
Chapter 2
A Variational Characterization of the Best
Lyapunov Constants

Abstract This chapter is devoted to the definition and main properties of the
Lp Lyapunov constant, 1 � p � 1; for scalar ordinary differential equations
with different boundary conditions, in a given interval .0;L/: It includes resonant
problems at the first eigenvalue and nonresonant problems. A main point is the
characterization of such a constant as a minimum of some especial minimization
problem, defined in appropriate subsets Xp of the Sobolev space H1.0;L/: This
variational characterization is a fundamental fact for several reasons: first, it allows
to obtain an explicit expression for the Lp Lyapunov constant as a function of p and
L; second, it allows the extension of the results to systems of equations (Chap. 5)
and to PDEs (Chap. 4). For resonant problems (Neumann or periodic boundary
conditions), it is necessary to impose an additional restriction to the definition of the
spaces Xp; 1 � p � 1; so that we will have constrained minimization problems.
This is not necessary in the case of nonresonant problems (Dirichlet or antiperiodic
boundary conditions) where we will find unconstrained minimization problems. For
nonlinear equations, we combine the Schauder fixed point theorem with the obtained
results for linear equations.

2.1 Neumann Boundary Conditions, As a Paradigm
of Linear Resonant Problems

This section will be concerned with the existence of nontrivial solutions of the
homogeneous linear problem with Neumann boundary conditions

u00.x/C a.x/u.x/ D 0; x 2 .0;L/; u0.0/ D u0.L/ D 0: (2.1)

If a.�/ is a constant function � 2 R, (2.1) has nontrivial solutions if and only if �
belongs to the set f�n D n2�2=L2; n 2 N [ f0gg; i.e., the set of eigenvalues of the
eigenvalue problem:

u00.x/C �u.x/ D 0; x 2 .0;L/; u0.0/ D u0.L/ D 0: (2.2)

Obviously, the problem is much more complicated if a.�/ is not a constant function.
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10 2 A Variational Characterization of the Best Lyapunov Constants

To proceed to the definition of the Lyapunov constants, we will assume through-
out this chapter that a 2 	; where 	 is defined by

	 D fa 2 L1.0;L/ n f0g W
Z L

0

a.x/ dx � 0 and (2.1) has nontrivial solutions g:
(2.3)

Here, for each p; 1 � p < 1; Lp.0;L/ denotes the usual Lebesgue space of
measurable functions a.�/ such that ja.�/jp is integrable in .0;L/; while L1.0;L/
denotes the set of measurable functions such that there exists a constant c satisfying
ja.x/j � c; a.e. in .0;L/: On the other hand, u 2 H1.0;L/; the usual Sobolev space.
The interested reader can consult the reference [2] for these concepts.

For each p with 1 � p � 1; we can define the functional Ip W 	T Lp.0;L/ ! R
given by the expression

Ip.a/ D kaCkp D
�Z L

0

jaC.x/jp dx

�1=p

;8 a 2 	
\

Lp.0;L/; 1 � p < 1

I1.a/ D kaCk1 D sup ess aC; 8a 2 	
\

L1.0;L/; (2.4)

where aC is the positive part of the function a (i.e., aC.x/ D maxf0; a.x/g) and sup
ess aC is the essential supremum of the function aC.

Since the positive eigenvalues of the eigenvalue problem (2.2), belong to the set
	
T

Lp.0;L/; the nonnegative constant

ˇp 	 inf
a2	T Lp.0;L/

Ip.a/; 1 � p � 1 (2.5)

is well defined. Due to the pioneering work of Lyapunov for Dirichlet boundary
conditions and p D 1 [16, 22, 23], we will call to the constant ˇp; defined in (2.5),
the best (optimal) Lp Lyapunov constant.

Remark 2.1. We need the positivity of
Z L

0

a.x/ dx in order to prove that the constant

ˇp is strictly positive. In fact, if the set 	 in (2.3) is replaced by


 D fa 2 L1.0;L/ n f0g W (2.1) has nontrivial solutions g

then the constant

�p 	 inf
a2
 T Lp.0;L/

Ip.a/; 1 � p � 1

is zero, for each p; 1 � p � 1 (see Remark 4 in [3]). The real number 0 is the first
eigenvalue of the eigenvalue problem (2.2). As it will be seen in Sect. 2.3, this extra

condition on the sign of
Z L

0

a.x/ dx is not necessary in nonresonant problems.
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Remark 2.2. The study of the constant ˇp can be seen as an optimal control
problem: the admissible control set is 	

T
Lp.0;L/ and the functional that we want

to minimize is Ip: However, we caution that the condition

(2.1) has nontrivial solutions (2.6)

is difficult to handle from a mathematical point of view and this is the main difficulty
of the problem. Because of this, one of the main purposes of this chapter is to
get a variational characterization of the best Lyapunov constant ˇp: This will be
very important for the possible extension of the results to PDEs and to systems of
equations.

We begin with the easiest situation: p D 1. In this case, the constant ˇ1
is nothing but the first positive eigenvalue of (2.2). The proof is known and it
uses two basic ideas: Hölder’s inequality and the variational characterization of the
eigenvalues of (2.2) [8].

Theorem 2.1.

ˇ1 D min
v2X1nf0g

Z L

0

.v0/2

Z L

0

.v/2
D �2

L2
; (2.7)

where X1 D fv 2 H1.0;L/ W
Z L

0

v D 0g:

Proof. If a 2 	 and u 2 H1.0;L/ is a nontrivial solution of (2.1), then

Z L

0

u0v0 D
Z L

0

auv; 8 v 2 H1.0;L/:

In particular, we have

Z L

0

u02 D
Z L

0

au2;
Z L

0

au D 0: (2.8)

Therefore, for each k 2 R; we have

Z L

0

.u C k/02 D
Z L

0

u02 D
Z L

0

au2 �
Z L

0

au2 C k2
Z L

0

a

D
Z L

0

au2 C
Z L

0

k2a C 2k
Z L

0

au D
Z L

0

a.u C k/2 �
Z L

0

aC.u C k/2:
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Hölder’s inequality implies

Z L

0

.u C k/02 � kaCk1
Z L

0

.u C k/2:

Also, since the function a belongs to	; u is a nonconstant solution of (2.1), so that
u C k is a nontrivial function. Consequently

kaCk1 �

Z L

0

.u C k/02

Z L

0

.u C k/2
:

Now, choose k0 2 R satisfying

Z L

0

.u C k0/ D 0: (2.9)

Then,

kaCk1 �

Z L

0

.u C k0/
02

Z L

0

.u C k0/
2

� inf
v2X1nf0g

Z L

0

.v0/2

Z L

0

.v/2
D �2

L2
; 8 a 2 	: (2.10)

Moreover, it is very well known that the previous infimum is, in fact, a minimum
and that the value of this minimum is �2

L2
[8]. The previous inequalities imply

ˇ1 � �2

L2
: Since the constant function �2

L2
is an element of	; we deduce ˇ1 D �2

L2
:

This completes the proof of the theorem.

Remark 2.3. The constant ˇ1 was defined in (2.5) as an infimum, but it can be seen

that this infimum is attained in a unique element a1 2 	; given by a1.x/ 	 �2

L2
[3].

Now we deal with the case p D 1. It is the only case where the infimum ˇp;

defined in (2.5), is not attained. The proof is inspired by Borg [1], but next theorem
additionally provides a variational characterization of ˇ1 [3].

Theorem 2.2.

ˇ1 D min
u2X1nf0g

Z L

0

u02

kuk21
D 4

L
; (2.11)

where X1 D fu 2 H1.0;L/ W max
x2Œ0;L� u.x/C min

x2Œ0;L� u.x/ D 0g:
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Proof. First, we prove

min
u2X1nf0g

Z L

0

u02

kuk21
D 4

L
: (2.12)

To do this, if u 2 X1 n f0g; and x1; x2 2 Œ0;L� are such that u.x1/ D max
Œ0;L�

u; u.x2/ D
min
Œ0;L�

u; then kuk1 D max
Œ0;L�

u D � min
Œ0;L�

u: Clearly, it is not restrictive to assume that

x1 < x2: Let us denote I D Œx1; x2�. Then, it follows from the Cauchy–Schwarz
inequality

Z L

0

u02 �
Z

I
u02 �

�Z
I
ju0j
�2

x2 � x1
�

�Z
I
u0
�2

x2 � x1

D .u.x2/ � u.x1//2

x2 � x1
D 4kuk21

x2 � x1
� 4

L
kuk21: (2.13)

Therefore,

inf
u2X1nf0g

Z L

0

u02

kuk21
� 4

L
:

On the other hand, if v.x/ D x� L
2
; 8 x 2 Œ0;L�; then v 2 X1nf0g and

Z L

0

v02

kvk21
D 4

L
:

This proves (2.12).

Now, we prove that ˇ1 D 4

L
: To see this, if a 2 	 and u 2 H1.0;L/ is a nontrivial

solution of (2.1), then by using Hölder’s inequality, we obtain for each k 2 R;
Z L

0

.u C k/02 �
Z L

0

a.u C k/2 � kaCk1k.u C k/k21

and consequently

kaCk1 �

Z L

0

.u C k/02

k.u C k/k21
:

If we choose k0 2 R satisfying u C k0 2 X1; we deduce

kaCk1 �

Z L

0

.u C k0/
02

ku C k0k21
� 4

L
; 8 a 2 	: (2.14)
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Therefore, ˇ1 � 4

L
: Also, we can define a minimizing sequence in the following

way. Let fung � C2Œ0;L� be a sequence such that un.x/ D �
x � L

2

�
; 8 x 2�

1
n ;L � 1

n

� I u0
n.0/ D u0

n.L/ D 0I u00
n .x/ > 0; 8 x 2 �

0; 1n
� I u00

n .x/ < 0; 8 x 2�
L � 1

n ;L
�
: Then, if we define the sequence of continuous functions an W Œ0;L� ! R;

as an.x/ D 0; 8 x 2 �
1
n ;L � 1

n

� I an.x/ D �u00

n .x/
un.x/

; 8 x 2 �
0; 1n

� [ �
L � 1

n ;L
�
; we

have that an 2 L1.0;L/; an � 0; a.e. in .0;L/; an is nontrivial and

u00
n .x/C an.x/un.x/ D 0; in .0;L/; u0

n.0/ D u0
n.L/ D 0:

Therefore, an 2 	; 8 n 2 N: Moreover,

Z L

0

aC
n D

Z 1
n

0

�u00
n .x/

un.x/
C
Z L

L� 1
n

�u00
n .x/

un.x/

�
Z 1

n

0

u00
n .x/

min
Œ0; 1n �

.�un/
C
Z L

L� 1
n

�u00
n .x/

min
ŒL� 1

n ;L�
.un/

D u0
n

�
1
n

�
L
2

� 1
n

C u0
n

�
L � 1

n

�
L
2

� 1
n

D 1
L
2

� 1
n

C 1
L
2

� 1
n

:

Taking limits as n ! 1; we deduce ˇ1 D 4

L
:

Remark 2.4. The infimum ˇ1; defined in (2.5), is not attained, i.e.,

kaCk1 > 4

L
; 8 a 2 	: (2.15)

To prove this, let a 2 	 be such that kaCk1 D 4

L
: By choosing u a nontrivial

solution of (2.1) and k0 2 R such that u C k0 2 X1; we obtain

Z L

0

.u C k0/
02 � 4

L
k.u C k0/k21:

On the other hand, since u C k0 2 X1; we deduce from (2.12)

Z L

0

.u C k0/
02 � 4

L
k.u C k0/k21:

Therefore,

Z L

0

.u C k0/
02 D 4

L
k.u C k0/k21:
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Then, for the function u C k0; all the inequalities of (2.13) transform into equalities.

In particular, x2 D L; x1 D 0 and

�Z L

0

.u C k0/
0
�2

D L
Z L

0

.u C k0/
02: Again, the

Cauchy–Schwarz inequality (equality in this case) implies that the function .uCk0/0
is constant in Œ0;L�: Taking into account that uCk0 2 X1 nf0g; we have u.x/Ck0 D
k.x � L

2
/;8x 2 Œ0;L� and for some nontrivial constant k: Then from (2.1) we deduce

a 	 0; which is a contradiction.

Remark 2.5. The formula ˇ1 D 4

L
was proved in [18] by using methods from Opti-

mal Control Theory. More precisely, the authors used the Pontryagin’s maximum
principle. The variational proof that we have presented here motivates some of the
main ideas that we will use in the case 1 < p < 1:

Remark 2.6. In [21] the authors study the problem with linear damping

u00.x/C b.x/u0.x/C a.x/u.x/ D 0; u0.0/ D u0.L/ D 0 (2.16)

obtaining the best L1 Lyapunov constant.
As a first application of Theorems 2.1 and 2.2 to the linear problem

u00.x/C a.x/u.x/ D f .x/; x 2 .0;L/; u0.0/ D u0.L/ D 0 (2.17)

we have the following corollary.

Corollary 2.1. Let a 2 L1 n f0g; 0 �
Z L

0

a.x/; satisfying one of the following

conditions:

1. kaCk1 � ˇ1 D 4

L

2. kaCk1 � ˇ1 D �2

L2
and aC is not identically to the constant ˇ1

Then for each f 2 L1.0;L/; the boundary value problem (2.17) has a unique
solution.

Proof. The corollary is proved if the homogeneous problem

u00.x/C a.x/u.x/ D 0; x 2 .0;L/; u0.0/ D u0.L/ D 0 (2.18)

has only the trivial solution [16]. But this is clear from Theorem 2.1, Remark 2.3
and Theorem 2.2, Remark 2.4.

Remark 2.7. In the previous corollary, the conditions on the function a.�/:

kaCk1 � ˇ1
kaCk1 � ˇ1 D and aC is not identically to the constant ˇ1

(2.19)
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are given, respectively, in terms of the L1 norm kaCk1 and L1 norm kaCk1:
Clearly, they are not related in general, in the sense that none of them imply the
other. In the next theorem, we consider the case 1 < p < 1; and we establish other
different conditions given in terms of the Lp norm kaCkp; 1 < p < 1: They will
show a natural relation between the cases p D 1 and p D 1 in (2.19) when one
studies what happens for p ! 1C and p ! 1:

In order to motivate the variational characterization of the constant
ˇp; 1 < p < 1; which is discussed in the next theorem, take into account that
if a 2 	T Lp.0;L/ and u 2 H1.0;L/ is a nontrivial solution of (2.1) then

Z L

0

u0v0 D
Z L

0

auv; 8 v 2 H1.0;L/:

In particular, choosing v 	 u and v 	 1; we have respectively

Z L

0

u02 D
Z L

0

au2;
Z L

0

au D 0: (2.20)

Therefore, for each k 2 R; we have (remember that
R L
0

a � 0)

Z L

0

.u C k/02 D
Z L

0

u02 D
Z L

0

au2 �
Z L

0

au2 C k2
Z L

0

a

D
Z L

0

au2 C
Z L

0

k2a C 2k
Z L

0

au D
Z L

0

a.u C k/2 �
Z L

0

aC.u C k/2:

From Hölder’s inequality it follows

Z L

0

.u C k/02 � kaCkpk.u C k/2k p
p�1
:

Moreover, since u is a nonconstant solution of (2.1), u C k is not identically the zero
function. Consequently

kaCkp �

Z L

0

.u C k/02

k.u C k/2k p
p�1

; 8 a 2 	: (2.21)

This reasoning suggests the minimization of a functional like the previous one on
some appropriate subset of H1.0;L/: Motivated by the case p D 1 (Theorem 2.1),
this appropriate subset could be of the type

�
u 2 H1.0;L/ W

Z L

0

juj�.p/u D 0

	
;



2.1 Neumann Boundary Conditions, As a Paradigm of Linear Resonant Problems 17

where �.1/ D 0. Here we choose �.p/ D 2

p � 1 : To understand why this election

is suitable, we must see in detail the proof of the next theorem, especially the part
where the Lagrange multiplier Theorem is applied (see [3] for more details).

Theorem 2.3. If 1 < p < 1;

ˇp D min
Xpnf0g

Jp.u/ D min
Xpnf0g

Z L

0

u02

�Z L

0

juj 2p
p�1

� p�1
p

D 4.p � 1/1C 1
p

L2�
1
p p.2p � 1/1=p

 Z �=2

0

.sin x/�1=p dx

!2
; (2.22)

where

Xp D
�

u 2 H1.0;L/ W
Z L

0

juj 2
p�1 u D 0

	
:

Proof. The proof will be carried out into three steps:

1. The minimization problem stated in (2.22) has solution.
The proof of this fact is standard: first we will demonstrate that any minimiz-

ing sequence is bounded in the Hilbert space H1.0;L/: Then we will use that the
considered functional is weak lower semi-continuous in order to conclude that
the infimum is attained.

Let us denote

mp 	 inf
Xpnf0g

Jp: (2.23)

If fung � Xp n f0g is a minimizing sequence, then fknung where fkng is an
arbitrary sequence of nonzero real numbers, is also a minimizing sequence, since
Jp.un/ D Jp.knun/. Therefore, we can assume without loss of generality thatZ L

0

junj 2p
p�1 D 1: As Jp.un/ is bounded,

�Z L

0

ju02
n j
	

is also bounded. Moreover,

since
Z L

0

junj 2
p�1 un D 0; for each un there is xn 2 .0;L/ such that un.xn/ D 0:

Now, un.x/ D
Z x

xn

u0.s/ ds; 8 x 2 .0;L/ and Hölder’s inequality implies that fung
is bounded in H1.0;L/: So, we can suppose, up to a subsequence, that un * u0 in
H1.0;L/ (weak convergence) and un ! u0 in CŒ0;L�; with the uniform norm [2].

The strong convergence in CŒ0;L� gives us
Z L

0

ju0j
2p

p�1 D 1;

Z L

0

ju0j
2

p�1 u0 D 0;
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and consequently u0 2 Xp n f0g: As the functional Jp is weak lower
semi-continuous [2], the weak convergence in H1.0;L/ implies Jp.u0/ �
lim inf Jp.un/ D mp: Then u0 is a minimizer.

Since Xp D f u 2 H1.0;L/ W '.u/ D 0g; '.u/ D
Z L

0

juj 2
p�1 u; if u0 2 Xp n f0g

is any minimizer of Jp, Lagrange multiplier Theorem [10] implies that there is
� 2 R such that

H0.u0/C �'0.u0/ D 0;

where H W H1.0;L/ ! R is defined by

H.u/ D
Z L

0

u02 � mp

�Z L

0

juj 2p
p�1

� p�1
p

:

Also, as u0 2 Xp we have H0.u0/.1/ D 0: Moreover H0.u0/.v/ D 0; 8 v 2
H1.0;L/ W '0.u0/.v/ D 0: Finally, as any v 2 H1.0;L/ may be written in
the form v D ˛ C w; ˛ 2 R; and w satisfying '0.u0/.w/ D 0; we conclude
H0.u0/.v/ D 0; 8 v 2 H1.0;L/; i.e., H0.u0/ D 0 which implies that u0 satisfies
the problem

v00.x/C mp

�Z L

0

jvj 2p
p�1

��1
p

jv.x/j 2
p�1 v.x/ D 0; v0.0/ D v0.L/ D 0: (2.24)

2. The constant ˇp is equal to the constant mp (this fact implies the characteriza-
tion of ˇp as the minimum value of Jp on Xp n f0g and will be of special interest
in the extension of the results to systems of equations in Chap. 5).

In fact, previously to the theorem, we have proved that if a 2 	
T

Lp.0;L/
and u 2 H1.0;L/ is a nontrivial solution of (2.1), then (2.21) is satisfied for each
k 2 R: Then, if for each a 2 	TLp.0;L/ and each u; nontrivial solution of (2.1),
we choose k0 2 R satisfying u C k0 2 Xp; we deduce ˇp � mp: Reciprocally, if
up 2 Xp n f0g is any minimizer of Jp; then up satisfies (2.24). Therefore, if we
denote

Ap.v/ D mp

�Z L

0

jvj 2p
p�1

��1
p

(2.25)

we have that Ap.up/jupj 2
p�1 2 	T Lp.0;L/ and

k Ap.up/jupj 2
p�1 kp D mp:

Then ˇp � mp: The conclusion is that ˇp D mp:
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3. Integrating the Euler’s equation (2.24) to obtain mp:

The explicit calculus of mp is a very delicate and technical matter, but we
emphasize that the same ideas can be used in many other situations, as it will
be seen in Sect. 2.3 (see [3] for further details). In fact, this method can be used
whenever we have a detailed knowledge about the number and distribution of
zeros of nontrivial solutions v of Eq. (2.26) below and their first derivatives v0.

Start with the method: if up 2 Xp n f0g is a minimizer of Jp; then we have
proved that up satisfies a problem of the type

v00.x/C Bjv.x/j 2
p�1 v.x/ D 0; x 2; .0;L/; v0.0/ D v0.L/ D 0; (2.26)

where B is some positive real constant. Also, let us observe that if v is a nontrivial

solution of (2.26), then
Z L

0

jv.x/j 2
p�1 v.x/ D 0: Therefore, v belongs to Xp n f0g

and consequently,

inf
B2RC

inf
v2SB

Jp.v/ D mp;

where, for a given B 2 RC; SB denotes the set of all nontrivial solutions of (2.26).
Now, let B 2 RC be a fixed number and v a nontrivial solution of (2.26). First,

our main purpose is to calculate v in the interval Œ0;L� and then, to calculate
Jp.v/: It is clear that we may assume without loss of generality that v.0/ > 0:

Moreover, since v 2 Xp n f0g; v must change its sign in .0;L/: Let x0 be the first
zero point of v in .0;L/:

a. The function v in Œ0; x0�:
The function v satisfies the initial value problem

w00.x/C Bjw.x/j 2
p�1 w.x/ D 0; w.0/ D v.0/; w0.0/ D 0 (2.27)

and this problem has a unique solution defined in R (see Proposition 2.1.
in [14]).

If x 2 .0; x0/ is fixed, multiplying both terms of (2.26) by v0 and integrating
in the interval Œ0; x� we obtain

� .v0.x//2

2
D B.p � 1/

2p



jv.x/j 2p

p�1 � jv.0/j 2p
p�1

�
: (2.28)

On the interval .0; x0/ the function v satisfies v.x/ > 0 and v0.x/ � 0

(see (2.26)) and thus

v0.x/ D �
�

B.p � 1/
p


1=2 h
jv.0/j 2p

p�1 � jv.x/j 2p
p�1

i1=2
: (2.29)
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Therefore,

Z x

0

v0.t/h
jv.0/j 2p

p�1 � jv.t/j 2p
p�1

i1=2 dt D �
�

B.p � 1/
p


1=2
x

for any x 2 .0; x0/: Doing the change of variables s D v.t/

v.0/
; previous relation

can be written as

�'.1/C '

�
v.x/

v.0/

�
D �v.0/ 1

p�1

�
B.p � 1/

p


1=2
x; 8 x 2 .0; x0/:

Here ' W Œ0; 1� ! R is the strictly increasing function defined by

'.t/ D
Z t

0

ds

1 � s

2p
p�1

�1=2 :

If ' Œ0; 1� D Œ0; I�; then we find

v.x/

v.0/
D '�1

"
I � v.0/ 1

p�1

�
B.p � 1/

p

�1=2
x

#
8 x 2 .0; x0/: (2.30)

Moreover, since v.x0/ D 0; we obtain

I � v.0/ 1
p�1

�
B.p � 1/

p

�1=2
x0 D 0:

Hence,

v.0/ D
 

I

x0

�
p

B.p � 1/
�1=2!p�1

: (2.31)

Finally,

v.x/ D
 

I

x0

�
p

B.p � 1/
�1=2!p�1

'�1
�

I � I

x0
x

�
; 8 x 2 Œ0; x0� (2.32)

b. Now, we can calculate v in Œx0; 2x0�; Œ2x0; 3x0�; : : :
To do this, the initial value problem

w00.x/C Bjw.x/j 2
p�1 w.x/ D 0; w.x0/ D v.x0/ D 0; w0.x0/ D v0.x0/

(2.33)
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has a unique solution defined in R [14]. Since the function �v.2x0 � x/;
x 2 .x0; 2x0/; is a solution of (2.33), this provides v.x/ D �v.2x0 � x/;
8 x 2 .x0; 2x0/:

In an analogous way, the initial value problem

w00.x/C Bjw.x/j 2
p�1 w.x/ D 0; w.2x0/ D v.2x0/; w0.2x0/ D v0.2x0/ D 0

(2.34)

has a unique solution defined in R: Since the function v.4x0 � x/;
x 2 .2x0; 3x0/; is a solution of (2.34), this provides v.x/ D v.4x0 � x/;
8 x 2 .2x0; 3x0/:

Now, we can repeat this procedure in the intervals Œnx0; .nC1/x0�;8 n 2 N;
obtaining:

v.x/ D �v.2x0 � x/; 8 x 2 Œx0; 2x0�;

v.x/ D v.4x0 � x/; 8 x 2 Œ2x0; 3x0�;

v.x/ D �v.6x0 � x/; 8 x 2 Œ3x0; 4x0�;

: : : (2.35)

The conclusion is that if v is a nontrivial solution of (2.26) for some B 2 RC;
and x0 is the first zero point of v in .0;L/; then L D 2nx0 for some n 2 N: Next
we calculate Jp.v/.

It follows from previous reasonings that

Jp.v/ D

Z L

0

v02

�Z L

0

jvj 2p
p�1

� p�1
p

D
2n
Z x0

0

v02

�
2n
Z x0

0

jvj 2p
p�1

� p�1
p

: (2.36)

From (2.28) we obtain
Z x0

0

.v0.x//2 dx D B.p � 1/
p

�
�
Z x0

0

jv.x/j 2p
p�1 dx C x0jv.0/j

2p
p�1



(2.37)

and from (2.32) we obtain

Z x0

0

jv.x/j 2p
p�1 D

Z x0

0

 
I

x0

�
p

B.p � 1/
�1=2!2p �

'�1
�

I � I

x0
x

�
 2p
p�1

dx:

(2.38)

Doing the change of variables s D '�1.I.1 � x
x0
//; we have

Z x0

0

jv.x/j 2p
p�1 D

 
I

x0

�
p

B.p � 1/
�1=2!2p

x0
I

Z 1

0

s
2p

p�1



1 � s

2p
p�1

��1=2
ds:

(2.39)
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Integrating by parts the previous expression with f .s/ D s; g0.s/ D
s

pC1
p�1



1 � s

2p
p�1

��1=2
; we deduce

Z x0

0

jv.x/j 2p
p�1 D

 
I

x0

�
p

B.p � 1/
�1=2!2p

x0
I

p � 1
2p � 1 I: (2.40)

If we substitute this expression in (2.37) and, moreover, we take into
account (2.31), we obtain (think that L D 2nx0)

Z x0

0

jv0.x/j2 dx D B.p � 1/
p

x0

 
I

x0

�
p

B.p � 1/
�1=2!2p

p

2p � 1 : (2.41)

Now we can substitute (2.40) and (2.41) in (2.36). After some elementary
calculations we deduce

Jp.v/ D 4n2I2p

L2�
1
p .p � 1/1� 1

p .2p � 1/1=p
: (2.42)

At this point, one may observe two things. First, Jp.v/ does not depend on

B. Second, all values of n 2 N are possible in (2.42). In fact if x0 D L

2n
;

formula (2.32) defines a nontrivial solution of (2.26). Therefore, the infimum
mp is attained if n D 1: Finally, doing the change of variables s

p
p�1 D sin t; we

obtain I D
Z 1

0

ds

1 � s

2p
p�1

�1=2 D p � 1
p

K; where K D
Z �=2

0

.sin t/�1=p dt: This

gives

mp D 4.p � 1/1C 1
p

L2�
1
p p.2p � 1/1=p

 Z �=2

0

.sin x/�1=p dx

!2
: (2.43)

Remark 2.8. In order to study other boundary conditions (Sect. 2.3), it seems
essential to highlight the basic facts of the previous procedure.

We emphasize that if v is a nontrivial solution of (2.26) and x0 is the first zero
point of v in .0;L/; then L D 2nx0 for some natural number n � 1 and, in addition,

v0.0/ D v0.2x0/ D : : : D v0.2nx0/ D 0;

v.x0/ D : : : D v..2n � 1/x0/ D 0; (2.44)

and v.x/ ¤ 0; v0.x/ ¤ 0; 8 x 2 .jx0; .j C 1/x0/; 0 � j � 2n � 1: These properties
allow to calculate, in a explicit way, the functions v0 and v in Œ0;L� and consequently,
to find the value of Jp.v/ given in (2.42).
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Remark 2.9. It is proved in [3] that ˇp, as a function of p 2 Œ1;C1�, is continuous.

Remark 2.10. If L D 1 and 1 � p < q < 1; then ˇp < ˇq (see [3]). As a trivial
consequence, if L is an arbitrary positive number, the mapping .1;1/ ! R; p !
L�1=pˇp is strictly increasing.

Now, we return to the linear boundary value problem (2.17), corollary 2.1, and
remark 2.7. The following result establishes a natural link between the cases p D 1

and p D 1: Previously, remember that from Theorems 2.1, 2.2 and 2.3 the constant
ˇp; defined as an infimum in 2.5, is attained, if and only if 1 < p � 1:

Corollary 2.2. Let a 2 L1 n f0g; 0 �
Z L

0

a.x/; satisfying one of the following

conditions:

1. kaCk1 � ˇ1;

2. There is some p 2 .1;1/ such that kaCkp < ˇp,
3. kaCk1 < ˇ1 or kaCk1 D ˇ1 and aC ¤ a1:

Then for each f 2 L1.0;L/; the boundary value problem (2.17) has a unique
solution.

Remark 2.11. We have shown that the best Sobolev constant ˇp; defined
in (2.5), can be computed by using a certain minimization problem given in
Theorems 2.1, 2.2, and 2.3. Motivated by a completely different problem (an
isoperimetric inequality known as Wulff theorem, of interest in crystallography),
the authors studied in [9] a similar variational problem for the case of periodic
or Dirichlet boundary conditions (see also [11] for more general minimization
problems). Our treatment of the Euler equation associated with the mentioned
minimization problem is different from that of Croce and Dacorogna [9].

2.2 Nonlinear Neumann Problems

Lyapunov inequalities can be used in the study of nonlinear resonant problems. To
accomplish this, the linear results are combined with Schauder fixed point theorem.

We focus on a resonant nonlinear problem with Neumann boundary conditions,
but the same ideas and methods can be used for other situations (see Sect. 2.3).

More precisely, let us consider the problem

u00.x/C f .x; u.x// D 0; x 2 .0;L/; u0.0/ D u0.L/ D 0; (2.45)

where f W Œ0;L� � R ! R; .x; u/ ! f .x; u/ is continuous.
The associated linear problem

u00.x/ D 0; x 2 .0;L/; u0.0/ D u0.L/ D 0 (2.46)

has nontrivial solutions (any constant function) and this is the reason why we
call (2.45) a resonant problem.
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If (2.45) is linear, i.e., it is of the type

u00.x/C a.x/u.x/ D 0; x 2 .0;L/; u0.0/ D u0.L/ D 0 (2.47)

and for some integer n � 0 there is a positive number ı such that

�n C ı � a.x/ � �nC1 � ı; in Œ0;L�; (2.48)

where �n is an eigenvalue of the eigenvalue problem (2.2), then (2.47) has only the
trivial solution u 	 0 (see, for instance, [20]). In particular, for the first eigenvalue
�0 D 0; (2.48) becomes

ı � a.x/ � �2

L2
� ı; in Œ0;L�: (2.49)

We must remark that (2.48) does not allow to the function a.�/ to cross any
eigenvalue of (2.2). Using Lyapunov inequalities, it is possible that fu.x; u/ in (2.45)
crosses the eigenvalues �n (fu means the partial derivative of the function f .x; u/
with respect to the variable u:) and it is possible to provide some extensions of
Corollary 2.2 to nonlinear situations.

To this respect, we will assume throughout this section that the following
hypothesis is satisfied

(H) f ; fu are continuous on Œ0;L� � R and 0 � fu.x; u/ on Œ0;L� � R:
Then, the existence of a solution u of (2.45) implies

Z L

0

f .x; u.x// dx D 0: (2.50)

Now, the previous hypothesis (H) implies that f .x; u/ is increasing with respect to u.
Therefore,

Z L

0

f .x;m/ dx �
Z L

0

f .x; u.x// dx D 0 �
Z L

0

f .x;M/ dx;

where m D min
Œ0;L�

u and M D max
Œ0;L�

u and consequently

Z L

0

f .x; z/ dx D 0 (2.51)

for some z 2 R: However, conditions (H) and (2.51) are not sufficient for the
existence of solutions of (2.45). Indeed, if n 2 N is any natural number, consider the
problem

u00.x/C n2�2u.x/C cos.n�x/ D 0; x 2 .0; 1/; u0.0/ D u0.1/ D 0: (2.52)

The function f .x; u/ D n2�2u C cos.n�x/ satisfies (H) and (2.51), but the Fredholm
alternative theorem [16] shows that there is no solution of (2.52).
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If (H) and (2.51) are assumed, and for instance, L D 1 for simplicity, different
supplementary assumptions can be given which imply the existence of a solution
of (2.45). For example

(h1) fu.x; u/ � ˇ.x/ on Œ0; 1� � R with ˇ 2 L1.0; 1/; ˇ.x/ � �2 on Œ0; 1� and
ˇ.x/ < �2 on a subset of .0; 1/ of positive measure.

Conditions of this type are referred to as nonuniform nonresonance conditions
with respect to the first positive eigenvalue of the associated linear homogeneous
problem. By using variational methods, it is proved in [26] that (H), (2.51), and (h1)
imply the existence of solutions of (2.45). Restriction (h1) is related to Lyapunov-
type inequalities: the number �2 is the best L1 Lyapunov constant, ˇ1, for L D 1

(Theorem 2.1).
On the other hand, in [18] it is supposed

(h2) fu.x; u/ � ˇ.x/ on Œ0; 1� � R with ˇ 2 L1.0; 1/ and
Z 1

0

ˇ.x/ dx � 4

The authors use Optimal Control theory methods to prove that (H), (2.51), and
(h2) imply the existence and uniqueness of solutions of (2.45). Restriction (h2) is
also related to Lyapunov-type inequalities: the number 4 is the best L1 Lyapunov
constant, ˇ1, for L D 1 (Theorem 2.2).

Let us observe that supplementary conditions (h1) and (h2) are given respectively
in terms of kˇk1 and kˇk1; the usual norms in the spaces L1.0; 1/ and L1.0; 1/:
Also, it is trivial that under the hypotheses (H) and (2.51), (h1) and (h2) are not
related (i.e., none of these hypotheses implies the other).

In the next theorem we provide supplementary conditions in terms of kˇkp; 1 �
p � 1: As a consequence, a natural relation between (h1) and (h2) arises if one
takes into account Remark (2.9) and studies the limits of kˇkp for p ! 1C and
p ! 1 (see [3] for further details).

Theorem 2.4. Let us consider (2.45) where the following requirements are ful-
filled:

1. f and fu are continuous on Œ0;L� � R:
2. 0 � fu.x; u/ in Œ0;L�� R. Moreover, for each u 2 CŒ0;L� one has fu.x; u.x// ¤ 0;

a.e. on Œ0;L� and
Z L

0

f .x; 0/ dx D 0:

3. For some function ˇ 2 L1.0;L/; we have fu.x; u/ � ˇ.x/ on Œ0;L� � R and ˇ
satisfies some of the conditions given in Corollary 2.2.

Then, problem (2.45) has a unique solution.

Proof. The proof consists of two parts: existence and uniqueness of solutions
of (2.45). We begin with the second one.

Uniqueness of Solutions We assume that (2.45) has two solutions. Then, the
mean value theorem [8] and Corollary (2.2) are used to prove that they are the same.
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Let u1 and u2 be two solutions of (2.45). Then,

� .u1 � u2/
00.x/ D f .x; u1.x// � f .x; u2.x//

D
Z 1

0

d

d�
Œf .x; u2.x/C �.u1.x/ � u2.x//� d�

D
�Z 1

0

fu.x; u2.x/C �.u1.x/ � u2.x// d�



.u1.x/ � u2.x//; x 2 Œ0;L�:

(2.53)

Hence, the function u D u1 � u2 is a solution of a homogeneous problem of the

type (2.17) with a.x/ D
Z 1

0

fu.x; u2.x/ C �u.x// d�: From the hypotheses of the

theorem and applying Corollary 2.2, we obtain u 	 0:

Existence of Solutions The main idea is to rewrite (2.45) in an equivalent
form, such that the solutions of (2.45) be the fixed points of a certain completely
continuous operator, and then, to apply the Schauder fixed point theorem [12]. To
see this, by using the same idea that in (2.53), we rewrite (2.45) as

0 D u00.x/C f .x; u.x// D u00.x/C f .x; u.x// � f .x; 0/C f .x; 0/

D u00.x/C
Z 1

0

d

d�
Œf .x; �u.x//� d� C f .x; 0/

D u00.x/C
�Z 1

0

fu.x; �u.x// d�



u.x/C f .x; 0/: (2.54)

Therefore, u is a solution of (2.45) if and only if u satisfies

u00.x/C b.x; u.x//u.x/ D �f .x; 0/; x 2 Œ0;L�; u0.0/ D u0.L/ D 0; (2.55)

where the continuous function b W Œ0;L� � R ! R is defined by

b.x; z/ D
Z 1

0

fu.x; �z/ d�:

From the hypotheses of the theorem, it is deduced that for each function y 2
C1.Œ0;L�;R/; the linear equation

u00.x/C b.x; y.x//u.x/ D �f .x; 0/; x 2 Œ0;L�; u0.0/ D u0.L/ D 0 (2.56)

satisfies all the hypotheses of Corollary 2.2 and consequently, (2.56) has a unique
solution uy: Then, if X D C1.Œ0;L�;R/ with the usual norm, i.e.,

kykX D max
x2Œ0;L� jy.x/j C max

x2Œ0;L� jy0.x/j; 8 y 2 X

we can define the operator T W X ! X; by Ty D uy: Clearly, u is a solution of (2.45)
if and only if y is a fixed point of T:
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We claim that T is completely continuous (T is continuous and if B � X is
bounded, then T.B/ is relatively compact in X) and that T.X/ is bounded. Then,
the Schauder fixed point theorem ensures that T has a fixed point which provides a
solution of (2.45).

To prove the claim, if T.X/ is not bounded, there would exist a sequence fyng � X
such that kuynkX ! 1:Moreover, from the hypotheses of the theorem, the sequence
of functions fb.�; yn.�//g is bounded in L2.0;L/ and, passing to a subsequence if
necessary, we may assume that fb.�; yn.�//g is weakly convergent in L2.0;L/ to a
function ˇ0 satisfying 0 � ˇ0.x/ � ˇ.x/, a.e. in Œ0;L� (see [2] for the properties of
the convergence in L2.0;L//:

In addition, each uyn satisfies

u00
yn
.x/C b.x; yn.x//uyn.x/ D �f .x; 0/; x 2 Œ0;L�; u0.0/ D u0.L/ D 0: (2.57)

Since the embedding H1.0;L/ � CŒ0;L� is compact (in CŒ0;L� we take the uniform

norm), if zn 	 uyn

kuynkX
; then passing to a subsequence if necessary, we may assume

that zn ! z0; uniformly in Œ0;L�, where z0 satisfies kz0kX D 1 and

z00
0 .x/C ˇ0.x/z0.x/ D 0; x 2 Œ0;L�; z0

0.0/ D z0
0.L/ D 0: (2.58)

Moreover, from the hypotheses of the theorem, we have for each n 2 N;
Z L

0

b.x; yn.x//uyn.x/ dx D �
Z L

0

f .x; 0/ dx D 0:

Also, the function b.�; yn.�// is nonnegative and not identically zero. Therefore, for
each n 2 N; the function uyn has a zero in Œ0;L�: This implies that for each n 2 N;
the function zn has a zero in Œ0;L� and hence so does z0: Taking into account (2.58),
ˇ0 2 L1.0;L/ n f0g: This is a contradiction with Corollary 2.2.

Now, let us prove that the operator T is continuous. To see this, if fyng ! y0 in
the space X and uyn does not converge to uy0 ; passing to a subsequence if necessary,
there exists a constant ı > 0 such that uyn … BX.uy0 I ı/; 8 n 2 N; where BX.uy0 I ı/
denotes the open ball in X of center uy0 and radius ı:Also, taking into account (2.56)
and the boundness of the operator T; we obtain that the sequence fu00

yn
g is uniformly

bounded. Thus, by Arzela–Ascoli Theorem [7], again passing to a subsequence if
necessary, we deduce that uyn converges to some function u0: But, by the uniqueness
of solution for problem (2.56), we must have u0 D uy0 ; which is a contradiction.

Finally, by using again the Arzela–Ascoli theorem, it is trivial from (2.56) that if
B � X is bounded, then T.B/ is relatively compact in X:

Remark 2.12. If f .x; u/ D a.x/u; the second hypothesis in the previous theorem
becomes 0 � a.x/ and a.x/ ¤ 0; a.e. on Œ0;L�:

Remark 2.13. Since the change of variables u.x/ D v.x/ C z; z 2 R; trans-
forms (2.45) into the problem

v00.x/C f .x; v.x/C z/ D 0; x 2 .0;L/; v0.0/ D v0.L/ D 0;
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the condition
Z L

0

f .x; 0/ dx D 0 in the previous theorem may be substituted by
Z L

0

f .x; z/ dx D 0; for some z 2 R:

Remark 2.14. Taking into account Remark 2.9, previous result establishes a clear
relationship between Theorem B in [18] and Theorem 2 in [26] for the case of
ordinary differential equations.

Remark 2.15. Let us remark that the hypothesis of the previous theorem allows
the function fu.x; u/ to cross an arbitrary number of different eigenvalues �n of the
eigenvalue problem (2.2) (see [3, 18]).

2.3 The Variational Method for Other Boundary Conditions

The variational method that we have used in Sect. 2.1 (Theorem 2.3), to obtain the
explicit value of the constant ˇp; 1 < p < 1; is valid for many other boundary
conditions. Remember the two key points for Neumann problem (2.1).

1. The set of boundary value problems

v00.x/C Bjv.x/j 2
p�1 v.x/ D 0; x 2 .0;L/; v0.0/ D v0.L/ D 0; B 2 RC

(2.59)

provides

ˇp D inf
B2RC

inf
v2SB

Jp.v/; (2.60)

where

Jp.v/ D

Z L

0

v02

�Z L

0

jvj 2p
p�1

� p�1
p

and for a given B 2 RC; SB denotes the set of all nontrivial solutions of (2.59).
2. If v is a nontrivial solution of (2.59) for some B 2 RC; then

Jp.v/ D 4n2I2p

L2�
1
p .p � 1/1� 1

p .2p � 1/1=p
; (2.61)

where

I D p � 1
p

Z �=2

0

.sin x/�1=p dx (2.62)
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and n is the unique natural number (depending on v), satisfying the properties:

x0 is the first zero point of v in .0;L/; L D 2nx0;
v0.0/ D v0.2x0/ D : : : D v0.2nx0/ D 0;

v.x0/ D : : : D v..2n � 1/x0/ D 0;

v.x/ ¤ 0; v0.x/ ¤ 0; 8 x 2 .jx0; .j C 1/x0/; 0 � j � 2n � 1:
(2.63)

Let us emphasize that the value of Jp.v/ in (2.61) does not depend, explicitly, on the
positive constant B and that to obtain ˇp we must find the minimum value of n in the
expression (2.61). For instance, for Neumann boundary conditions this minimum
value is n D 1 (see the last part of Theorem 2.3).

Below we describe the main ideas for other boundary conditions.
In the remainder of the chapter we will denote as ˇN

p the constant ˇp obtained
above for Neumann boundary conditions.

Dirichlet Boundary Conditions This case is very similar to the Neumann one.
If we consider the linear problem

u00.x/C a.x/u.x/ D 0; x 2 .0;L/; u.0/ D u.L/ D 0; (2.64)

where a 2 	D and 	D is defined by

	D D fa 2 L1.0;L/ such that (2.64) has nontrivial solutions g (2.65)

then, for each p with 1 � p � 1;we can define the functional Ip W 	D
T

Lp.0;L/ !
R given by Ip.a/ D kaCkp (the same expression as in (2.4)), and in a similar form,
we can define the constant

ˇD
p 	 inf

a2	D
T

Lp.0;L/
Ip.a/; 1 � p � 1: (2.66)

Taking into account the same ideas that for the Neumann problem, it can be easily
proved that

ˇD
p D ˇN

p ; 1 � p � 1: (2.67)

In the proof, we must simply replace the spaces Xp of Theorems 2.1–2.3 by the
Sobolev space H1

0.0;L/ and (2.63) by

v.0/ D v.2x0/ D : : : D v.2nx0/ D 0;

v0.x0/ D : : : D v0..2n � 1/x0/ D 0;

v.x/ ¤ 0; v0.x/ ¤ 0; 8 x 2 .jx0; .j C 1/x0/; 0 � j � 2n � 1:
(2.68)

Remark 2.16. Let us note that, contrary to what happens for Neumann problems,
in the minimization problems associated with Dirichlet boundary conditions, we do
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not need to impose any additional restriction to the space H1
0.0;L/ (see [28]). This

is due to the fact that the homogeneous linear part of (2.64)

u00.x/ D 0; x 2 .0;L/; u.0/ D u.L/ D 0 (2.69)

has only the trivial solution u 	 0: In this work, we will call to this type of problems
nonresonant problems.

Periodic Boundary Conditions In the case of the periodic boundary value
problem

u00.t/C a.t/u.t/ D 0; t 2 .0;T/; u.0/ � u.T/ D u0.0/ � u0.T/ D 0 (2.70)

we assume that a 2 LT.R;R/; the set of T-periodic functions a W R ! R such that
ajŒ0;T� 2 L1.0;T/ (due to the applications to stability, it is convenient to use t as the
independent variable, instead of x).

If we define the set

	per D fa 2 LT.R;R/ n f0g W
Z T

0

a.t/ dt � 0 and (2.70) has nontrivial solutions g
(2.71)

the positive eigenvalues of the eigenvalue problem

u00.t/C �u.t/ D 0; t 2 .0;T/; u.0/ � u.T/ D u0.0/ � u0.T/ D 0 (2.72)

belong to 	per: Therefore, for each p with 1 � p � 1; we can define the Lp

Lyapunov constant for the periodic problem, ˇper
p ; as the real number

ˇper
p 	 inf

a2	per
T

Lp.0;T/
kaCkp: (2.73)

An explicit expression for the constant ˇper
p , as a function of p and T; has been

obtained in [30]. As in the Neumann case, we can obtain a characterization of ˇper
p

as a minimum of a convenient minimization problem, where only some appropriate
subsets of the space H1.0;T/ are used (see [6] for further details).

Since (2.72) is, as (2.1), a resonant problem, just to get a variational characteri-
zation of ˇper

p we need an additional restriction to the space H1.0;T/: This is shown
in the next theorem.

Theorem 2.5. If 1 � p � 1 is a given number, let us define the sets Xper
p and the

functionals Iper
p W Xper

p n f0g ! R as

Xper
1 D fv 2 H1.0;T/ W v.0/ � v.T/ D 0; max

t2Œ0;T� v.t/C min
t2Œ0;T� v.t/ D 0g;

Xper
p D

�
v 2 H1.0;T/ W v.0/ � v.T/ D 0;

Z T

0

jvj 2
p�1 v D 0

	
; if 1 < p < 1;
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Xper1 D fv 2 H1.0;T/ W v.0/ � v.T/ D 0;

Z T

0

v D 0g;

Iper
1 .v/ D

Z T

0

v02

kvk21
; Iper

p .v/D

Z T

0

v02

�Z T

0

jvj 2p
p�1

� p�1
p

; if 1 < p < 1; Iper1 .v/ D

Z T

0

v02

Z T

0

v2
:

(2.74)

Then, the Lp Lyapunov constant ˇper
p defined in (2.73), satisfies

ˇ
per
p D min

X
per
p nf0g

Iper
p ; 1 � p � 1: (2.75)

Proof. Only those innovative details with respect to the Neumann case are
shown [6].

The case p D 1: It is very well known that ˇper
1 D 16

T [17, 30]. Now, if u 2
Xper
1 n f0g; then there exists x0 2 Œ0;T� such that u.x0/ D 0: Taking into account

that u can be extended as a T-periodic function to R; if we define the function
v.x/ D u.x C x0/; 8 x 2 R; then vjŒ0;T� 2 Xper

1 n f0g; v.0/ D v.T/ D 0 and
Iper
1 .u/ D Iper

1 .v/: In addition (if it is necessary, we can choose �v instead of v),
there exist 0 < x1 < x2 < x3 < T such that

v.x1/ D max
Œ0;T�

v; v.x2/ D 0; v.x3/ D min
Œ0;T�

v:

If x0 D 0; x4 D T; it follows from the Cauchy–Schwarz inequality

Z T

0

v02 D
3X

iD0

Z xiC1

xi

v02 �
3X

iD0


R xiC1

xi
jv0j
�2

xiC1 � xi

�
3X

iD0


R xiC1

xi
v0
�2

xiC1 � xi
D

3X
iD0

.v.xiC1/ � v.xi//
2

xiC1 � xi

D kvk21
3X

iD0

1

xiC1 � xi
� 16

T
kvk21: (2.76)

Consequently

Iper
1 .u/ D

R T
0

u02

kuk21
D Iper

1 .v/ � 16

T
; 8 u 2 Xper

1 n f0g: (2.77)
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On the other hand, the function w 2 Xper
1 n f0g defined as

w.x/ D
8<
:

x; if 0 � x � T=4;
�.x � T

2
/; if T=4 � x � 3T=4;

.x � T/; if 3T=4 � x � T;
(2.78)

satisfies R T
0

w02

kwk21
D 16

T
:

Consequently, the case p D 1 is proved.
The case p D 1: It is very well known that ˇper1 D 4�2

T2
, the first positive

eigenvalue of the eigenvalue problem (2.72) (see [30]). From its variational char-
acterization, we obtain

ˇper1 D min
X

per
1nf0g

Iper1 :

The case 1 < p < 1. The ideas are similar to those used in the case of Neumann
boundary conditions. If we denote

mper
p D inf

X
per
p nf0g

Iper
p

then this infimum is attained in some function u0 which satisfies

u00
0 .x/C Ap.u0/ju0.x/j

2
p�1 u0.x/ D 0; x 2 .0;T/;

u0.0/ � u0.T/ D 0; u0
0.0/ � u0

0.T/ D 0;
(2.79)

where

Ap.u0/ D mper
p

�Z T

0

ju0j
2p

p�1

��1
p

: (2.80)

Let us observe that the previous equation is of the type (2.59), but with periodic
boundary conditions instead of Neumann ones. As it was commented at the
beginning of this section, this is not a problem. If one has an exact knowledge
about the number and distribution of the zeros of the functions u0 and u0

0; the Euler
equation (2.79) can be integrated (see [3], Lemma 2.7). In our case, it is not
restrictive to assume u0.0/ D u0.T/ D 0 (see the previous case p D 1). Then,
if we denote the zeros of u0 in Œ0;T� by 0 D x0 < x2 < : : : < x2n D T and the zeros
of u0

0 in .0;T/ by x1 < x3 < : : : < x2n�1, we obtain

mper
p D 4n2I2p

T2�
1
p .p � 1/1� 1

p .2p � 1/1=p
; (2.81)

where I is defined in (2.62).
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The novelty here is that, for the periodic boundary value problem (2.79), n � 2

(see the relations (2.35)), while for the Neumann and Dirichlet problem n � 1:

The conclusion is that

mper
p D 16I2p

T2�
1
p .p � 1/1� 1

p .2p � 1/1=p
(2.82)

that is, four times the corresponding Lp Lyapunov constant for the Dirichlet and the
Neumann problem. Finally, in [30] it is shown that this is, exactly, the Lp Lyapunov
constant for the periodic problem. Consequently, mper

p D ˇ
per
p ; 1 < p < 1:

Finally, we treat in this section with antiperiodic boundary conditions, another
important case due to its applications to stability theory (Chap. 3). As we will show,
in some aspects this case is similar to the case of periodic boundary conditions, but
in others it is similar to Neumann or Dirichlet boundary conditions.

Antiperiodic Boundary Conditions Let us consider the antiperiodic boundary
value problem

u00.t/C a.t/u.t/ D 0; t 2 .0;T/; u.0/C u.T/ D u0.0/C u0.T/ D 0 (2.83)

where a 2 LT.R;R/:
If we define the set

	ant D fa 2 LT.R;R/ W (2.83) has nontrivial solutions g (2.84)

the positive eigenvalues of the eigenvalue problem

u00.t/C �u.t/ D 0; t 2 .0;T/; u.0/C u.T/ D u0.0/C u0.T/ D 0 (2.85)

belong to 	ant: Therefore, for each p with 1 � p � 1; we can define the Lp

Lyapunov constant for the antiperiodic problem, ˇant
p ; as the real number

ˇant
p 	 inf

a2	ant
T

Lp.0;T/
kaCkp (2.86)

An explicit expression for the constant ˇant
p , as a function of p and T; has been

obtained in [30]. As in the cases of Neumann, Dirichlet, or periodic boundary
conditions, it is possible to prove a characterization of ˇant

p as a minimum of a
convenient minimization problem, where only some appropriate subsets of the space
H1.0;T/ are used (see [6] for further details). Since (2.83) is, as (2.64), a no resonant
problem, i.e., the linear part

u00.t/ D 0; t 2 .0;T/; u.0/C u.T/ D u0.0/C u0.T/ D 0 (2.87)

has only the trivial solution, just to get a variational characterization of ˇant
p we do

not need any additional restriction to the space H1.0;T/; except u.0/ C u.T/ D 0:

This is shown in the next theorem, where the proof is omitted (see [6]).
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Theorem 2.6. If 1 � p � 1 is a given number, let us define the sets Xant
p and the

functional Iant
p W Xant

p n f0g ! R; as

Xant
p D ˚

v 2 H1.0;T/ W v.0/C v.T/ D 0
�
; 1 � p � 1;

Iant
1 .v/ D

Z T

0

v02

kvk21
; Iant

p .v/ D

Z T

0

v02

�Z T

0

jvj 2p
p�1

� p�1
p

; if 1 < p < 1; Iant1 .v/ D

Z T

0

v02

Z T

0

v2
:

(2.88)

Then, the Lp Lyapunov constant ˇant
p defined in (2.86) satisfies

ˇant
p D min

Xant
p nf0g

Iant
p ; 1 � p � 1: (2.89)

Remark 2.17. Using the procedure described in Sect. 2.1 of this chapter, many other
boundary conditions can be studied. We bring out the case of problems of mixed
type

u00.x/C a.x/u.x/ D 0; x 2 .0;L/; u0.0/ D u.L/ D 0;

where the number n of the relation (2.61) must be chosen as n D 1=2: However,
due to the important relationship of this case with the notion of disfocality and
its applications to resonant nonlinear problems and the theory of stability, such
problems will be treated in the next section.

2.4 Disfocality

Under the natural restrictions a 2 L1.0;L/ n f0g and
Z L

0

a.x/ dx � 0; the relation

between Neumann boundary conditions and disfocality arises in a natural way, since
if u 2 H1.0;L/ is any nontrivial solution of

u00.x/C a.x/u.x/ D 0; x 2 .0;L/; u0.0/ D u0.L/ D 0 (2.90)

then u must have a zero c in the interval .0;L/: In fact, u.0/ ¤ 0 and u.L/ ¤ 0:

Then, if u has not zeros in the interval .0;L/; we can assume that u is, for example,

a positive (nonconstant) solution of (2.90). Considering v D 1

u
as test function in

the weak formulation of (2.90), we obtain



2.4 Disfocality 35

Z L

0

a D
Z L

0

au
1

u
D
Z L

0

u0.
1

u
/0 D �

Z L

0

u02

u2
< 0

which is a contradiction with the hypothesis
Z L

0

a.x/ dx � 0:

In consequence both problems

v00.x/C a.x/v.x/ D 0; x 2 .0; c/; v0.0/ D v.c/ D 0 PM(0,c)

and

v00.x/C a.x/v.x/ D 0; x 2 .c;L/; v.c/ D v0.L/ D 0 PM(c,L)

have nontrivial solutions.
This simple observation (which has been previously employed in the case of

Dirichlet boundary conditions, [15, 19]) can be used to deduce the following

conclusion: if a 2 L1.0;L/ n f0g with
Z L

0

a � 0 is any function such that for

any c 2 .0;L/; either problem PM(0,c) or problem PM(c,L) has only the trivial
solution, then problem (2.90) has only the trivial solution.

Below we study the relation between the best Lp Lyapunov constants for the
problems (2.90) and

u00.x/C a.x/u.x/ D 0; x 2 .0;L/; u0.0/ D u.L/ D 0; (2.91)

where for Neumann problem (2.90), function a 2 	 and 	 is defined by

	 D fa 2 L1.0;L/ n f0g W
Z L

0

a.x/ dx � 0 and (2.90) has nontrivial solutionsg
(2.92)

whereas for mixed problem (2.91), function a 2 	� and 	� is defined by

	� D fa 2 L1.0;L/ W (2.91) has nontrivial solutionsg (2.93)

Here u 2 H D H1.0;L/ (the usual Sobolev space) in the case of Neumann
conditions and u 2 H� D fu 2 H W u.L/ D 0g in the case of mixed boundary
conditions. Obviously, the positive eigenvalues of the problems

u00.x/C �u.x/ D 0; x 2 .0;L/; u0.0/ D u0.L/ D 0 (2.94)

and

u00.x/C �u.x/ D 0; x 2 .0;L/; u0.0/ D u.L/ D 0 (2.95)
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belong, respectively, to 	 and 	�. Therefore 	 and 	� are both not empty and the
quantities

ˇp 	 inf
a2	T Lp.0;L/

kaCkLp.0;L/; 1 � p � 1 (2.96)

and

ˇ�
p 	 inf

a2	�
T

Lp.0;L/
kaCkLp.0;L/; 1 � p � 1 (2.97)

are well defined.
The next theorem establishes a clear relation between ˇp and ˇ�

p . When it is
necessary, we will write	.0;L/; ˇp.0;L/; : : : to show up the explicit dependence of
these quantities with respect to the interval .0;L/: Also, it is possible to define, in
an analogous manner, 	.c; d/; ˇp.c; d/; : : : for arbitrary real numbers c < d:

Theorem 2.7. If 1 � p � 1; we have ˇ�
p D ˇp=4:

Proof. By using the definition of ˇp and ˇ�
p ; and doing a trivial change of variables,

it is easy to prove the equalities

ˇp.0; c/ D

 c

d

� 1
p �2

ˇp.0; d/; 8c; d 2 RC; 8p; 1 � p � 1 (2.98)

and

ˇ�
p .0; c/ D


 c

d

� 1
p �2

ˇ�
p .0; d/; 8c; d 2 RC; 8p; 1 � p � 1: (2.99)

Moreover, problem (2.91) becomes

v00.x/C a.L � x/v.x/ D 0; x 2 .0;L/; v.0/ D v0.L/ D 0 (2.100)

through the variable change y D L � x and it is clear that

ka.�/kLp.0;L/ D ka.L � �/kLp.0;L/

Lemma 2.1. If 1 � p � 1; we have ˇ�
p � ˇp=4:

Proof. If a 2 	.0;L/T Lp.0;L/ and u is a nontrivial solution of (2.90), there exists
c 2 .0;L/ such that u.c/ D 0: Therefore both problems PM(0,c) and PM(c,L)
have nontrivial solutions. In consequence, function a; restricted to the interval Œ0; c�
belongs to	�.0; c/ and function a.LCc��/; restricted to the interval Œc;L� belongs
to 	�.c;L/: Let us assume 1 � p < 1: Then taking into account the definition of
ˇ�

p ; (2.99) and (2.100), we have
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kaCkp
Lp.0;L/ D kaCkp

Lp.0;c/ C kaCkp
Lp.c;L/

� .ˇ�
p .0; c//

p C .ˇ�
p .c;L//

p

D
�

L

c

�2p�1
.ˇ�

p .0;L//
p C

�
L

L � c

�2p�1
.ˇ�

p .0;L//
p

D
"�

L

c

�2p�1
C
�

L

L � c

�2p�1#
.ˇ�

p .0;L//
p

� . inf
c2.0;L/ g.c//.ˇ�

p .0;L//
p; (2.101)

where g W .0;L/ ! R is defined by

g.c/ D
"�

L

c

�2p�1
C
�

L

L � c

�2p�1#
; 8 c 2 .0;L/:

It is easily checked that

g0.c/ < 0; 8 c 2 .0;L=2/ and g0.c/ > 0; 8 c 2 .L=2;L/:
Thus

inf
c2.0;L/ g.c/ D g.L=2/ D 4p: (2.102)

Therefore, from (2.101) and (2.102) we deduce

kaCkp
Lp.0;L/ � 4p.ˇ�

p .0;L//
p; 8 a 2 	 \ Lp.0;L/:

Similar ideas may be used in the case p D 1: This proves the lemma.

Lemma 2.2. If 1 � p � 1; we have ˇ�
p � ˇp=4:

Proof. If a 2 	�.0;L/
T

Lp.0;L/ and u is a nontrivial solution of (2.91), let us
define the functions

Qa; Qu W Œ0; 2L� ! R

Qa.x/ D
�

a.x/; x 2 Œ0;L�;
a.2L � x/; x 2 .L; 2L�

Qu.x/ D
�

u.x/; x 2 Œ0;L�;
�u.2L � x/; x 2 .L; 2L�:

(2.103)

Then Qu 2 H1.0; 2L/ and we claim that Qu is a (nontrivial) solution of

w00.x/C Qa.x/w.x/ D 0; x 2 .0; 2L/; w0.0/ D w0.2L/ D 0: (2.104)
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To see this, we need to demonstrate

Z 2L

0

Qu0.x/z0.x/ dx D
Z 2L

0

Qa.x/Qu.x/z.x/ dx; 8 z 2 H1.0; 2L/: (2.105)

If z 2 H1.0; 2L/ satisfies

z.L/ D 0 (2.106)

then z; restricted to the interval Œ0;L� is a test function for mixed problem (2.91) and
therefore

Z L

0

Qu0.x/z0.x/ dx D
Z L

0

u0.x/z0.x/ dx

D
Z L

0

a.x/u.x/z.x/ dx D
Z L

0

Qa.x/Qu.x/z.x/ dx: (2.107)

Moreover, since function z.2L � y/; y 2 Œ0;L�; is also a test function for mixed
problem (2.91), we have

Z 2L

L
Qu0.x/z0.x/ dx D

Z L

0

u0.y/z0.2L � y/ dy

D �
Z L

0

a.y/u.y/z.2L � y/ dy D
Z 2L

L
Qa.x/Qu.x/z.x/ dx:

(2.108)

From (2.107) and (2.108) we deduce (2.105) when z satisfies (2.106). But in
the interval Œ0; 2L�; function Qa.x/Qu.x/ is an odd function with respect to L: This
implies (2.105) when z 	 1: Finally, as any z 2 H1.0; 2L/ may be written in the
form z.x/ D .z.x/ � z.L//C z.L/, we conclude (2.105).

Once we have proved that Qu is a (nontrivial) solution of (2.104) associated with
function Qa, we would need to have the sign condition

Z 2L

0

Qa.x/ dx � 0 (2.109)

since this property is included into the definition of the set 	.0; 2L/: But

Z 2L

0

Qa.x/ dx D 2

Z L

0

a.x/ dx

and a 2 	�.0;L/; a set where no sign conditions is assumed. This difficulty may be
overcome by using some eigenvalue ideas. In fact, we will prove

8 a 2 	�.0;L/; 9 k 2 .0; 1� W kaC 2 	�.0;L/: (2.110)
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To establish this, note that if a 2 	�.0;L/ then
Z L

0

u02.x/ dx D
Z L

0

a.x/u2.x/ dx

for some nontrivial function u 2 H�: Therefore the set fx 2 .0;L/ W a.x/ > 0g has
positive measure. As a consequence, the eigenvalue problem

w00.x/C �a.x/w.x/ D 0; x 2 .0;L/; w0.0/ D w.L/ D 0 (2.111)

has a sequence of positive eigenvalues �1.a/ < �2.a/ < : : :
Moreover, a 2 	�.0;L/ implies �1.a/ � 1: Since aC � a; we have �1.aC/ �

�1.a/: As �1.aC/aC 2 	�.0;L/; this proves (2.110).
Now, from (2.110) we have kkaCkLp.0;L/ � kaCkLp.0;L/: Therefore, it is clearly

not restrictive to assume from the beginning of the lemma we are proving that
a.x/ � 0: This fact implies (2.109) and as a consequence, function Qa defined
in (2.103) belongs to the set 	.0; 2L/: Moreover, if 1 � p < 1;

2kakp
Lp.0;L/ D kQakp

Lp.0;2L/ � ˇp
p.0; 2L/ D 21�2pˇp

p.0;L/

which imply

kakLp.0;L/ � 1

4
ˇp.0;L/;

for each function a 2 	�.0;L/
T

Lp.0;L/ such that a.x/ � 0. From this and (2.110)
we obtain the conclusion of the lemma if 1 � p < 1. Similar ideas may be used in
the case p D 1: This finishes also the proof of Theorem 2.7.

Remark 2.18. The proof of Theorem 2.7 that we have given here is based on an
appropriate change of variables, but it is possible to carry out a different approach
by using similar ideas to those contained in Sect. 2.1. In this way, some additional
results for ˇ�

p .0;L/ may be proved. For instance, ˇ�
p .0;L/ is attained if and only if

1 < p � 1
Next, we present some results on the existence and uniqueness of solutions of

linear b.v.p.

u00.x/C a.x/u.x/ D f .x/; x 2 .0;L/; u0.0/ D u0.L/ D 0: (2.112)

Previously, if a 2 L1.c; d/ n f0g;
Z d

c
a.x/ dx � 0 and 1 � p � 1; it may be

convenient to introduce hypothesis (Hp)�.

Hypothesis (Hp)� It is established as:

1. kaCkL1.c;d/ � ˇ�
1 .c; d/ if p D 1:

2. a 2 Lp.c; d/; kaCkLp.c;d/ < ˇ
�
p .c; d/.

Remark 2.19. Let us observe that if a function a satisfies hypothesis (Hp)� for
some p; 1 � p � 1; then the unique solution of the boundary problems

u00.x/C a.x/u.x/ D 0; x 2 .c; d/; u0.c/ D u.d/ D 0 (2.113)
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and

u00.x/C a.x/u.x/ D 0; x 2 .c; d/; u.c/ D u0.d/ D 0 (2.114)

is the trivial one.

Theorem 2.8. Let a 2 L1.0;L/ n f0g with
Z L

0

a.x/ dx � 0; satisfying:

For each c 2 .0;L/ either hypothesis (Hp)� in the interval .0; c/ or hypothesis
(Hq)� in the interval .c;L/ (here, p; q 2 Œ1;1� may depend on c).

Then for each f 2 L1.0;L/; the boundary value problem (2.112) has a unique
solution.

Proof. Since (2.112) is a linear problem, it is sufficient to see that the unique
solution of the homogeneous problem

u00.x/C a.x/u.x/ D 0; x 2 .0;L/; u0.0/ D u0.L/ D 0 (2.115)

is the trivial one. Now, if (2.115) has some nontrivial solution u, it was shown at the
beginning of this chapter that u must have a zero d in the interval .0;L/: In this case,
both problems PM(0,d) and PM(d,L) have nontrivial solutions. But by using either
hypothesis (Hp)� in .0; d/ or hypothesis (Hq)� in .d;L/; we have a contradiction.

In concrete examples, it may be convenient to choose p D q; independent from
c 2 .0;L/: To this respect, the following proposition may be of interest.

Proposition 2.1. Let 1 < p < 1 and a 2 Lp.0;L/. Then the following statements
are equivalent:

8 c 2 .0;L/; either kaCkLp.0;c/ < ˇ
�
p .0; c/ or kaCkLp.c;L/ < ˇ

�
p .c;L/ (2.116)

9 x0 2 .0;L/ W kaCkLp.0;x0/ < ˇ
�
p .0; x0/ and kaCkLp.x0;L/ < ˇ

�
p .x0;L/: (2.117)

Proof. Let (2.116) be satisfied. Function c2�
1
p kaCkLp.0;c/ is continuous and increas-

ing in the interval c 2 .0;L/ whereas function .L � c/2�
1
p kaCkLp.c;L/ is continuous

and decreasing in c 2 .0;L/: Then, choose x0 as a point in .0;L/ such that

x
2� 1

p

0 kaCkLp.0;x0/ D .L � x0/
2� 1

p kaCkLp.x0;L/: (2.118)

Since (2.116) is fulfilled 8 c 2 .0;L/; it is true in particular for c D x0: But taking
into account (2.118) and the relation (2.99)

ˇ�
p .x0;L/ D ˇ�

p .0;L � x0/ D
�

L � x0
x0

� 1
p �2

ˇ�
p .0; x0/

if x0 is as in (2.118), both inequalities in (2.116) are really the same inequality and,
moreover, they are identical to (2.117).
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Reciprocally, if (2.117) is satisfied and c 2 .0;L/; we can distinguish two cases:
c 2 .0; x0� and c 2 .x0;L/. In the first case, we have

kaCkLp.0;c/ � kaCkLp.0;x0/ < ˇ
�
p .0; x0/

D

x0

L

� 1
p �2

ˇ�
p .0;L/ �


 c

L

� 1
p �2

ˇ�
p .0;L/ D ˇ�

p .0; c/:

A similar reasoning is valid if c 2 .x0;L/.
Remark 2.20. An analogous result may be demonstrated for p D 1 by replacing
strict inequalities in (2.116) and (2.117) with non-strict ones. If p D 1; (2.117)
implies (2.116). As a consequence, if (2.117) is satisfied for p D 1, the unique
solution of (2.115) is the trivial one. However, in this last case, a more precise
condition may be obtained. This is shown in the next proposition.

Proposition 2.2. If function a fulfills

a 2 L1.0;L/ n f0g;
Z L

0

a � 0 and 9 x0 2 .0;L/ W
maxfx20kaCkL1.0;x0/; .L � x0/2kaCkL1.x0;L/g � �2

4

.H/

and, in addition, either aC is not the constant �2=4x20 in the interval Œ0; x0� or aC is
not the constant �2=4.L � x0/2 in the interval Œx0;L�; then for each f 2 L1.0;L/; the
boundary value problem (2.112) has a unique solution.

Proof. To prove this proposition, take into account that ˇ�1.0; x0/ D �2=4x20 and
that ˇ�1.x0;L/ D �2=4.L � x0/2: Then, if d 2 .0; x0/ we have

kaCkL1.0;d/ � kaCkL1.0;x0/ � ˇ�1.0; x0/ < ˇ�1.0; d/

Therefore, problem PM(0,d) has only the trivial solution. If d 2 .x0;L/ a similar
reasoning is valid and we obtain that problem PM(d,L) has only the trivial solution.
Finally, if d D x0; we would have

kaCkL1.0;x0/ � ˇ�1.0; x0/; kaCkL1.x0;L/ � ˇ�1.x0;L/:

But since, in addition, we have that either aC is not the constant �2=4x20 in the
interval Œ0; x0� or aC is not the constant �2=4.L � x0/2 in the interval Œx0;L�, we
deduce that either problem PM(0,x0) or problem PM(x0,L) has only the trivial
solution. This proves that (2.115) has only the trivial solution and therefore we have
the desired conclusion.

In particular, if x0 D L=2 in Proposition 2.2, we obtain the classical result related to
the so-called nonuniform nonresonance conditions with respect to the first positive
eigenvalue �2

L2
[24–26]. However, if for instance, x0 2 .0;L=2/, it is allowed the

equality kaCkL1.0;x0/ D �2=4x20 (which is a quantity greater than �2

L2
) as long as

kaCkL1.x0;L/ < �
2=4.L � x0/2:
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Remark 2.21. Hypothesis (H) is optimal in the sense that if aC is the constant
�2=4x20 in the interval Œ0; x0� and aC is the constant �2=4.L � x0/2 in the interval
Œx0;L�; then (2.115) has the C2Œ0;L� nontrivial solution:

u.x/ D

8̂
ˆ̂<
ˆ̂̂:

�x0
L � x0

cos
�x

2x0
; if x 2 .0; x0/;

cos
�.L � x/

2.L � x0/
; if x 2 .x0;L/;

Remark 2.22. By using the definition of ˇp; it is clear that if for some p, with 1 �
p < 1; function a satisfies

kaCkLp.0;L/ < ˇp.0;L/ (2.119)

then the unique solution of (2.115) is the trivial one. It is easy to prove that (2.119)
implies (2.116). In fact, if (2.116) is not true for some c 2 .0;L/; taking into
account (2.102) and Theorem 2.7 we obtain

kaCkp
Lp.0;L/ D kaCkp

Lp.0;c/ C kaCkp
Lp.c;L/

� .ˇ�
p .0; c//

p C .ˇ�
p .c;L//

p

D
"
 c

L

�1�2p C
�

L � c

L

�1�2p
#
.ˇp.0;L//p

4p
� .ˇp.0;L//

p

which is a contradiction with (2.119).

Previous remark shows that if we want to have a criterion implying that (2.115)
has only the trivial solution, then (2.116) is better than (2.119). In order to prove
that (2.116) is a strict generalization of (2.119), we show the following example
(see [5] for more details).

Example. Let c1; c2 be two positive numbers and let us consider the two step
potential

a.x/ D

8̂
ˆ̂<
ˆ̂̂:

c21; if 0 � x <
Lc2

c1 C c2
;

c22; if
Lc2

c1 C c2
� x � L:

(2.120)

Then, for each p; 1 � p � 1; there exist c1; c2 such that

function a satisfies (2.117) (and therefore (2.116)) for x0 D Lc2
c1 C c2

(2.121)
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and

kaCkLq.0;L/ > ˇq.0;L/; 8q 2 Œ1;1�: (2.122)

Let us remark that from (2.122) we cannot deduce that (2.115) has only the trivial
solution. However, we can affirm that this fact is true from (2.121).

We finish this section with some results on the existence and uniqueness of
solutions of nonlinear b.v.p.

u00.x/C f .x; u.x// D 0; x 2 .0;L/; u0.0/ D u0.L/ D 0: (2.123)

Taking into account the previous discussion, next theorem is a strict general-
ization of Theorem 3.1 in [3], Theorem B in [18] and (for ordinary differential
equations) Theorem 7.1 in [4] and Theorem 2 in [26]. The proof, which is similar
to the one given in [3, 4], combines the linear results of this section with Schauder’s
fixed point theorem. We omit the details.

Theorem 2.9. Let us consider (2.123) where the following requirements are sup-
posed:

1. f and fu are Caratheodory functions on Œ0;L� � R and f .�; 0/ 2 L1.0;L/:
2. There exist functions ˛; ˇ 2 L1.0;L/; satisfying

˛.x/ � fu.x; u/ � ˇ.x/

on Œ0;L� � R and ˇ satisfies for each c 2 .0;L/ either hypothesis (Hp)� in the
interval .0; c/ (for some p 2 Œ1;1�), or hypothesis (Hq)� in the interval .c;L/
(for some q 2 Œ1;1�).

3. Moreover, we assume one of the following conditions:

a.
Z
˝

˛ � 0; ˛ 6	 0

b.

˛ 	 0; 9s0 2 R s.t.
Z
˝

f .x; s0/ dx D 0; and fu.x; u.x// 6	 0; 8u 2 C.˝/:

Then, problem (2.123) has a unique solution.

Remark 2.23. The idea of using qualitative properties of the mixed problem
PM(0,c) in the study of resonant nonlinear problems like (2.123) has been
previously employed by different authors. The interested reader may consult
[13, 25, 27, 29] for the case where the nonlinearity f is restricted in one direction.
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