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Abstract. We consider the External Clock Synchronization problem in
dynamic sensor networks. Initially, sensors obtain inaccurate estimations
of an external time reference and subsequently collaborate in order to
synchronize their internal clocks with the external time. For simplicity,
we adopt the drift-free assumption, where internal clocks are assumed to
tick at the same pace. Hence, the problem is reduced to an estimation
problem, in which the sensors need to estimate the initial external time.
In this context of distributed estimation, this work is further relevant
to the problem of collective approximation of environmental values by
biological groups.

Unlike most works on clock synchronization that assume static net-
works, this paper focuses on an extreme case of highly dynamic networks.
We do however impose a restriction on the dynamicity of the network.
Specifically, we assume a non-adaptive scheduler adversary that dictates
an arbitrary, yet independent, meeting pattern. Such meeting patterns
fit, for example, with short-time scenarios in highly dynamic settings,
where each sensor interacts with only few other arbitrary sensors.

We propose an extremely simple clock synchronization (or an estima-
tion) algorithm that is based on weighted averages, and prove that its
performance on any given independent meeting pattern is highly com-
petitive with that of the best possible algorithm, which operates without
any resource or computational restrictions, and further knows the whole
meeting pattern in advance. In particular, when all distributions involved
are Gaussian, the performances of our scheme coincide with the optimal
performances. Our proofs rely on an extensive use of the concept of
Fisher information. We use the Cramér-Rao bound and our definition of
a Fisher Channel Capacity to quantify information flows and to obtain
lower bounds on collective performance. This opens the door for further
rigorous quantifications of information flows within collaborative sensors.
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1 Introduction

1.1 Background and Motivation

Representing and communicating information is a main interest of theoretical
distributed computing. However, such studies often seem disjoint from what may
be the largest body of work regarding coding and communication: Information
theory [7,33]. Perhaps the main reason for this stems from the fact that dis-
tributed computing studies are traditionally concerned with noiseless models of
communication, in which the content of a message that passes from one node
to another is not distorted. This reliability in transmission relies on an implicit
assumption that error-corrections is guaranteed by a lower level protocol that is
responsible for implementing communication. Indeed, when bandwidth is suffi-
ciently large, one can encode a message with a large number of error-correcting
bits in a way that makes communication noise practically a non-issue.

In some distributed scenarios, however, distortion in communication is un-
avoidable. One example concerns the classical problem of clock synchronization,
which has attracted much attention from both theoreticians in distributed com-
puting [2,25,22,30], as well as engineers [10,15,34], see [32,37,24,39] for compre-
hensive surveys. In this problem, processors need to synchronize their clocks
(either among themselves only or with respect to a global time reference) rely-
ing on relative time measurements between clocks. Due to unavoidable unknown
delays in communication, such measurements are inherently noisy. Furthermore,
since the source of the noise is the delays, error-correction does not seem to be
of any use for reducing the noise. The situation becomes even more complex
when processors are mobile, preventing them from reducing errors by averaging
repeated measurements to the same processors, and from contacting reliable pro-
cessors. Indeed, the clock synchronization problem is particularly challenging in
the context of wireless sensor networks and ad hoc networks which are typically
formed by autonomous, and often mobile, sensors without central control.

Distributed computing models which include noisy communication call for a
rigorous comprehensive study that employs information theoretical tools. Indeed,
a recent trend in the engineering community is to view the clock synchronization
problem from a signal processing point of view, and adopt tools from informa-
tion theory (e.g., the Cramér-Rao bound) to bound the affect/impact of inherent
noise [6,15], see [39] for a survey. However, this perspective has hardly received
any attention by theoreticians in distributed computing that mostly focused on
worst case message delays [2,25,22,4], which do not seem to be suitable for infor-
mation theoretic considerations. In fact, very few works on clock synchronisation
consider a system with random delays and analyse it following a rigorous theo-
retical distributed algorithmic type of analysis. An exception to that is the work
of Lenzen el al. [23], but also that work does not involve information theory.
In this current paper, we study the clock synchronization problem through the
purely theoretical distributed algorithmic perspective while adopting the signal
processing and information theoretic point of view. In particular, we adopt tools
from Fisher Information theory [35,40].
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We consider the external version of the problem [8,28,30,37] in which proces-
sors (referred to as sensors hereafter) collaborate in order to synchronize their
clocks with an external global clock. Informally, sensors initially obtain inaccurate
estimates of a global (external) time τ∗ ∈ R reference, and subsequently collab-
orate to align their internal clocks to be as close as possible to the external clock.
To this end, sensors communicate through uni-directional pairwise interactions
that include inherently noisy measurements of the relative deviation between
their internal clocks and, possibly, some complementary information. To focus on
the problems caused by the initial inaccurate estimations of τ∗ and the noise in
the communication we restrict our attention to drift-free settings [2,25], in which
all clocks tick at the same rate. This setting essentially reduces the problem to
the problem of estimating τ∗. See, e.g., [14,36,38] for works on estimation in the
engineering community. In this context of distributed estimation, our model is
further relevant to collective approximation of environmental values by biological
groups [19,26].

With very few exceptions that effectively deal with dynamic settings [9,20],
almost all works on clock synchronization (and distributed estimation) consid-
ered static networks. Indeed, the construction of efficient clock synchronization
algorithms for dynamic networks is considered as a very important and chal-
lenging task1 [32,37]. This paper addresses this challenge by considering highly
dynamic networks in which sensors have little or no control on who they interact
with. Specifically, we assume a non-adaptive scheduler adversary that dictates in
advance a meeting-pattern for the sensors. However, the adversary we assume is
not unlimited. Specifically, in this initial work2 we restrict the adversary to pro-
vide independent-meeting patterns only, in which it is guaranteed that whenever
a sensor views another sensor, their transitive histories are disjoint3. Although
they are not very good representatives of communication in static networks, inde-
pendent meeting patterns fit well with highly stochastic communication patterns
during short-time scales, in which each sensor observes only few other arbitrary
sensors (see discussion in Section 2). Given such a meeting-pattern, we are con-
cerned with minimizing the deviation of each internal clock from the global time.

As our objective is to model small and simple sensors, we are interested in
algorithms that employ elementary computations and economic use of communi-
cation. We use competitive analysis to evaluate the performances of algorithms,
comparing them to the best possible algorithm that operates under the most

1 For example, dynamic meeting patterns prevent the use of classical external clock
synchronization algorithms (e.g., [27,30]) that are based on one or few source sensors
that obtain accurate estimation of the global time and govern the synchronization
of other sensors.

2 We assume independence for simplicity. As evident by this work, the independent
case is already rather complex. We leave it to future work to handle more complex
dependent scenarios.

3 Another informal way to view such patterns is that they guarantee that, given the
global time, whenever a sensor views another sensor, their local clocks are indepen-
dent; see Section 2 for a formal definition.
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liberal version of the model that allows for unrestricted resources in terms of
memory and communication capacities, and individual computational ability.

Due to space considerations, throughout this paper, most proofs are omitted.
These proofs can be found in [12].

1.2 Our Contribution

Lower Bounds on Optimal Performance. We first consider algorithm Opt,
the best possible algorithm operating on the given independent meeting pat-
tern. We note that specifying Opt seems challenging, especially since we do not
assume a prior distribution on the starting global time, and hence the use of
Bayesian statistics seems difficult. Fortunately, for our purposes, we are merely
interested in lower bounding the performances of that algorithm. We achieved
that by relating the smallest possible variance of a sensor at a given time to the
largest possible Fisher Information (FI) of the sensor at that time. This mea-
sure quantifies the sensor’s current knowledge regarding the relative deviation
between its local time and the global time. We provide a recursive formula to
calculate Ja, the FI at sensor a, for any sensor a. Specifically, initially, the FI at
a sensor is the FI in the distribution family governing its initial deviation from
the global time (see Section 2 for the formal definitions). When sensor a observes
sensor b, the FI at a after this observation (denoted by J ′

a) satisfies:

J ′
a ≤ Ja +

1
1
Jb

+ 1
JN

, (1)

where JN is the Fisher Information in the noise distribution related to the ob-
servation. To obtain this formula we prove a generalized version of the Fisher
information inequality [35,40]. Relying on the Cramér-Rao bound [7], this for-
mula is then used to bound the corresponding variance under algorithm Opt.
Specifically, the variance of the internal clock of sensor a is at least 1/Ja.

Equation 1 provides immediate bounds on the convergence time. Specifically,
the inequality sets a bound of JN for the increase in the FI per interaction. In
analogy to Channel Capacity as defined by Shannon [7] we term this upper bound
as the Fisher Channel Capacity. Given small ε > 0, we define the convergence
time T (ε) as the minimal number of observations required by the typical sensor
until its variance drops below ε2 (see Section 2 for the formal definition). Let
J0 denote the median initial Fisher Information of sensors. Based on the Fisher
Channel Capacity we prove the following.

Theorem 1. Let J0 � 1/ε2 for some ε > 0. Then T (ε) ≥ ( 1
ε2 − J0)/JN .

A Highly Competitive Elementary Algorithm. We propose a simple clock
synchronization algorithm and prove that its performance on any given indepen-
dent meeting pattern is highly competitive with that of the optimal one. That is,
estimations of global time at each sensor remain unbiased throughout the execu-
tion and the variance at any given time is Δ0-competitive with the best possible
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variance, where Δ0 is initial Fisher-tightness (see definition in Section 2). In
contrast to the optimal algorithm that may be based on transmitting complex
functions in each interaction, and on performing complex internal computations,
our simple algorithm is based on far more basic rules. First, transmission is re-
stricted to a single accuracy parameter. Second, using the noisy measurement
of deviation from the observed sensor, and the accuracy of that sensor, the ob-
serving sensor updates its internal clock and accuracy parameter by careful, yet
elementary, weighted-averaging procedures.

Our weighted-average algorithm is designed to maximize the flow of Fisher In-
formation in interactions. This is proved by showing that the accuracy parameter
is, at all times, both representative of the reciprocal of the sensor’s variance and
close to the Fisher Information upper bound. In short, we prove the following.

Theorem 2. There exists a simple weighted-average based clock synchronization
algorithm which is Δ0-competitive (at any sensor and at any time).

We note that our algorithm does not require the use of sensor identities and
can thus be also employed in anonymous networks [1,11], yielding the same
performances.

Two important corollaries of Theorem 2 follow directly from the definition of
the initial Fisher-tightness Δ0.

Corollary 1. If the number of distributions governing the initial clocks is a con-
stant (independent of n), then our algorithm is O(1)-competitive, at any sensor
and at any time.

Corollary 2. If all distributions involved are Gaussians, then the variances
of our algorithm coincide with those of the optimal one, for each sensor and
at any time.

2 Preliminaries

We consider a collection of n sensors that collaborate in order to synchronize
their internal clocks with an external global clock reference. We consider a set F
of sufficiently smooth (see definition in Section 2), probability density distribu-
tions (pdf) centered at zero. One specific distribution among the pdfs in F is
the noise distribution, referred to as N(η). Each sensor a is associated with a
distribution Φa(x) ∈ F which governs the initialization deviation of its inter-
nal clock from the global time as described in the next paragraph. Depending
on the specific model, we assume that sensor a knows various properties of Φa.
In the most restricted model, sensor a knows only the variance of Φa and in the
most liberal model (considered for the sake of lower bounds), a knows the full
description of Φa. Execution is initiated when the global time is some τ∗ ∈ R,
chosen by an adversary.



Clock Synchronization and Estimation in Highly Dynamic Networks 21

Two important cases are (1) when F contains a constant number of distribu-
tions (independent of the number of sensors) and (2) when all distributions in F
are Gaussian. Both cases serve as reasonable assumptions for realistic scenarios.
For the former case we shall show asymptotically optimal performances and for
the latter case we shall show strict optimal (non-asymptotical) performance.

Local Clocks. Each sensor a is initialized with a local clock �a(0) ∈ R, randomly
chosen according to Φa(x − τ∗), independently of all other sensors. That is, as
Φa(x) is centred around zero, the initial local time �a(0) is distributed around τ∗,
and this distribution is governed by Φa. We stress that sensor a does not know
the value τ∗ and from its own local perspective the execution started at time
�a(0). Sensors rely on both social interactions and further environmental cues4

to improve their estimates of the global time. In between such events sensors are
free to perform “shift” operations to adjust their local clocks. To focus on the
problems occurred by the initial inaccurate estimations of τ∗ and the noise in
the communication we restrict our attention to drift-free settings [2,25], in which
all clocks tick at the same rate, consistent with the global time.

Opinions. The drift-free assumption reduces the external clock-synchronization
problem to the problem of estimating τ∗. Indeed, recall that local clocks are
initialized to different values but progress at the same rate. Because sensor a
can keep the precise time since the beginning of the execution, its deviation
from the global time can be corrected had it known the difference between,
�a(0), the initial local clock of a, and τ∗, the global time when the execution
started. Hence, one can view the goal of sensor a as estimating τ∗. That is,
without loss of generality, we may assume that all shifts performed by sensor a
throughout the execution are shifts of its initial position �a(0) aiming to align
it to be as close as possible to τ∗. Taking this perspective, we associate with
each sensor an opinion variable xa, initialized to xa(0) := �a(0), and the goal of
a is to have its opinion be as close as possible to τ∗. We view the opinion xa

as an estimator of τ∗, and note that initially, due to the properties of Φa, this
estimator is unbiased, i.e., mean(xa(0)−τ∗) = 0. It is required that at any point
in the execution, the opinion xa remains an unbiased estimator of τ∗, and the
goal of a is to minimize its Mean Square Error (MSE).

Due to this simple relation between internal clocks and opinions, in the re-
maining of this paper, we shall adopt the latter perspective and concern ourselves
only with optimizing the opinions of sensors as estimators for τ∗, without dis-
cussing further the internal clocks.

Rounds. For simplicity of presentation, we assume that the execution proceeds
in discrete rounds. We stress however that the rounds represent the order in
which communication events occur (as determined by the meeting-pattern, see

4 In order for the model to include environmental cues, one or more of the sensors
can be taken to represent the global clock. The initial times of these sensors are
chosen according to highly concentrated distributions, Φa, around τ∗ and remain
fixed thereafter.
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below), and do not necessarily correspond to the actual time. Given an algorithm
A, the opinion maintained by the algorithm at round t (where t is a non-negative
integer) at sensor a is denoted by xa(t, A). As mentioned, the algorithm aims to
keep this value as close as possible to τ∗. When A is clear from the context, we
may omit writing it and use the term xa(t) instead.

In each round t ≥ 1, a sensor may first choose to shift (or not) its opinion, and
then, if specified in the meeting pattern, it observes another specified sensor, thus
obtaining some information. To summarize, in each round, a sensor executes the
following consecutive actions: (1) Perform internal computation; (2) Perform an
opinion-shift: xa(t) = xa(t− 1)+Δ(x); and (3) Observe (or not) another sensor.
For simplicity, all these three operations are assumed to occur instantaneously,
that is, in zero time.

Mobility and Adversarial Independent Meeting Patterns. In cases where
sensors are embedded in a Euclidian space, distances between positioning of
sensors may impact the possible interactions. To account for physical mobility,
and be as general as possible, we assume that an oblivious adversary controls the
meeting pattern. That is, the adversary decides (before the execution starts), for
each round, which sensor observes which other sensor.

A model that includes an unlimited adversary that controls the meeting pat-
tern appears to be too general. In this preliminary work on the subject, we
restrict the adversary to provide only independent meeting patterns, in which
the set of sensors in the transitive history of each observing sensor is disjoint
from the one of the observed sensor.

Formally, given a pattern of meetings P , sensor a and round t, we first define
the set of relevant sensors of a at time t, denoted by Ra(t,P). At time zero, we
define Ra(0,P) := {a}, and at round t, Ra(t,P) := Ra(t−1,P)∪R(b, t−1,P) if
a observes b at time t−1 (otherwise Ra(t,P) := Ra(t−1,P)). A meeting pattern
P is called independent if whenever some sensor a observes a sensor b at some
time t, then Ra(t−1,P)∩R(b, t−1,P) = ∅ . Note that an independent meeting
pattern guarantees that given τ∗, the internal clocks of two interacting sensors
are independent. However, given τ∗ and the internal clock of a, the internal clock
of b and the relative time measurement between them are dependent.

Note that independent-meeting patterns are not very good representatives
of communication in static networks5. On the other hand, independent meeting
patterns fit well with highly stochastic short-time scales communication patterns,

5 Indeed, in such patterns a sensor will not contact the same sensor twice, which con-
tradicts many natural communication schemes in static networks. We note, however,
that in some cases, a sequence of multiple consecutive observations between sensors
can be compressed into a single observation of higher accuracy thus reducing the
dependencies between observations, and possibly converting a dependent meeting
pattern into an independent one. For example, if sensors have unique identities and
sensor a observes sensor b several times is a row, and it is guaranteed that sensor b
did not change its state during these observations, then these observations can be
treated by a as a single, more accurate, observation of b.
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in which each sensor observes only few other arbitrary sensors. In this sense, such
patterns can be considered as representing an extreme case of dynamic systems.

Because sensors have no control of when their next interaction will occur, or
if it will occur at all, we require that estimates at each sensor be as accurate
as possible at any point in time. This requirement is stronger than the liveness
property that is typically required from distributed algorithms [21].

Convergence Time. Consider a meeting pattern P . Given small ε > 0, the
convergence time T (ε) of an algorithm A is defined as the minimal number
of observations made by the typical sensor until its variance is less than ε2.
More formally, let ρ denote the first round when we have more than half of the
population satisfying var(Xa(t, A)) < ε2. For each sensor a, let R(a) denote the
number of observations made by a until time ρ. The convergence time T (ε) is
defined as the median of R(a) over all sensors a. Note that T (ε) is a lower bound
on ρ, since since each sensor observes at most one sensor in a round.

Communication. We assume that sensors are anonymous and hence, in par-
ticular, they do not know who they observe. Conversely, for the sake of lower
bounds, we allow a much more liberal setting, in which sensors have unique
identifiers and know who they interact with.

When a sensor a observes another sensor b at some round t, the information
transferred in this interaction contains a passive component and, possibly, a
complementary active one. The passive component is a noisy relative deviation
measurement between their opinions:

d̃ab(t) = xb(t)− xa(t) + η,

where the additive noise term, η, is chosen from the noise probability distribution
N(η) ∈ F whose variance is known to the sensors. (Note that this measurement
is equivalent to the relative deviation measurement between the sensors’ current
local times because all clocks tick at the same pace.)

Elementary Algorithms. Our reference for evaluating performances is algo-
rithm Opt which operates under the most liberal version of our model, which
carries no restrictions on memory, communication capacities or internal compu-
tational power, and provides the best possible estimators at any sensor and at
any time (we further assume that sensors acting under Opt know the meeting
pattern in advance). In general, algorithm Opt may use complex calculations
over very wasteful memories that include detailed distribution density functions,
and possibly, accumulated measurements. Our main goal is to identify an algo-
rithm whose performance is highly competitive with that of Opt but wherein
communication and memory are economically used, and the local computations
simple. Indeed, when it comes to applications to tiny and limited processors,
simplicity and economic use of communication are crucial restrictions.
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An algorithm is called elementary if the internal state of each sensor a contains
a constant number of real6 numbers, and the internal computations that a sensor
can perform consist of a constant number of basic arithmetic operations, namely:
addition, subtraction, multiplication, and division.

Competitive Analysis. Fix a finite family F of smooth pdf ’s centered at zero
(see the definition for smoothness in the next paragraph), and fix an assignment
of a distribution Φa ∈ F to each sensor a. For an algorithm A and an indepen-
dent meeting pattern P , let Xa(t, A,P) denote the random variable indicating
the opinion of sensor a at round t. Let mean(Xa(t, A,P)) and var(Xa(t, A,P))
denote, respectively, the mean and variance of Xa(t, A,P), where these are taken
over all possible random initial opinions, communication errors, and possibly,
coins flipped by the algorithm. Note that the unbiased assumption requires that
mean(Xa(t, A,P)) = τ∗. An algorithm A is called λ-competitive, if for any in-
dependent pattern of meetings P , any sensor a, and at any time t, we have:
var(Xa(t, A,P)) ≤ λ · var(Xa(t,Opt,P)).

Fisher Information and the Cramér-Rao Bound. The Fisher information
is a standard way of evaluating the amount of information that a set of ran-
dom measurements holds about an unknown parameter τ of the distribution
from which these measurements were taken. We provide some definitions for
this notion; for more information the reader may refer to [7,40].

A single variable probability distribution function (pdf) Φ is called smooth
if it satisfies the following conditions, as stated by Stam [35]: (1) Φ(x) > 0 for
any x ∈ R, (2) the derivative Φ′ exists, and (3) the integral

∫
1

Φ(y)(Φ
′(y))2dy

exists, i.e., Φ′(y) → 0 rapidly enough for |y| → ∞. Note that, in particular,
these conditions hold for natural distributions such as the Gaussian distribution.
Recall that we consider a finite set F of smooth one variable pdfs, one of them
being the noise distribution N(η), and all of which are centered at zero.

For a smooth pdf Φ, let Jτ
Φ :=

∫
1

Φ(y)(Φ
′(y))2dy denote the Fisher infor-

mation in the parameterized family {(Φ(x, τ)}τ∈R = {(Φ(x − τ)}τ∈R with
respect to τ . In particular, let JN = Jτ

N denote the Fisher information in
the parameterized family {N(η − τ)}τ∈R. More generally, consider a multi-
variable pdf family {(Φ(z1 − τ, z2 . . . zk))}τ∈R where τ is a translation param-
eter. The Fisher information in this family with respect to τ is defined as:

Jτ
Φ =

∫
1

Φ(z1−τ,z2...zk)

[
dΦ(z1−τ,z2...zk)

dτ

]2
dz1, dz2 . . . dzk if the integral exists.

As previously noted [40], since τ is a translation parameter, Fisher informa-
tion is both unique (there is no freedom in choosing the parametrization) and
independent of τ .

The Fisher information derives its importance by association with the Cramér-
Rao inequality [7]. This inequality lower bounds the variance of the best possible

6 We assume real numbers for simplicity. It seems reasonable to assume that when
sufficiently accurate approximation is stored instead of the real numbers similar
results could be obtained.
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estimator of τ∗ by the reciprocal of the Fisher information that corresponds to
the random variables on which this estimator is based.

Theorem 3. [The Cramér-Rao inequality] Let X̂ be any unbiased estimator
of τ∗ ∈ R which is based on a multi-variable sample z̄ = (z1, z2 . . . zk) taken
from Φ(z1 − τ∗, z2 . . . zk). Then var(X̂) ≥ 1/Jτ

Φ.

Initial Fisher-Tightness: To define the initial Fisher-tightness parameter Δ0,
we first define the Fisher-tightness of a single variable smooth distribution Φ
centered at zero, as Δ(Φ) = var(Φ) · Jτ

Φ . Note that, by the Cramér-Rao bound,
Δ(Φ) ≥ 1 for any such distribution Φ. Moreover, equality holds if Φ is Gaussian
[7]. Recall that F is the finite collection of the smooth distributions containing
the distributions Φa governing the initial opinions of sensors. The initial Fisher-
tightness Δ0 is the maximum of the Fisher-tightness over all distributions in
F and the noise distribution. Specifically, let Δ0 = max{Δ(Φ) | Φ ∈ F}. Two
important observations are:

– If F contains a constant number of distributions then Δ0 is a constant.
– If the distributions in F are all Gaussians then Δ0 = 1.

3 Lower Bounds on the Variance of Opt

In this section we provide lower bounds on the performances of algorithm Opt
over a fixed independent pattern of meetings P . Note that we are interested
in bounding the performances of Opt and not in specifying its instructions.
Identifying the details of Opt may still be of interest, but it is beyond the scope
of this paper.

For simplicity of presentation, we assume that the rules of Opt are determin-
istic. We note, however, that our results can easily be extended to the case that
Opt is probabilistic. For simplicity of notations, since this section deals only
with algorithm Opt acting over P , we use variables, such as the opinion Xa(t)
and the memory Ya(t) of sensor a, without parametrizing them by neither Opt
nor by P .

Under algorithm Opt, we assume that each sensor holds initially, in addition
to the variance of Φa, the precise functional form of the distribution Φa (recall, Φa

is centered at zero). In addition, we assume that sensors have unique identifiers
and that each sensor knows the whole pattern P in advance. Moreover, we assume
that each sensor a knows for each other sensor b, the pdf Φb governing b’s initial
opinion. All this information is stored in one designated part of the memory of a.

Since Opt does not have any bandwidth constrains, we may assume, without
loss of generality, that whenever some sensor a observes another sensor b, it
obtains the whole memory content of b. Since Opt is deterministic, its previous
opinion-shifts can be extracted from its interaction history, which is, without
loss of generality, encoded in its memory7. Hence, when sensor a observes sensor

7 In case Opt is probabilistic, previous shifts can be extracted from the memory plus
the results of coin flips which may be encoded in the memory of the sensor as well.
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b at some round t, and receives b’s memory together with the noisy measurement
d̃ab(t) = xb(t) − xa(t) + η, sensor a may extract all previous opinion-shifts of
both itself and b, treating the measurement d̃ab(t) as a noisy measurement of the
deviation between the initial opinions, i.e., d̃ab(0) = xb(0)− xa(0) + η. In other
words, to understand the behavior of Opt at round t, one may assume that
sensors never shift their opinions until round t, when they use all memory they
gathered to shift their opinion in the best possible manner8. It follows that apart
from the designated memory part that all sensors share, the memory Ma(t) of
sensor a at round t contains the initial opinionXa(0) and a collection Ya(t−1) :=
{d̃bc(0)}bc of relative deviation measurements between initial opinions. That is,
Ma(t) = (X0(t), Ya(t − 1)). This multi-valued memory variable Ma(t) contains
all the information available to a at round t. In turn, this information is used by
the sensor to obtain its opinion Xa(t) which is required to serve as an unbiased
estimator of τ∗.

The Fisher Information of Sensors. We now define the notion of the Fisher
Information associated with a sensor a at round t. This definition will be used
to bound from below the variance of Xa(t) under algorithm Opt.

Consider the multi-valued memory variable Ma(t) = (X0(t), Ya(t − 1)) of
sensor a that at round t. Note that Ya(t− 1) is independent of τ∗. Indeed, once
the adversary decides on the value τ∗, all sensors’ initial opinions are chosen with
respect to τ∗. Hence, since sensors’ memories contains only relative deviations
between opinions, the memories by themselves do not contain any information
regarding τ∗. In contrast, given τ∗, the random variables Ya(t − 1) and Xa(0)
are, in general, dependent. Furthermore, in contrast to Ya(t − 1), the value of
Xa(0) depends on τ∗, as it is chosen according to Φa(x − τ∗). Hence, Ma(t) is
distributed according to a pdf family {(ma(t), τ)} parameterized by a translation
parameter τ . Based on Ma(t), the sensor produces an unbiased estimation Xa(t)
of τ∗, that is, it should hold that: mean(Xa(t) − τ∗) = 0, where the mean is
taken with respect to the distribution of the random multi-variable Ma(t).

Definition: The Fisher Information (FI) of sensor a at round t, termed Ja(t),
is the the Fisher information in the parameterized family {(ma(t), τ)}τ∈R with
respect to τ .

By the Cramér-Rao bound, the variance of any unbiased estimator used by
the sensor a at round t is bounded from below by the reciprocal of the FI of
sensor a at that time. That is, we have:

Lemma 1. var(Xa(t)) ≥ 1/Ja(t).

8 This observation implies, in particular, that previous opinion-shifts of sensors do
not affect subsequent estimators in a way that may cause a conflict (a conflict may
arise, e.g., when optimizing one sensor at one time necessarily makes estimators at
another sensor, at a later time, sub-optimal), hence algorithm Opt is well-defined.
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3.1 An Upper Bound on the Fisher Information Ja(t)

Lemma 1 implies that lower bounds on the variance of the opinion of a sensor
can be obtained by bounding from above the corresponding FI. To this end,
we prove the following recursive inequality. To establish the proof we had to
extends the Fisher information inequality [35,40] to our multi-variable (possibly
dependent) convolution case.

Theorem 4. The FI of sensor a under algorithm Opt satisfies: Ja(t + 1) ≤
Ja(t) + 1/( 1

Jb(t)
+ 1

JN
).

4 A Highly-Competitive Elementary Algorithm

We define an elementary algorithm, termed ALG, and prove that its perfor-
mances are highly-competitive with those of Opt. In this algorithm, each sensor
a stores in its memory a single parameter ca ∈ R that represents its accuracy
regarding the quality of its current opinion with respect to τ∗. The initial accu-
racy of sensor a is set to ca(0) = 1/var(Φa). When sensor a observes sensor b at
some round t, it receives cb(t) and d̃ab(t), and acts as follows. Sensor a first com-
putes the value ĉb(t) = cb(t)/(1 + cb(t) · var(N)), a reduced accuracy parameter
for sensor b that takes measurement noise into account, and then proceeds as
follows:

Algorithm ALG

– Update opinion: xa(t+ 1) = xa(t) +
d̃ab(t)·ĉb(t)
ca(t)+ĉb(t)

.

– Update accuracy : ca(t+ 1) = ca(t) + ĉb(t).

Fix an independent meeting pattern. First, algorithm ALG is designed such
that at all times, the opinion is preserved as an unbiased estimator of τ∗ and
the accuracy, ca(t), remains equal to the reciprocal of the current variance of the
opinion Xa(t,ALG). That is, we have:

Lemma 2. At any round t and for any sensor a: (1) the opinion Xa(t,ALG)
serves as an unbiased estimator of τ∗, and (2) ca(t) = 1/var(Xa(t,ALG)).

We are now ready to analyze the competitiveness of algorithmALG, by relat-
ing the variance of a sensor a at round t to the corresponding FI, namely, Ja(t).
Recall that Lemma 1 gives a lower bound on the variance of algorithm Opt at
a sensor a, which depends on the corresponding FI at the sensor. Specifically,
we have: var(Xa(t,Opt)) ≥ 1/Ja(t). Initially, Ja(0), the FI at a sensor a, equals
the Fisher information in the parameterized family Φa(x− τ) with respect to τ ,
and hence is at most the initial accuracy ca(0) times Δ0. We show that the gain
in accuracy following an interaction is always at least as large the correspond-
ing upper bound on the gain in Fisher information as given in Theorem 4, divided
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by the initial Fisher-tightness. That is: ca(t+1)−ca(t) ≥
(
1/( 1

Jb(t)
+ 1

JN
)
)
/Δ0.

Informally, this property of ALG can be interpreted as maximizing the Fisher
information flow in each interaction up to an approximation factor of Δ0. By
induction, we obtain the following.

Lemma 3. At every round t, we have ca(t) ≥ Ja(t)/Δ0.

Lemmas 1, 2 and 3 can now be combined to yield the following inequality:
var(Xa(t,ALG)) ≤ Δ0 · var(Xa(t,Opt)). This establishes Theorem 2. ��

Note that if |F | = O(1) (i.e., F contains a constant number of distributions,
independent of the number of sensors) then initial Fisher-tightness Δ0 is a con-
stant, and hence Theorem 2 states that ALG is constant-competitive at any
sensor and at any time. In some other natural cases the performances of ALG
are even better. One such case is when the distributions in F as well as the
noise distribution N(η) are all Gaussians. In this case Δ0 = 1 and Theorem 2
therefore states that the variance of ALG equals that of Opt, for any sensor
at at any time. Another case is when |F | is a constant, the noise is Gaussian,
and both the population size n and the round t go to infinity. In this case, the
performances of ALG become arbitrarily close to those of Opt.

5 The Fisher Channel Capacity and Convergence Times

For a fixed independent meeting pattern, Ja(t), the FI at a sensor a and round t,
was defined in Section 3 with respect to algorithm Opt. We note that this
definition applies to any algorithm A as long as it is sufficiently smooth so that
the corresponding Fisher informations are well-defined. This quantity Ja(t, A)
would respect the same recursive inequality as state in Theorem 4, that is, we
have: Ja(t+ 1, A) ≤ Ja(t, A) +

1
1

Jb(t,A)
+ 1

JN

. This directly implies the following:

Ja(t+ 1, A)− Ja(t, A) ≤ JN . (2)

The inequality above sets a bound of JN for the increase in FI per round. In
analogy to Channel Capacity as defined by Shannon [7] we term this upper
bound as the Fisher Channel Capacity.

The restriction on information flow as given by the Fisher Channel Capacity
can be translated into lower bounds for convergence time of algorithm Opt
(and hence also apply for any algorithm). Recall, ρ is the first round when we
have more than half of the population satisfying var(Xa(t)) < ε2. By Lemma 1,
a sensor, a, with variance smaller than ε2 must have a large FI, specifically,
Ja(ρ) ≥ 1/ε2. To get some intuition on the convergence time, assume that the
number of sensors is odd, and let J0 denote the median initial FI of sensors
(this is the median of the FI, JΦa , over all sensors a), and assume J0 � 1/ε2.
By definition, more than a half of the population have initial Fisher information
at most J0. By the Pigeon-hole principle, at least one sensor has an FI of, at
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most, J0 at t = 0 and, at least, 1/ε2 at t = ρ. Theorem 1 follows by the fact
that, by Equation 2, this sensor could increase its FI by, at most, JN in each
observation.
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