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Abstract Comparisons of best linear unbiased estimatorswith someother prominent
estimators have been carried out over the last six decades since the ground breaking
work of Lloyd [13]; see Arnold et al. [1] and David and Nagaraja [9] for elabo-
rate details in this regard. Recently, Pitman closeness comparison of order statistics
as estimators for population parameters, such as medians and quantiles, and their
applications have been carried out by Balakrishnan et al. [3–5, 7]. In this paper,
we discuss the Pitman closest estimators based on convex linear combinations of
two contiguous order statistics, which sheds additional insight with regard to the
estimation of the population median in the case of even sample sizes. We finally
demonstrate the proposed method for the uniform, exponential, power function and
Pareto distributions.
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1 Introduction

The comparison of estimators under the Pitman closeness criterion has a long his-
tory since it was introduced by Pitman [17] and further discussed by Rao [18]. For
estimation based on order statistics, Nagaraja [15] considered Pitman closeness of
estimators and predictors for the two-parameter exponential distribution. In a similar
light, Balakrishnan et al. [6] and Balakrishnan and Davies [2] considered Pitman
comparison of estimators for the one-parameter exponential distribution based on
Type-I and II censored samples, respectively. Recently, Balakrishnan et al. [3] car-
ried out Pitman closeness comparisons between pairs of order statistics arising from
a random sample of size n with regard to the estimation of population quantiles ξp.
Specifically, with X1, . . . , Xn denoting a random sample taken from a continuous
population with probability density function (pdf) f (x) and cumulative distribution
function (cdf) F(x), and X1:n, . . . , Xn:n denoting the corresponding order statistics,
Balakrishnan et al. [3] derived formulas for the comparison of any two contiguous
order statistics as estimators of population quantiles.

It is well known that (see David and Nagaraja [9] and Arnold et al. [1])

F (Xi :n) = Ui :n ∼ B (i, n − i + 1) , (1)

whereB (α, β) denotes a beta random variable with shape parameters α and β; here,
Ui :n denotes the i th order statistic from a sample of size n from the Uniform(0, 1)
distribution. Mean ranks in quantile-quantile plots are based on the relation

E [F (Xi :n)] = i

n + 1
= ei :n .

Similarly, if mi :n denotes the median of the beta random variable in (1), it is referred
to as the median rank.

Definition 1 An estimator θ̂ will be said to overestimate a parameter θ if

Pr
(
θ̂ > θ

)
>

1

2
.

This definition of overestimation is in the sense that the estimator θ̂ more frequently
overestimates θ than it underestimates θ , or equivalently, the median of the distrib-
ution of θ̂ is less than θ .

In this paper, we discuss the Pitman closest estimation based on a convex linear
combination of two contiguous order statistics. We then demonstrate the established
results with uniform, exponential, power function and Pareto distributions.
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2 Narrowing Down the Choices Among Order Statistics

In some cases, one may want to improve on the choice of order statistics given by
Balakrishnan et al. [3], which provides the probability that a given order statistic is
Pitman-closer to a specific population quantile ξp than any other order statistic from
the same sample. The natural question that arises in this regard is whether one can
improve on the estimation of ξp by using a linear combination of two contiguous order
statistics. In some cases, no improvement can be made (e.g., the sample median in
odd sample sizes as an estimator of the populationmedian of a symmetric distribution
is the Pitman-closest linear equivariant estimator of ξ0.50), as shown in Balakrishnan
et al. [4]. If we restrict our attention to convex linear combinations of two order
statistics, then we can reduce the number of pairs to be considered to produce a
Pitman-closer estimator and the following two lemmas facilitate this. For this specific
purpose, we therefore want to bracket ξp so that we find the largest order statistic
that underestimates ξp and the smallest order statistic that overestimates ξp, in the
sense of Definition 1.

Lemma 1 Let X1, . . . , Xn be a random sample from a continuous population and
X1:n, . . . , Xn:n be the corresponding order statistics. For p ≥ 1 − 2−1/n, let m j :n be
the largest median rank less than p. Then, the largest order statistic that does not
overestimate ξp is X j :n.

Proof If p < 1 − 2−1/n = m1:n , then

Pr
(
X1:n < ξp

) = Pr
[
F (X1:n) < F

(
ξp

)] = Pr (U1:n < p) < Pr (U1:n < m1:n) = 1

2
.

Thus all order statistics overestimate ξp whenever p < 1 − 2−1/n . Next, let us con-
sider the case when p ∈ [m1:n, 1). Since

m1:n < m2:n < · · · < mn:n < mn+1:n = 1,

the spacings between the median ranks form a partition of the interval which imme-
diately implies that there exists a j such that

m j :n ≤ p < m j+1:n .

Thus, U j :n is the largest order statistic that underestimates p and consequently X j :n
is the largest order statistic that underestimates ξp.

Note that j in the previous lemma does not depend on the underlying continuous
distribution function F(x), but only on the medians of order statistics from the
Uniform(0,1) distribution, which can be determined numerically.

Lemma 2 Let X1, . . . , Xn be a random sample from a continuous population and
X1:n, . . . , Xn:n be the corresponding order statistics. For p ≤ 2−1/n, let m�:n be the
largest median rank less than p. Then, the smallest order statistic that overestimates
ξp is X�:n.
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Notice that all order statistics underestimate ξp whenever p > 2−1/n = mn:n . The
proof of this lemma proceeds in a similar way to that of Lemma 1. Determination of
X j :n or X j+1:n does not require knowledge of the underlying distribution F(x), but
only needs the solution for j as a function of n and p through the medians of the
beta distributions. We can combine Lemmas 1 and 2 to form the following theorem.

Theorem 1 Let X1, . . . , Xn be a random sample from a continuous population with
pdf f (x) and cdf F(x), and X1:n, . . . , Xn:n be the corresponding order statistics.
Then, there exists a largest order statistic X j :n that does not overestimate ξp and a
smallest order statistic X j+1:n that overestimates ξp (in the sense of Definition 1) for
m1:n ≤ p < mn:n.

3 Pitman Closeness Criterion

We now introduce the comparison criterion known as Pitman closeness or Pitman
nearness.

Definition 2 Let θ̂1 and θ̂2 be univariate estimators of a real-valued parameter θ

based on a sample of size n. Then, Pitman Closeness (PC) is defined as

P
(
θ̂1, θ̂2|θ, n

)
= Pr

(
|θ̂1 − θ | < |θ̂2 − θ |

)
.

Interested readers may refer to the monograph by Keating et al. [12] for pertinent
details. The measure in Definition 2 quantifies the frequency with which one esti-
mator is closer to the value of the parameter θ than a competing estimator; see, for
example, [6, 10, 14, 16–18].

Definition 3 Let θ̂1 and θ̂2 be univariate estimators of a real-valued parameter θ

based on a sample of size n. Then, θ̂1 is said to be Pitman-closer to θ , for a given
value of θ , than θ̂2 provided

P
(
θ̂1, θ̂2|θ, n

)
≥ P

(
θ̂2, θ̂1|θ, n

)
.

Definition 4 The estimator θ̂1 is said to be uniformly Pitman-closer than θ̂2 if
P(θ̂1, θ̂2|θ, n) ≥ P(θ̂2, θ̂1|θ, n) for all θ in the parameter space Θ , with strict in-
equality holding for at least one θ ∈ Θ . The estimator θ̂1 is uniformly Pitman-closest
among the estimators in a class C provided

P(θ̂1, θ̂ j |θ, n) ≥ P(θ̂ j , θ̂1|θ, n)

for all θ̂ j inC and for all θ ∈ Θ , with strict inequality holding for at least one θ ∈ Θ .

Lemma 3 Let X1, . . . , Xn be a random sample from a continuous population with
pdf f (x) and cdf F(x), and X1:n, . . . , Xn:n be the corresponding order statistics.
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If m1:n < p, then if j is such that X j :n is the largest order statistic that does not
overestimate ξp, X j :n is Pitman-closer to ξp than any of X1:n, . . . , X j−1:n.

Proof We have

P
(
X j :n, X�:n|ξp

) = Pr
[|X j :n − ξp| < |X�:n − ξp|

]

= Pr
[(

X j :n − ξp
)2

<
(
X�:n − ξp

)2]

= Pr
[
X2

j :n − X2
�:n < 2ξp

(
X j :n − X�:n

)]

= Pr
[(

X j :n − X�:n
) (

X j :n + X�:n
)

< 2ξp
(
X j :n − X�:n

)]

= Pr
[
X j :n + X�:n < 2ξp

]

< Pr
[
X�:n < ξp

]
< 1/2.

Thus, it follows that X j :n is Pitman-closer to ξp than X�:n for all � = 1, . . . , j − 1.
In an analogous manner, we can establish the following lemma.

Lemma 4 Let X1, . . . , Xn be a random sample from a continuous population with
pdf f (x) and cdf F(x), and X1:n, . . . , Xn:n be the corresponding order statistics.
If p < mn:n, then if j is such that X j :n is the largest order statistic that does not
overestimate ξp, X j+1:n is Pitman-closer to ξp than any of X j+2:n, . . . , Xn:n.

Now, let p ∈ (m1:n, mn:n). Then, due to Lemmas 3 and 4, it is evident that there
exists a largest integer j such that Pr

(
X j :n < ξp

) ≤ 1/2 andPr
(
X j+1:n < ξp

)
> 1/2,

which is formally stated in the following theorem.

Theorem 2 Let X1, . . . , Xn be a random sample from a continuous population with
pdf f (x) and cdf F(x), and X1:n, . . . , Xn:n be the corresponding order statistics.
Then, there exists a largest order statistic X j :n such that X j :n is Pitman-closer to
ξp than X�:n for � = 1, . . . , j − 1, and X j+1:n is Pitman-closer to ξp than X�:n for
� = j + 2, . . . , n, when m1:n ≤ p < mn:n.

Consequently, in terms of comparisons of individual order statistics, the Pitman-
closest one to ξp, for a given p, will depend on the comparison of X j :n and X j+1:n .
The better of these two in the sense of Pitman closenesswill depend on the underlying
distribution F(x). For this reason, it will be reasonable to compare the largest order
statistic that underestimates ξp with the smallest order statistic that overestimates ξp.

In fact, one can generalize the use of contiguous order statistics, X j :n and X j+1:n ,
to any pair Xi :n and Xk:n , where 1 ≤ i ≤ j and j + 1 ≤ k ≤ n. These results imply
that if we are to find a Pitman-closer estimator than any individual order statistic
from a convex class based on two order statistics, then one order statistic must
underestimate ξp and the othermust overestimate ξp . Of course, a single order statistic
may outperform any convex linear combination of all other order statistics.
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4 Use of a Convex Class

Based on Theorem 2, we may consider some linear combination of these contiguous
order statistics. The use of a convex linear combination, i.e.,

ξ̂p = wX j :n + (1 − w)X j+1:n, w ∈ [0, 1],

produces a class of ordered estimators in the closed bounded interval
[
X j :n, X j+1:n

]
.

Furthermore, in location-scale families, the individual order statistics are location
invariant estimators of the location parameter and so convex linear combinations of
order statistics are location invariant estimators as well. So, we wish to find a median
unbiased estimator of ξp within the convex class given above. While the value of w,
for which the convex linear combination has a median of ξp, may not be independent
of the unknown parameters in the distributions of X j :n and X j+1;n , certain special
and important cases do exist in which the choice only depends on n and p. However,
it should be kept in mind there is no certainty that this median unbiased convex linear
combination of X j :n and X j+1:n will be the Pitman-closest median unbiased convex
linear combination of any pair of order statistics Xi :n and Xk:n , where 1 ≤ i ≤ j and
j + 1 ≤ k ≤ n.

In order to assess the median unbiased estimator within the class of convex linear
combinations of two contiguous order statistics, we need the joint density of X j :n
and X j+1:n given by (see Arnold et al. [1] and David and Nagaraja [9])

f (u, v) = n!
( j − 1)!(n − j − 1)! [F(u)] j−1[1 − F(v)]n− j−1 f (u) f (v), if u < v,

(2)
for j = 1, . . . , n − 1. Since we have reduced our consideration to just contiguous
order statistics mentioned in the sense of overestimating and underestimating, we
can now consider a new class of estimators based on them.

Definition 5 Let X1:n, . . . , Xn:n be the order statistics from a random sample from
F(x), which is strictly monotone on the support of X . Let ξp be the pth quantile of
the distribution. Let j be the largest integer for which m j :n ≤ p. Define the classQ
as the collection of all convex linear combinations of X j :n and X j+1:n , i.e.,

Q =
{
ξ̂p(w)|ξ̂p(w) = wX j :n + (1 − w)X j+1:n, w ∈ [0, 1]

}
. (3)

In general, determining the Pitman-closest estimator in the class Q can be difficult,
and also can produce a random variable that depends on the unknown parameters of
the distribution and consequently not an estimator. But, the determination of a best
choice within the class is guaranteed for a location-scale family as shown below.
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4.1 Location-Scale Family

Let us consider the location-scale family of distributions with the density function
of X given by

f (x | μ, σ) = (1/σ)g [(x − μ)/σ ] , (4)

where g(z) is a continuous parameter-free density. The parameter space for these
families is the upper half-plane Ω = {−∞ < μ < ∞, σ > 0}.

The cdf of X is

F(x | μ, σ) = G [(x − μ)/σ ] , where G(t) =
∫ t

−∞
g(u)du.

The 100p percentage point (or percentile) of the random variable X , denoted by ξp,
is defined as ξp = inf{x ∈ R : F(x) ≥ p}. The distribution function G(t) is usually
taken to be a parameter-free cdf. If the essential range, R, of X is an open connected
subset of R, then ξp is unique for each p ∈ (0, 1) with

ξp = μ + G−1(p)σ, (5)

where G−1(·) is the inverse function of G(·). One can see from (5) that within this
family, percentiles are linear combinations of the parameters μ and σ . This family
includes manywell-known distributions such as normal, extreme-value, exponential,
Laplace, Cauchy, uniform and logistic as members, but also includes several other
distributions such as lognormal, log-uniform, inverse Gaussian, Pareto and Weibull
through suitable transformations.

Let X1:n, . . . , Xn:n be the order statistics from a random sample of size n from a
location-scale parameter density f (x) in (4). The estimation of location and scale
parameters aswell as percentiles havebeendiscussedquite extensively basedonorder
statistics; see, for example, Balakrishnan and Cohen [8]. First define Z1:n, . . . , Zn:n
as

Zi :n = Xi :n − μ

σ
, for i = 1, . . . , n. (6)

Theorem 3 Let X1:n, . . . , Xn:n be the order statistics from a random sample from a
continuous location-scale parameter density f (x) in (4). Let Z1:n, . . . , Zn:n be the
corresponding order statistics as defined in (6). Then, we have

P
(
X j :n, X�:n|ξp

) = P
(
Z j :n, Z�:n|G−1(p)

)
.

Thus, within the class of location-scale families of distributions, the Pitman closeness
of any two order statistics in the estimation of ξp is independent of the unknown
parameters.

Theorem 4 Let X1:n, . . . , Xn:n be the order statistics from a random sample from
F(x), which is strictly monotone on the support of X. Let p ∈ (m1:n, mn:n). With
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w ∈ [0, 1], let us consider the classQ in (3) of estimators ξp. Then, Pr
(
ξ̂p (w) < ξp

)

is a continuous non-increasing function of w.

Proof For w ∈ [0, 1], let us define

Qn,p(w) = Pr
(
ξ̂p(w) < ξp

)
.

Then, by Definition 5,

Qn,p(1) = Pr
(
X j :n < ξp

)
>

1

2
, Qn,p(0) = Pr

(
X j+1:n < ξp

)
<

1

2
.

Since F(x) is continuous, Qn,p(w) is continuous and so there exists a value 0 ≤
w0 ≤ 1 such that Qn,p (w0) = 1/2. For 0 ≤ w1 < w2 ≤ 1, we have

w1X j :n + (1 − w1) X j+1:n < w2X j :n + (1 − w2) X j+1:n,
Pr

{
w1X j :n + (1 − w1) X j+1:n < x

}
> Pr

{
w2X j :n + (1 − w2) X j+1:n < x

}
,

Qn,p (w1) > Qn,p (w2) .

Therefore, Qn,p(w) is a continuous non-increasing function of w.

Corollary 1 Under the conditions of Theorem 4, a median unbiased estimator of
ξp exists within the considered convex class. If F(x) is strictly increasing over its
support, the median unbiased estimator is unique within this class.

Proof Since Qn,p(1) > 1
2 and Qn,p(0) ≤ 1

2 , by the continuity of Qn,p(w), there
exists a value 0 ≤ w0 ≤ 1 such that Qn,p (w0) = 1/2. Further, if F(x) is strictly
increasing over its support, Qn,p(w) will be strictly decreasing on [0,1) and so the
solution w0 will be unique.

Corollary 2 Let X1:n, . . . , Xn:n be the order statistics from a random sample from
F(x), which is strictly monotonically increasing on the support of X. Let F(x) be a
member of the location-scale family of distributions, and Z1:n, . . . , Zn:n be as defined
in (6). Let p ∈ (m1:n, mn:n). With w ∈ [0, 1), let us consider the class Q in (3) for the
estimation of ξp. Then, there exists a unique Pitman-closest estimator of ξp within
Q.

Proof The proof follows directly from Corollary 1. Within an ordered class of es-
timators of some parameter, say θ , the median unbiased estimator within the class
will be the Pitman-closest estimator of θ . We are guaranteed that the class Q, by
its very construction, produces some estimators that overestimate ξp and some that
underestimate ξp such that

Qn,p(w) = Pr
(
ξ̂p(w) < ξp

)

= Pr
(
wX j :n + (1 − w)X j+1:n < ξp

)
= Pr

(
wZ j :n + (1 − w)Z j+1:n < G−1(p)

)
.
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The value of w such that Qn,p(w) = 1/2 is unique does not involve the unknown
parameters, and is only a function of n, p and the corresponding value of j . This
choice of w produces an estimator that is median unbiased and is therefore Pitman-
closer than all other estimators within Q since the class is completely ordered, and
is therefore the Pitman-closest estimator of ξp inQ. While this result guarantees the
existence and uniqueness of a median unbiased estimator inQ, it would be good to
have a Rao-Blackwell type result that would provide a method for its construction.

4.2 Transformation

In this case, consider the following transformation R = X j :n and T = X j+1:n − X j :n ,
for 1 ≤ j ≤ n − 1. It follows that

• R is a location invariant statistic and as noted before Z j :n = (X j :n − μ)/σ has a
parameter-free distribution;

• T = X j+1:n − X j :n is a scale invariant statistic and T/σ is a pivotal quantity for σ ;
• Z j :n/T is a pivotal quantity for μ;
• (

R − ξp
)
/T is a pivotal quantity for ξp with a distribution that depends on G−1(p)

and the sample size n.

Under this transformation, one can rewrite any convex class for which X j :n and
X j+1:n , respectively, underestimate and overestimate ξp, in the following way:

Q =
{
ξ̂p(w)|ξ̂p(w) = X j+1:n − w

(
X j+1:n − X j :n

)
, w ∈ (0, 1]

}

=
{
ξ̂p(c)|ξ̂p(c) = X j :n + c

(
X j+1:n − X j :n

)
, c = 1 − w ∈ (0, 1]

}
.

One can now derive the median unbiased estimator within Q according to the fol-
lowing theorem.

Theorem 5 In the context of Lemma 3, consider two order statistics X j :n and X j+1:n
in a location-scale family where X j :n underestimates ξp and X j+1:n overestimates ξp

(in the sense of Definition 1). Then, a median unbiased estimator within Q is given
by

x̂ p = X j :n + M(0,1)

(
G−1(p) − R

T

)
T, (7)

where T = X j+1:n − X j :n and M(0,1) (U ) denotes the median of the random variable
U when μ = 0 and σ = 1.

Proof We have
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Pr
{
ξ̂p(c) < ξp

}
= Pr

{
X j :n + c

(
X j+1:n − X j :n

)
< ξp

}

= Pr
{

c <
ξp−X j :n

X j+1:n−X j :n

}

= Pr
{

c <
G−1(p)−Z j :n
Z j+1:n−Z j :n

}
.

If the estimator is median unbiased, then the probability content of the interval is
1/2, and so

c = M(0,1)

(
G−1(p) − R

T

)
.

It follows that themedian unbiased estimator withinQ is the estimator in (7). Solving
for c will require numerical methods and the fact that c must be in the interval (0, 1]
would facilitate the use of the secant method. Incidentally, a naive and nonparametric
estimate of c can be obtained as

ĉ = p − m j :n
m j+1:n − m j :n

.

4.3 Examples

Uniform distribution
In the case of the Uniform(0,1) distribution, consider Pr

[
R + cT < ξp

]
, i.e.,

Pr [R + cT < p], which we need to set to 1/2. First, we note that we can express

R + cT = X j :n + c(X j+1:n − X j :n) = X j+1:n
(

X j :n
X j+1:n

+ c

(
1 − X j :n

X j+1:n

))
= V W,

where U = X j :n
X j+1:n , V = X j+1:n and W = U + c(1 − U ). It is known that U ∼

Beta( j, 1) and V ∼ Beta( j + 1, n − j) and that the two random variables are in-
dependent; see Arnold et al. [1]. Using the distribution of U , it can be shown that the
pdf of W is given by

fW (w) = j

(1 − c) j
(w − c) j−1 if w ∈ (c, 1).

We then have

Pr [R + cT < p] = Pr(V W < p) = Pr
(

V <
p

W

)
=

∫ 1

c
Pr

(
V <

p

w

)
fW (w)dw,

where

Pr
(

V <
p

w

)
=

{
I p

w
( j + 1, n − j) if p

w < 1
1 if p

w ≥ 1,
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and Iq(a, b) is the incomplete beta ratio defined by Iq(a, b) = 1
B(a,b)

∫ q
0 ta−1(1 −

t)b−1dt and B(a, b) is the complete beta function defined by B(a, b) = 
(a)
(b)


(a+b)
.

Thus, we get

Pr(V W < p) =
{∫ 1

c I p
w
( j + 1, n − j) fW (w)dw if p

c < 1∫ 1
p I p

w
( j + 1, n − j) fW (w)dw + ( p−c

1−c

) j
if p

c ≥ 1.
(8)

Equation (8) can be solved for various p to find c when p is away from the bounds
0 and 1. For p close to 0, c is found such that Pr(cX1:n ≤ ξp) = 1/2, and similarly, for
p close to 1, c is found such that Pr(cXn:n ≤ ξp) = 1/2. However, in order to use cXn:n ,
we need to need to check the validity of the determined c since it is possible that the
estimator may exist outside the support. Since we choose c such that Pr(Xn:n ≤ ξp

c )

= 1/2, i.e., Pr(Xn:n ≤ p
c ) = 1/2, the desired c turns out to be c = 21/n p. Now, let

W = 21/n pXn:n . In this case, we find

Pr(W ≤ 1) = Pr(21/n pXn:n ≤ 1) = Pr

(
Xn:n ≤ 1

21/n p

)
=

(
1

2

) (
1

p

)n

.

This is a valid probability if and only if
(

1
p

)n ≤ 2, i.e., −log(p) ≤ 1
n log(2). So, the

corresponding entries in Table1 have been checked accordingly.

Exponential distribution
We again consider Pr(R + cT < ξp), which we can rewrite as

Pr(R + cT < ξp) = Pr[X j :n + c(X j+1:n − X j :n) < ξp].
We then have this probability as

Pr(R + cT < ξp) = Pr
(
(n − j)(X j+1:n − X j :n) < (n − j)

(
ξp−X j :n

c

))

= ∫ ∞
0 Pr

(
S j+1 < (n − j)

(
ξp−x j

c

))
fX j :n (x j )dx j

= ∫ ξp
0

(
1 − e− (n− j)(ξp−x j )

c

)
n!

( j−1)!(n− j)! (1 − e−x j ) j−1(e−x j )n− j

× e−x j dx j

= Ip( j, n − j + 1) − e− (n− j)ξp
c

∫ ξp
0 e

(n− j)x j
c 1

B( j,n− j+1) (1 − e−x j ) j−1

× (e−x j )n− j e−x j dx j

= Ip( j, n − j + 1) − e− (n− j)ξp
c

B( j,n− j+1)

∑ j−1
k=0(−1)k

( j−1
k

) ∫ 1
1−p uk+n− j− n− j

c du,

where Sj+1 is the normalized spacing defined as Sj+1 = (n − j)(X j+1:n − X j :n) ∼
Exp(1), and since it is known to be independent of X j :n (see Arnold et al. [1]), we
have

Pr(Sj+1 < s) =
{

0 if s ≤ 0,
1 − e−s if s > 0.
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Table 1 Values of j and c for the uniform distribution when n = 10 for various choices of p

p j c p j c p j c

0.01 1 0.1493 0.34 3 0.8336 0.67 7 0.2728

0.02 1 0.2987 0.35 3 0.9430 0.68 7 0.3763

0.03 1 0.4480 0.36 4 0.0528 0.69 7 0.4774

0.04 1 0.5973 0.37 4 0.1583 0.70 7 0.5770

0.05 1 0.7466 0.38 4 0.2612 0.71 7 0.6762

0.06 1 0.8960 0.39 4 0.3622 0.72 7 0.7765

0.07 1 0.0320 0.40 4 0.4621 0.73 7 0.8790

0.08 1 0.1312 0.41 4 0.5622 0.74 7 0.9847

0.09 1 0.2238 0.42 4 0.6635 0.75 8 0.0982

0.10 1 0.3169 0.43 4 0.7668 0.76 8 0.2094

0.11 1 0.4142 0.44 4 0.8726 0.77 8 0.3170

0.12 1 0.5163 0.45 4 0.9813 0.78 8 0.4211

0.13 1 0.6234 0.46 5 0.0899 0.79 8 0.5221

0.14 1 0.7354 0.47 5 0.1954 0.80 8 0.6206

0.15 1 0.8517 0.48 5 0.2986 0.81 8 0.7180

0.16 1 0.9722 0.49 5 0.3998 0.82 8 0.8166

0.17 2 0.0817 0.50 5 0.0000 0.83 8 0.9183

0.18 2 0.1834 0.51 5 0.6002 0.84 9 0.0278

0.19 2 0.2820 0.52 5 0.7014 0.85 9 0.1483

0.20 2 0.3794 0.53 5 0.8046 0.86 9 0.2646

0.21 2 0.4779 0.54 5 0.9101 0.87 9 0.3766

0.22 2 0.5789 0.55 6 0.0187 0.88 9 0.4837

0.23 2 0.6830 0.56 6 0.1274 0.89 9 0.5858

0.24 2 0.7906 0.57 6 0.2332 0.90 9 0.6831

0.25 2 0.9018 0.58 6 0.3365 0.91 9 0.7762

0.26 3 0.0153 0.59 6 0.4378 0.92 9 0.8688

0.27 3 0.1210 0.60 6 0.5379 0.93 9 0.9680

0.28 3 0.2235 0.61 6 0.6378 0.94 10 1.0075

0.29 3 0.3238 0.62 6 0.7388 0.95 10 1.0182

0.30 3 0.4230 0.63 6 0.8417 0.96 10 1.0289

0.31 3 0.5226 0.64 6 0.9472 0.97 10 1.0396

0.32 3 0.6237 0.65 7 0.0570 0.98 10 1.0503

0.33 3 0.7272 0.66 7 0.1664 0.99 10 1.0611

Furthermore, we have

∫ 1
1−p uk+n− j− n− j

c du
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=
{

1
k+n− j+1− n− j

c

(
1 − (1 − p)k+n+ j+1− n− j

c

)
if n− j

c − (k + n − j) �= 1

−log(1 − p) if n− j
c − (k + n − j) = 1.

Values of c and j for various choices of p were numerically determined in this
case and are presented in Table2.

Pareto and power function distributions
Let X ∼ Power Function(θ), i.e.,

fX (x) = θxθ−1if 0 < x < 1 (9)

for θ > 0. In this case, by proceeding as in the uniform case, it can be shown that

Pr(V W < ξp) = Pr

(
V <

ξp

W

)
=

∫

w
Pr

(
V <

ξp

w

)
fW (w)dw, (10)

where FV (v) = Pr(V ≤ v) = Ivθ ( j + 1, n − j) and

fW (w) = θ j
(w − c)θ j−1

(1 − c)θ j
if c < w < 1. (11)

Next, let us consider X ∼ Pareto(θ), i.e.,

fX (x) = νx−ν−1if x ≥ 1

for ν > 0. Then, the joint density of X j :n and X j+1:n is obtained from (2) as

f (x j , x j+1) = n!
( j − 1)!(n − j − 1)! (1 − x−ν

j ) j−1(x−ν
j+1)

n− j−1νx−ν−1
j νx−ν−1

j+1 ,

if 1 < x j < x j+1 < ∞.

Let U = X j+1:n
X j :n and V = X j :n . In this case, it is known that U and V are independent

with U ∼ Pareto((n − j)ν) and the pdf of V is

fV (v) = n!
( j − 1)!(n − j)! (1 − v−ν) j−1(v−ν)n− jνv−ν−1if v ≥ 1; (12)
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Table 2 Values of j and c for the exponential distribution when n = 10 for various choices of p

p j c p j c p j c

0.01 1 0.1450 0.34 3 0.8183 0.67 7 0.2167

0.02 1 0.2915 0.35 3 0.9373 0.68 7 0.3079

0.03 1 0.4394 0.36 4 0.0455 0.69 7 0.4035

0.04 1 0.5889 0.37 4 0.1382 0.70 7 0.5047

0.05 1 0.7400 0.38 4 0.2314 0.71 7 0.6123

0.06 1 0.8927 0.39 4 0.3264 0.72 7 0.7270

0.07 1 0.0288 0.40 4 0.4243 0.73 7 0.8495

0.08 1 0.1185 0.41 4 0.5258 0.74 7 0.9806

0.09 1 0.2057 0.42 4 0.6316 0.75 8 0.0669

0.10 1 0.2967 0.43 4 0.7422 0.76 8 0.1471

0.11 1 0.3935 0.44 4 0.8579 0.77 8 0.2308

0.12 1 0.4967 0.45 4 0.9789 0.78 8 0.3196

0.13 1 0.6062 0.46 5 0.0757 0.79 8 0.4149

0.14 1 0.7219 0.47 5 0.1673 0.80 8 0.5181

0.15 1 0.8434 0.48 5 0.2603 0.81 8 0.6304

0.16 1 0.9705 0.49 5 0.3557 0.82 8 0.7530

0.17 2 0.0730 0.50 5 0.4545 0.83 8 0.8873

0.18 2 0.1655 0.51 5 0.5575 0.84 9 0.0140

0.19 2 0.2580 0.52 5 0.6653 0.85 9 0.0775

0.20 2 0.3528 0.53 5 0.7784 0.86 9 0.1451

0.21 2 0.4513 0.54 5 0.8970 0.87 9 0.2188

0.22 2 0.5543 0.55 6 0.0150 0.88 9 0.3011

0.23 2 0.6624 0.56 6 0.1039 0.89 9 0.3944

0.24 2 0.7757 0.57 6 0.1940 0.90 9 0.5013

0.25 2 0.8942 0.58 6 0.2864 0.91 9 0.6252

0.26 3 0.0134 0.59 6 0.3820 0.92 9 0.7701

0.27 3 0.1070 0.60 6 0.4819 0.93 9 0.9416

0.28 3 0.2002 0.61 6 0.5867 0.94 10 1.0406

0.29 3 0.2944 0.62 6 0.6972 0.95 10 1.1081

0.30 3 0.3911 0.63 6 0.8138 0.96 10 1.1906

0.31 3 0.4912 0.64 6 0.9371 0.97 10 1.2970

0.32 3 0.5955 0.65 7 0.0432 0.98 10 1.4470

0.33 3 0.7044 0.66 7 0.1289 0.99 10 1.7034

see Arnold et al. [1]. So, the probability of interest is

Pr[(1 − c)X j :n + cX j+1:n ≤ ξp] = Pr
[

X j :n
{
(1 − c) + c

(
X j+1:n
X j :n

)}
≤ ξp

]

= Pr
[
V {(1 − c) + cU } ≤ ξp

]
.
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The pdf of W = (1 − c) + cU is

fW (w) = (n − j)ν
(w − (1 − c))−ν(n− j)−1

c−ν(n− j)
if 1 < w < ∞. (13)

Consequently, the probability becomes

Pr(V W < ξp) = Pr

(
V <

ξp

W

)
=

∫

w
Pr

(
V <

ξp

w

)
fW (w)dw,

where FV (v) = Pr(V ≤ v) = I1−v−ν ( j, n − j + 1) from (12) and fW (w) is as given
in (13).

5 Some Heuristic Attempts

One may be tempted to estimate the value of j in the preceding discussions without
inspecting of the underlying median ranks. It certainly seems plausible to attempt to
estimate j by the largest integer less than or equal to (n + 1)p. Such approximations
can lead to order statistics that are upper and lower bounds, just as X j :n and X j+1:n
were in the preceding discussion. However, the order statistics are no longer con-
tiguous. All the methodology developed in the preceding sections can be reapplied
here except that the order statistics, used to form the convex class, are no longer
contiguous.

Lemma 5 Let X1:n, . . . , Xn:n be the order statistics from a random sample from
F(x), which is strictly monotone on the support of X. Let p be a real-number in the
interval (0, 1) such that p ∈ (

1
n+1 ,

n
n+1

)
, and ξp be the pth quantile of F(x). Then,

there exists a j ∈ {1, . . . , n} such thatPr
(
X j :n < ξp

)
> 1

2 andPr
(
Xn− j+1:n < ξp

)
<

1
2 .

Proof Define j as j = [| (n + 1)p |], where [| x |] denotes the largest integer less than
or equal to x . Observe that

Pr
(
X j :n < ξp

) = Pr
[
F

(
X j :n

)
< F

(
ξp

)] = Pr
(
U j :n < p

)
,

where U j :n is the j th order statistic from a random sample of size n from the
Uniform(0,1) distribution. As mentioned in Sect. 1, U j :n ∼ B ( j, n − j + 1), where
B (α, β) denotes a beta distribution with shape parameters α and β. Without loss
of generality, we assume that p ≤ 1

2 and so j ≤ n+1
2 . If j < n+1

2 , then U j :n is uni-
modal and positively skewed and therefore satisfies the mode-median-mean inequal-
ity. Hence, it follows that

Pr
(
U j :n < p

) ≥ Pr

(
U j :n <

j

n + 1

)
≥ 1

2
.
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This means that the order statistic X j :n underestimates ξp. Notice that this result is
nonparametric in the sense that it does not depend on the form of the distribution
function F(x), only that it be strictly monotone on its support.

Using symmetry arguments, we can then prove that

Pr
(
Xn− j+1:n > ξp

) ≥ 1

2
,

which means that Xn− j+1:n overestimates ξp. Hence, the required result.

Lemma 6 Let X1:n, . . . , Xn:n be the order statistics from a random sample from
F(x), which is strictly monotone on the support of X. Let p ∈ (

1
n+1 ,

n
n+1

)
. With

w ∈ (0, 1), let us consider a class of estimators ξ̂p (w) = wX j :n + (1 − w)Xn− j+1:n
for the pth quantile ξp, where j = [(n + 1)p] and j < n − j + 1. Then,

Pr
(
ξ̂p (w) < ξp

)
is a continuous increasing function of w.

Proof With j = [(n + 1)p], let us define

Qn,p(w) = Pr
(
ξ̂p (w) < ξp

)
. (14)

By Lemma 5, we have Qn,p(1)=Pr
(
X j :n < ξp

)
> 1

2 and Qn,p(0)=Pr(Xn− j+1:n <

ξp) < 1
2 . Since F(x) is continuous, Qn,p(w) is continuous. Hence, for 0 < w1 <

w2 < 1, we have

w1X j :n + (1 − w1) Xn− j+1:n < w2X j :n + (1 − w2) Xn− j+1:n,
Pr

{
w1X j :n + (1 − w1) Xn− j+1:n < x

}
< Pr

{
w2X j :n + (1 − w2) Xn− j+1:n < x

}
,

Qn,p (w1) < Qn,p (w2) .

Thus Qn,p(w) is a continuous increasing function, as desired.

Theorem 6 Let X1:n, . . . , Xn:n be the order statistics from a random sample from
F(x), which is strictly monotone on the support of X. Let p ∈ (

1
n+1 ,

n
n+1

)
. With

w ∈ (0, 1), let us consider a class of estimators ξ̂p (w) = wX j :n + (1 − w)Xn− j+1:n
for the pth quantile ξp, where j = [(n + 1)p]. Then, there exists a unique value w0

(0 < w0 < 1) such that Pr
(
ξ̂p (w0) < ξp

)
= 1

2 .

6 Applications

In this section, we illustrate the results of the last section for the special cases of
uniform and exponential distributions.
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6.1 Uniform Distribution

Use of |(n + 1)p| for j
In order to evaluate Qn,p(w), wemust develop an expression for the cdf of the convex
linear combination of X j :n and Xn− j+1:n . Of special interest is the Uniform(0,1)
distribution since in this case the subsequent estimator will be an L-estimator of ξp.

Suppose U1:n, . . . , Un:n are the order statistics from the uniform Uniform(0,1)
distribution. Then, the joint density function of U j :n and Un− j+1:n is given by

f (u, v) = n!
[( j − 1)!]2(n − 2 j)!u j−1 (v − u)n−2 j (1 − v) j−1 if 0 < u < v < 1.

Performing the transformation w̄ = 1 − w and q = wu + (1 − w)v, we arrive at

f (u, q; w) = n!
[( j − 1)!]2(n − 2 j)!w̄n− j

u j−1(q − u)n−2 j (w̄ + wu − q) j−1,

if 0 < u < q < wu + w̄ < 1. By noting the ranges of integration as 0 < u < q for
0 ≤ q ≤ 1 − w and q−w̄

w < u < q for 1 − w ≤ q ≤ 1 and once again making use of
binomial expansions, we find the density of q to be:

f (q; w) =
⎧⎨
⎩

∑ j−1
r=0(−1)r

(n−2 j+r
r

)
wr

w̄n−2 j+r+1
qn− j+r (1−q) j−1−r

B(n− j+r+1, j−r)
if 0 ≤ q ≤ 1 − w,

∑ j−1
r=0

(2 j−r−2
j−r−1

)
w̄ j−r−1

wn− j
(q−w̄)r (1−q)n−r−1

B(r+1,n−r)
if 1 − w < q ≤ 1.

Therefore, the distribution function of q is

F (q; w) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑ j−1
r=0

{
(−1)r (n−2 j+r

r
) wr

w̄n−2 j+r+1

×Iq (n − j + r + 1, j − r)

}
if 0 ≤ q ≤ 1 − w,

∑ j−1
r=0 (−1)r (n−2 j+r

r
) wr

w̄n−2 j+r+1 Iw̄(n − j + r + 1, j − r)

+∑ j−1
r=0

(2 j−r−2
j−r−1

)
w j w̄ j−1−r I q−w̄

w
(r + 1, n − r) if 1 − w < q ≤ 1,

respectively, where, as defined earlier, Iq(a, b) is the incomplete beta ratio and
B(a, b) is the complete beta function. For fixed n and p, there exists a unique value
of w for which

F (p; w) = Qn,p(w) = 1

2
, (15)

where Qn,p(w) is as given in (14). Thus, we can regard the corresponding Qn,p(w)

as a nonparametric competitor to the Harrell-Davis [11] estimator, which is a robust
L1-estimator. Of course, for this purpose, we need to solve (15) for w, for given
values of n and p.
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Table 3 Values of w satisfying (15), for different choices of n and p

p

n j j
2 j+1

j+ 1
4

2 j+1
j+ 1

2
2 j+1

j+ 3
4

2 j+1
j+1
2 j+1

4 2 0.9313 0.7056 0.5000 0.2944 0.0687

6 3 0.9509 0.7178 0.5000 0.2822 0.0491

8 4 0.9619 0.7248 0.5000 0.2752 0.0381

10 5 0.9689 0.7293 0.5000 0.2707 0.0311

12 6 0.9738 0.7325 0.5000 0.2675 0.0262

Special Case
If n = 2m and p ∈ (

m
2m+1 ,

m+1
2m+1

)
, then j = [(n + 1)p] = [(2m + 1)/2] =[

m + 1
2

] = m. In this case, by solving (15) for varying n, we found the values of w
for different choices of p, and these are presented in Table3.

Use of the largest order statistic that underestimates p
SupposeU1:n, . . . , Un:n are the order statistics from the uniformU (0, 1) distribution.
Earlier, we considered i = |(n + 1)p|, but it is possible thatUi :n mayunderestimate p
with a probability of at least 1/2.Yet, that does not guarantee thatUi+1:n overestimates
p with probability of at least 1/2. However, such an i does exist, but it just may not
correspond to |(n + 1)p|.

Consider the joint density of Ui :n and Ui+1:n given by

f (u, v) = n!
(i − 1)!)(n − i − 1)!ui−1(1 − v)n−i−1, 0 < u < v < 1.

Letting U = u and Q = wU + (1 − w)V , then the joint density becomes

f (u, q; w) = n!
(i − 1)!(n − i − 1)!w̄ ui−1 (w̄ − q + wu)n−i−1 if 0 < u < q < wu + w̄ < 1

where again w̄ = 1 − w. As in the previous case, noting the ranges of integration
as 0 < u < q for 0 ≤ q ≤ 1 − w and q−w̄

w < u < q for 1 − w < q ≤ 1, we find the
corresponding density and distribution functions of q to be:

f (q; w) =
⎧⎨
⎩

∑n−i−1
r=0 (−1)r wr

w̄r+1
qr+i (1−q)n−i−1−r

B(r+i+1,n−i−r ) if 0 ≤ q ≤ 1 − w,

n!
(i−1)!(n−i−1)!

∑i−1
r=0

(i−1
r

)
w̄i−1−r

wi
(q−w̄)r (1−q)n−r−1

n−r−1 if 1 − w < q ≤ 1,
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and so

F (q; w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n−i−1
r=0 (−1)r wr

w̄r+1 Iq(r + i + 1, n − i − r) if 0 ≤ q ≤ 1 − w,∑n−i−1
r=0

wr

w̄r+1 I1−w(r + i + 1, n − i − r)

+∑i−1
r=0

∑n−r−1
s=0

{
(−1)s

(n
s

)(n−r−2
i−1−r

)
w̄i−1−r+s

wi

×Iq−w̄(r + 1, n − r − s)

}
if 1 − w < q ≤ 1.

We can now solve for w, using successive order statistics, instead of the earlier
approach when the two order statistics are determined by the mean rank approach.

6.2 Exponential Distribution

Use of |(n + 1)p| for j
In the case of exponential distribution, by proceeding in a manner analogous to the
uniform case, we can show that the cdf of q is

F (q) = n!
[( j−1)!]2(n−2 j)!w̄

∑ j−1
r=0

∑n−2 j
s=0

(−1)r−s( j−1
r )(n−2 j

s )
r+n−2 j−s− w

w̄(s+ j−1

×
[

w̄
s+ j−1

(
1 − e

−
(

s+ j−1
w̄

)
q
)

− 1
r+n− j−1

(
1 − e−(r+n− j−1)q

)]
,

0 < q < ∞.

Use of the largest order statistic that underestimates p
Here again, for the case of exponential distribution, by proceeding in a manner
analogous to the uniform case, we can show that the cdf of q is

F (q) = n!
(n − j)!w̄



(

(n− j)w
w̄ + 1

)


( j + (n− j)w
w̄ + 1)

{
1 − Ie−q

(
j,

(n − j)w

w̄
+ 1

)}
e− (n− j)

w̄ q ,

if 0 < q < ∞, (16)

where Iq(a, b) is the incomplete beta ratio defined earlier. We may use (16) to de-
termine w such that

F(p; w) = 1

2
and j is the greatest integer such that m j :n ≤ p.
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7 Concluding Remarks

Pitman closeness of order statistics to population parameters such as quantiles have
been discussed in the literature. Here, we have discussed Pitman closest estimation
based on convex linear combinations of two contiguous order statistics. We have
then illustrated the developed results for the uniform, exponential, power function
and Pareto distributions. As done in the case of quantile estimation, one may also
propose convex linear combinations of two contiguous order statistics as Pitman
closest predictors of a future failure time. This work is currently under progress and
we hope to report these findings in a future paper.
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