
Chapter 2
Galton–Watson Trees

We recall a few elementary properties of supercritical Galton–Watson trees, and
introduce the notion of size-biased trees. As an application, we give in Sect. 2.3 the
beautiful conceptual proof by Lyons et al. [176] of the Kesten–Stigum theorem for
the branching process.

The goal of this brief chapter is to give an avant-goût of the spinal decomposition
theorem, in the simple setting of the Galton–Watson tree. If you are already familiar
with any form of the spinal decomposition theorem, this chapter can be skipped.

2.1 The Extinction Probability

Consider a Galton–Watson process, also referred to as a Bienaymé–Galton–Watson
process, with each particle (or: individual) having i children with probability pi (for
i � 0;

P1
jD0 pj D 1), starting with one initial ancestor. To avoid trivial discussions,

we assume throughout that p0 C p1 < 1.
Let Zn denote the number of particles in the n-th generation. By definition, if

Zn D 0 for a certain n, then Zj D 0 for all j � n. We write

q WD PfZn D 0 eventuallyg; (extinction probability)

m WD E.Z1/ D
1X

iD0

ipi 2 .0; 1�: (mean number of offspring of each individual)

Theorem 2.1

(i) The extinction probability q is the smallest root of the equation f .s/ D s for
s 2 Œ0; 1�, where f .s/ WD P1

iD0 sipi, 00 WD 1.
(ii) In particular, q D 1 if m � 1, and q < 1 if 1 < m � 1.
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Fig. 2.1 Generating function of the reproduction law

Proof By definition, f .s/ D E.sZ1 /, and E.sZn j Zn�1/ D f .s/Zn�1 . So E.sZn / D
E. f .s/Zn�1 /, which leads to E.sZn / D fn.s/ for any n � 1, where fn denotes the n-th
fold composition of f . In particular, P.Zn D 0/ D fn.0/.

Since fZn D 0g � fZ` D 0g for all n � `, we have

q D P
� [

n

fZn D 0g
�

D lim
n!1 P.Zn D 0/ D lim

n!1 fn.0/:

The function f W Œ0; 1� ! R is increasing and strictly convex, with f .0/ D p0 � 0

and f .1/ D 1. It has at most two fixed points. Note that m D f 0.1�/. See Fig. 2.1.
If m � 1, then p0 > 0, and f .s/ > s for all s 2 Œ0; 1/. So fn.0/ ! 1. In other

words, q D 1 is the unique root of f .s/ D s.
If m 2 .1; 1�, then fn.0/ converges increasingly to the unique root of f .s/ D s,

s 2 Œ0; 1/. In particular, q < 1. ut
It follows that in the subcritical case (i.e., m < 1) and in the critical case (m D 1),

there is extinction with probability 1, whereas in the supercritical case (m > 1), the
system survives with positive probability.

If m < 1, we can define

Mn WD Zn

mn
; n � 0:

Since .Mn/ is a non-negative martingale with respect to the natural filtration of .Zn/,
we have Mn ! M1 a.s., where M1 is a non-negative random variable. By Fatou’s
lemma, E.M1/ � lim infn!1 E.Mn/ D 1. It is, however, possible that M1 D 0.
So it is important to know whether P.M1 > 0/ is positive.

If there is extinction, then trivially M1 D 0. In particular, by Theorem 2.1, we
have M1 D 0 a.s. if m � 1. What happens if m > 1?

Lemma 2.2 Assume m < 1. Then P.M1 D 0/ is either q or 1.

Proof We already know that M1 D 0 a.s. if m � 1. So let us assume 1 < m < 1.
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By definition, ZnC1 D PZ1

iD1 Z.i/
n (notation:

P
¿ WD 0), where Z.i/

n , i � 1, are
copies of Zn, independent of each other and of Z1. Dividing both sides by mn and
letting n ! 1, it follows that mM1 has the law of

PZ1

iD1 M.i/1, where M.i/1, i � 1,
are copies of M1, independent of each other and of Z1. Hence P.M1 D 0/ D
EŒP.M1 D 0/Z1 � D f .P.M1 D 0//, i.e., P.M1 D 0/ is a root of f .s/ D s, so
P.M1 D 0/ D q or 1. ut
Theorem 2.3 (Kesten and Stigum [155]) Assume 1 < m < 1. Then

E.M1/ D 1 , P.M1 > 0 j non-extinction/ D 1 , E.Z1 lnC Z1/ < 1;

where lnC x WD ln maxfx; 1g.

Theorem 2.3 says that E.M1/ D 1 , P.M1 D 0/ D q , P1
iD1 pi i ln i < 1.

The proof of Theorem 2.3 is postponed to Sect. 2.3. We will see that the condition
E.Z1 lnC Z1/ < 1, apparently technical, is quite natural.

2.2 Size-Biased Galton–Watson Trees

In order to introduce size-biased Galton–Watson trees, let us view the tree as a
random element in a probability space .˝; F ; P/, using the standard formalism.

Let U WD f¿g [ S1
kD1.N

�/k, where N
� WD f1; 2; : : :g. For elements u and v of

U , let uv be the concatenated element, with u¿ D ¿u D u.
A tree ! is a subset of U satisfying the following properties: (i) ¿ 2 !; (ii) if

uj 2 ! for some j 2 N
�, then u 2 !; (iii) if u 2 !, then uj 2 ! if and only if

1 � j � Nu.!/ for some non-negative integer Nu.!/.
In words, Nu.!/ is the number of children of the vertex u. Vertices of ! are

labeled by their line of descent: the vertex u D i1 : : : in 2 U stands for the in-
th child of the in�1-th child of : : : of the i1-th child of the initial ancestor ¿. See
Fig. 2.2.

Fig. 2.2 Vertices of a tree as
elements of U •∅
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Let ˝ be the space of all trees, endowed with a �-field F defined as follows. For
u 2 U , let ˝u WD f! 2 ˝ W u 2 !g be the subspace of ˝ consisting of all the trees
containing u as a vertex. [In particular, ˝¿ D ˝ .] Let F WD �f˝u; u 2 U g.

Let T W ˝ ! ˝ be the identity application.
Let . pk; k � 0/ be a probability, i.e., pk � 0 for all k � 0, and

P1
kD0 pk D 1.

There exists a probability P on .˝; F / [203] such that the law of T under P is the
law of the Galton–Watson tree with reproduction distribution . pk/.

Let Fn WD �f˝u; u 2 U ; juj � ng, where juj is the length of u (or the
generation of the vertex u in the language of trees). Note that F is the smallest
�-field containing all the Fn.

For any tree ! 2 ˝ , let Zn.!/ be the number of individuals in the n-th generation,
i.e., Zn.!/ WD #fu 2 U W u 2 !; juj D ng. It is easily checked that for any n, Zn is
a random variable taking values in N WD f0; 1; 2; : : :g.

Assume now m < 1. Since .Mn/ is a non-negative martingale, we can define Q
to be the probability on .˝; F / such that for any n,

QjFn
D Mn � PjFn

;

where PjFn
and QjFn

are the restrictions of P and Q on Fn, respectively.
For any n, Q.Zn > 0/ D EŒ1fZn>0gMn� D EŒMn� D 1, which yields Q.Zn >

0; 8n/ D 1: there is almost sure non-extinction of the Galton–Watson tree T under
the new probability Q. The Galton–Watson tree T under Q is called a size-biased
Galton–Watson tree. We intend to give a description of its paths.

We start with a lemma. Let N WD N¿. If N � 1, we write T1, T2; : : :, TN for the
N subtrees rooted at each of the N individuals in the first generation.

Lemma 2.4 Let k � 1. If A1, A2; : : :, Ak are elements of F , then

Q.N D k; T1 2 A1; : : : ; Tk 2 Ak/

D kpk

m

1

k

kX

iD1

P.A1/ � � � P.Ai�1/Q.Ai/P.AiC1/ � � � P.Ak/: (2.1)

Proof By the monotone class theorem, we may assume, without loss of generality,
that A1, A2; : : :, Ak are elements of Fn, for some n. Write Q(2.1) for Q.N D k; T1 2
A1; : : : ; Tk 2 Ak/. Then

Q(2.1) D E
� ZnC1

mnC1
1fNDk; T12A1;:::;Tk2Akg

�
:

On fN D kg, we can write ZnC1 D Pk
iD1 Z.i/

n , where Z.i/
n is the number of

individuals in the n-th generation of the subtree rooted at the i-th individual in the
first generation. Hence

Q(2.1) D 1

mnC1
P.N D k/

kX

iD1

E
n
Z.i/

n 1fT12A1;:::;Tk2Akg
ˇ
ˇ
ˇ N D k

o
:
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We have P.N D k/ D pk, and

EfZ.i/
n 1fT12A1;:::;Tk2Akg j N D kg D EŒZn 1fT2Aig�

Y

j6Di

P.Aj/;

which is mn Q.Ai/
Q

j6Di P.Aj/. The lemma is proved. ut
It follows from Lemma 2.4 that the root ¿ of the size-biased Galton–Watson

tree has the biased distribution, i.e., having k children with probability kpk
m ; among

the individuals in the first generation, one of them is chosen randomly according to
the uniform distribution: the subtree rooted at this vertex is a size-biased Galton–
Watson tree, whereas the subtrees rooted at all other vertices in the first generation
are usual Galton–Watson trees, and all these subtrees are independent.

We iterated the procedure, and obtain a decomposition of the size-biased Galton–
Watson tree into an (infinite) spine and i.i.d. copies of the usual Galton–Watson tree:
The root ¿ DW w0 has the biased distribution, i.e., having k children with probability
kpk
m . Among the children of the root, one of them is chosen randomly according to

the uniform distribution, as the element of the spine in the first generation; let us
denote this element by w1. We attach subtrees rooted at all other children; they are
independent copies of the usual Galton–Watson tree. The vertex w1 has the biased
distribution. Among the children of w1, we choose at random one of them as the
element of the spine in the second generation, denoted by w2. Independent copies
of the usual Galton–Watson tree are attached as subtrees rooted at all other children
of w1, whereas w2 has the biased distribution. The system goes on indefinitely. See
Fig. 2.3.

Having the application of the next section in mind, let us connect the size-biased
Galton–Watson tree to the branching process with immigration. The latter starts with
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Fig. 2.3 A size-biased Galton–Watson tree
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no individual (say), and is governed by a reproduction law and an immigration law.
At generation n (for n � 1), Yn new individuals are added into the system, while all
individuals regenerate independently and following the same reproduction law; we
assume that .Yn; n � 1/ is a collection of i.i.d. random variables following the same
immigration law, and independent of everything else up to that generation.

The size-biased Galton–Watson tree tells us that .Zn � 1; n � 0/ under Q is a
branching process with immigration, whose immigration law is that of bN � 1, with
P.bN D k/ WD kpk

m , for k � 1.

2.3 Application: The Kesten–Stigum Theorem

We start with a dichotomy theorem for branching processes with immigration.

Theorem 2.5 (Seneta [219]) Let Zn be the number of individuals in the n-th
generation of a branching process with immigration .Yn/. Assume that 1 < m < 1,
where m denotes the expectation of the reproduction law.

(i) If E.lnC Y1/ < 1, then limn!1 Zn
mn exists and is finite almost surely.

(ii) If E.lnC Y1/ D 1, then lim supn!1 Zn
mn D 1, a.s.

Proof (ii) Assume E.lnC Y1/ D 1. By the Borel–Cantelli lemma [102, Theo-
rem 2.5.9], lim supn!1 ln Yn

n D 1 a.s. Since Zn � Yn, it follows that for any c > 1,
lim supn!1 Zn

cn D 1, a.s.

(i) Assume now E.lnC Y1/ < 1. By the law of large numbers, limn!1 ln
C

Yn

n D 0

a.s., so for any c > 0,
P

k
Yk
ck < 1 a.s.

Let Y be the �-field generated by .Yn/. Clearly,

E.ZnC1 jFn; Y / D mZn C YnC1 � mZn;

thus . Zn
mn / is a submartingale (conditionally on Y ), and E. Zn

mn jY / D Pn
kD0

Yk
mk . In

particular, on the set fP1
kD0

Yk
mk < 1g, we have supn E. Zn

mn jY / < 1, so limn!1 Zn
mn

exists and is finite. Since P.
P1

kD0
Yk
mk < 1/ D 1, the result follows. ut

We recall an elementary result [102, Theorem 5.3.3]. Let .Fn/ be a filtration,
and let F1 be the smallest �-field containing all Fn. Let P and Q be probabilities

on .˝; F1/. Assume that for any n, QjFn
� PjFn

. Let �n WD dQ
jFn

dP
jFn

, and let

� WD lim supn!1 �n which is P-a.s. finite. Then

Q.A/ D E.� 1A/ C Q.A \ f� D 1g/; 8A 2 F1:
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It follows easily that

Q � P , � < 1; Q-a.s. , E.�/ D 1; (2.2)

Q ? P , � D 1; Q-a.s. , E.�/ D 0: (2.3)

Proof of Theorem 2.3 If
P1

iD1 pi i ln i < 1, then E.lnC bN/ < 1. By Theorem 2.5,
limn!1 Mn exists Q-a.s. and is finite Q-a.s. In view of (2.2), this means E.M1/ D
1; in particular, P.M1 D 0/ < 1, thus P.M1 D 0/ D q (Lemma 2.2).

If
P1

iD1 pi i ln i D 1, then E.lnC bN/ D 1. By Theorem 2.5, limn!1 Mn exists
Q-a.s. and is infinite Q-a.s. Hence E.M1/ D 0 (by (2.3)), i.e., P.M1 D 0/ D 1.

ut

2.4 Notes

The material of this chapter is borrowed from Lyons et al. [176], and the presentation
adapted from Chap. 1 of my lecture notes [221].

Section 2.1 collects a few elementary properties of Galton–Watson processes.
For more detailed discussions, we refer to the books by Asmussen and Hering [31],
Athreya and Ney [32], Harris [122].

The formalism described in Sect. 2.2 is due to Neveu [203]; the idea of viewing
Galton–Watson trees as tree-valued random variables finds its root in Harris [122].

The technique of size-biased Galton–Watson trees, which goes back at least to
Kahane and Peyrière [152], has been used by several authors in various contexts.
Its presentation in Sect. 2.2, as well as its use to prove the Kesten–Stigum theorem,
comes from Lyons et al. [176]. Size-biased Galton–Watson trees can actually be
exploited to prove the corresponding results of the Kesten–Stigum theorem in the
critical and subcritical cases. See [176] for more details.

Seneta’s dichotomy theorem for branching processes with immigration (Theo-
rem 2.5) was discovered by Seneta [219]; its short proof presented in Sect. 2.3 is
borrowed from Asmussen and Hering [31, pp. 50–51].
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