Chapter 2
Galton—Watson Trees

We recall a few elementary properties of supercritical Galton—Watson trees, and
introduce the notion of size-biased trees. As an application, we give in Sect. 2.3 the
beautiful conceptual proof by Lyons et al. [176] of the Kesten—Stigum theorem for
the branching process.

The goal of this brief chapter is to give an avant-goiit of the spinal decomposition
theorem, in the simple setting of the Galton—Watson tree. If you are already familiar
with any form of the spinal decomposition theorem, this chapter can be skipped.

2.1 The Extinction Probability

Consider a Galton—Watson process, also referred to as a Bienaymé—Galton—Watson
process, with each particle (or: individual) having i children with probability p; (for
i>0; Zfio p;j = 1), starting with one initial ancestor. To avoid trivial discussions,
we assume throughout that pg + p; < 1.

Let Z, denote the number of particles in the n-th generation. By definition, if
Z, = 0 for a certain n, then Z; = 0 for all j > n. We write

q = P{Zn =0 eventually}, (extinction probability)
00
m = E(Zl) = Z ipi S (0, OO] (mean number of offspring of each individual)
i=0
Theorem 2.1

(i) The extinction probability q is the smallest root of the equation f(s) = s for
s € [0, 1], where f(s) := Y o2 s'p;, 00 := 1.
(i1) In particular,q = 1ifm < 1,andqg < 1if1 <m < oo.
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Case m > 1 Casem <1

Po
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Fig. 2.1 Generating function of the reproduction law

Proof By definition, f(s) = E(s%'), and E(s*" | Z,—1) = f(s)?'. So E(s) =
E(f(s)?"), which leads to E(s*") = f,(s) for any n > 1, where f, denotes the n-th
fold composition of f. In particular, P(Z, = 0) = f,(0).

Since {Z, = 0} C {Z, = 0} for all n < £, we have

g =P(Utz, = 0}) = lim Pz, =0) = lim /,(0).

The function f : [0, 1] — R is increasing and strictly convex, with f(0) = py > 0
and f(1) = 1. It has at most two fixed points. Note that m = f’(1—). See Fig. 2.1.
If m < 1, then pg > 0, and f(s) > s for all s € [0, 1). So f,(0) — 1. In other
words, ¢ = 1 is the unique root of f(s) = s.
If m € (1, o<], then f,,(0) converges increasingly to the unique root of f(s) = s,
s € [0, 1). In particular, g < 1. O

It follows that in the subcritical case (i.e., m < 1) and in the critical case (m = 1),
there is extinction with probability 1, whereas in the supercritical case (m > 1), the
system survives with positive probability.

If m < oo, we can define

M, = , n>0.

Zn
mt
Since (M,) is a non-negative martingale with respect to the natural filtration of (Z,),
we have M,, — M a.s., where M, is a non-negative random variable. By Fatou’s
lemma, E(Ms) < liminf,_,o E(M,) = 1. It is, however, possible that M, = 0.
So it is important to know whether P(Mo, > 0) is positive.

If there is extinction, then trivially Mo, = 0. In particular, by Theorem 2.1, we
have M, = 0 a.s. if m < 1. What happens if m > 1?7

Lemma 2.2 Assume m < 00. Then P(Moo = 0) is either q or 1.

Proof We already know that M, = 0 a.s.if m < 1. So let us assume 1 < m < co.



2.2 Size-Biased Galton—Watson Trees 13

By definition, Z,1| = Zf;l Z,(li) (notation: ), := 0), where Z,(li) ,i>1, are
copies of Z,, independent of each other and of Z,. Dividing both sides by m" and
letting n — o0, it follows that mMy has the law of Zil Mg(),, where Mg(),, i>1,
are copies of M, independent of each other and of Z;. Hence P(M, = 0) =
EP(Myx = 0)4] = f(P(Ms = 0)), i.e., P(Ms, = 0) is a root of f(s) = s, so
PMy =0)=gqorl. O

Theorem 2.3 (Kesten and Stigum [155]) Assume 1 < m < oco. Then
E(Mx) =1 < P(My > 0| non-extinction) = 1 < E(Z;In} Z;) < oo,

where Ing x := Inmax{x, 1}.

Theorem 2.3 says that E(Moo) = 1 & P(Mo =0) =g & Y 2 piilni < oo.
The proof of Theorem 2.3 is postponed to Sect. 2.3. We will see that the condition
E(Z, Iny Z;) < oo, apparently technical, is quite natural.

2.2 Size-Biased Galton—Watson Trees

In order to introduce size-biased Galton—Watson trees, let us view the tree as a
random element in a probability space (£2, .%, P), using the standard formalism.

Let Z = {@} U U, (N*)X, where N* := {1, 2,...}. For elements u and v of
 , let uv be the concatenated element, with u@ = Qu = u.

A tree w is a subset of % satisfying the following properties: (i) @ € w; (ii) if
uj € o for some j € N*, then u € w; (iii) if u € w, then uj € w if and only if
1 <j < N,(w) for some non-negative integer N, ().

In words, N,(w) is the number of children of the vertex u. Vertices of w are
labeled by their line of descent: the vertex u = ij...i, € % stands for the i,-
th child of the i,—;-th child of ... of the i;-th child of the initial ancestor &. See
Fig.2.2.

Fig. 2.2 Vertices of a tree as 2]
elements of %

121 122 211 212 213 214
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Let §2 be the space of all trees, endowed with a o-field .% defined as follows. For
ueu,let2,:={w € 2 : u € w} be the subspace of §2 consisting of all the trees
containing u as a vertex. [In particular, 24 = 2.] Let &% = 0{$2,, u € % }.

Let T : £2 — £2 be the identity application.

Let (px, k > 0) be a probability, i.e., py > 0 forall k > 0, and Y 22 px = 1.
There exists a probability P on (§2, .%) [203] such that the law of T under P is the
law of the Galton—Watson tree with reproduction distribution ( py).

Let %, := o{$2,, u € %, |u] < n}, where |u] is the length of u (or the
generation of the vertex u in the language of trees). Note that .% is the smallest
o-field containing all the .%,,.

For any tree w € £2, let Z,(w) be the number of individuals in the n-th generation,
ie, Z,(w) =#uec : uecw, |ul =n}.lItis easily checked that for any n, Z, is
arandom variable taking values in N := {0, 1, 2,...}.

Assume now m < oo. Since (M,,) is a non-negative martingale, we can define Q
to be the probability on (£2, .%) such that for any n,

Q\\% =M,e Pl.%, ’

where P, and Q) are the restrictions of P and Q on .%,, respectively.

For any n, Q(Z, > 0) = E[l¢z,.03M,] = E[M,] = 1, which yields Q(Z, >
0, Vn) = 1: there is almost sure non-extinction of the Galton—Watson tree T under
the new probability Q. The Galton—Watson tree T under Q is called a size-biased
Galton—Watson tree. We intend to give a description of its paths.

We start with a lemma. Let N := Ng. If N > 1, we write Ty, T, ..., Ty for the
N subtrees rooted at each of the N individuals in the first generation.

Lemma 2.4 Letk > 1. IfAy, Ay, ..., Ay are elements of %, then

Q(Nzk, Tl GAl,...,Tk EAk)

= ZP(AI) PUACDQUAPA ) - PA).  (2.1)

Proof By the monotone class theorem, we may assume, without loss of generality,
that Aj, Ay, ..., A are elements of .%,, for some n. Write Q.1 for QN =k, T, €
A], ey Tk S Ak). Then

Zn+1
Q(Z.l) = ( 1 I{N k, T1€A,..., TkEAk})

On {N = k}, we can write Z,4| = Zf‘: ! z , where 7 is the number of
individuals in the n-th generation of the subtree rooted at the i-th individual in the
first generation. Hence

1
Qoy=—7PW= k)Z {Z() it e, Tiear

i=1

N =k},
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We have P(N = k) = py, and

J#i
which is m" Q(A)) ]_[j# P(A;). The lemma is proved. O

It follows from Lemma 2.4 that the root & of the size-biased Galton—Watson
tree has the biased distribution, i.e., having k children with probability %; among
the individuals in the first generation, one of them is chosen randomly according to
the uniform distribution: the subtree rooted at this vertex is a size-biased Galton—
Watson tree, whereas the subtrees rooted at all other vertices in the first generation
are usual Galton—Watson trees, and all these subtrees are independent.

We iterated the procedure, and obtain a decomposition of the size-biased Galton—
Watson tree into an (infinite) spine and i.i.d. copies of the usual Galton—Watson tree:
The root @ =: wy has the biased distribution, i.e., having k children with probability
%. Among the children of the root, one of them is chosen randomly according to
the uniform distribution, as the element of the spine in the first generation; let us
denote this element by w;. We attach subtrees rooted at all other children; they are
independent copies of the usual Galton—Watson tree. The vertex w; has the biased
distribution. Among the children of w;, we choose at random one of them as the
element of the spine in the second generation, denoted by w,. Independent copies
of the usual Galton—Watson tree are attached as subtrees rooted at all other children
of wy, whereas w, has the biased distribution. The system goes on indefinitely. See
Fig.2.3.

Having the application of the next section in mind, let us connect the size-biased
Galton—Watson tree to the branching process with immigration. The latter starts with

wy =&

wi

GW GW GW GW

Fig. 2.3 A size-biased Galton—Watson tree
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no individual (say), and is governed by a reproduction law and an immigration law.
At generation n (for n > 1), Y, new individuals are added into the system, while all
individuals regenerate independently and following the same reproduction law; we
assume that (Y,,, n > 1) is a collection of i.i.d. random variables following the same
immigration law, and independent of everything else up to that generation.

The size-biased Galton—Watson tree tells us that (Z, — 1, n > 0) under Q is a
branching process with immigration, whose immigration law is that of N — 1, with
P(N = k) := "2 fork > 1.

2.3 Application: The Kesten—Stigum Theorem

We start with a dichotomy theorem for branching processes with immigration.

Theorem 2.5 (Seneta [219]) Let Z, be the number of individuals in the n-th
generation of a branching process with immigration (Y,,). Assume that 1 < m < oo,
where m denotes the expectation of the reproduction law.

() IfE(Ing Y1) < oo, then limy— o0 25 Zn exists and is finite almost surely.
(i) IfE(Iny Y1) = oo, then lim supn_,oo 1% = 00, a.s.

Proof (ii) Assume E(Iny Y;) = oo. By the Borel-Cantelli lemma [102, Theo-
rem 2.5.9], lim sup,_, o, Y% — 50 a.s. Since Z, > Y,, it follows that for any ¢ > 1,

limsup,,_, o, f,, = 00, a.s.

(i) Assume now E(Int Yl) < 00. By the law of large numbers, lim,— w =0

as.soforanyc> 0,3, % <ocoas.
Let & be the o-field generated by (Y,). Clearly,

E(Zn—H |fg.nv g/) =mZ, + Yn+l > mZy,,

thus (Z”) is a submartingale (conditionally on %), and E(%’; |9) = > 0 % In

particular, on the set {Zoo %< oo} we have sup, E(Z | %) < 00,50 lim,— o0 2=

m" m

exists and is finite. Since P(Zk 0 < 00) = 1, the result follows. O

We recall an elementary result [102, Theorem 5.3.3]. Let (%#,) be a filtration,

and let .7 be the smallest o-field containing all .%,. Let P and Q be probabilities
on (2, Foo). Assume that for any n, Q|, < P, . Let§, = dg:g” and let
Fn Fn 2

& := limsup,_, ., & which is P-a.s. finite. Then

QA) =E(¢ 1) +QAN{E =00)). VA€ Fu.
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It follows easily that

QP& E<o0 Qas. & EE) =1, (2.2)
QLP & £=o00, Qas. & E() =0. 2.3)

Proof of Theorem 2.3 1f Y 72, p;ilni < oo, then E(Iny I/\\f) < 00. By Theorem 2.5,
lim,,—, 5o M, exists Q-a.s. and is finite Q-a.s. In view of (2.2), this means E(My,) =
1; in particular, P(Ms, = 0) < 1, thus P(Ms, = 0) = ¢ (Lemma 2.2).
If Zlo:l piilni = oo, then E(Iny I/\\f) = 00. By Theorem 2.5, lim,,—oc M), exists
Q-a.s. and is infinite Q-a.s. Hence E(Mo,) = 0 (by (2.3)),i.e., P(M = 0) = 1.
O

2.4 Notes

The material of this chapter is borrowed from Lyons et al. [176], and the presentation
adapted from Chap. 1 of my lecture notes [221].

Section 2.1 collects a few elementary properties of Galton—Watson processes.
For more detailed discussions, we refer to the books by Asmussen and Hering [31],
Athreya and Ney [32], Harris [122].

The formalism described in Sect. 2.2 is due to Neveu [203]; the idea of viewing
Galton—Watson trees as tree-valued random variables finds its root in Harris [122].

The technique of size-biased Galton—Watson trees, which goes back at least to
Kahane and Peyriere [152], has been used by several authors in various contexts.
Its presentation in Sect. 2.2, as well as its use to prove the Kesten—Stigum theorem,
comes from Lyons et al. [176]. Size-biased Galton—Watson trees can actually be
exploited to prove the corresponding results of the Kesten—Stigum theorem in the
critical and subcritical cases. See [176] for more details.

Seneta’s dichotomy theorem for branching processes with immigration (Theo-
rem 2.5) was discovered by Seneta [219]; its short proof presented in Sect.2.3 is
borrowed from Asmussen and Hering [31, pp. 50-51].
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