
Control System or Cruise Control System2.

The Cruise Control System feature incorporates variability. This variability is
resolved depending on other selections made on a feature model (i.e., the selection of
the cruise control together with the park assistant implies the positive resolution of an
extended version of the cruise control). Figure 1 shows an excerpt of the feature model
that represents the SPL external variability.

3.2 A Multimodel for Specifying SPLs

Traditional product line development process are based on: (1) the reuse of software
assets (e.g., components, web services) that have been previously developed and
stored; and (2) the realization of a production plan addressed to a product family which
share a common functionality (product line architecture) but that vary in some features
(variants). This approach can only be realized by assuming that we have a limited
amount of variants, perfectly defined, and by assuming that these variants can be
captured as instances of a feature model. However this is not realistic: variants go
beyond the monotonic addition/removal of functionality grains from the product line
architecture. For instance, changes in the structure or behavior of the application that is
being produced can impact its quality, even for the same functionality, thus making the
product unfeasible. Moreover, different properties of the application domain, design
decisions, usability and user requirements, etc. are difficult to capture by means of only
one feature model. This leads to the fact that only one feature model is not sufficient to
define a software product line, but different views are needed.

Our approach is based on the existence of several models or system views (e.g.,
functionality, features, quality) with relationships among them. This approach implies
the parameterization of the software production process by means of a multimodel

VehicleControlSystem
Attributes

[1..10]

ABS
Attributes

TractionControl
Attributes

EstabilityControl
Attributes

CruiseControl
Attributes

AutoPark
Attributes

MultimediaSystem
Attributes

[1..2]

FM_CD
Attributes

B_W_OnboardComputer
Attributes

Color_OnboardComputer
Attributes

GPS
Attributes

FM_CD_Charger
Attributes

ParkAssistant
Attributes

[1..1]

[0..1]

[0..1]

[0..1] [0..1] [0..1]

[0..1]

[0..1]

[0..1]

[0..1]

[0..1]

[0..1]

Fig. 1. Feature model representing the SPL external variability.

2 The whole specification of the example is available at http://users.dsic.upv.es/*jagonzalez/
CarCarSPL/links.html.

18 J. Gonzalez-Huerta et al.

http://users.dsic.upv.es/%7ejagonzalez/CarCarSPL/links.html
http://users.dsic.upv.es/%7ejagonzalez/CarCarSPL/links.html

which is able to explicitly represent the different views of the products within the
product line and the relationships among them.

A multimodel can be defined as a set of interrelated models that represent the
different viewpoints of a particular system. A viewpoint is an abstraction that yields the
specification of the whole system restricted to a particular set of concerns, and it is
created with a specific purpose in mind. In any given viewpoint it is possible to produce
a model of the system that contains only the objects that are visible from that viewpoint
[43]. Such a model is known as a viewpoint model, or view of the system from that
viewpoint. The multimodel permits the definition of relationships among model ele-
ments in those viewpoints, capturing the missing information that the separation of
concerns could lead to [42].

The multimodel used to specify SPLs in order to support the derivation, evaluation
and improvement of product architectures is composed of (at least) four interrelated
viewpoints:

• Variability Viewpoint, which represents the SPL external variability expressing
the commonalities and variability within the product line. Its main element is the
feature, which is a user-visible aspect or characteristic of a system [44]. It is
expressed in the multimodel by means of a variant [45] of the cardinality-based
feature model (see Fig. 1).

• Architectural Viewpoint, which represents the architectural variability of the
product line architecture that realizes the external variability of the SPL expressed in
the variability viewpoint. It is expressed in the multimodel by means of the
Common Variability Language (CVL) and its main element is the Variability
Specification (VSpec). We only represent in the multimodel the architectural var-
iability of the product line architecture. The PLA itself is represented in a base
model, which is referenced by the CVL specification. A base model, under the CVL
terminology, is a model on which variability is defined using CVL [46]. The base
model is not part of CVL and can be an instance of any metamodel defined via
MOF [46].

• Quality Viewpoint, which represents the hierarchical decomposition of quality into
sub-characteristics, quality attributes, metrics and the impacts and constraints
among quality attributes. It is expressed in the multimodel by means of a quality
model for software product lines [47], which extends the ISO/IEC 25010 (SQuaRE)
[48] and allows the definition of NFRs as constraints affecting characteristics,
sub-characteristics and quality attributes.

• Transformation Viewpoint [49] that contains the explicit representation of the
design decisions realized by the different model transformation processes that inte-
grate the production plan for the model-driven development of SPLs. Alternatives
may appear in a model transformation process when a set of constructs in the source
model admits different representations in the target model. The application of each
alternative transformation could generate alternative target models that may have the
same functionality but might differ in their quality attributes. In this work, we focus
on architectural patterns [50, 51]. Architectural patterns specify solutions to recurrent
problems that occur in specific contexts [52]. They also specify how the system will
deal with one aspect of its functionality, impacting directly on the product quality

Models in Software Architecture Derivation and Evaluation 19

attributes. Architectural patterns can be represented as architectural transformations,
as a means to ensure the quality attributes attained by the product architectures.
Figure 2 shows an excerpt of the transformation viewpoint of the multimodel,
containing one design decision in which we have three alternative architectural
patterns that can be applied by means of their own transformation rules.

The multimodel also represents the relationships among elements of each viewpoint
with different semantics as is_realized_by [53] or impact relationships [42]. An excerpt
of these relationships is shown in Fig. 3. Through these relationships we can describe in
the multimodel:

(i) How the UserSafetyLevel1 NFR is_realized_by a set of features (e.g., the ABS or
the Stability Control).

(ii) How the selection of a given feature impacts positive or negatively on a quality
attribute.

Design decision 1

Tranformation 1

Transformation Rule R1

Alt 1:Sanity Check Alt 2:TripleRedundancy Alt 3:Watchdog

Transformation Rule R2

Transformation Rule R3 Transformation Rule R4

...

Fig. 2. Transformation viewpoint excerpt.

Qj

NFR_i

Quality Attribute

Qj

Quality Attribute

Non-Functional
RequirementFeature

Architectural
Variation Point

Attributes <<is realized by>>

NFR_i

Non-Functional
Requirement

<<is realized by>>

Wheel Rotation Se...

Rotation Sensor

Architectural
Variation Point

<<is realized by>>

Wheel RotationSe...

Rotation Sensor
Feature

Architectural
Variation Point

ABS

Attributes

<<Impact>>

<<Impact>>

WheelRotationSe...

Rotation Sensor

v

v

Feature

ABS

Attributes

Relationships Used during
Derivation

Relationships Used during
Transformation

Relationships Used during
Configuration

Fault Tolerance

Memory Consumption

Qj

QualityAttribute

<<Impact>>

v

ReliabilityUser Safety Level1

Maturity Level
ABS

Alt 2:Triple Redundancy

i)

ii)

iii)

iv)

v)

 vi)

Fig. 3. Multimodel relationships.

20 J. Gonzalez-Huerta et al.

(iii) How the MaturityLevel NFR is_realized_by a set of VSpecs (e.g., the
WheelRotationSensor).

(iv) How the ABS feature is_realized_by a set of VSpecs (e.g., the
WheelRotationSensor).

(v) How the positive resolution of a given VSpec (e.g. WheelRotationSensor) impacts
positive or negatively on a quality attribute (e.g., FaultTolerance).

(vi) How the selection of a given architectural transformation impacts positive or
negatively on a quality attribute.

These relationships are used to check the consistency of the product configuration
in order to decide which variation points should be resolved positively in the CVL
resolution model driving the product architecture derivation. The relationships are also
used to select and apply the architectural transformations that best fit the prioritized
quality attributes driving the transformation activity. All these activities are further
described in the following subsections.

3.3 Overview of the QuaDAI Process

The process consists of a set of activities conducted by model transformations that take
as input the multimodel viewpoints and the relationships defined among their elements.
Figure 4 shows a summary of this process that comprises four main activities:

• Obtain Product Configuration in which the application engineer defines the
configuration of the product under development by selecting the features, NFRs and
by establishing the priority of each quality attribute3.

Derivation Evaluation and
improvement

1 2

Product architecture
derivation

Application
engineer

Application
architect

Obtain product
configuration

Architecture
instanciation

Evaluation Transformation

No

YesEvaluator

3 4

Application
architect

PA Meets
NFRs

Fig. 4. QuaDAI main activities.

3 NFRs are defined in the quality viewpoint as constraints affecting the quality attributes whereas the
prioritization of the quality attributes allows expressing the relative importance of each quality
attribute.

Models in Software Architecture Derivation and Evaluation 21

• Product Architecture Instantiation in which the application architect obtains the
first version of the product architecture based on the product configuration by
resolving the architectural variability of the PLA.

• Evaluation in which the evaluator measures the derived product architecture in
order to assess the degree of fulfillment of the NFRs.

• Transformation in which the architect applies architectural transformations so as to
improve certain quality attributes when the architectural variability is not sufficient
to achieve the required NFRs for the product.

3.4 Product Architecture Derivation

The derivation process for obtaining a first version of the product architecture com-
prises two main activities: the Product configuration and the Architecture instantiation.
Figure 5 shows an excerpt of this process with its main inputs and outputs. In the
product configuration activity, the application engineer configures the product by
selecting the features and the NFRs that the product must fulfill and establishes the
quality attributes priorities in the Obtain product configuration task. These quality
attributes priorities will be used during the derivation phase to choose from a set of
architectural variants that having the same functionality differ in their quality attribute
levels, and in the evaluation and improvement phases to select the architectural
transformations to the applied to the architecture.

Once the product has been configured, we can check the product consistency
(Consistency validation task). Our approach supports the intra (e.g., consistence of the
feature model, consistence of the quality model) and inter-model consistency (e.g.,
relationships between the feature and the quality models).

1 2

Product
Configuration

Configuration

Configuration

Architecture
instantiation

Quality
viewpoint

Architectural
viewpoint

Variability
viewpoint

Multimodel

Product
requirements

Yes

No

Consistency
validation

Valid

Obtain Product

2.11.1 2.21.2

CVL resolution model
generation

Product architecture
instantiation

CVL resolution
model

in in

in

in

out in in

in in

PL architecture CVL
transformation

AADLProduct
architecture

Application
engineer

Application
architect

out

outin

Configuration?

Fig. 5. Excerpt of the derivation process.

22 J. Gonzalez-Huerta et al.

Figure 6 shows the flow of steps to obtain a valid product configuration using
QuaDAI. In the Variability viewpoint validation, we check whether the selection of
features fulfills the constraints defined in the feature model. In the Quality viewpoint
validation we check whether the priorities of the quality attributes defined in the
configuration satisfy the impact relationships and constraints among them defined in
the quality viewpoint. In the Features-NFRs validation we check whether the con-
figuration satisfies the is_realized_by relationships defined among features and NFRs
defined in the multimodel. Finally, in the Features-attributes validation we check
whether the features selected and the prioritized quality attributes do not violate the
impact relationships among features and quality attributes defined in the multimodel.
The variability viewpoint consistency validation has been operationalized by using the
FAMA [54] validator. We transform the cardinality-based feature model into the
FAMA metamodel through a QVT model transformation and we project the selection
of features by using a model to text transformation. The quality viewpoint and the
inter-viewpoint consistency checking are carried out through OCL constraints checked
at runtime by the OCLTools validator [55].

In the architecture instantiation activity, the application architect generates the
product architecture by means of two model transformation activities. The first trans-
formation, CVL resolution model generation task, takes as input a valid product
configuration and the multimodel (i.e., the relationships between the architectural
viewpoint with the variability and the quality viewpoints) and, through a QVT model
transformation, generates a CVL resolution model. With the multimodel relationships,
the QVT transformation decides which architectural variants have to be positively
resolved in each variation point.

Finally, the product architecture instantiation task, through a CVL transformation,
takes as input the CVL resolution model and generates the product architecture. This
product architecture represents the resolution of the PLA architectural variability taking

Product
configuration

Features
selection

NFRs
selection

Quality
attributes
prioritization

Valid?

Valid?

Variability
viewpoint
validation

Quality
viewpoint
validation

Yes

Yes

No

No

Intra-viewpoint validation

Consistency
validation

Valid?

Valid?

Features-NFRs
Validation

Features-attributes
validation

Yes

Yes

No

No

Inter-viewpoint validation

Fig. 6. Configuration and consistency checking process.

Models in Software Architecture Derivation and Evaluation 23

into account not only the functional requirements but also the NFRs and the quality
attributes priorities defined in the configuration.

Figure 7 shows the outline of the Product architecture instantiation in which the
product architecture is generated after the resolution of the PLA architectural variability
through the CVL resolution model generation. The product architecture shown in Fig. 7
has been generated by the product architecture instantiation for the automotive
example when the application engineer selects only the ABS feature (see Fig. 1) and
introduces the product specific NFRs, which come from the system’s requirements,
demanding a fault tolerance of the ABS greater than 99.5 % and restricting the ABS
latency time to 5 ms.

3.5 Product Architecture Evaluation and Improvement

After obtaining the product architecture during the product architecture instantiation, it
should be evaluated to assess the degree of fulfillment of the product’s NFRs and, in
those cases in which the NFRs cannot be achieved by exercising the architectural
variability mechanisms of the product line architecture pattern-based architectural
transformations can be applied to the product architecture in order to improve its
quality. This process comprises two main activities: Evaluation and Transformation.
Figure 8 shows an excerpt of this process with its main inputs and outputs.

In the Product architecture evaluation task the evaluator applies the software
measures from the quality viewpoint of the multimodel to the product architecture in
order to evaluate whether or not it satisfies the desired NFRs. This can be done by
means of various measurement methods:

• Measurement through model transformation processes: metrics that require more
complex processing can be implemented as model transformations.

• Measurement through architectural modeling tools: in those cases in which some
architectural modeling tools have mechanisms to perform the measurement, this
will be delegated to such architectural modeling tools.

NFRi

VSpeca

EVSpecb

EVSpecb

isRealizedBy

isRealizedBy

Featurea

VSpeca

VSpecb

...

CVL resolution model
generation

QVT-Relations
transformation

VSpecResolution

VSpecResolution

impact
Qa

Product architecture
instantiation

CVL
transformation

ABS Control System

Rotation_sensor_signal

Brake_pedal_signal

Brake_actuator_signal

Cruise Control System
Traction Control System

ABS Control System

Rotation_sensor_signal

Brake_pedal_signal

Brake_actuator_signal

Brake_actuators

Brake Signal

Brake pedal sensor

Brake

Rotation sensor

Wheel pulse

CVL Resolution Model

Product Architecture

Product Configuration Product Line Architecture
(as CVL Base Model)

+

Fig. 7. Product architecture instantiation.

24 J. Gonzalez-Huerta et al.

• Measurement through OCL restrictions: in those cases where the metrics can be
operationalized in this language, architectural models can be measured by using
OCL constraints defined directly on the models at M1 level by means of the OCL
Tools. These constraints can be used as a consistency validation for the obtained
architectural models (e.g., to validate the memory consumption of all the compo-
nents that combine the architecture using derived attributes).

Once the measurement process has been carried out by applying the measurement
method selected in each case, the multimodel allows us to validate the degree in which
the NFRs are fulfilled, using the measurement results. We have developed a tool that
gives support to the creation and use of multimodels and which allows, on one hand, to
specify the NFRs for both the SPL and the product under development and, on the
other hand, to enter the measurement result in the multimodel and to perform the
validation of the OCL constraints at runtime by using the OCLTools validator.

The evaluation for the example architecture shown in Fig. 7 may conclude that the
architecture meets the latency NFR but that the fault tolerance NFR is not achieved,
and architectural transformations may thus be required. In those cases in which the
NFRs cannot be achieved by exercising the architectural variation mechanisms, in the
second activity, Product Architecture Transformation, we can apply pattern-based
architectural transformations to the product architecture. This transformation uses the
impact relationships among architectural transformations and quality attributes to
determine which architectural transformation must be applied to the product line
architecture in order to achieve the desired quality attribute levels. In particular, the
architectural patterns that we used for the automotive example are: homogeneous
redundancy pattern [50] and triple modular redundancy pattern [50] whose details are
briefly introduced in Table 5.

Evaluator

Product architecture
evaluation

3

3.1

Evaluation

Configuration

Transformation

PA Meets
NFRs?

Yes

No

Product architecture
transformation

Application
architect

4

4.1

Quality
viewpoint

Transformation
viewpoint

Multimodel

Product
architecture

in in

ininin

out

(NFRS)

in

Evaluation
Report

out

Architectural
transformations

in

Fig. 8. Excerpt of the evaluation and improvement process.

Models in Software Architecture Derivation and Evaluation 25

To define the corresponding impact relationships among architectural patterns and
quality attributes, the domain architect must rank each architectural transformation with
regard to the Q quality attributes in a trade-off analysis using the AHP technique. For
each quality attribute Qa, s/he compares the N potential architectural transformation in a
pairwise comparison. To determine how an architectural transformation Ax supports the
quality attribute Qa, in comparison to the pattern Ay, a weight is assigned (1 for equally
important, 3 for moderately more important, 5 for strongly more important, 7 for very
strongly more important, and 9 for extremely more important). For example, the
domain expert defines that TMR is strongly more important (a weight of 5) than HR
with regard to fault tolerance, and that HR is moderately more important (a weight of 3)
than TMR with regard to latency.

The result of this comparison is an N x Q matrix that shows the relative support of
the different architectural patterns to the quality attributes as shown in Table 6(a). Then,
these values are normalized by applying the formula (1) to (a) to produce Table 6(b),
and finally, the impact that an architectural pattern has on a quality attribute Qa is
calculated by applying the formula (2) to produce Table 6(c). This result is stored in the
multimodel in the impact relationships among architectural transformations and quality
attributes (see Fig. 3 in Sect. 3.2) and is valid for all the products in the product line.

NormQa i; j½ � ¼ Qa i; j½ �
Pn

k¼1 Q½k; j�
ð1Þ

I i½ � ¼
Pn

k¼1 NormQa½i; k�
n

ð2Þ

Rj ¼
Xk�1

i¼0

Qi � Iij ð3Þ

In the automotive example, if the architect selects both the latency and the fault
tolerance as being of equal importance (i.e., with a weight of 0.5 for each one) the
transformation process will select the TMR pattern by applying the formula (3) to the
values shown in Table 6(c) (TMR: 0.5 * 0.83 + 0.5 * 0.24 > HR: 0.5 * 0.17 +
0.5 * 0.76). Figure 9 shows the resulting product architecture after the application of
the TMR pattern to the product architecture shown in Fig. 7.

The process iterates until the NFRs are achieved or when the architect detects that it
is not possible to build the product with the set of NFRs selected in the configuration.

Table 5. Architectural transformations description.

Name Rationale Left-hand side Right-hand side

T1: Triple Modular
Redundancy (TMR)

Only detects random faults. Since the
channels are homogeneous, any systematic
fault in one channel must be present in both
of the others.

T2: Sanity Check
Pattern (SC)

Detects gross deviations from the controlled
value to the actuator value. Provides minimal
coverage against faults.

26 J. Gonzalez-Huerta et al.

The evaluation process may result also in a renegotiation of the NFRs with the cus-
tomer. In this case, the product architecture should be re-evaluated to check the con-
formance with the new NFRs. Finally, in some cases the architect should vary some
architectural variation points to modify the candidate product architecture. For instance,
in some cases the first candidate architecture may imply the positive resolution of a set
of architectural variation points that may lead to quality attribute levels that are far
above of a given NFR. Considering another combination of architectural variation
points may also imply the fulfillment of that specific NFR but also other that were
previously unfulfilled.

4 Conclusions and Final Remarks

Although in the last few years model-driven software development have been applied
to address the problem of software architecture derivation and evaluation in SPL
development, it still presents some drawbacks and opportunities. In general, quality
assurance has not received proper coverage in existing approaches for product archi-
tecture derivation and there is a lack of generic methods that support the derivation and
evaluation of product architectures regardless the quality attributes to be evaluated, the
architectural description languages used to specify the architecture or the architectural
viewpoints of interest. We believe that the use of model-driven principles would

Table 6. Architectural patterns and quality attributes trade-off analysis.

(a)
Fault Tolerance Latency

(b)
Fault Tolerance Latency

(c)
Impacts

TMR HR TMR HR TMR HR TMR HR Fault Tolerance Latency

TMR 1 5 1 1/3 TMR 1 / 1.2 5 / 6 1 / 4 1/3 / 1.3 TMR 0.83 0.24

HR 1/5 1 3 1 HR 1/5 / 1.2 1 / 6 3 / 4 1 / 1.3 HR 0.17 0.76

Sum 1.2 6 4 1.3

wheel_signal

wheel_rotation_sensor

Brake Pedal

Brake_Request

Input Processing DataTransformation
Brake Request

Output Brake Data
Brake Request

ABS Brake Signal

Wheel Speed

On/Off Switch

Output Processing

ABS Display Signal

brake_actuator

abs_brake_actuator

Comparator

input1

input2

input3

output

Brake Pedal

Brake_Request

Input Processing DataTransformation
Brake Request

Output Brake Data
Brake Request

ABS Brake Signal

antilock_brake_system instance 1

antilock_brake_system instance 2

antilock_brake_system instance 3

Wheel Speed

On/Off Switch

Output Processing

ABS Display Signal

Brake Pedal

Brake_Request

Input Processing DataTransformation
Brake Request

Output Brake Data
Brake Request

ABS Brake Signal

Wheel Speed

On/Off Switch

Output Processing

ABS Display Signal

brake_pedal

brake_signals

user_console

user_console_outputs Comparator

input1

input2

input3

output

display

abs_display_signal

Fig. 9. Product architecture after applying the TMR pattern.

Models in Software Architecture Derivation and Evaluation 27

provide a richer semantic representation of a SPL and may be used to relate the
different activities that should be performed during the derivation and evaluation of
product architectures (e.g., the impact that SPL external variability has on the
non-functional requirements or how the architectural design decisions impact on the
quality attributes).

We have also introduced QuaDAI as an integrated, generic method for supporting
the derivation, evaluation an improvement of product architectures in MD-SPLE. In
this method, the product derivation and the architectural transformations are guided by
the relationships and constraints established in a multimodel. The multimodel provides
a sufficiently formal interrelated model that can be supported by tools capable of
automating portions of the product line production planning. The approach explore
model-driven concepts and techniques to make explicit the knowledge and rationale
used for architectural design by capturing and representing architectural design deci-
sions during the architecting process necessary for reducing architectural knowledge
evaporation.

The multimodel is a solution for documenting design decisions and their impact on
the product quality attributes. The multimodel can also be used to analyze the
cost/benefit of having core assets with certain qualities (impact on quality and cost). As
further work, we plan to improve the configuration and consistency validation mech-
anisms, to provide recommendation mechanisms based on previous selections, and to
implement consistency validation for individual entities of the multimodel. In addition,
we want to improve the impact specification mechanism and to analyze other
multi-objective optimization methods. We also plan to perform replications of the
experiments conducted to evaluate the effectiveness of QuADAI with practitioners.

References

1. Rabiser, R., Grünbacher, P., Dhungana, D.: Requirements for product derivation support:
results from a systematic literature review and an expert survey. Inf. Softw. Technol. 52,
324–346 (2010)

2. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-Wesley
Professional, Boston (2001)

3. Atkinson, C., Bayer, J., Muthig, D.: Component-based product line development: the KobrA
approach. In: 1st International Conference on Software Product Lines, pp. 289–309, Denver,
Colorado (2000)

4. Asikainen, T., Soininen, T., Männistö, T.: A Koala-based approach for modelling and
deploying configurable software product families. In: 5th International Workshop on
Product-Family Engineering, pp. 225–249, Sienna, Italy (2003)

5. Botterweck, G., Lee, K., Thiel, S.: Automating product derivation in software product line
engineering. In: Software Engineering Conference, pp. 177–182, Kaiserslautern, Germany
(2009)

6. Cabello, M.E.: Baseline-Oriented Modeling: una Aproximación Mda Basada en Líneas de
Productos Software para el Desarrollo de Aplicaciones. PhD thesis, Departamento de
Sistemas Informáticos y Computación, Universitat Poltècnica de València (2008)

28 J. Gonzalez-Huerta et al.

7. Rossel, P.O., Perovich, D., Bastarrica, M.C.: Reuse of architectural knowledge in SPL
development. In: Edwards, S.H., Kulczycki, G. (eds.) 11th International Conference on
Software Reuse, pp. 191–200, Falls Church, VA, USA (2009)

8. Duran-Limon, H.A., Castillo-Barrera, F.E., Lopez-Herrejon, R.E.: Towards an ontology-
based approach for deriving product architectures. In: 15th International Software Product
Line Conference, vol. 2, Munich, Germany (2011)

9. Czarnecki, K., Antkiewicz, M.: Mapping features to models: a template approach based on
superimposed variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005. LNCS, vol. 3676,
pp. 422–437. Springer, Heidelberg (2005)

10. Ziadi, T., Jézéquel, J.: Software product line engineering with the UML: deriving products.
In: 10th Software Product Lines Conference, pp. 557–588, Baltimore, Maryland, USA
(2006)

11. Gomaa, H., Shin, M.E.: Automated software product line engineering. In: 40th Annual
Hawaii International Conference on System Science, pp. 1–10, Hawaii, USA (2007)

12. Perrouin, G., Klein, J., Guelfi, N., Jézéquel, J.M.: Reconciling automation and flexibility in
product derivation. In: 12th Software Product Line Conference, pp. 339–348, Limerick,
Ireland (2008)

13. Schaefer, I., Worret, A., Poetzsch-Heffter, A.: A model-based framework for automated
product derivation. In: 1st International Workshop on Model-Driven Approaches in
Software Product Line Engineering, pp. 14–21, San Francisco, California, USA (2009)

14. Tawhid, R., Petriu, D.C.: Product model derivation by model transformation in software
product lines. In: 14th IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops, pp. 72–79, Newport Beach, Canada
(2011)

15. Sánchez, P., Loughran, N., Fuentes, L., Garcia, A.: Engineering languages for specifying
product-derivation processes in software product lines. In: Software Language Engineering,
pp. 188–208, Toulousse, France (2008)

16. Heidenreich, F., Kopcsek, J., Wende, C.: FeatureMapper: mapping features to models. In:
Companion of the 30th International Conference on Software Engineering, pp. 943–944,
Vancouver, Canada (2008)

17. Haugen, Ø., Moller-Pedersen, B., Olsen, G.K., Svendsen, A., Fleurey, F., Zhang, X.:
Consolidated CVL language and tool. MoSiS Project, D.2.1.4., SINTEF, Univeristy of Oslo
(2010)

18. Montagud, S., Abrahão, S.: Gathering current knowledge about quality evaluation in
software product lines. In: 13th Software Product Line Conference, pp. 91–100, San
Francisco, USA (2009)

19. Kazman, R., Klein, M., Clements, P.: ATAM: method for architecture evaluation.
CMU/SEI-2000-TR-004, ESC-TR-2000-004, Software Engineering Institute, Carnegie
Mellon University (2000)

20. Kazman, R., Bass, L., Abowd, G., Webb, M.: SAAM: a method for analyzing the properties
of software architectures. In: 16th International Conference on Software Engineering,
pp. 81–90, Sorrento, Italy (1994)

21. González-Huerta, J., Insfrán, E., Abrahão, S.: Defining and validating a multimodel
approach for product architecture derivation and improvement. In: 16th International
Conference on Model-Driven Engineering Languages and Systems, pp. 388–404, Miami,
USA (2013)

22. Gonzalez-Huerta, J., Insfran, E., Abrahão, S., Scanniello, G.: Validating a model-driven
software architecture evaluation and improvement method: a family of experiments. Inf.
Softw. Technol. 57, 405–429 (2015)

Models in Software Architecture Derivation and Evaluation 29

23. Guana, V., Correal, D.: Improving software product line configuration: a quality
attribute-driven approach. Inf. Softw. Technol. 55, 541–562 (2013)

24. Fleurey, F., Haugen, Ø., Møller-Pedersen, B.: A Generic Language and Tool for Variability
Modeling. SINTEF, Oslo (2009)

25. Dolan, T.J.: Architecture Assessment of Information-System Families: a Practical
Perspective. PhD thesis, Technische Universiteit Eindhoven (2001)

26. Graaf, B., van Dijk, H., van Deursen, A.: Evaluating an embedded software reference
architecture—industrial experience report—. In: 9th European Conference on Software
Maintenance and Reengineering, Manchester, United Kingdom (2005)

27. Bengtsson, P., Lassing, N., Bosch, J., van Vliet, H.: Architecture-level modifiability analysis
(ALMA). J. Syst. Softw. 69, 129–147 (2004)

28. Matinlassi, M., Niemelä, E., Dobrica, L.: Quality-driven architecture design and quality
analysis method. VTT Publications 456, VTT Technical Research Centre of Finland, Oulu,
Finland (2002)

29. Alves, E., Junior, D.O., Gimenes, I.M.S.: A metric suite to support software product line
architecture evaluation. In: XXIV Conferencia Latinoamericana de Informática, pp. 489–
498, Santa Fé, Argentina (2008)

30. Gannod, G., Lutz, R.: An approach to architectural analysis of product lines. In: 22nd
International Conference on Software Engineering, pp. 548–557, Limerick, Ireland (2000)

31. Maccari, A.: Experiences in assessing product family software architecture for evolution. In:
24th International Conference on Software Engineering, pp. 585–592, Orlando, Florida
(2002)

32. Riva, C., Rosso, C.D.: Experiences with software product family evolution. In: 6th
International Workshop on Principles of Software Evolution, Helsinki, Finland (2003)

33. Tawhid, R., Petriu, D.C.: Automatic derivation of a product performance model from a
software product line model. In: 15th International Software Product Line Conference,
pp. 80–89. IEEE, Munich, Germany (2011)

34. Alonso, A., García-Valls, M., Puente, J.: Assessment of timing properties of family products.
In: ESPRIT-ATES Workshop, pp. 161–169, Las palmas de Gran Canaria, Spain (1998)

35. Kim, T., Ko, I.Y, Kang, S.W., Lee, D.H.: Extending ATAM to assess product line
architecture. In: 2008 8th IEEE International Conference on Computer and Information
Technology, pp. 790–797, Khulna, Bangladesh (2008)

36. Olumofin, F.G., Misic, V.B.: A holistic architecture assessment method for software product
lines. Inf. Softw. Technol. 49, 309–323 (2007)

37. Etxeberria, L.: Evaluación de atributos de calidad en líneas de productos software de forma
efectiva en costes. PhD thesis, Departamento de Electonica e Informatica, Modragon
Unibesitatea (2008)

38. Roos-Frantz, F., Benavides, D., Ruiz-Cortés, A., Heuer, A., Lauenroth, K.: Quality-aware
analysis in product line engineering with the orthogonal variability model. Softw. Qual.
J. 20, 519–565 (2011)

39. Soltani, S., Asadi, M., Gašević, D., Simon, M.H., Bagheri, E.: Automated planning for
feature model configuration based on functional and non-functional requirements. In:
Proceedings of the 16th International Software Product Line Conference, vol. 1, pp. 56–65,
New York, NY, USA (2012)

40. Ghezzi, C., Sharifloo, A.M.: Verifying non-functional properties of software product lines:
towards an efficient approach using parametric model checking. In: 15th International
Software Product Line Conference, pp. 170–174. IEEE, Munich, Germany (2011)

41. Crnkovic, I., Larsson, M., Preiss, O.: Concerning predictability in dependable component-
based systems: classification of quality attributes. In: ICSE 2004 Workshops on Software
Architectures for Dependable Systems, pp. 257–278, Edinburgh, Scotland, UK (2004)

30 J. Gonzalez-Huerta et al.

42. González-Huerta, J., Insfran, E., Abrahão, S.: A multimodel for integrating quality
assessment in model-driven engineering. In: 8th International Conference on the Quality of
Information and Communications Technology, pp. 251–254, Lisbon, Portugal (2012)

43. Barkmeyer, E.J., Feeney, A.B., Denno, P., Flater, D.W., Libes, D.E., Steves, M.P., Wallace,
E.K.: Concepts for Automating Systems Integration. NISTIR 6928, U.S. Department of
Commerce (2003)

44. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented
Domain Analysis (FODA) Feasibility Study. CMU/SEI-90-TR-21 ESD-90-TR-222,
Software Engineering Institute, Carnegie Melon University (1990)

45. Gómez, A., Ramos, I.: Cardinality-based feature modeling and model-driven engineering:
fitting them together. In: International Workshop on Variability Modelling of
Software-Intensive Systems, pp. 61–68. Linz, Austria (2010)

46. Object Management Group: Common Variability Language (CVL) OMG Revised
Submission (2012)

47. González-Huerta, J., Insfran, E., Abrahão, S., McGregor, J.D.: Non-functional requirements
in model-driven software product line engineering. In: Proceedings of the Fourth
International Workshop on Nonfunctional System Properties in Domain Specific
Modeling Languages, pp. 1–6. Innsbruck, Austria (2012)

48. ISO/IEC: ISO/IEC 25000:2005 Software Engineering - Software product Quality
Requirements and Evaluation (SQuaRE) - Guide to SQuaRE (2005)

49. González-huerta, J., Insfran, E., Abrahão, S., Mcgregor, J.D.: Architecture derivation in
product line development through model transformations. In: 22nd International Conference
on Information Systems Development, Seville, Spain (2013)

50. Douglass, B.P.: Real-Time Design Patterns: Robust Scalable Architecture for Real-Time
Systems. Addison Wesley, Boston (2002)

51. Kruchten, P.: The Rational Unified Process, an Introduction. Addison Wesley, Boston
(1999)

52. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented
Software Architecture: a System of Patterns, vol. 1. Wiley, Chichester (1996)

53. Janota, M., Botterweck, G.: Formal approach to integrating feature and architecture models.
In: 11th Conference on Fundamental Approaches to Software Engineering, pp. 31–45,
Budapest, Hungary (2008)

54. ISA Research Group: Fama Tool Suite. http://www.isa.us.es/fama/
55. Eclipse: Eclipse OCL. http://projects.eclipse.org/projects/modeling.mdt.ocl

Models in Software Architecture Derivation and Evaluation 31

http://www.isa.us.es/fama/
http://projects.eclipse.org/projects/modeling.mdt.ocl

http://www.springer.com/978-3-319-25155-4

	Models in Software Architecture Derivation and Evaluation: Challenges and Opportunities
	Abstract
	1 Introduction
	2 Existing Approaches for Architecture Derivation and Evaluation in MD-SPLE
	2.1 Product Architecture Derivation in MD-SPLE
	2.2 Architecture Evaluation in MD-SPLE
	2.3 Discussion

	3 A Multimodel Approach for the Derivation, Evaluation and Improvement of Product Architectures
	3.1 An Illustrative Example
	3.2 A Multimodel for Specifying SPLs
	3.3 Overview of the QuaDAI Process
	3.4 Product Architecture Derivation
	3.5 Product Architecture Evaluation and Improvement

	4 Conclusions and Final Remarks
	References

