Chapter 2
A Variational Characterization of the Best
Lyapunov Constants

Abstract This chapter is devoted to the definition and main properties of the
L, Lyapunov constant, 1 < p =< oo, for scalar ordinary differential equations
with different boundary conditions, in a given interval (0, L). It includes resonant
problems at the first eigenvalue and nonresonant problems. A main point is the
characterization of such a constant as a minimum of some especial minimization
problem, defined in appropriate subsets X, of the Sobolev space H 1(0,L). This
variational characterization is a fundamental fact for several reasons: first, it allows
to obtain an explicit expression for the L, Lyapunov constant as a function of p and
L; second, it allows the extension of the results to systems of equations (Chap. 5)
and to PDEs (Chap.4). For resonant problems (Neumann or periodic boundary
conditions), it is necessary to impose an additional restriction to the definition of the
spaces X,, 1 < p < oo, so that we will have constrained minimization problems.
This is not necessary in the case of nonresonant problems (Dirichlet or antiperiodic
boundary conditions) where we will find unconstrained minimization problems. For
nonlinear equations, we combine the Schauder fixed point theorem with the obtained
results for linear equations.

2.1 Neumann Boundary Conditions, As a Paradigm
of Linear Resonant Problems

This section will be concerned with the existence of nontrivial solutions of the
homogeneous linear problem with Neumann boundary conditions

u” (x) + a(x)u(x) =0, x € (0,L), /(0) =u'(L) = 0. 2.1)

If a(-) is a constant function A € R, (2.1) has nontrivial solutions if and only if A

belongs to the set {1, = n’m?/L* n € N U {0}}, i.e., the set of eigenvalues of the
eigenvalue problem:

u”(x) + Au(x) =0, x € (0,L), u'(0) = /(L) = 0. (2.2)

Obviously, the problem is much more complicated if a(-) is not a constant function.
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10 2 A Variational Characterization of the Best Lyapunov Constants

To proceed to the definition of the Lyapunov constants, we will assume through-
out this chapter that a € A, where A is defined by

L
A={aeL(0,L)\{0}: [ a(x) dx > 0 and (2.1) has nontrivial solutions }.
0
(2.3)

Here, for each p,1 < p < oo, L[P(0,L) denotes the usual Lebesgue space of
measurable functions a(-) such that |a(-)|? is integrable in (0, L), while L*°(0, L)
denotes the set of measurable functions such that there exists a constant ¢ satisfying
la(x)| < ¢, a.e.in (0, L). On the other hand, u € H'(0, L), the usual Sobolev space.
The interested reader can consult the reference [2] for these concepts.

For each p with 1 < p < oo, we can define the functional /, : A (A LP(0,L) - R
given by the expression

L 1/p
I,(a) = ||CZ+||17 = (f lat (%) dx) ,Vace AﬂL”(O,L), l<p<oo
0
Ioo(@) = |la™ oo = sup ess a¥, Ya e A[\L®(0.L). (2.4)

where a™ is the positive part of the function a (i.e., a™ (x) = max{0, a(x)}) and sup

ess a™ is the essential supremum of the function a™.

Since the positive eigenvalues of the eigenvalue problem (2.2), belong to the set
A L7(0, L), the nonnegative constant

= inf 1 ,1<p< 2.5
ﬁp a€A fl]nlj’(O.L) P(a) =P =00 2.5)

is well defined. Due to the pioneering work of Lyapunov for Dirichlet boundary
conditions and p = 1 [16, 22, 23], we will call to the constant j,, defined in (2.5),
the best (optimal) L, Lyapunov constant.

L
Remark 2.1. 'We need the positivity of / a(x) dx in order to prove that the constant

0
Bp is strictly positive. In fact, if the set A in (2.3) is replaced by

Y ={aeL'(0,L)\ {0} : (2.1) has nontrivial solutions }
then the constant

= inf I,(a), 1 <p <o
Vo a€Y (N LP(0,L) p() =P =

is zero, for each p, 1 < p < oo (see Remark 4 in [3]). The real number O is the first
eigenvalue of the eigenvalue problem (2.2). As it will be seen in Sect. 2.3, this extra

L
condition on the sign of / a(x) dx is not necessary in nonresonant problems.
0



2.1 Neumann Boundary Conditions, As a Paradigm of Linear Resonant Problems 11

Remark 2.2. The study of the constant 8, can be seen as an optimal control
problem: the admissible control set is A (") L?(0, L) and the functional that we want
to minimize is /,. However, we caution that the condition

(2.1) has nontrivial solutions (2.6)

is difficult to handle from a mathematical point of view and this is the main difficulty
of the problem. Because of this, one of the main purposes of this chapter is to
get a variational characterization of the best Lyapunov constant f,. This will be
very important for the possible extension of the results to PDEs and to systems of
equations.

We begin with the easiest situation: p = oo. In this case, the constant S
is nothing but the first positive eigenvalue of (2.2). The proof is known and it
uses two basic ideas: Holder’s inequality and the variational characterization of the
eigenvalues of (2.2) [8].

Theorem 2.1.

L
(v')?

2
— min -z, .7)

JO
vexoo\0} [
/ )
0

L
where Xoo = {v € H'(0,L) : / v = 0}.
0

Proof Ifa € A and u € H'(0, L) is a nontrivial solution of (2.1), then

L L
/ u'v' :/ auv, Y v e H'(0,L).
0 0

In particular, we have

L L L
/ u? = / au’, / au = 0. (2.8)
0 0 0

Therefore, for each k € R, we have

L L L L L
/(u—l—k)’z:/ u’2:/au2§/au2+k2/a
0 0 0 0 0
L L L L L
=/ au2+/ k2a+2k/ auz/ a(u—l—k)Zf/ at(u+ k)>.
0 0 0 0 0
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Holder’s inequality implies

L L
f (b < ||a+||oo/ (u+ 0.
0 0

Also, since the function a belongs to A, u is a nonconstant solution of (2.1), so that
u + k is a nontrivial function. Consequently

/ (u+ k)"
/O (u—i—k)z.

la™ oo =

Now, choose ky € R satisfying

L
[ (U + ky) = 0. 2.9)
0

Then,

/ ko / Wy o
> =X Vaea. (2.10)
/ 1+ ko)’ e [ wr "

Moreover, it is very well known that the previous infimum is, in fact, a minimum

la™ oo =

and that the value of this minimum is 75 [8]. The previous inequalities imply
2

b4
oo = 77 Since the constant function 7 is an element o we deduce oo = —.
> 7. Since th tant functi L2 1 f A, we ded =

This completes the proof of the theorem.
Remark 2.3. The constant B, was defined in (2.5) as an infimum, but it can be seen

2
that this infimum is attained in a unique element as, € A, given by aq (x) = YA [3].

Now we deal with the case p = 1. It is the only case where the infimum f,,,
defined in (2.5), is not attained. The proof is inspired by Borg [1], but next theorem
additionally provides a variational characterization of 8 [3].

Theorem 2.2.

L
2
u
4

: 0
= min =
wex \{0} fullZ, L

@2.11)

where X; = {u € H'(0,L) : max u(x) + min u(x) = 0}.
x€[0,L] x€[0,L]
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Proof. First, we prove

L

u/2

| &

min 02=
uexi\{0} ||u||%, L

2.12)

To do this, if u € X; \ {0}, and x1, x, € [0, L] are such that u(x;) = I[I(}a)]( u, u(xy) =

1[‘{)111]1 u, then ||uljeo = I[Ila)]i u=— 1[10111]1 u. Clearly, it is not restrictive to assume that
0.L
X1 < x. Let us denote I =[x, x;]. Then, it follows from the Cauchy—Schwarz
inequality
2
e ) ()
= fe
0 - T ox—x1 T ox—Xx
(u(x) —ux))®  4uld, _ 4
= = © > ull. (2.13)
X2 — X1 X2 — X1 L
Therefore,
L
72
[
inf > —.
uex\{0} [lul2, T L

L
2
"

vz L

On the other hand, if v(x) = x— %, Vx e |0,L], thenv € X;\{0} and
This proves (2.12).

4
Now, we prove that §; = —. To see this, ifa € Aandu € H 1(0, L) is a nontrivial

solution of (2.1), then by using Holder’s inequality, we obtain for each k € R,

L L
/w+@”s/am+Wsmﬂmw+@&
0 0

and consequently

L
(u + k)/2
lat > 2.
1+ 0113

If we choose ky € R satisfying u + ko € X, we deduce

/W+%W s

+
I 2 T 2T

Vae A. (2.14)
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4
Therefore, 8, > i Also, we can define a minimizing sequence in the following

way. Let {u,} C C?[0,L] be a sequence such that u,(x) = (x—%), V x €
G.L—1): w0 = u@) =0 w/x) >0, YVxe[0l); u/x) <0 Vxe

(L — %, ] . Then, if we define the sequence of continuous functions a,, : [0, L] — R,

asa,(x) =0, Vxe [ L— -~ ] a,(x) = _M":‘;g), Vxe [0,%] U [L— %,L], we
have that @, € L*°(0,L), a, > 0, a.e.in (0,L), a, is nontrivial and

u) (x) + ap(xX)u,(x) =0, in (0, L), u,(0) = u, (L) = 0.

Therefore, a, € A, V n € N. Moreover,

I

") / —u!!(x)
—+ P L

Bl

IA

0 miln (_un) l’Ili]l‘l (un)
o L
1
() w (=3 1 1
=r_ 1t LT TI_ITI_T
2 n 2 n 2 n 2 n
T 4
Taking limits as n — oo, we deduce 1 = I

Remark 2.4. The infimum S, defined in (2.5), is not attained, i.e.,

4
la*lh > - VaeA. (2.15)

4
To prove this, let a € A be such that Ja¥|; = —. By choosing u a nontrivial
solution of (2.1) and ko € R such that u + ky € X;, we obtain

L
4
[k < 2+ kol

On the other hand, since u + ky € X, we deduce from (2.12)

L
4
[t = Jia+ ol
0

Therefore,

L
4
[k = 1 kol
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Then, for the function u + ko, all the inequalities of (2.13) transform into equalities.

L 2 L
In particular, x, = L, x; = 0 and (/ (u+ ko)’) = L/ (u + ko)”*. Again, the
0 0

Cauchy—Schwarz inequality (equality in this case) implies that the function (u+ ko)’
is constant in [0, L]. Taking into account that u + ko € X, \ {0}, we have u(x) + ko =
k(x— %) Vx € [0, L] and for some nontrivial constant k. Then from (2.1) we deduce
a = 0, which is a contradiction.

4
Remark 2.5. The formula 8, = I was proved in [18] by using methods from Opti-

mal Control Theory. More precisely, the authors used the Pontryagin’s maximum
principle. The variational proof that we have presented here motivates some of the
main ideas that we will use in the case 1 < p < o0.

Remark 2.6. In [21] the authors study the problem with linear damping
u” (x) + b(x)u' (x) + a(x)u(x) =0, W'(0) =u'(L) =0 (2.16)

obtaining the best L; Lyapunov constant.
As a first application of Theorems 2.1 and 2.2 to the linear problem

u”"(x) + a(x)u(x) = f(x), x € (0,L), ' (0) =u/(L) =0 (2.17)
we have the following corollary.

L
Corollary 2.1. Leta € L™ \ {0}, 0 < / a(x), satisfying one of the following
0

conditions:

L la* ]y =B =

~

2

b
2. latloo < Boo = = and a™ is not identically to the constant B

Then for each f € L*°(0,L), the boundary value problem (2.17) has a unique
solution.

Proof. The corollary is proved if the homogeneous problem
u”(x) + a(x)u(x) =0, x € (0,L), ' (0) =u'(L) =0 (2.18)

has only the trivial solution [16]. But this is clear from Theorem 2.1, Remark 2.3
and Theorem 2.2, Remark 2.4.
Remark 2.7. 1In the previous corollary, the conditions on the function a(-):

la* ] < B (2.19)
laT|loo < Boo = and a™ is not identically to the constant Beo '
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are given, respectively, in terms of the L' norm [la™||; and L*® norm |[|a™||sc.
Clearly, they are not related in general, in the sense that none of them imply the
other. In the next theorem, we consider the case | < p < oo, and we establish other
different conditions given in terms of the L norm [la*|,, 1 < p < oo. They will
show a natural relation between the cases p = 1 and p = oo in (2.19) when one
studies what happens for p — 1% and p — oo.

In order to motivate the variational characterization of the constant
Bp., 1 < p < oo, which is discussed in the next theorem, take into account that
ifae A LP(0,L) and u € H'(0, L) is a nontrivial solution of (2.1) then

L L
/ u'v' =/ auv, Y v € H'(0,L).
0 0

In particular, choosing v = u# and v = 1, we have respectively

L L L
[ u? = [ au’, f au = 0. (2.20)
0 0 0

Therefore, for each k € R, we have (remember that fOL a>0)

L L L L L
(u+k)’2=/ u'2=/au2§[au2+k2/a
0 0 0 0 0
L L L L L
=/ au2+/ k2a+2k/ au:/ a(u—i—k)zf/ at(u+ k)%
0 0 0 0 0

From Holder’s inequality it follows

L
/0 W+ 0 = fla @+ 07| 2.

Moreover, since u is a nonconstant solution of (2.1), u + k is not identically the zero
function. Consequently

L
(M + k)/2

> -2———— Vae A. 2.21

This reasoning suggests the minimization of a functional like the previous one on
some appropriate subset of H'(0, L). Motivated by the case p = oo (Theorem 2.1),
this appropriate subset could be of the type

L
{u e H'(0,L) : / lu* Py = 0} ,
0
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2
where A(0c0) = 0. Here we choose A(p) = —— To understand why this election

is suitable, we must see in detail the proof of the next theorem, especially the part
where the Lagrange multiplier Theorem is applied (see [3] for more details).

L
/ u/2
. _ . 0
min J,(u) = min —

Xp\{o} Xp\{o} L 2 pT
() )
0
2

4(p— NP 7/2
_ Mz / (sinx)~V7 dx | (2.22)
L*7rp2p - )tr \Jo

Theorem 2.3. If1 < p < o0,

By

where
L 2
X, = %u e H'(0,L) :/ |u|P=Tu =0} .
0

Proof. The proof will be carried out into three steps:

1. The minimization problem stated in (2.22) has solution.

The proof of this fact is standard: first we will demonstrate that any minimiz-
ing sequence is bounded in the Hilbert space H' (0, L). Then we will use that the
considered functional is weak lower semi-continuous in order to conclude that
the infimum is attained.

Let us denote

= inf J,. 2.23
"= oo (223)

If {u,} C X, \ {0} is a minimizing sequence, then {k,u,} where {k,} is an
arbitrary sequence of nonzero real numbers, is also a minimizing sequence, since
Jy(uy) = Jp(knuy). Therefore, we can assume without loss of generality that

L . L
/ |un|p%l = 1. As J,(u,) is bounded, % / |u? } is also bounded. Moreover,
0 0

since / |u,1|1’%l u, = 0, for each u, there is x,, € (0, L) such that u,(x,) = 0.
0

Now, u,(x) = / u'(s) ds, ¥ x € (0, L) and Holder’s inequality implies that {u,, }

is bounded in H'(0, L). So, we can suppose, up to a subsequence, that u,, — ug in

H'(0, L) (weak convergence) and u,, — ug in C[0, L], with the uniform norm [2].

L 2 L R
The strong convergence in C[0, L] gives us / lup|=" =1, / luo| 7" uy = 0,
0 0
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and consequently uy € X, \ {0}. As the functional J, is weak lower
semi-continuous [2], the weak convergence in H'(0,L) implies Jp(ug) <

liminf J,(u,) = m,. Then u is a minimizer.
L
Since X, = { u € H'(0.L) : p(u) = 0}, @(u) = / 7T u, i uo € X, \ {0}

0
is any minimizer of J,, Lagrange multiplier Theorem [10] implies that there is
A € R such that

H'(u) + Ag'(uo) = 0,

where H : H'(0, L) — R is defined by

—1

L N
H(u):/ u’z—m,, (/ |u|l’1) .
0 0

Also, as uy € X, we have H'(up)(1) = 0. Moreover H'(up)(v) = 0, Y v €
H'(0,L) : ¢'(up)(v) = 0. Finally, as any v € H'(0,L) may be written in
the form v = @ + w, a € R, and w satisfying ¢'(up)(w) = 0, we conclude
H'(up)(v) =0, Yv € H(0,L), i.e., H (uy) = 0 which implies that u, satisfies
the problem

=1

L N7 )
v’ (x) + my, (/0 |v|P——1) [v(x)|~Tv(x) =0, v(0)=2v'(L) =0. (2.24)

. The constant f, is equal to the constant m, (this fact implies the characteriza-

tion of B, as the minimum value of J, on X,, \ {0} and will be of special interest
in the extension of the results to systems of equations in Chap. 5).

In fact, previously to the theorem, we have proved that if a € A (L7 (0, L)
and u € H' (0, L) is a nontrivial solution of (2.1), then (2.21) is satisfied for each
k € R. Then, if for eacha € A (L’ (0, L) and each u, nontrivial solution of (2.1),
we choose ko € R satisfying u + ko € X,,, we deduce 8, > m,. Reciprocally, if
u, € X, \ {0} is any minimizer of J,, then u, satisfies (2.24). Therefore, if we
denote

L 2p _71
A,(v) = m, ([0 |v|p—1) (2.25)

we have that A, () |u,| e A (1 L7(0,L) and

2
I Ap(up)lup|p_l ”p = m,.

Then B, < m,. The conclusion is that 8, = m,,.
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3. Integrating the Euler’s equation (2.24) to obtain m,,.

The explicit calculus of m, is a very delicate and technical matter, but we
emphasize that the same ideas can be used in many other situations, as it will
be seen in Sect. 2.3 (see [3] for further details). In fact, this method can be used
whenever we have a detailed knowledge about the number and distribution of
zeros of nontrivial solutions v of Eq. (2.26) below and their first derivatives v’.

Start with the method: if u, € X, \ {0} is a minimizer of J,, then we have
proved that u,, satisfies a problem of the type

v (x) + B|v(x)|l'%1v(x) =0, x¢,(0,L), v(0)=v'(L)=0, (2.26)

where B is some positive real constant. Also, let us observe that if v is a nontrivial

L
solution of (2.26), then / |v(x)|P%1 v(x) = 0. Therefore, v belongs to X, \ {0}
0

and consequently,

inf inf J,(v) =m
BeRt VvESE p( ) P

where, for a given B € R, S denotes the set of all nontrivial solutions of (2.26).

Now, let B € R™ be a fixed number and v a nontrivial solution of (2.26). First,
our main purpose is to calculate v in the interval [0, L] and then, to calculate
Jy(v). It is clear that we may assume without loss of generality that v(0) > 0.
Moreover, since v € X), \ {0}, v must change its sign in (0, L). Let x, be the first
zero point of v in (0, L).

a. The function v in [0, x¢].
The function v satisfies the initial value problem

W () + Blw@)|7Tw(x) = 0, w(0) = v(0), w'(0) = 0 (2.27)

and this problem has a unique solution defined in R (see Proposition 2.1.
in [14]).

If x € (0, xo) is fixed, multiplying both terms of (2.26) by v’ and integrating
in the interval [0, x] we obtain

W) _Bp-1)
2 2p

(@7 = p©@177). (228)

On the interval (0,x0) the function v satisfies v(x) > 0 and v'(x) < 0
(see (2.26)) and thus

N VR » 2 11/2
vw = =[ZE2] [vor - pwi] e



20

2 A Variational Characterization of the Best Lyapunov Constants

Therefore,

/X v (f) g [B(p— 1)}1/2 N
0 B o /27 p
(b1 = )]

for any x € (0, x¢). Doing the change of variables s = previous relation

v(t
v(0)’
can be written as

1 _ 1/2
—o() +¢ (%) = —p(0)rT [@} x, ¥V x € (0,xp).

Here ¢ : [0, 1] — Ris the strictly increasing function defined by

o= [ ——
" ()

I —sr1

If ¢ [0, 1] = [0, 1], then we find

1 172
) = | IT—v(0)rT (M) x| ¥V xe(0,x). (2.30)
v(0) p

Moreover, since v(xy) = 0, we obtain
1 (Bip—1)\"?
[—v(0) (M) X = 0.
p

Hence,

] » 12\ P!

Finally,

172\ P!
v(x) = (xio (Iﬁ) ) ! (I — xiox) , Vx€[0,x] (2.32)

b. Now, we can calculate v in [xg, 2x0], [2x0, 3x0], - - -

To do this, the initial value problem

W () + Bw@)| =T w(x) = 0. w(xo) = v(x0) = 0, w(x0) = v'(x0)
(2.33)
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has a unique solution defined in R [14]. Since the function —v(2xy — x),
x € (xp,2xp), is a solution of (2.33), this provides v(x) = —v(2xy — x),
Y x € (x0,2x0).

In an analogous way, the initial value problem

w’(x) + B|w(x)|1’%1w(x) =0, w(2x) = v(2xy), W (2xy) = v'(2x9) =0
(2.34)

has a unique solution defined in R. Since the function v(4xy — x),
x € (2x9,3xp), is a solution of (2.34), this provides v(x) = v(4xy — x),
Vxe (2)6(), 3)C0).

Now, we can repeat this procedure in the intervals [nxg, (n+1)xo], Vn € N,
obtaining:

v(x) = —v(2xp — x), V x € [x0, 2x0],
v(x) = v(dxg — x), V x € [2x0, 3x0],
v(x) = —v(6xg — x), V x € [3x0, 4x¢],
(2.35)
The conclusion is that if v is a nontrivial solution of (2.26) for some B € R™,
and xj is the first zero point of v in (0, L), then L = 2nx, for some n € N. Next

we calculate J, (v).
It follows from previous reasonings that

L X0
/ v/2 Zn/ v/2
Jp(v) = : — = 0 —. (2.36)

L »\ P X0 2 pT
([m=)" (oo )
0 0

From (2.28) we obtain
oo, B(p—1) o 2 2
/ (W' (X)) dx = T |:—/ |v(x)|P=T dx +x0|v(0)|r’—1] (2.37)
0 0

and from (2.32) we obtain

2p

’ 2p
X0 . x [ 1/2 I =T
/ |v(x)|pf,l =/ — (—p ) [gp_l (I— —x)]p dx.
0 o \X \B(p—1 X0
(2.38)
Doing the change of variables s = ¢~ (I(1 — xio)) we have

X0 2 I p 1/2 % Xo 1 2% o _1/2
[ e = (£ (—) w () e
0 xo \B(p—1) I Jo

(2.39)
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Integrating by parts the previous expression with f(s) = s, g'(s) =
+1 2, -
sf’j (1 —svfpl> , we deduce
2p
X0 5 I 1/2 _ 1
[T = (£ () ) Ra (.40
0 xo \B(p—1) I12p—1

If we substitute this expression in (2.37) and, moreover, we take into
account (2.31), we obtain (think that L = 2nx)

/xo W @) dx = Mx I (L)l/z ! _r (2.41)
0 p o \x \Be-1 p—1 '

Now we can substitute (2.40) and (2.41) in (2.36). After some elementary
calculations we deduce

4n’Ip
L7 (=111

J,(v) = (2.42)

At this point, one may observe two things. First, J,(v) does not depend on

B. Second, all values of n € N are possible in (2.42). In fact if xp = —,
n
formula (2.32) defines a nontrivial solution of (2.26). Therefore, the infimum

m,, is attained if n = 1. Finally, doing the change of variables 51 = sin t, we
1 _ /2

d 1

obtain I = / > — = d K, where K = / (sint)~'/? dr. This
0 2\ 12 p 0
(1 — sl )
gives
1 2
4 _ 1 1+1*7 7'[/2

m, = ](p—) / (sinx) "7 dx | . (2.43)

L rp@2p—1)r \Jo

Remark 2.8. In order to study other boundary conditions (Sect.2.3), it seems
essential to highlight the basic facts of the previous procedure.

We emphasize that if v is a nontrivial solution of (2.26) and x is the first zero
point of v in (0, L), then L = 2nx, for some natural number n > 1 and, in addition,

v'(0) = v'(2x0) = ... = v/(2nxy) = 0,
v(xg) =...=v((2n—1)x9) =0, (2.44)

and v(x) #Z 0, v'(x) 0, ¥V x € (jxo, G + 1)x0), 0 <j < 2n— 1. These properties
allow to calculate, in a explicit way, the functions v’ and v in [0, L] and consequently,
to find the value of J,(v) given in (2.42).
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Remark 2.9. Ttis proved in [3] that 8, as a function of p € [1, 4+o0], is continuous.

Remark 2.10. f L = land 1 < p < g < oo, then 8, < B, (see [3]). As a trivial
consequence, if L is an arbitrary positive number, the mapping (1,00) — R, p —
L~Y/PB, is strictly increasing.

Now, we return to the linear boundary value problem (2.17), corollary 2.1, and
remark 2.7. The following result establishes a natural link between the cases p = 1
and p = oo. Previously, remember that from Theorems 2.1, 2.2 and 2.3 the constant
Bp. defined as an infimum in 2.5, is attained, if and only if 1 < p < oo.

L
Corollary 2.2. Leta € L* \ {0}, 0 < / a(x), satisfying one of the following
0

conditions:

L Jla*]i < B
2. There is some p € (1, 00) such that |la* ||, < B,
3. |lat oo < Boo 07 |aT |loo = Boo and a™ # aso.

Then for each f € L*°(0,L), the boundary value problem (2.17) has a unique
solution.

Remark 2.11. We have shown that the best Sobolev constant fB,, defined
in (2.5), can be computed by using a certain minimization problem given in
Theorems 2.1, 2.2, and 2.3. Motivated by a completely different problem (an
isoperimetric inequality known as Wulff theorem, of interest in crystallography),
the authors studied in [9] a similar variational problem for the case of periodic
or Dirichlet boundary conditions (see also [11] for more general minimization
problems). Our treatment of the Euler equation associated with the mentioned
minimization problem is different from that of Croce and Dacorogna [9].

2.2 Nonlinear Neumann Problems

Lyapunov inequalities can be used in the study of nonlinear resonant problems. To

accomplish this, the linear results are combined with Schauder fixed point theorem.
We focus on a resonant nonlinear problem with Neumann boundary conditions,

but the same ideas and methods can be used for other situations (see Sect. 2.3).
More precisely, let us consider the problem

u’(x) + f(x,u(x)) =0, x € (0,L), u'(0) =u/'(L) =0, (2.45)

where f : [0,L] x R = R, (x,u) — f(x, u) is continuous.
The associated linear problem

W' (x) =0, xe (0,L), ' (0)=u'(L)y=0 (2.46)

has nontrivial solutions (any constant function) and this is the reason why we
call (2.45) a resonant problem.
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If (2.45) is linear, i.e., it is of the type
u”(x) + a(x)u(x) =0, x € (0,L), ' (0) =u'(L) =0 (2.47)
and for some integer n > 0 there is a positive number § such that
An+ 8 <a(x) <A,41—46, in [0, L], (2.48)

where A, is an eigenvalue of the eigenvalue problem (2.2), then (2.47) has only the
trivial solution u = 0 (see, for instance, [20]). In particular, for the first eigenvalue
Ao = 0, (2.48) becomes

2
§ < a(x) < % — 5, in[0,L). (2.49)

We must remark that (2.48) does not allow to the function a(-) to cross any
eigenvalue of (2.2). Using Lyapunov inequalities, it is possible that f, (x, u) in (2.45)
crosses the eigenvalues A, (f, means the partial derivative of the function f(x, u)
with respect to the variable u.) and it is possible to provide some extensions of
Corollary 2.2 to nonlinear situations.

To this respect, we will assume throughout this section that the following
hypothesis is satisfied

(H) f,f, are continuous on [0, L] x Rand 0 < f,(x,u) on [0, L] x R.

Then, the existence of a solution u of (2.45) implies

f " flu() dx = 0. 2.50)
0

Now, the previous hypothesis (H) implies that f(x, «) is increasing with respect to u.
Therefore,

L L L
[ fx,m) dx < / fxu(x))de=0< / f(x, M) dx,
0 0 0

where m = min u and M = max u and consequently
0.L] [0.L]

L
/ fx,2)dx =0 (2.51)
0

for some z € R. However, conditions (H) and (2.51) are not sufficient for the
existence of solutions of (2.45). Indeed, if » € N is any natural number, consider the
problem

W (x) + n*m?u(x) + cos(nmx) = 0, x € (0,1), u/(0) = u'(1) = 0. (2.52)

The function f(x, u) = n’>m*u + cos(nmx) satisfies (H) and (2.51), but the Fredholm
alternative theorem [16] shows that there is no solution of (2.52).



2.2 Nonlinear Neumann Problems 25

If (H) and (2.51) are assumed, and for instance, L = 1 for simplicity, different
supplementary assumptions can be given which imply the existence of a solution
of (2.45). For example

(h1)  f.(x,u) < B(x) on [0,1] x R with B € L*>(0,1), B(x) < 7% on [0, 1] and
B(x) < 72 on a subset of (0, 1) of positive measure.

Conditions of this type are referred to as nonuniform nonresonance conditions
with respect to the first positive eigenvalue of the associated linear homogeneous
problem. By using variational methods, it is proved in [26] that (H), (2.51), and (h1)
imply the existence of solutions of (2.45). Restriction (h1) is related to Lyapunov-
type inequalities: the number 72 is the best Lo, Lyapunov constant, Beo, for L = 1
(Theorem 2.1).

On the other hand, in [18] it is supposed

1
(h2)  f.(x,u) < B(x)on [0, 1] x R with B € L'(0, 1) and/ B(x)dx < 4
0

The authors use Optimal Control theory methods to prove that (H), (2.51), and
(h2) imply the existence and uniqueness of solutions of (2.45). Restriction (h2) is
also related to Lyapunov-type inequalities: the number 4 is the best L; Lyapunov
constant, 81, for L = 1 (Theorem 2.2).

Let us observe that supplementary conditions (h1) and (h2) are given respectively
in terms of ||B]|oo and ||B]|1. the usual norms in the spaces L>°(0, 1) and L'(0, 1).
Also, it is trivial that under the hypotheses (H) and (2.51), (hl) and (h2) are not
related (i.e., none of these hypotheses implies the other).

In the next theorem we provide supplementary conditions in terms of ||8],, 1 <
p < oo. As a consequence, a natural relation between (hl) and (h2) arises if one
takes into account Remark (2.9) and studies the limits of ||B], for p — 17 and
p — oo (see [3] for further details).

Theorem 2.4. Let us consider (2.45) where the following requirements are ful-
filled:

1. f and f, are continuous on [0, L] x R.
2. 0 < f,(x,u) in [0, L] x R. Moreover, for each u € C|0, L] one has f,(x, u(x)) # 0,
L

a.e. on [0, L] and/ f(x,0)dx = 0.

0
3. For some function B € L*°(0, L), we have f,(x,u) < B(x) on [0,L] x R and
satisfies some of the conditions given in Corollary 2.2.

Then, problem (2.45) has a unique solution.

Proof. The proof consists of two parts: existence and uniqueness of solutions
of (2.45). We begin with the second one.

Uniqueness of Solutions We assume that (2.45) has two solutions. Then, the
mean value theorem [8] and Corollary (2.2) are used to prove that they are the same.
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Let u; and u, be two solutions of (2.45). Then,
= (ur = u2)" () = f(x,u1 () — f (x, u2 (x))
= /01 % [f (x, uz (x) + O (uy (x) — uz(x))] dO

1
= [/0 Jule, ua(x) + 0 (u1 (x) — ua(x)) d9] (u1(x) — uz(x)), x € [0, L].
(2.53)

Hence, the function # = u; — u, is a solution of a homogeneous problem of the
1

type (2.17) with a(x) = / fu(x, uz(x) + Qu(x)) d6. From the hypotheses of the

0
theorem and applying Corollary 2.2, we obtain u = 0.

Existence of Solutions The main idea is to rewrite (2.45) in an equivalent
form, such that the solutions of (2.45) be the fixed points of a certain completely
continuous operator, and then, to apply the Schauder fixed point theorem [12]. To
see this, by using the same idea that in (2.53), we rewrite (2.45) as

0 =u"(x) + f(x, u(x)) = u" (x) + f(x, u(x)) — f(x,0) + f(x,0)
1
=u"(x) + /0 % [f (x, Ou(x))] dO + f(x,0)

1
=u"(x) + |:/ Su(x, Qu(x)) d9:| u(x) + f(x,0). (2.54)
0
Therefore, u is a solution of (2.45) if and only if u satisfies
u” (x) + b(x, u(x))u(x) = —f(x.0), x € [0,L], u'(0) = u'(L) =0, (2.55)

where the continuous function b : [0, L] x R — R is defined by

1
b(x,z) =[0 fu(x,0z) db.

From the hypotheses of the theorem, it is deduced that for each function y €
C'([0, L], R), the linear equation

u’ (x) + b(x, y(x))u(x) = —f(x,0), x € [0,L], ' (0) = /(L) =0 (2.56)

satisfies all the hypotheses of Corollary 2.2 and consequently, (2.56) has a unique
solution u,. Then, if X = C'([0, L], R) with the usual norm, i.e.,

lyllx = max |y(x)| + max [y'(x)], VyeX
x€[0,L] x€[0,L]

we can define the operator T : X — X, by Ty = u,. Clearly, u is a solution of (2.45)
if and only if y is a fixed point of 7.



2.2 Nonlinear Neumann Problems 27

We claim that 7 is completely continuous (7 is continuous and if B C X is
bounded, then T'(B) is relatively compact in X) and that 7'(X) is bounded. Then,
the Schauder fixed point theorem ensures that 7" has a fixed point which provides a
solution of (2.45).

To prove the claim, if 7(X) is not bounded, there would exist a sequence {y,} C X
such that ||uy, || x — oo. Moreover, from the hypotheses of the theorem, the sequence
of functions {h(-,y,(-))} is bounded in L*(0, L) and, passing to a subsequence if
necessary, we may assume that {b(-,y,(-))} is weakly convergent in L?(0,L) to a
function B satisfying 0 < Bo(x) < B(x), a.e. in [0, L] (see [2] for the properties of
the convergence in L?(0, L)).

In addition, each u,, satisfies

u;'" (x) + b(x, yu(x)uy, (x) = —f(x,0), x € [0,L], '(0) = (L) = 0. (2.57)

Since the embedding H'(0, L) C CJ[0, L] is compact (in C[0, L] we take the uniform

norm), if z, = —~—, then passing to a subsequence if necessary, we may assume

ey, I1x
that z, — 7o, uniformly in [0, L], where zj satisfies ||zo||x = 1 and

20 (x) + Bo(x)z0(x) = 0, x € [0,L]. z((0) = zy(L) = 0. (2.58)

Moreover, from the hypotheses of the theorem, we have for each n € N,

L L
/ b(x, yu(x))uy, (x) dx = —/ f(x,0) dx = 0.
0 0

Also, the function b(-, y,(-)) is nonnegative and not identically zero. Therefore, for
each n € N, the function u,, has a zero in [0, L]. This implies that for each n € N,
the function z,, has a zero in [0, L] and hence so does 7. Taking into account (2.58),
Bo € L*°(0, L) \ {0}. This is a contradiction with Corollary 2.2.

Now, let us prove that the operator 7 is continuous. To see this, if {y,} — yo in
the space X and u,, does not converge to u,,, passing to a subsequence if necessary,
there exists a constant § > 0 such that u,, ¢ Bx(uy,;6), ¥V n € N, where By (uy,; §)
denotes the open ball in X of center u,, and radius §. Also, taking into account (2.56)
and the boundness of the operator 7', we obtain that the sequence {u;’n } is uniformly
bounded. Thus, by Arzela—Ascoli Theorem [7], again passing to a subsequence if
necessary, we deduce that u,, converges to some function ug. But, by the uniqueness
of solution for problem (2.56), we must have uy = u,,, which is a contradiction.

Finally, by using again the Arzela—Ascoli theorem, it is trivial from (2.56) that if
B C X is bounded, then T'(B) is relatively compact in X.

Remark 2.12. If f(x,u) = a(x)u, the second hypothesis in the previous theorem
becomes 0 < a(x) and a(x) # 0, a.e. on [0, L].

Remark 2.13. Since the change of variables u(x) = v(x) + z, z € R, trans-
forms (2.45) into the problem

v’ (x) + flx,v(x) +2) =0, x € (0,L), v'(0) =v'(L) =0,
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L
the condition / f(x,0) dx = 0 in the previous theorem may be substituted by
0

L
/ f(x,2) dx = 0, for some z € R.
0

Remark 2.14. Taking into account Remark 2.9, previous result establishes a clear
relationship between Theorem B in [18] and Theorem 2 in [26] for the case of
ordinary differential equations.

Remark 2.15. Let us remark that the hypothesis of the previous theorem allows
the function f,(x, u) to cross an arbitrary number of different eigenvalues A, of the
eigenvalue problem (2.2) (see [3, 18]).

2.3 The Variational Method for Other Boundary Conditions

The variational method that we have used in Sect. 2.1 (Theorem 2.3), to obtain the
explicit value of the constant B,, 1 < p < o0, is valid for many other boundary
conditions. Remember the two key points for Neumann problem (2.1).

1. The set of boundary value problems

v"(x) + Blu@)|7=Tv(x) = 0, x € (0,L), v'(0)=v'(L) =0, BeR"
(2.59)

provides

Bp = inf inf J,(v), (2.60)

BeRt+ VESp

L
/ v/2
__J0
1
Lo, =
0

and for a given B € R*, S denotes the set of all nontrivial solutions of (2.59).
2. If v is a nontrivial solution of (2.59) for some B € R™, then

where

Jp(v) =

4n212p

inl(p— l)lfl(z _ 1 ’ (261)
P »r(2p 1) 14

Jp(v) =

where

_p—1 e —1/p
I=——- (sinx) dx (2.62)
p 0
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and n is the unique natural number (depending on v), satisfying the properties:

X is the first zero point of v in (0, L), L = 2nx,
v (0) = v'(2x) = ... =v'(2nxg) = 0,
v(xg) =...=v((2n—1)xy) =0,
v(x) Z0, vV'(x) #0, Vxe (xo, G+ Dxp), 0<j<2n—1.

(2.63)

Let us emphasize that the value of J,(v) in (2.61) does not depend, explicitly, on the
positive constant B and that to obtain 8, we must find the minimum value of 7 in the
expression (2.61). For instance, for Neumann boundary conditions this minimum
value is n = 1 (see the last part of Theorem 2.3).

Below we describe the main ideas for other boundary conditions.

In the remainder of the chapter we will denote as ,B;,V the constant 8, obtained
above for Neumann boundary conditions.

Dirichlet Boundary Conditions This case is very similar to the Neumann one.
If we consider the linear problem

u”(x) + a(x)u(x) =0, x € (0,L), u(0) = u(L) =0, (2.64)

where a € AP and AP is defined by
AP = {a € L (0, L) such that (2.64) has nontrivial solutions } (2.65)
then, for each p with 1 < p < oo, we can define the functional 7, : AP N L7(0,L) —

R given by I,(a) = |la*||, (the same expression as in (2.4)), and in a similar form,
we can define the constant

e inf I(a), 1 <p < oo. 2.66
p aeADlrI]IU»(o,L) ,,(a) =P =00 ( )

Taking into account the same ideas that for the Neumann problem, it can be easily
proved that

B =p). 1<p<=<oo. (2.67)

In the proof, we must simply replace the spaces X, of Theorems 2.1-2.3 by the
Sobolev space H}(0, L) and (2.63) by

v(0) = v(2x) = ... =v(2nxy) =0,
V(xg) =...=v(2n—1)xy) =0, (2.68)
v(x) #0, vV'(x) #0, Vxe (xo, G+ Dxo), 0<j<2n-—1.

Remark 2.16. Let us note that, contrary to what happens for Neumann problems,
in the minimization problems associated with Dirichlet boundary conditions, we do
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not need to impose any additional restriction to the space Hé (0, L) (see [28]). This
is due to the fact that the homogeneous linear part of (2.64)

W' (x) =0, x€ (0,L), u(0) =u(L) =0 (2.69)
has only the trivial solution # = 0. In this work, we will call to this type of problems

nonresonant problems.

Periodic Boundary Conditions In the case of the periodic boundary value
problem

() +a(®u(®) =0, t € (0,T), u(0) —u(T) = u'(0) —u/(T) =0 (2.70)

we assume that a € Ly(R, R), the set of T-periodic functions a : R — R such that
aljo.r; € L'(0,T) (due to the applications to stability, it is convenient to use 7 as the
independent variable, instead of x).

If we define the set

T

AP = {a € Ly(R,R) \ {0} : / a(t) dt > 0 and (2.70) has nontrivial solutions }
0

(2.71)

the positive eigenvalues of the eigenvalue problem
W)+ Au() =0, t € (0,T), u(0) —u(T) = u'(0) —u/'(T) =0 (2.72)

belong to AP. Therefore, for each p with 1 < p < oo, we can define the L’
Lyapunov constant for the periodic problem, 5", as the real number

per — inf T, 2.73
By aeApegW(O’T) la™ [l (2.73)

An explicit expression for the constant 85, as a function of p and T, has been
obtained in [30]. As in the Neumann case, we can obtain a characterization of B~
as a minimum of a convenient minimization problem, where only some appropriate
subsets of the space H'(0, T) are used (see [6] for further details).

Since (2.72) is, as (2.1), a resonant problem, just to get a variational characteri-
zation of A5 we need an additional restriction to the space H'(0, 7). This is shown

in the next theorem.

Theorem 2.5. If 1 < p < oo is a given number; let us define the sets X5 and the
functionals I,™ : Xr\ {0} — Ras

Xﬁ)er ={ve HI(O, T) : v(0) —v(T) = 0, max v(t) + min v(z) = 0},
1€[0,7] 1€[0.7]

T
P = veH'(O,T):v(O)—v(T)zo,/ |v|1’£1v:0} Lif 1<p < oo,
0
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T
X2 = {v € H'(0,7) : v(O)—v(T)=0,/ v =0},
0

T T
/vlz /U/Z
per _ 0
L) =——"——7

T
/ U/Z
[ (v) = 22—, —. if 1 <p<oo, I() ="

Ivll3 N 2

(/ |U | p—1 ) o v
0
(2.74)
Then, the L, Lyapunov constant By defined in (2.73), satisfies

ﬁ};er = min I[};er’ 1 <p<=<oo. (2.75)

Xp\{0}

Proof. Only those innovative details with respect to the Neumann case are
shown [6].

The case p = 1. It is very well known that g = 18 [17, 30]. Now, if u €
X\ {0}, then there exists xo € [0, T] such that u(xo) = 0. Taking into account
that u can be extended as a T-periodic function to R, if we define the function
v(x) = u(x + x0), ¥V x € R, then v|pz € X \ {0}, v(0) = v(T) = 0 and
I (u) = I (v). In addition (if it is necessary, we can choose —v instead of v),
there exist 0 < x; < xp < x3 < T such that

—t s :0, = i .
v(x1) max v v(x2) v(x3) min v

If xo = 0,x4 = T, it follows from the Cauchy—Schwarz inequality

[W s ()’
B D
Xi i=0

Xi+1 — Xi

3

[e-x

i=0

i+1 !/ 2
> 23: M _ 23: (W (xig1) — v(x))?

i—o Vit X =0 Xit1 — X
3
1 16
— 2 — > —vl*. 2.76
0 Y s = 7l 2.76)
Consequently
fT u'?

I () = =I"(v) = . YueXi™\ {0} .77

llull3
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On the other hand, the function w € X2 \ {0} defined as

x, if0 <x<T/4,
wx) =1 —(x— 1), if T/4 < x < 3T/4, (2.78)
(x—T),if3T/4 <x<T,

satisfies

fw? 16

Wiz T

Consequently, the case p = 1 is proved.
The case p = oo. It is very well known that S5 = “TL;, the first positive
eigenvalue of the eigenvalue problem (2.72) (see [30]). From its variational char-

acterization, we obtain

per __ : per
= min I5].

X2\ {0}
The case 1 < p < oo. The ideas are similar to those used in the case of Neumann
boundary conditions. If we denote

mP = inf P
per P
Xp \{0}

then this infimum is attained in some function u, which satisfies

] () + Ay (1) [ (¥) T p(x) = 0, x € (0, 7),

(2.79)
uo(0) — u(T) = 0, u)(0) — uy(T) = 0,

where

T =1
2p P
Ap(uo) = mp ( f |M0|"1‘) : (2.80)
0

Let us observe that the previous equation is of the type (2.59), but with periodic
boundary conditions instead of Neumann ones. As it was commented at the
beginning of this section, this is not a problem. If one has an exact knowledge
about the number and distribution of the zeros of the functions uo and u;,, the Euler
equation (2.79) can be integrated (see [3], Lemma 2.7). In our case, it is not
restrictive to assume uop(0) = ug(7) = 0 (see the previous case p = 1). Then,
if we denote the zeros of 1y in [0, 7] by 0 = xp < x3 < ... < xp, = T and the zeros
of ug, in (0, T) by x; < x3 < ... < x,—1, We obtain

mer = 4n’l zlp , 2.81)
LT - T ep -

where I is defined in (2.62).
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The novelty here is that, for the periodic boundary value problem (2.79), n > 2
(see the relations (2.35)), while for the Neumann and Dirichlet problem n > 1.
The conclusion is that
1617
mper = — P (2.82)
T (p—1'Tr2p -1

that is, four times the corresponding ” Lyapunov constant for the Dirichlet and the
Neumann problem. Finally, in [30] it is shown that this is, exactly, the L7 Lyapunov

constant for the periodic problem. Consequently, m),” = B, 1 < p < oo.

Finally, we treat in this section with antiperiodic boundary conditions, another
important case due to its applications to stability theory (Chap. 3). As we will show,
in some aspects this case is similar to the case of periodic boundary conditions, but
in others it is similar to Neumann or Dirichlet boundary conditions.

Antiperiodic Boundary Conditions Let us consider the antiperiodic boundary
value problem

W' (t) + a@®u(t) =0, t € (0,T), u(0) + uw(T) = u'(0) +u'(T) =0 (2.83)

where a € L7(R,R).
If we define the set

A = {a € L7(R,R) : (2.83) has nontrivial solutions } (2.84)
the positive eigenvalues of the eigenvalue problem
W' () + Au(®) =0, t € (0,T), u(0) +u(T) = u'(0) +u/(T) =0 (2.85)

belong to A™. Therefore, for each p with 1 < p < oo, we can define the L”
Lyapunov constant for the antiperiodic problem, 82", as the real number

ant — inf + 2.86
B, wenmiil 0 la™ I, (2.86)

An explicit expression for the constant 8™, as a function of p and T, has been
obtained in [30]. As in the cases of Neumann, Dirichlet, or periodic boundary
conditions, it is possible to prove a characterization of ﬂ;‘“ as a minimum of a
convenient minimization problem, where only some appropriate subsets of the space

H' (0, T) are used (see [6] for further details). Since (2.83) is, as (2.64), a no resonant
problem, i.e., the linear part

W' (1) =0, t € (0.7), u(0) +u(T) = ' (0) + u/(T) = 0 (2.87)

has only the trivial solution, just to get a variational characterization of 8 ;m we do

not need any additional restriction to the space H'(0, T), except u(0) + u(T) = 0.
This is shown in the next theorem, where the proof is omitted (see [6]).
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Theorem 2.6. [f 1 < p < oo is a given number, let us define the sets X,"" and the
functional I" : X;" \ {0} — R, as

X;;’”: {v e H'(0,7) : v(0) + v(T) =0}, I <p<=<oo,

T T T
/ v/2 / v/2 / v/2
0 A7 (v) = 0 —. if 1 <p<oo, Igf'(v) = EAUNE

T
”U”go T 2p V4 2
([ |v|p—l) 0"
0

If"(v) =

(2.88)
Then, the L, Lyapunov constant ,3;’” defined in (2.86) satisfies
ant — min 1", 1 <p < oo.
B iy B 1=p < (2.89)

Remark 2.17. Using the procedure described in Sect. 2.1 of this chapter, many other
boundary conditions can be studied. We bring out the case of problems of mixed

type
u”(x) + a(x)u(x) =0, x € (0,L), u/(0) = u(L) =0,

where the number n of the relation (2.61) must be chosen as n = 1/2. However,
due to the important relationship of this case with the notion of disfocality and
its applications to resonant nonlinear problems and the theory of stability, such
problems will be treated in the next section.

2.4 Disfocality
L
Under the natural restrictions a € L'(0,L) \ {0} and / a(x) dx > 0, the relation

0
between Neumann boundary conditions and disfocality arises in a natural way, since
if u € H'(0, L) is any nontrivial solution of

u”(x) + a(x)u(x) =0, x € (0,L), ' (0) =u'(L) =0 (2.90)

then u must have a zero c¢ in the interval (0, L). In fact, u(0) # 0 and u(L) # 0.
Then, if u has not zeros in the interval (0, L), we can assume that u is, for example,

1
a positive (nonconstant) solution of (2.90). Considering v = — as test function in
u

the weak formulation of (2.90), we obtain
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L L 1 L 1 L 2
/az/au—z[u’(—)’z—/u—z<0
0 0 u 0 u 0o u

L
which is a contradiction with the hypothesis / a(x) dx > 0.
0
In consequence both problems

v (x) + a(x)v(x) =0, x € (0,¢), vV(0) = v(c) =0 PM(0,c)
and
v"’(x) + a(x)v(x) =0, x € (c,L), v(c) =v'(L) =0 PM(c,L)

have nontrivial solutions.
This simple observation (which has been previously employed in the case of
Dirichlet boundary conditions, [15, 19]) can be used to deduce the following
L

conclusion: if a € L'(0,L) \ {0} with / a > 0 is any function such that for
0
any ¢ € (0,L), either problem PM(0,c) or problem PM(c,L) has only the trivial
solution, then problem (2.90) has only the trivial solution.
Below we study the relation between the best L, Lyapunov constants for the
problems (2.90) and
u”’(x) + a(x)u(x) =0, x € (0,L), '(0) = u(L) = 0, (2.91)

where for Neumann problem (2.90), function a € A and A is defined by

L
A={aeL0,L)\{0}: / a(x) dx > 0 and (2.90) has nontrivial solutions}
0

(2.92)

whereas for mixed problem (2.91), function @ € A* and A* is defined by
A* ={a e L'(0,L) : (2.91) has nontrivial solutions} (2.93)
Here u € H = H'(0,L) (the usual Sobolev space) in the case of Neumann

conditions and u € H* = {u € H : u(L) = 0} in the case of mixed boundary
conditions. Obviously, the positive eigenvalues of the problems

w(x) + Au(x) =0, x€ (0,L), /(0) =u/(L) =0 (2.94)
and

u’(x) + Au(x) =0, x € (0,L), /(0) = u(L) =0 (2.95)
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belong, respectively, to A and A*. Therefore A and A* are both not empty and the
quantities

= inf a’ L1 <p<oo 2.96
By wert Y on) la™ lrory, 1 <p = (2.96)

and
= inf lat o, 1 <p <o (2.97)

a€A* (N LP(0,L)

are well defined.

The next theorem establishes a clear relation between 8, and ﬂ;‘ . When it is
necessary, we will write A(0, L), B,(0, L), ... to show up the explicit dependence of
these quantities with respect to the interval (0, L). Also, it is possible to define, in
an analogous manner, A(c, d), B,(c,d), ... for arbitrary real numbers ¢ < d.

Theorem 2.7. [f1 < p < oo, we have B; = B,/4.

Proof. By using the definition of 8, and 8, and doing a trivial change of variables,
it is easy to prove the equalities

1o
B,(0.¢) = (2)" B,(0.d), Ye.d e R*, ¥p, 1 <p <oo (2.98)

and

1

Br(0,¢) = (2)‘7_2 Br(0.d), Ye,d € RT, Vp, 1 <p < oo, (2.99)
Moreover, problem (2.91) becomes
v"(x) + a(L —x)v(x) =0, x € (0,L), v(0) =V (L) =0 (2.100)
through the variable change y = L — x and it is clear that

la() o = lla(L =) lro.r

Lemma 2.1. If1 < p < oo, we have B; < B, /4.

Proof. Ifa € A(0,L)(\L”(0, L) and u is a nontrivial solution of (2.90), there exists
¢ € (0,L) such that u(c) = 0. Therefore both problems PM(0,c) and PM(c,L)
have nontrivial solutions. In consequence, function a, restricted to the interval [0, c]
belongs to A*(0, ¢) and function a(L + ¢ —-), restricted to the interval [c, L] belongs
to A*(c,L). Let us assume 1 < p < oo. Then taking into account the definition of
,3;‘, (2.99) and (2.100), we have
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||a+||pz(o_L) = ||a+|| 1(0.¢) + ”a—%_”Lp(C L)

> (B0,00 + (B L)Y
2p—1 2p—1
- (%) (ﬁ:(o,L»u(%) B30,y
c L—c¢

2p—1 2p—1
[ () T

> (jnf g(@)BFO.L)Y, (2.101)

where g : (0,L) — R is defined by

2p—1 2p—1
ge) = [(%) ’ + (Llic) ’ } Ve (0,L).

It is easily checked that

g()<0,Vce(0,L/2)and g'(c) >0, Yce (L/2,L).
Thus

nf g(0) =g(L/2) = 4. (2.102)

Therefore, from (2.101) and (2.102) we deduce
la™ 117,00y = ¥ (B, (0,L))", Vae ANLIO,L).

Similar ideas may be used in the case p = oco. This proves the lemma.

Lemma 2.2. [f1 <p < oo, we have B > B,/4.

Proof. If a € A*(0,L)(L’(0,L) and u is a nontrivial solution of (2.91), let us
define the functions

u:[0,2L] - R

a,
- a(x), x € [0, L],
a(x) = {a(ZL x), x € (L,2L]
u(x), x € [0, L],

—u(2L —x), x € (L,2L]. (2.103)

ii(x) = {

Then i € H'(0, 2L) and we claim that # is a (nontrivial) solution of

w'(x) + a(x)w(x) = 0, x € (0,2L), w'(0) = w/(2L) = 0. (2.104)
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To see this, we need to demonstrate
2L 2L
/ i (x)7' (x) dx = / ax)i(x)z(x) dx, ¥ z € H'(0,2L). (2.105)
0 0

If z € H'(0, 2L) satisfies
L) =0 (2.106)

then z, restricted to the interval [0, L] is a test function for mixed problem (2.91) and
therefore

L L
/ i (x)7 (x) dx = / u' (x)7 (x) dx
0 0

L L
= / a(x)u(x)z(x) dx =/ a(x)u(x)z(x) dx. (2.107)
0 0

Moreover, since function z(2L — y),y € [0, L], is also a test function for mixed
problem (2.91), we have

2L L
/ 7 (07 () dv = / W ()7 (2L~ y) dy
L 0

2L

L
= —/ a(y)u(y)z2L—y) dy = / a(x)u(x)z(x) dx.
0 L

(2.108)
From (2.107) and (2.108) we deduce (2.105) when z satisfies (2.106). But in
the interval [0,2L], function a(x)u(x) is an odd function with respect to L. This
implies (2.105) when z = 1. Finally, as any z € H'(0,2L) may be written in the
form z(x) = (z(x) — z(L)) + z(L), we conclude (2.105).

Once we have proved that # is a (nontrivial) solution of (2.104) associated with
function a, we would need to have the sign condition

2L
/ a(x)dx >0 (2.109)
0
since this property is included into the definition of the set A(0,2L). But

2L L
/(; a(x) dx = 2[0 a(x) dx

and a € A*(0, L), a set where no sign conditions is assumed. This difficulty may be
overcome by using some eigenvalue ideas. In fact, we will prove

Vae A*(0,L), 3k e (0,1]: kat € A*(0,L). (2.110)
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L L
To establish this, note that if « € A*(0, L) then / u?(x) dx = / a(x)u®(x) dx

0 0
for some nontrivial function u € H*. Therefore the set {x € (0,L) : a(x) > 0} has
positive measure. As a consequence, the eigenvalue problem

w(x) + Aa(x)w(x) = 0, x € (0,L), w'(0) =w(L) =0 (2.111)

has a sequence of positive eigenvalues A;(a) < A,(a) < ...

Moreover, a € A*(0, L) implies A;(a) < 1. Since a™ > a, we have A,(a™) <
A(a). As Ai(at)at € A*(0,L), this proves (2.110).

Now, from (2.110) we have |ka™ ||y < la™ |lr0.)- Therefore, it is clearly
not restrictive to assume from the beginning of the lemma we are proving that
a(x) > 0. This fact implies (2.109) and as a consequence, function a defined
in (2.103) belongs to the set A(0,2L). Moreover, if 1 < p < oo,

20allspory = 1dllya = BLO,20) = 272 BL(0, L)

which imply
1
lallzro.r) = Z,Bp((), L),
for each function a € A*(0, L) () L”(0, L) such that a(x) > 0. From this and (2.110)

we obtain the conclusion of the lemma if 1 < p < oco. Similar ideas may be used in
the case p = oo. This finishes also the proof of Theorem 2.7.

Remark 2.18. The proof of Theorem 2.7 that we have given here is based on an
appropriate change of variables, but it is possible to carry out a different approach
by using similar ideas to those contained in Sect.2.1. In this way, some additional
results for /3; (0, L) may be proved. For instance, ,B;‘ (0, L) is attained if and only if
l<p=<o0

Next, we present some results on the existence and uniqueness of solutions of
linear b.v.p.

u’ (x) + a(x)u(x) = f(x), x € (0,L), u/'(0) =u'(L) = 0. (2.112)

d
Previously, if a € L'(c,d) \ {0}, / a(x) dx > 0and 1 < p < oo, it may be

c
convenient to introduce hypothesis (Hp)*.

Hypothesis (Hp)* It is established as:

1. ||a+||L1(C,d) <Bi(c.d)ifp=1.
2' a e L]’(c’ d)’ ||a+ ”U’(C,d) < IB;(Cv d)

Remark 2.19. Let us observe that if a function a satisfies hypothesis (Hp)* for
some p, 1 < p < oo, then the unique solution of the boundary problems

u”"(x) + a(x)u(x) =0, x € (c,d), u'(c) =u(d) =0 (2.113)
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and
u”(x) + a(x)u(x) =0, x € (c,d), u(c) =u'(d) =0 (2.114)

is the trivial one.
L
Theorem 2.8. Leta € L'(0,L) \ {0} with / a(x) dx > 0, satisfying:

For each ¢ € (0, L) either hypothesis (H(;))* in the interval (0, c) or hypothesis
(Hq)* in the interval (c, L) (here, p,q € [1, 00] may depend on c).

Then for each f € L' (0, L), the boundary value problem (2.112) has a unique
solution.

Proof. Since (2.112) is a linear problem, it is sufficient to see that the unique
solution of the homogeneous problem

w”(x) + a(x)u(x) =0, x € (0,L), ' (0) =u'(L) =0 (2.115)

is the trivial one. Now, if (2.115) has some nontrivial solution u, it was shown at the
beginning of this chapter that # must have a zero d in the interval (0, L). In this case,
both problems PM(0,d) and PM(d,L) have nontrivial solutions. But by using either
hypothesis (Hp)* in (0, d) or hypothesis (Hq)* in (d, L), we have a contradiction.

In concrete examples, it may be convenient to choose p = ¢, independent from
¢ € (0, L). To this respect, the following proposition may be of interest.

Proposition 2.1. Let 1 < p < oo and a € LP(0,L). Then the following statements
are equivalent:

V€ (0.L), either |la* .o < By(0.¢) or llat |pery < By(c.L)  (2.116)

Ix0 € (0.L) : lla* o) < By (0.x0) and ||a™ || pony < By (x0.L).  (2.117)

_1 . . .
Proof. Let (2.116) be satisfied. Function 7 lla™ [|2r(0.c) is continuous and increas-

—1 . .
ing in the interval ¢ € (0, L) whereas function (L — ¢)* 7 [lat|| 1r(c.1) 18 continuous
and decreasing in ¢ € (0, L). Then, choose x( as a point in (0, L) such that

2—1 1
X " llat lpomy = L—x0)" 77 llat | reon)- (2.118)

Since (2.116) is fulfilled V ¢ € (0, L), it is true in particular for ¢ = x(. But taking
into account (2.118) and the relation (2.99)

L—)C()

52
By (xo, L) = B, (0,L —xo) = ( ) B, (0, x0)

if xp is as in (2.118), both inequalities in (2.116) are really the same inequality and,
moreover, they are identical to (2.117).
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Reciprocally, if (2.117) is satisfied and ¢ € (0, L), we can distinguish two cases:
¢ € (0,xp] and ¢ € (xo,L). In the first case, we have

la* oo < lat o < B (0.x0)

— (%)’l’*z Br(0.L) < (%)%72 BE(0.L) = BE(0.¢).

A similar reasoning is valid if ¢ € (xo, L).

Remark 2.20. An analogous result may be demonstrated for p = 1 by replacing
strict inequalities in (2.116) and (2.117) with non-strict ones. If p = oo, (2.117)
implies (2.116). As a consequence, if (2.117) is satisfied for p = oo, the unique
solution of (2.115) is the trivial one. However, in this last case, a more precise
condition may be obtained. This is shown in the next proposition.

Proposition 2.2. If function a fulfills

a € L*®(0,L)\ {0}, [La20 and Ix9 € (0,L) : (H)
0

2
max{xglla*[lzee 0.0)s (L —x0)*[la* (oo oy} < %
and, in addition, either a™ is not the constant 7> / 4x% in the interval [0, xo] or a™ is
not the constant > /4(L — xo)? in the interval [xy, L], then for each f € L'(0, L), the
boundary value problem (2.112) has a unique solution.

Proof. To prove this proposition, take into account that 8% (0,x)) = 7*/4x} and
that 8%, (xo, L) = 7%/4(L — x0)*. Then, if d € (0, xy) we have

la® o) < lla™ oo .u0) < Bio(0.%0) < B2,(0,d)

Therefore, problem PM(0,d) has only the trivial solution. If d € (xo, L) a similar
reasoning is valid and we obtain that problem PM(d,L) has only the trivial solution.
Finally, if d = x¢, we would have

la™ |20 0.10) < Bio(0.%0). lla™ llzoo oy < Bao(x0. L).

But since, in addition, we have that either a™ is not the constant 7%/4x} in the
interval [0,xo] or a™ is not the constant 72/4(L — x,)? in the interval [xo, L], we
deduce that either problem PM(0,xy) or problem PM(xo,L.) has only the trivial
solution. This proves that (2.115) has only the trivial solution and therefore we have
the desired conclusion.

In particular, if xo = L/2 in Proposition 2.2, we obtain the classical result related to
the so-called nonuniform nonresonance conditions with respect to the first positive
eigenvalue Z—zz [24-26]. However, if for instance, xo € (0,L/2), it is allowed the
equality ||a%||zee0xy) = 7%/4x3 (which is a quantity greater than ’L’—j) as long as
lat llzoe o,y < 722 /4(L — x0)*.
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Remark 2.21. Hypothesis (H) is optimal in the sense that if a® is the constant
7% /4x% in the interval [0, xo] and a™ is the constant 72/4(L — xo)? in the interval
[x0. L], then (2.115) has the C?[0, L] nontrivial solution:

—X0 X .
cos —, if x € (0, xp),
L — X0 2)(0

u(x) =
(L — x)

— ifx € (x0, L),
S2(L—x0) if x € (xo,L)

CO

Remark 2.22. By using the definition of f,, it is clear that if for some p, with 1 <
p < oo, function a satisfies

latllro.0) < Byp(0.L) (2.119)

then the unique solution of (2.115) is the trivial one. It is easy to prove that (2.119)
implies (2.116). In fact, if (2.116) is not true for some ¢ € (0,L), taking into
account (2.102) and Theorem 2.7 we obtain

Ml

[la [l)ﬂ(O,L) = ||a+||ll)p(0,5) + ”a+||p)(c,L)

> (B,(0.0))" + (B, (c. L))"

1-2 L—c\' ™% 0,1))
= |:<%) "+(Tc) ]wz(ﬁp(ov@)p

which is a contradiction with (2.119).

Previous remark shows that if we want to have a criterion implying that (2.115)
has only the trivial solution, then (2.116) is better than (2.119). In order to prove
that (2.116) is a strict generalization of (2.119), we show the following example
(see [5] for more details).

Example. Let c1,c; be two positive numbers and let us consider the two step
potential

. Lc,
cl, if0<x<

¢+ ’
a(x) = (2.120)
L
2. if —=2
cr+ ¢

<x<L.

Then, for each p, 1 < p < oo, there exist ¢y, ¢, such that

L
function a satisfies (2.117) (and therefore (2.116)) for xo = f
C1

(2.121)
(&)
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and
la* lla.) > B4(0, L), Vg € [1,00]. (2.122)
Let us remark that from (2.122) we cannot deduce that (2.115) has only the trivial

solution. However, we can affirm that this fact is true from (2.121).

We finish this section with some results on the existence and uniqueness of
solutions of nonlinear b.v.p.

W' (x) + f(x,u(x)) =0, x € (0,L), v (0) =u'(L) =0. (2.123)

Taking into account the previous discussion, next theorem is a strict general-
ization of Theorem 3.1 in [3], Theorem B in [18] and (for ordinary differential
equations) Theorem 7.1 in [4] and Theorem 2 in [26]. The proof, which is similar
to the one given in [3, 4], combines the linear results of this section with Schauder’s
fixed point theorem. We omit the details.

Theorem 2.9. Let us consider (2.123) where the following requirements are sup-
posed:

1. f and f, are Caratheodory functions on [0, L] x R and f(-,0) € L' (0, L).
2. There exist functions «, B € L*°(0, L), satisfying

a(x) < fulx,u) < B(x)

on [0, L] x R and B satisfies for each ¢ € (0, L) either hypothesis (Hp)* in the
interval (0, ¢) (for some p € [1,00]), or hypothesis (Hq)* in the interval (c, L)
(for some q € [1, <))

3. Moreover, we assume one of the following conditions:

a.

/0520, a#0
19,

a =0, 35 € Rs.t. / f(x,50) dx = 0, and f,(x, u(x)) # 0, Yu € C(R2).
2

Then, problem (2.123) has a unique solution.

Remark 2.23. The idea of using qualitative properties of the mixed problem
PM(0,c) in the study of resonant nonlinear problems like (2.123) has been
previously employed by different authors. The interested reader may consult
[13, 25, 27, 29] for the case where the nonlinearity f is restricted in one direction.
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