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Abstract. Online experimentation for information retrieval (IR) focuses
on insights that can be gained from user interactions with IR systems,
such as web search engines. The most common form of online experimen-
tation, A/B testing, is widely used in practice, and has helped sustain
continuous improvement of the current generation of these systems.

As online experimentation is taking a more and more central role in
IR research and practice, new techniques are being developed to address,
e.g., questions regarding the scale and fidelity of experiments in online
settings. This paper gives an overview of the currently available tools.
This includes techniques that are already in wide use, such as A/B test-
ing and interleaved comparisons, as well as techniques that have been
developed more recently, such as bandit approaches for online learning
to rank.

This paper summarizes and connects the wide range of techniques
and insights that have been developed in this field to date. It concludes
with an outlook on open questions and directions for ongoing and future
research.
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1 Introduction

Online experimentation for information retrieval (IR) refers to experiments that
rely on natural user interactions. For example, an online evaluation experiment
might compare alternative search interfaces, or alternative methods for rank-
ing search results (often referred to as rankers). Such controlled experiments
allow researchers or system developers to gain a better understanding of how to
support the searchers’ goals, or to test models of information seeking behavior.
Extending the controlled experiment scenario, online learning approaches can
automate the experimentation process to efficiently search a large space of IR
solutions.

Many examples and success stories of online evaluation have been published
in previous years. For example, Kohavi et al. [44] show how AB testing was used
to identify a search widget for MSN Real Estate that would maximize revenue.
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The result of the experiment described there led to a 10 % increase in revenue,
illustrating that online experiments can lead to high real-world impact that often
cannot be predicted even by domain experts.

The techniques that have been developed for online experimentation for IR
complement more traditional experimentation techniques. Test-collection based
IR experimentation [63,75] can efficiently compare search solutions at various
levels of abstraction, but require expensive manual annotations. For example,
they allow experimenters to focus on an isolated concept like topical relevance,
while abstracting from individual differences between searchers. In contrast,
online experimentation techniques have been developed to evaluate and tune sys-
tems to directly optimize systems’ online performance. As a result, they reflect
expectations and behavior of real users and can adapt to their preferences.

While the initial focus of online experimentation was primarily on improving
the performance of a given system, they are not only applicable to system devel-
opment, but can also provide new insights from a research perspective. Online
experimentation is particularly closely related to research in interactive IR [38].
The focus of interactive IR research has led to valuable insights in experimental
design, and has been particularly informative in testing hypotheses and develop-
ing theory, e.g., of search behavior. This more theoretical view can benefit online
experimentation, showing a path beyond the optimization of individual system
performance. Correspondingly, techniques developed for online experimentation
can add to the tool set available for interactive IR research, in particular where
unobtrusive measurement is required for naturalistic studies.

The focus of online experimentation on studying natural user interactions in
realistic settings results in a unique set of challenges. First, exploring solutions
of unknown performance creates the risk of hurting the user experience. At the
same time, feedback on these solutions can only be obtained by trying them out.
This results in a trade-off between exploration of new solutions, and exploitation
of good solutions known at a given point in time. Second, in a natural setting
we often cannot control many sources of variance (e.g., search goal) that would
be controlled in a more traditional experiment, such as a lab study. This can
result in high variance, but this problem is typically alleviated by large sample
sizes that can be collected, at least in frequently-used systems. Finally, online
experiments in natural settings can offer a very narrow windows of observation.
Instead of e.g., recordings and follow-up interviews that may be collected in a
lab study, and that can help interpret results, we now have to rely exclusively
on behavior traces (e.g., clicks, page views) that result from users’ natural inter-
actions. This limited bandwidth of observation can be particularly problematic
when unobserved confounding variables affect measured outcomes (e.g., effects
of search task or user characteristics). Therefore it is particularly important to
carefully design the experiment, and especially the measurements designed to
evaluate or compare solutions.

In the remainder of this overview paper, we outline the techniques that have
been developed to address these challenges. First, we further motivate the need
for controlled experiments, and introduce online evaluation using the example
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of A/B testing (Sect. 2). The next two sections focus on measurement, first in
the form of estimating online metrics from exploration data (Sect. 3), then in
the form of paired comparisons enabled by interleaved comparisons (Sect. 5).
After discussing questions related to online evaluation, we turn to the ques-
tion of how these evaluation techniques can be used to automatically optimize
system performance, for example when many system configurations are feasi-
ble. We turn to online learning, where we first introduce a common problem
formulation – bandits (Sect. 6). Finally, we focus on learning from relative feed-
back (Sect. 7). Sections 6 and 7 build on the earlier sections, in that many of the
learning approaches utilize the previously introduced online evaluation methods
to infer feedback for learning.

2 Controlled Experiments

This section outlines the role that controlled experiments play in identifying
causal relationships. We establish the connection between these concepts and
IR, and discuss examples of controlled experiments, from small-scale lab studies
to web-scale experiments.

Scientific discovery can take many forms. Following the three-fold distinc-
tion of Babbie [5], exploratory studies are valuable for identifying phenomena
of interest and formulating hypotheses. Descriptive studies describe phenomena
and their observed relationships. Finally, explanatory studies aim to uncover
causal relationships, that explain the mechanisms that lead to the observed phe-
nomena and relationships.

Identifying causal relationships is particularly valuable, because they are the
most robust [54,55]. By explaining the mechanisms of why events happen, they
allow us to make predictions under changing conditions. These insights are cru-
cial for predicting the effects of actions. In everyday life, knowing causal relation-
ships and consequences of our actions lets us make informed decisions on how
to achieve our goals. For developers of an interactive system, identifying causal
relationships enables data-driven decisions on how the system should interact
with the user.

In our everyday life, we are used to thinking in terms of cause and effect, and
many causal relationships are obvious to us. Following an example of Babbie [5],
when we observe a correlation between ice cream consumption and death by
drowning in lakes, we would not conclude that one causes the other. Rather, we
know that there is a common cause, temperature or season, that affects both.

In many cases, causal structures are far less obvious, especially when systems
are complex, and potential causes cannot be observed. In particular, observa-
tional data alone is not enough to draw any conclusions on causal relation-
ships [55]. Observing a correlation (also called association) between events could
result from infinitely many possible causal relationships. This is illustrated in
the path diagram in Fig. 1. Returning to the example above, observing a cor-
relation between ice cream consumption and deaths by drowning does not, by
itself, allow us to infer the causal structure that explains these events. Only with
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Fig. 1. Path diagram of an example observation (X and Y are correlated), and possible
causal structures that may explain the observation. Possible correlation between two
variables is denoted by bi-directional arrows. Hypothesized causal relations are denoted
by directed arrows from cause to effect.

additional information can we reason that the common cause explanation is the
most likely. Conversely, the absence of correlation in observational data does not
exclude the possibility of a causal relationship.

For a concrete example from information retrieval, let us consider two stud-
ies of searchers’ click behavior in web search. Granka et al. [22] report on an
observational study, which measures the time searchers spend looking at search
result summaries (document titles and snippets) per rank, and the number of
clicks per rank. They find that searchers spend more time examining higher-
ranked documents, and that they click on higher-ranked documents more often
than on lower-ranked documents. The findings describe searcher behavior, but
note that it does not allow us to draw conclusions about causal relationships.
For example, it is possible that examination and clicks are caused by document
rank, or by some other factor, such as the attractiveness of the snippets (e.g.,
if more attractive snippets are ranked higher). In IR, we are often interested in
document relevance, but again, observational data alone does not allow us to
draw conclusions on whether relevance may be causally related to the observed
behavior.

The most reliable method for identifying causal relationships are controlled
experiments [55]. To explain observed correlations between click behavior, search
result rank, and document relevance, Guan and Cutrell [23] conducted a con-
trolled experiment in a lab study or search behavior. They manipulated the
search result pages shown to study participants to include a single relevant doc-
ument, and randomly selected the rank at which this target document was shown.
They found that, when the target was ranked lower in the result list, participants
were often not able to find it, and were likely to click on less relevant higher-
ranked documents. The results suggest that both rank and document relevance
affect searchers’ click behavior. Based on this insight, numerous click models
have been proposed that model document relevance using causal assumptions
about rank, and observed user interactions (e.g., [14,18]).
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Conducting a controlled experiment means that, instead of observing natu-
rally occurring values of all variables, we specifically set the value of the hypoth-
esized causal variable (e.g., X in Fig. 1). In doing so, we break the causal chain
that may carry associations between this variable and the hypothesized effect
(e.g., Y ). The key to a successful intervention is that the assignment of values to
X is done at random. This ensures that the decision to assign the chosen value
is independent of any other variables that could carry information between X
and Y . Any remaining relationship between X and Y then has to reflect the
strength of the causal relationship between the two variables.

Designing controlled experiments may be difficult or impossible in some set-
tings, e.g., when studying the economy of a country. In some of these cases,
it may be possible to infer causal structure from initial causal assumptions in
combination (i.e., non-experimental data that was observed outside of a con-
trolled experiment) [55]. In the present discussion we focus on settings where
controlled experiments are possible. Combining the insights that result from
controlled experiments with causal inference mechanisms can result in an even
more powerful discovery process.

Luckily, many interactive systems are well suited for experimental control.
For example, if we are interested in whether a redesign of a website affects user
engagement, we can conduct a controlled experiment (also called “A/B test” or
“bucket test” in the context of web-scale studies) [43–45,72]. We can do this by
deciding for each new incoming user at random whether they are directed to
the original version (often called control) or the redesigned version (often called
treatment). We measure the target quantity we are interested in (e.g., number
of click, or time spent on the page). When comparing the measurements for
control and treatment group, statistical significance testing is used to establish
whether any observed differences are likely to result from random noise [11]. If
statistically significant differences are observed, these can be attributed solely
to the differences between the two versions of the website, because our random
assignment to control and treatment group blocked any other possible causal
effects. Once a causal relationship has been established, it can guide decisions
on how to change the current system.

Controlled experiments can be conducted in interactive systems of any scale,
ranging from small-scale laboratory experiments to crowdsourced experiments
with hundreds or thousands of crowdworkers, to experiments with millions of
users for large web systems. Each of these affords a different level of control.
In lab studies, where it is typically only feasible to work with a small number
of participants, it is often useful to work with a complex experimental design
that investigate several variables at once (see [38] for a detailed discussion of
experiment design, especially in interactive IR studies). For example, in an eye-
tracking study of user interactions with query auto-completion (QAC), we inves-
tigated the effect of QAC quality on 10 variables that captured user behavior,
while controlling for effects of search task and user differences [31]. Crowdsourc-
ing environments can afford an interesting balance between scale and control.
For example, Kazai et al. [37] studied the effect of quality-control mechanisms
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and page ordering on the quality of annotations in a relevance labeling task with
hundreds of workers. At web scale, experimental designs are often less com-
plex, to keep results interpretable. For example, Bendersky et al. [7] examined
the effects of retrieval-based video recommendation strategies on users’ viewing
behavior in a month-long experiment that involved millions of users.

The methodology for running controlled experiments on the web, in the form
of A/B tests, has been refined over recent years. Kohavi et al. [43] gives a detailed
account of the key aspects that need to be considered, such as deciding on a
metric, implementing the split in control and treatment group, and estimating
the required sample size. An important challenge is the question bandwidth
available for running experiments. Often, online experiments run for several days
or weeks, and running only one experiment at a time would lead to very slow
progress (especially considering that typically few of the tested changes improve
system performance or lead to significant insights) [45]. This can be improved by
running several mutually independent experiments in parallel [43,72]. Improving
the sensitivity of online controlled experiments is an area of active research [19].

This section motivated the need for controlled experiments as a basis for eval-
uating interactive systems. The most prominent methodology for running these
experiments online, A/B testing, was briefly introduced. In the next section,
we discuss extensions of the controlled experiment setup that allow the use of
exploration for large-scale offline evaluation.

3 Offline Estimates of Online Performance

In the previous section we discussed how controlled experiments allow us to assess
effects of system changes metrics on their users. In this section, we introduce
methods that allow system comparisons using so-called exploration data. Recall
that the key requirement for controlled experiments is that the assignment of
users to control and treatment conditions has to be independent of any other
factors that may carry information between the hypothesized cause and effect,
and that randomization is a reliable way of blocking any such interactions. The
same principle is exploited in the methods introduced here.

The first approach we discussed is called exploration scavenging [48].1 The
question raised there is whether a data set that was collected under an arbitrary
data collection policy2 πD can be used to evaluate alternative policies πA (i.e.,
other configurations of the system). The problem is formulated as the task of
obtaining an unbiased and consistent estimate of the online performance of πA

1 The terminology comes from the area of reinforcement learning, a type of machine
learning in which an intelligent agent (e.g., an interactive IR system) learns from
interactions with its environment (e.g., users) by trying out actions and observing
rewards. This is a natural model for learning in interactive IR, and is discussed in
more detail in Sect. 6.

2 A policy defines a distribution over system actions, often conditioned on additional
information, such as the history of previous interactions, or information about con-
text, such as a query posed by the user.
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in terms of a target metric (e.g., clickthrough rate – CTR) offline, i.e., without
running an actual experiment and using previously collected data. Langford
et al. [48] show that this is not the case generally, but that there are cases
where exploration data can be used to obtain unbiased estimates of the online
performance of alternative policies. In particular, this is the case when πD selects
actions independently of the information used by πA, and when it selects all
actions that are available to πA sufficiently often.

Li et al. [49,50] propose and analyze a specific exploration scheme, and show
that it allows very accurate prediction of online performance. Their approach
relies on an exploration policy that selects actions during data collection uni-
formly at random. They show that this data can be used to obtain unbiased
offline estimates of online performance. The method uses rejection sampling,
where an observed sample is accepted to contribute to the estimate if it matches
the action that would have been selected by the system under evaluation, and
rejected otherwise. The effectiveness of the method is demonstrated in the con-
text of a news recommendation application, where the task is to learn how to
select the news article to display the most prominently to maximize user engage-
ment (in terms of CTR). Recently, Li et al. [51] demonstrated an application of
unbiased estimation from exploration data to optimize components of a commer-
cial search engines (here: speller) in a large parameter space. They also propose
non-uniform sampling during exploration, and show that very accurate estimates
of online performance can be obtained.

The key benefit of the proposed offline evaluation techniques is that they
allow infinitely many system comparisons once a set of exploration data has
been collected. When exploration was done uniformly at random, meaning that
it is independent of any information that the system might use, we can evaluate
any system, including those where decisions are based on user attributes, or
interaction history. This creates a powerful set up for testing effects of these
factors on user interactions, and can be used to optimize system performance
directly in terms of online metrics.

The methods proposed in [48–51] are powerful when the number of actions
available to a system are relatively small compared to the sample size, e.g.,
when selecting from a small set of news articles, or from a small set of ads
to be placed on the result page for a relatively frequent query. The amount of
data required to obtain accurate (low-variance) estimates grows linearly in the
number of available actions, making the approaches infeasible for large action
spaces. An alternative is proposed in [8], where exploration is not in terms of
the set of available actions, but instead in terms of the parameter space of the
system.

Bottou et al. [8] propose a counterfactual reasoning approach. In it, explo-
ration is achieved by changing system decisions from being deterministic to
following some distribution (e.g., instead of using a fixed setting for a given
parameter, use a continuous distribution over that parameter, from which the
actual value for each impression is sampled during data collection). Given explo-
ration data collected this way, counterfactual reasoning can be used to answer
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“what if” questions of the form “What would have happened if we had used a dif-
ferent system configuration?”. Answers are obtained using importance sampling,
where observed samples are reweighted by the ratio of their probability during
data collection, and in the system under evaluation. Finally, Bottou et al. [8]
propose a learning approach that utilizes counterfactual reasoning to compute
the direction of parameter updates.

The counterfactual reasoning approach extends the principle of controlled
experiments to settings where it is impossible to split a user population into
control and treatment. The experimental unit is the impression, and every user
experiences various parameter settings at various times. This allows the method
to be applied to complex system, which Bottou et al. [8] demonstrate in the
example of an online advertising marketplace.

The methods for offline evaluation that have been discussed in this section
are inspired by methods from reinforcement learning, where off-policy evaluation
is used to greatly speed up learning [56]. They enable methods for learning in
interactive IR that directly maximize online performance (Sect. 6), but can natu-
rally be used for system evaluation, or experimentation to test IR models that go
beyond optimizing the performance of a specific application. In addition to the
possibilities these methods open up for individual researchers or teams, the idea
of using exploration data for unbiased evaluation may open up a path to sharing
(annonymized) data in a future form of test-collection based IR evaluation.

So far, we have assumed that our goal is to evaluate systems in terms of an
arbitrary online evaluation metric. Insights into what to measure, and proposed
online evaluation metrics, are discussed in the next section (Sect. 4). The idea
of using exploration data for offline evaluation is extended to within-subject
experiments in the context of interleaved comparisons, discussed in Sect. 5.

4 Online Metrics

While implicit feedback has been used for IR evaluation for a long time [39],
ubiquitous access to the web and web search engines have emphasized the need
for reliable and interpretable online metrics. Consequently, research efforts in
this direction have dramatically intensified in recent years and much progress
has been made. Because this is such a large and active research area, the overview
here only mentions a number of selected approaches that illustrate certain trends
and developments. More detailed considerations regarding measurement in inter-
active experiments can be found in [40].

The specific choice of target metric very much depends on the specific appli-
cation, and the goals of the experiment. For commercial applications, revenue,
the number of purchases, or the value of purchases per buyer [43]. Similar metrics
can be considered for recommendation systems and advertising platforms. As a
general measure of user engagement, Dupret and Lalmas [21] recently proposed
modeling absence time, i.e., how long a user waits before returning to a website.
Crucially, the target metric should be decided on before the experiment is run.
Other considerations include the variance of the metric and the expected differ-
ence between systems, as these affect the size of the sample required to detect
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statistically significant differences between system (the power of a controlled
experiment) [43].

In search, it is notoriously difficult to identify a single reliable online metrics.
For example, changes in the number of clicks per query might mean that the user
needs more clicks to find what they are looking for, or that several highly relevant
pages are shown and keep the user engaged. An increase in abandonment rate
could indicate that searchers give up in frustration, or that they can easily find
the answer to their question directly on the search result page. Especially user
clicks were shown to be affected by biases, e.g., due to result presentation [27,82],
and to vary substantially across search tasks and users [64]. Consequently, these
and similar absolute evaluation metrics have been found to exhibit high variance,
and caution has to be taken in interpreting their results [61].

Many recently proposed metrics take a more long-term or holistic view on
measuring search engine quality. Joachims et al. [41] used per-query type models
of dwell time to capture user satisfaction with search results, and personalized
models of user satisfaction are explored in [24]. Song et al. [69] analyzed the
long-term behavior of metrics, and showed that users may initially compensate
for changes in search engine quality. Absence time as a measure of search effec-
tiveness was considered in [12].

The interpretation of user signals as relative feedback has been proposed as
an alternative to high-variance absolute metrics. Joachims et al. [35] show that
the interpretation of clicks as relative preferences between documents, using so-
called click-skip heuristics, can lead to accurate relative judgments. A proposed
aggregation of these rules into a result page-level metric is PSkip [76]. Based on
the construction of a controlled experiment, FairPairs infers the relative prefer-
ence between documents from their relative CTR [59].

A difficulty with per-document relative metrics can be the large amount of
exploration required for obtaining accurate estimates. This problem is avoided by
interleaved comparison methods, which aggregate interactions with documents
into a ranking level comparison. This can be thought of in similar terms as the
exploration strategies over specific actions as opposed to exploration in terms
of system parameters discussed in the previous section. Interleaved comparison
methods are discussed in the next section.

5 Interleaved Comparisons

Interleaved comparisons have been developed to provide unbiased, relative com-
parisons of ranked lists [61]. In comparison to A/B tests, which run controlled
experiments between users (each user is either in the control or in the treat-
ment condition), interleaving experiments can be thought of as a within-subject
experiment, where each user is presented with results that combine two com-
peting rankings. To avoid introducing bias in such a setting, the interleaved
(combined) result lists presented to users need to be constructed in a way that
is fair to both rankers in expectation, and it has to be ensured that users cannot
distinguish between the results contributed by either ranker.
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The most widely-known interleaved comparison methods is Team-Draft inter-
leaving [15,57,61]. We briefly describe the general principle of interleaving using
this method. In Team-Draft interleaving, interleaved result lists are constructed
in a way that is designed to ensure that each original ranker contributes the
same number of its documents at a given rank to a given rank of the target
list in expectation over impressions. This is done as follows. To fill the first
two ranks in the interleaved list, a coin-flip determines which rankers first con-
tributes a document. This ranker deterministically choses its highest document
that is not yet part of the interleaved list. Then the competing ranker con-
tributes its highest-ranked document. The process continues until a result list of
the desired length has been constructed. During interleaving, the system keeps
track of which ranker contributed which document. The constructed interleaved
result list is then shown to the user, and user clicks (or, potentially, other inter-
actions) on the presented documents are recorded. The observed clicks are then
interpreted as preference indications for one of the rankers. Only the clicks on
results contributed by a ranker are counted in its favor. Aggregating over multi-
ple impressions results in an estimate of how much a ranker would be preferred
over its competitor.

Team-Draft interleaving constructs a controlled within-subject experiment
to compare between two rankers. This setup is extended by Probabilistic Inter-
leave [26,30]. Probabilistic Interleave is based on the idea of generating interleaved
result lists from probability distributions over documents. These distributions
are based on the rankings to be compared, in order to maintain the fairness of
the interleaving. Interleaving outcomes can be computed by marginalizing over
possible ways in which the observed interleaved result list could be generated.
The result is a highly sensitive comparison method in which the magnitude of
assigned click weights reflects the magnitude of ranking differences between the
original rankings.

Crucially, probabilistic interleave defines an exploration policy, similar to
those discussed in Sect. 3. This means that the collected data can be used to
obtain unbiased estimates of online metrics, in this case of online interleaved
comparison outcomes [28]. This results in a flexible online/offline evaluation
setup, where interleaved comparisons can be performed online, and the observed
data can be used as exploration data for further comparisons. Conversely, explo-
ration data that was not collected using interleaving, but covers the same action
space, can be used to obtain interleaved comparison outcomes for rankers in that
same space. In Sect. 7 we show how the resulting method can be used to learn
very efficiently from interleaving feedback.

Several extensions of interleaving have been devised. Optimized interleav-
ing [58] considers the construction of a distribution over interleaved lists as
a constrained optimization problem designed to obtain accurate comparisons
between known rankers from as few samples as possible. Vertical-aware interleav-
ing shows that the interleaved comparison approach can be extended to settings
where the linear ranking assumption is violated, e.g., in the presence of verti-
cal search results [16,17]. Most recently, multileave was proposed to efficiently
compare sets of rankers without having to perform all pairwise comparisons [67].
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Interleaved comparison methods are particularly interesting for online eval-
uation because they allow within-subject experiments that result in particularly
low variance. This provides highly sensitive comparisons with up to two orders
of magnitude smaller sample sizes than those that would be required for com-
parable A/B tests [57].

6 Online Learning for Information Retrieval

Up to now we have focused on the use of controlled experiments for online
evaluation. Given one or more systems, online evaluation techniques assess their
absolute or relative online performance. However, in an online system, it is often
not necessary to accurately determine the online performance of each candidate
system. Rather, we are interested in identifying the best performing system as
quickly as possible. When we need to chose from a small fixed set of systems, the
earlier we know which one performs best, the sooner we can stop exploring the
alternatives. In this setting, online learning can avoid over-exploring sub-optimal
systems, leading to better online performance while learning. If, instead, we the
set of possible systems is infinite (e.g., when a system is identified in terms of
the settings of continuous parameters), online learning can allow us to find the
best such system efficiently.

Within this paper, we define an online learning system as a system that
changes its behavior through interaction with its environment. A natural fit for
this task are problem formulations from reinforcement learning [71]. Reinforce-
ment learning is a branch of machine learning where agents (e.g., an IR system)
interact with an environment (e.g., users) and learn by trying out actions (e.g.,
documents, news items, etc.) and observing rewards (e.g., interpret user actions
as absolute or relative feedback). The full reinforcement learning problem also
specifies states in which the environment can be in, and transitions between
states, which may depend on the agent’s action. In this paper, we focus on a
subset of problems called bandit problems, where system actions do not affect
future states. Initial work on taking state transitions into account has been con-
ducted in the context of exploratory search [33] and session search [52].

Bandit problems are a natural fit for many online learning tasks in informa-
tion retrieval, where characteristics of incoming users are independent of other
users. One mapping to web search is shown in Fig. 2 (analogous mappings hold
for other IR tasks, such as news recommendation, ad placement, etc.). Here,
the system learns from user interactions, by taking actions (selecting documents
or document rankings), and observing user feedback. Interactions are modeled
in rounds or discrete timesteps, where in each timestep the agent may observe
some context, generates an action, and observes and applies feedback. A crucial
difference to learning in a supervised setting is that only feedback for selected
actions is observed. The task of the learner is to optimize online performance, i.e.,
performance while learning. These two characteristics result in the exploration-
exploitation challenge, because actions with unknown performance have to be
explored to learn better solutions. An important benefit of reducing IR problems
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Fig. 2. Example formulation of search as a contextual bandit problem, with information
retrieval terminology shown in black, and reinforcement learning terminology shown in
green (Color figure online).

to bandit approaches is that the rich body of work on bandit approaches can
be leveraged. At the same time, IR poses some unique challenges that further
drive development in bandit research, such as approaches that work with relative
feedback (discussed in Sect. 7).

Many types of bandit approaches have been developed. Here, we divide these
approaches in terms of how they interpret feedback for learning. In this section,
we focus on approaches with absolute feedback. We outline work in three areas,
and show how the developed approaches relate to IR applications. We start from
the non-contextual K-armed bandit setting, where the payoffs of available actions
are independent. This is extended to the contextual setting, where context pro-
vides additional information on when an action may have high reward. Finally,
we consider extensions to large or infinite action spaces. A detailed survey of
bandit approaches and their analysis can be found in [9].

In the classic K-armed bandit setting, the learner has to select from a finite
set of available actions. A simple approach that often works surprisingly well
in practice is ε-greedy [77]. At each timestep, it explores with probability ε by
randomly selecting an available action, and exploits the empirically best action
with probability 1− ε. Convergence guarantees are known for appropriate choice
of ε. Another popular type of approach is UCB (upper confidence bound) [3]. It
maintains estimates of the expected payoff for each available action, constructs
confidence intervals around these estimates, and at each timestep selects the
action with the highest upper confidence bound. Convergence guarantees exist
for the stochastic setting, where payoff for each action is assumed to be indepen-
dently sampled from a stationary distribution. An approach that does not rely
on stochastic feedback is EXP [4]. Approaches of this type maintain a distrib-
ution over actions’ expected payoff and sample from this distribution. Because
of its stochastic nature, EXP has performance guarantees even in adversarial
settings, where payoffs are selected by an adversary that competes with the
learner. Recently, approaches based on Thompson Sampling have been shown to
achieve good empirical performance [13]. This finding triggered much theoreti-
cal work to better understand properties of this approach analytically [1,36,62].
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The approach works by maintaining a distribution over expected payoffs for all
arms, and at each timestep sampling from this distribution and acting optimally
according to the drawn sample.

A pioneering approach that applied bandit approaches to IR was proposed
by [60]. The authors formulated the task of learning diverse rankings with bandit
feedback. Assuming a user population with diverse information needs, the task
is to learn rankings that satisfy as many users as possible (i.e., show at least
one relevant document per intent). This problem was later generalized to the
submodular bandit problem, where a set of items has to be selected to optimize
submodular utility functions [46,70,78].

An extension of the classic K-armed bandit problem that is particularly rel-
evant to IR problems is the contextual bandit problem (also known as bandits
with side-information, associative bandits, and bandits with expert advice) [49].
Here, the learner is given additional information in each round, that can help
identify the action to select. In an IR setting, this context information can con-
sist of, for example, a user profile or history, a query, a website on which an ad
must be placed, etc. Naively, K-armed bandit approaches can be applied to this
setting by learning a separate bandit for each context. However, this approach
results in a large increase in the amount of required exploration (all actions have
to be explored sufficiently often in each context), and consequently a reduction
in online performance. However, extensions to K-armed bandit approaches have
been developed that efficiently generalize over contexts. For example, EXP4 gen-
eralizes over actions by transforming the exploration problem to exploration in
some contextual policy space [4]. Langford and Zhang [47] extend ideas from
ε-greedy to continuous contexts. LinUCB extends UCB to the contextual bandit
setting by generalizing it to a linear reward model [49], and similar approaches
are explored for Thompson Sampling [62]. A linear approach with submodular
utility functions is proposed in [78].

Much of the work on contextual bandit approaches was informed by, and
empirically validated on, IR problems such as news recommendation [49,78],
ad placement [48], vertical selection [20,32], comment recommendation [53], ad
format selection [73], and, most recently, spell correction in search queries [51].
These problems can be accurately modeled as contextual bandit problems with
small action sets and high-dimensional context information, with absolute reward
metrics such as clickthrough rate.

An orthogonal extension of bandit approaches is to consider large or infi-
nite action spaces. In settings, where the number of actions is large, as is the
case when searching large document collections, exploring all available actions is
prohibitive. Approaches that tackle this problem exploit information about the
similarity of actions. This information can be provided explicitly, often in the
form of a tree structure [42]. Extensions of this work generalize to cases where
properties of the underlying space are unknown and feedback stochastic [74].
Slivkins et al. [68] extend this approach to the ranked bandit setting, to learn
diverse subsets of large or infinite action spaces.
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In this section we discussed online learning approaches for IR. We focused
on bandit approaches for learning in the K-armed and contextual setting, and
briefly outlined approaches for learning in settings with large or infinite action
spaces. The approaches described so far learn effectively in settings where reliable
absolute feedback, such as clickthrough, can be observed. In the next section,
we discuss bandit approaches that learn from relative feedback.

7 Online Learning from Relative Feedback

In many interactive IR systems, absolute reward may not accurately reflect user
satisfaction or other target quantities, because they are too context dependent
and noisy (cf., Sect. 4). For these settings, relative feedback methods have been
developed, and have been shown to be substantially more robust (cf., Sect. 5).
Naturally, we would like to use these relative metrics as feedback for online learn-
ing. While classic approaches (such as the bandit approaches discussed in Sect. 6)
focused on absolute feedback settings, the first relative approaches have been
proposed recently. We give a brief overview of these in this section. A thorough
review of relative bandit algorithms (also called preference-based multiarmed
bandits) was recently published by Busa-Fekete and Hüllermeier [10].

Supervised learning approaches for learning from relative feedback go back
to at least [34]. In IR, this approach has been very successfully applied to super-
vised learning to rank problems, where expert relevance labels can be inter-
preted as relative feedback. However, supervised approaches do not address the
exploration-exploitation challenge, and directly applying supervised approaches
to interaction data is very susceptible to noise and bias. If applied to learn in
a batch setting from exploration data, very high levels of exploration would be
required to combat bias [25]. Dueling bandit approaches naturally address the
exploration-exploitation challenge, while working with relative feedback.

The K-armed dueling bandit problem was first formulated by Yue et al. [81,83],
and was directly motivated by the need to learn from relative feedback in IR set-
tings. It generalizes multiarmed bandit problems to settings where absolute per-
formance cannot be quantified, but comparisons between two arms can be made.
These comparisons can be stochastic, such that the a better arm i has a probabil-
ity of winning a comparison against a worse arm j of pij > 0.5. They propose an
approach to solving this problem, called Interleaved Filter (IF), which works in
rounds in which it eliminates an arm when it is proven to have low performance.
Since then, new dueling bandit approaches have been developed that substantially
improve over both the empirical performance of IF, and over its theoretical guar-
antees. For example, Beat-the-Mean compares each arm to the sampled mean of
all arms [80].

The main challenge addressed by dueling bandit approaches is to select the
arms to compete in each round such that the competition quickly focuses on the
best arms, to avoid excessive exploration of bad arms. Zoghi et al. [85] employs a
relative UCB-style approach, such that it always selects the arm with the highest
confidence bound as one competitor, and plays it against the arm that has the
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best chance of beating it. A strategy based on Thompson Sampling is proposed
in [84]. Another very recent approach is by Ailon et al. [2], who provide several
reductions from dueling bandits to classic cardinal bandits.

In addition to the K-armed dueling bandit problem, Yue and Joachims [79]
proposed a contextual problem formulation, resulting in a generic dueling bandit
formulation. In this formulation, the learner has to optimize a linear function
in d dimensions, using only relative feedback about the relative performance
of two such solutions. A stochastic gradient descent approach to solving this
problem is the Dueling Bandits Gradient Descent (DBGD) [79]. Briefly, it it
learns by interacting with the environment in rounds, and observing relative feed-
back as follows. At all times, the learner maintains a “current best” solution wt

(a solution is a weight vector for linear weighted combination of context features).
In each round, it generates a “challenger” w′

t, by randomly sampling from a unit
sphere around wt. Then, wt and w′

t are compared (e.g., when learning rankings,
this could be done using interleaving). If w′

t wins the comparison, wt is updated
by a learning step in the direction of w′

t. If the solution space is convex, this
approach is guaranteed to converge [79].

DBGD can be directly applied to e.g., online learning to rank settings, and
was empirically validated on such a task [79]. However, it is more generally
applicable, as it makes no specific assumptions about how solutions are com-
pared, as long as assumptions of the algorithm regarding their stochastic char-
acteristics hold. Hofmann et al. [29] demonstrated that, by taking structure into
account, substantially better online and offline performance can be achieved in
specific applications. For the task of online learning to rank from interleaved
comparisons, an approach called Candidate Pre-Selection (CPS) was proposed.
It leverages the exploration that is a side-effect of probabilistic interleave (see
Sect. 5), to evaluate new ranker candidates. In comparison to DBGD, which
explores uniformly around the current best solution, CPS uses offline estimates
derived from exploration data to focus on the most promising candidates. The
resulting approach learns significantly faster than the structure oblivious app-
roach, and is particularly robust to noisy feedback [29]. Schuth et al. [66] that
dueling bandit approaches can be successfully applied to learning the parameters
of non-linear ranking functions.

In this and the previous section, we have provided a summary of the many
online learning approaches that can enable interactive retrieval systems to learn
directly from interactions with their users. Interestingly, the unique challenges
posed by IR applications have motivated many recent advances in e.g., contextual
and dueling bandit approaches. As these make their way into more and more
interactive IR systems, we can expect to discover and solve new challenges.

8 Conclusion

In this paper we have presented an overview of techniques for online experimen-
tation for IR. With the increase in web-scale IR systems, controlled experiments
have been adapted to deal with the challenges of scale and complexity that these
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systems present. As well as moving insights into experimentation methodology
into practical settings, new methods for measurement an learning have been
developed that can in turn benefit IR research.

The basis of online experimentation for IR naturally are controlled exper-
iments. In Sect. 2 we motivated why the causal relations they let us infer are
crucial for systems that learn how to act, or interact, with their users. After
motivating the need for controlled experimentation, we introduced the most
well-known technique, A/B testing. A/B testing is the technique that is the
most general, but limitations in terms of the scalability of comparisons. This
gap is filled by methods for estimating online performance from exploration
data, as discussed in Sect. 3. In Sect. 4 we briefly discussed recent trends in mea-
suring online performance of IR systems. Section 5 concluded our discussion of
online evaluation, by introducing interleaved comparison methods, which allow
within-subject controlled experiments.

The first sections of this paper focused on online learning for IR. Online learn-
ing goes one step beyond the previously discussed online evaluation approaches
where the comparisons to be performed were selected manually. Online learning
using bandit approaches in particular can automatically select the required eval-
uations or comparisons in order to optimize online performance. A key challenge
addressed by bandit approaches is the trade-off between exploring new solutions
to obtain accurate performance estimates, and exploiting solutions with known
high performance. The resulting approaches are especially valuable for online
learning in IR systems, as they achieve high online performance while learning.

Following on from this overview article, many of the presented approaches
can be tried out in the experimental framework lerot [65]. Using simulations of
online interactions, online evaluation and learning approaches can be compared
and developed further.

Online evaluation and learning have only recently been introduced to the
IR community, and form a growing area of research within this community.
Many open questions remain to be addressed. From the perspective of deploying
online evaluation and learning approaches, we need to better understand the
impact of exploration on the user experience. While exploration allows learning,
and therefore improves system performance in the long run, it is not yet well-
understood how users are affected in the short run, and how potential risks can
be mitigated. Particularly valuable are exploration schemes that limit the risk
for individual users. On the other hand, we need to better understand how to
effectively explore in applications with large action spaces. The more we know
about the solution space of a given IR problem, the more effectively we can
design exploration schemes that use this structure to quickly focus on the most
promising areas of the solution space.

Online experimentation has been embraced by owners of large web properties,
and is a key part of the development process in these companies. In the research
community, online experimentation seems to see somewhat slower adoption. Is
one reason the difficulty in obtaining data or running experiments in an online
setting? Exploration data may be a key to enabling wider participation in online
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experimentation. Another promising initiative is the CLEF living labs initiative,
which brings together IR researchers and search engine operators, by providing
a shared platform for online experimentation [6].

What questions can we study using online experimentation for IR? The meth-
ods presented in this article build on and complement the traditional toolset of
IR experimentation. Online experimentation can expand IR research from small-
scale and short-term lab studies to a wide range of naturalistic experiments. This
will allow us to gain new insights into information seeking behavior, and into
how retrieval systems can best address these.

Online learning for IR can transform the way in which IR systems are cur-
rently developed. By learning directly from user interactions, they can quickly
adapt to changing user behavior and expectations. We will move away from
developing systems for which behavior is completely specified before deployment,
and will move towards defining a space of possible solutions. Online evaluation
and online learning to rank will drive this development, towards IR systems that
learn directly from their users.
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