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Abstract. The concurrent growth of the Document Web and the Data
Web demands accurate information extraction tools to bridge the gap
between the two. In particular, the extraction of knowledge on real-world
entities is indispensable to populate knowledge bases on the Web of Data.
Here, we focus on the recognition of types for entities to populate knowl-
edge bases and enable subsequent knowledge extraction steps. We present
CETUS, a baseline approach to entity type extraction. CETUS is based
on a three-step pipeline comprising (i) offline, knowledge-driven type pat-
tern extraction from natural-language corpora based on grammar-rules,
(ii) an analysis of input text to extract types and (iii) the mapping of
the extracted type evidence to a subset of the DOLCE+DnS Ultra Lite
ontology classes. We implement and compare two approaches for the
third step using the YAGO ontology as well as the FOX entity recogni-
tion tool.

1 Introduction

Both the Document and the Data Web grow continuously. This is a mixed bless-
ing, as the two forms of the Web grow concurrently and most commonly contain
different forms of information. Modern information systems must thus bridge this
gap to allow a holistic access to the Web. One way to bridge the gap between
the two forms of the Web is the extraction of structured data from the growing
amount of unstructured information on the Document Web. While extracting
structured data from unstructured data allows the development of powerful infor-
mation system, it also requires high-quality knowledge extraction tool chains to
lead to useful results. However, standard document processing pipelines miss
the opportunity to gain insights from semantic entities novel to the underlying
knowledge base (KB). That is, most known tool chains recognize entities based
on linguistic models and link them to a KB or null if they are emerging entities.
Assigning a type to these entities is a well known task [10] and has been in the
focus of several recent challenges, e.g., the TAC KBP Entity Linking challenge
20141, the Micropost workshop series2 and the OKE challenge 20153.
1 http://nlp.cs.rpi.edu/kbp/2014/.
2 http://www.scc.lancs.ac.uk/microposts2015/.
3 http://2015.eswc-conferences.org/important-dates/call-OKEC.

c© Springer International Publishing Switzerland 2015
F. Gandon et al. (Eds.): SemWebEval 2015, CCIS 548, pp. 16–27, 2015.
DOI: 10.1007/978-3-319-25518-7 2

http://nlp.cs.rpi.edu/kbp/2014/
http://www.scc.lancs.ac.uk/microposts2015/
http://2015.eswc-conferences.org/important-dates/call-OKEC


CETUS – A Baseline Approach to Type Extraction 17

In this article, we present CETUS, a pattern based entity type extraction
tool for identifying the type of a given entity inside a given text and linking this
type to a KB, i.e., to the DOLCE+DnS Ultra Lite ontology classes4. CETUS is
a fast and easy to implement baseline approach to path a way to novel research
insights. CETUS’ pipeline is divided into three subsequent parts: (i) an a-priori
pattern extraction, (ii) a grammar-based analysis of the input document and
(iii) mapping the type evidence to the DOLCE+DnS Ultra Lite classes. CETUS
implements two approaches for the third step using the YAGO ontology as well
as the FOX entity recognition tool. We will explain these parts in detail in the
Sects. 3, 4, 5 and 6 respectively, before we are summarizing the results of the
OKE Challenge in Sect. 7 and conclude in Sect. 8. The source code of CETUS
can be found at https://github.com/AKSW/Cetus.

2 Related Work

Next to the above mentioned challenges about entity linking, several tools have
been introduced with the ability to type entities, e.g., FOX [13]. However, most of
these systems differ in several major aspects compared to CETUS. First, most
of the existing tools comprise a complex work flow and are using techniques
ranging from supervised and semi-supervised to unsupervised learning methods
[10]. Thus, these tools can not serve as a baseline with a simple approach. Second,
CETUS marks the part of a given document that contains the type evidence,
i.e., a string indicating the chosen type. Third, in contrast to the most other
tools, CETUS uses the DOLCE+DnS Ultra Lite ontology classes for typing and
is, thus, able to take part the OKE Challenge 2015.

Our approach is mainly based on patterns inspired by Hearst Patterns [4].
Those patterns match text parts describing hyponym relations between two
nouns. There have been several other tools that are using patterns to identify
the parts of a document containing the type of an entity, e.g., Snow et al. [12].
However, these tools differ in terms of complexity. While some of them are using
a predefined set of patterns or rules, other approaches try to discover new pat-
terns from a given corpus using bootstrapping. Since CETUS should serve as an
easy to implement baseline for the OKE Challenge, we decided to use a straight
forward a-priori iterative, incremental pattern extraction process described in
Sect. 3.

3 Pattern Extraction

The patterns used for identifying the type of an entity inside a document, are
generated semi-automatically in an iterative manner. First, CETUS identifies
phrases containing entities and their types in a given document corpus (here
we use the DBpedia 2014 abstracts) and extracts them. After sorting these

4 See http://stlab.istc.cnr.it/stlab/WikipediaOntology/. Throughout this paper, we
use the prefix dul for types of this ontology.

https://github.com/AKSW/Cetus
http://stlab.istc.cnr.it/stlab/WikipediaOntology/
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phrases according to the string in between the entity and its type, we analyze
them and create the patterns in an incremental process. The progress of our
pattern extraction is measured by the amount of phrases that are covered by
our patterns. In the following, these steps are described in more detail.

3.1 Sentence Part Extraction

For extracting the phrases containing entities and their types, we used the
abstracts of the English DBpedia 2014 abstracts dump file. Every abstract
describes the entity it belongs to and, thus, contains the label of the entity
and its type. We assume, abstracts are written properly and thus contain both
information.

First, CETUS preprocesses each abstract individually. Our approach removes
the text written in brackets, e.g., pronunciations. Afterwards, we use the Stan-
ford CoreNLP [8] library for part-of-speech tagging and lemmatization as well
as the Stanford Deterministic Coreference Resolution System [6] to replace pro-
nouns with their coreferenced words, e.g., He studied physics with Albert Einstein
studied physics. The last step of the preprocessing is the splitting of the abstracts
into single sentences.

Second, sentences containing the entity label and at least one label of one
of its types (rdf:type) are processed further. CETUS extracts the part of the
sentence between the entity label and the type label and stores additionally the
words, their lemmas and part-of-speech tags of the extracted phrase.

After analysing all abstracts, CETUS counts the different phrases. Table 1
shows examples of extracted phrases and their counts how often they have been
found inside the English DBpedia. The words inside these parts are encoded as
<word> <lemma> <pos-tag>.

Delving into the extracted phrases reveals insights into the structure of entity
type descriptions in DBpedia abstracts. It can be seen that the formulation
“<entity> is a <type>” occurs most often. The second most common formu-
lation uses a type preceding the entity and is listed as the second example in
Table 1. The third example is a variant of the first one containing the determiner
“an” instead of “a”. The fourth example shows that some abstracts contain more
complex formulations like “<entity> is a <type> of <type>” while the last
example contains an additional adjective that was not a part of the types label,
i.e., “flowering”.

3.2 Grammar Construction

The aim of creating a grammar is to generate a parser that is able to identify
the part of a sentence describing an entities type given the position of the entity
inside the sentence. For generating a parser based on our grammar, we are using
the ANTLR4 library5.

Our grammar is based on the following assumptions:
5 http://www.antlr.org/.

http://www.antlr.org/
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Table 1. Examples of sentence parts found between an entity and its type.

Extracted phrase Count

<entity> is be VB a a DT <type> 242 806

<type> <entity> 107 082

<entity> is be VB an an DT <type> 12 981

<entity> is be VB a a DT species species NN of of IN <type> 12 554

<entity> is be VB a a DT species species NN 4 069

of of IN flowering flower JJ <type>

1. A sentence contains an entity and a type. Otherwise the sentence is not part
of our grammar language.

2. A type should contain at least one noun, but can contain additional words
that are specifying the meaning of the noun, e.g., adjectives. If a noun could
not be found, a single adjective can be used as type as well.

The first assumption simplifies the task of defining a grammar since we can
focus on the sentences that are important for our task and ignore all others. The
second assumption contains the definition of a type surface form. It might seem
to be contradictory w.r.t. the last example of Table 1 but for the extraction it
is important that we extract all words that could be part of the types surface
form. Following this assumptions, we can define a type inside the grammar with
the rule in Listing 1.1.6

1 type : (ADJ|VERB|ADVERB|CD)* FOREIGN? NOUN+ (ADJ NOUN)*

2 | ADJ;

Listing 1.1. The grammar rule defining a type surface form.

A surface form of a type can contain a number of adjectives, verbs or adverbs
as well as a foreign word, e.g., the latin word “sub”. Additionally, a type has one
or more nouns.

As mentioned above, the construction of the grammar is designed to be an
iterative, incremental, self-improving process. We start with the simple is-a pat-
tern that matches the most common phrase “<entity> is a <type>”. The defi-
nition of this pattern is shown in Listing 1.2.

With this simple grammar, we try to match all phrases extracted beforehand
and create a list containing all those phrases that have not been matched so far.
Using this list, we extend our grammar to match other phrases. In our example,
we extend the simple is-a pattern towards matching different temporal forms of
the verb “be” and different determiners, e.g., “a” and “an”, see Listing 1.3.

1 is_a_pattern : ENTITY is_be_VB a_a_DT type;

Listing 1.2. First simple version of the is-a pattern. ENTITY is a marking for the
entities position.

6 Abbreviations in Listing 1.1: ADJ = adjective, CD = cardinal number.
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1 is_a_pattern : ENTITY FORM_OF_BE DETERMINER type;

2 FORM_OF_BE : ~[ \t\r\n]+ ’_be_VB ’ ~[ \t\r\n]?;

3 DETERMINER : ~[ \t\r\n]+ ’_’ ~[ \t\r\n]+ ’_DT ’;

Listing 1.3. Extended version of the is-a pattern.

With this iterative, incremental process, we further extended the grammar
until we covered more than 90 % of the extracted phrases.7

4 Type Extraction

The pattern-based type extraction can be separated into two steps. The first
step extracts type evidence strings from the text, while the second step creates a
local type hierarchy based on the extracted string. In the following, we describe
both steps in more detail.

4.1 Type String Extraction

To identify the type evidence string for a certain entity, CETUS extracts the
string containing the type of a given entity from a given text using the grammar
from above. Let us assume the following running example: CETUS processes the
document as input with “Albert Einstein” marked as entity.

In 1921, Albert Einstein got the Nobel Prize in Physics. He was a
German-born theoretical physicist.

First, the Stanford Deterministic Coreference Resolution System is applied to
replace the pronoun of the second sentence by “Albert Einstein”.

In 1921, Albert Einstein got the Nobel Prize in Physics. Albert Einstein
was a German-born theoretical physicist.

After that, the text is split into sentences and the surface form of the entity is
replaced by a placeholder.

In 1921, ENTITY got the Nobel Prize in Physics.
ENTITY was a German-born theoretical physicist.

A parser based on the grammar from Sect. 3.2 is applied to every sentence. While
the first sentence is identified as not contained in the language of the grammar,
the second sentence is identified to be in the language. Moreover, the parser
identifies “German-born theoretical physicist” as evidence type string.

4.2 Local Type Hierarchy

Based on the extracted evidence type string, CETUS creates a local type hier-
archy and links the given entity to the hierarchy. The type hierarchy comprises
7 The complete grammar can be found in the projects source code repository.
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classes that are generated automatically from the extracted string based on the
second assumption of Sect. 3.2. Each class is generated by concatenating the
words found in the extracted string using camel case. After a class has been
created, the first word is removed and the next class is created. Every follow-
ing class is a super class of the classes generated before. Finally, the entity is
connected to all generated classes.

For our example, three classes would be generated and linked to the entity
as shown in Fig. 1 and Listing 1.48.

Fig. 1. Schema of the generated local hierarchy of the example.

5 Entity Type Linking Using YAGO

The linking of the generated classes to a KB can be done in two different ways.
Our first approach, CETUSY AGO, uses the labels of the automatically generated
classes to find a matching class inside another, well-known KB. CETUS uses the
YAGO ontology [7] which comprises a large class hierarchy and, thus, increases
the chance to match one of these classes. YAGO itself contains more than 10
mio. entities and exceeds 350.000 classes.

First, we created an index containing the surface forms of the YAGO classes
with a mapping to the class URIs. Second, for every class that has been gener-
ated during the extraction step described in Sect. 4, CETUS retrieves all YAGO
classes with a label equal to the label of the generated class. All retrieved classes
are linked to the local generated class using a owl:equivalentClass predicate.

After that, we are using a predefined mapping from the YAGO ontology to
the DOLCE+DnS Ultra Lite ontology9 to iterate through the class hierarchy
8 The rdfs prefix stands for http://www.w3.org/2000/01/rdf-schema while the prefix
ex could stay for every user defined vocabulary, e.g., http://example.com/.

9 This mapping can be found inside the git repository of the project at https://github.
com/AKSW/Cetus/blob/master/DOLCE YAGO links.nt.

http://www.w3.org/2000/01/rdf-schema
http://example.com/
https://github.com/AKSW/Cetus/blob/master/DOLCE_YAGO_links.nt
https://github.com/AKSW/Cetus/blob/master/DOLCE_YAGO_links.nt
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from the linked classes to the root of the DOLCE ontology. The lowest DOLCE
classes on these paths to the root are used as super type for the local generated
classes and, thus, are used as types for the entity. The result for our running
example can be seen in Fig. 2.10

1 ex:AlbertEinstein

2 a ex:German -bornTheoreticalPhysicist ,

3 ex:TheoreticalPhysicist , ex:Physicist .

4

5 ex:German -bornTheoreticalPhysicist

6 a rdfs:Class ;

7 rdfs:subClassOf ex:TheoreticalPhysicist ;

8 rdfs:label "German -born theoretical physicist" .

9

10 ex:German -TheoreticalPhysicist

11 a rdfs:Class ;

12 rdfs:subClassOf ex:Physicist ;

13 rdfs:label "theoretical physicist" .

14

15 ex:German -Physicist

16 a rdfs:Class ;

17 rdfs:label "physicist" .

Listing 1.4. The local hierarchy that is generated from the extracted string expressed
using turtle.

6 Entity Type Linking Using FOX

A second approach for a type extraction baseline is the usage of one of the
various, existing entity typing tools. For our second version CETUSFOX , we are
using FOX [13].

FOX is a framework based on ensemble learning for named entity recogni-
tion, an approach to increase the performance of state-of-the-art named entity
recognition tools. It integrates four named entity recognition tools for the Eng-
lish language so far: the Stanford Named Entity Recognizer [8], the Illinois
Named Entity Tagger [11], the Ottawa Baseline Information Extraction [9] and
the Apache OpenNLP Name Finder [1]. It has been shown that the ensemble
learning of named entity recognition tools with a Multilayer Perceptron lead to
an increased performance. Unfortunately, FOX identifies only persons, locations
and organizations in its current version.

CETUSFOX sends the given document to the FOX web-service for retrieving
annotations. If the entity inside the document is found and typed by FOX, the
type is used to choose one of the DOLCE+DnS Ultra Lite classes, see Table 2.
The chosen class is used as super class for the automatically created classes.
10 Throughout this paper, we use the prefix yago for http://yago-knowledge.org/

resource/.

http://yago-knowledge.org/resource/
http://yago-knowledge.org/resource/


CETUS – A Baseline Approach to Type Extraction 23

Fig. 2. Resulting type hierarchy that is created based on the YAGO ontology.

With respect to our running example, the FOX tool marks “Albert Einstein”
as a person. Thus, the created classes would be defined as subclasses of
dul:Person as shown in Fig. 3.

7 Evaluation

FOX and two other tools—Adel [5] and FRED [2]—participated in the first
task, CETUS and two other tools—FRED [2] and OAK [3]—participated in the
second task of the OKE Challenge 2015. The dataset of the first task used for
the evaluation contains 101 documents and 99 documents for the evaluation of
the second task.

7.1 OKE Challenge 2015 Task 1

First, we employed the off-the-shelf framework FOX to show that FOX is able
to identify the relevant DOLCE types. The evaluation results of the first task
are shown in Table 3 and the sub tasks for FOX are depicted in Table 4.

In the entity recognition sub task, FOX performs well (with a micro preci-
sion of ∼ 0.96 and a macro precision of ∼ 0.92) and reaches nearly the recall
of the best system Adel. Unfortunately, FOX supports only three of the four
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Table 2. Mapping from FOX classes to DOLCE+DnS Ultra Lite classes.

FOX class DOLCE+DnS Ultra Lite class

scmsann:PERSON dul:Person

scmsann:LOCATION dul:Place

scmsann:ORGANIZATION dul:Organization

Fig. 3. Resulting type hierarchy that is created based on the results of FOX.

entity types in the OKE challenge in its current version. Thus, the recall and
consequently the F1 score for entity linking and typing are low. We assume that
the lack of supported entity types leads to FOX’ inability to reach the best
performance in the OKE Challenge 2015 task 1.

7.2 OKE Challenge 2015 Task 2

For evaluating the different systems, a local modified version of GERBIL [14] has
been used. Since the official results contained only the results of CETUSY AGO

11

we set up an instance of GERBIL and repeated the evaluation for both versions
of CETUS. The results can be seen in Table 5. The tables show that both versions
of CETUS outperform the other participants regarding the F1 score.

Table 6 shows the detailed results of the two steps of CETUS. It can be seen,
that the pattern based recognition of the string containing the type of an entity
performs well with a micro F1 measure of 0̃.7. However, there is still space for
11 The results of the challenge can be found at https://github.com/anuzzolese/

oke-challenge#results.

https://github.com/anuzzolese/oke-challenge#results
https://github.com/anuzzolese/oke-challenge#results
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Table 3. Results of the OKE Challenge 2015 task 1

System Micro Macro

F1 Prec. Recall F1 Prec. Recall

Adel 0.61 0.69 0.54 0.60 0.69 0.54

FOX 0.50 0.66 0.41 0.48 0.63 0.41

FRED 0.35 0.47 0.28 0.23 0.31 0.18

Table 4. Results for the different sub tasks of task 1

System Micro Macro

F1 Prec. Recall F1 Prec. Recall

FOX (Entity Recognition) 0.68 0.96 0.52 0.65 0.92 0.53

FOX (Entity Linking) 0.50 0.70 0.38 0.46 0.65 0.38

FOX (Entity Typing) 0.35 0.35 0.35 0.37 0.37 0.37

Table 5. Results of the OKE Challenge 2015 task 2

System Micro Macro

F1 Prec. Recall F1 Prec. Recall

CETUSY AGO 0.47 0.45 0.52 0.45 0.42 0.53

CETUSFOX 0.46 0.45 0.46 0.44 0.42 0.47

OAK@Sheffield 0.44 0.52 0.39 0.39 0.40 0.40

FRED 0.30 0.29 0.32 0.27 0.26 0.32

Table 6. Results for the different sub tasks of task 2

System Micro Macro

F1 Prec. Recall F1 Prec. Recall

CETUS (Type Recognition) 0.70 0.69 0.70 0.66 0.64 0.72

CETUSY AGO (Type Linking) 0.25 0.20 0.34 0.23 0.20 0.34

CETUSFOX (Type Linking) 0.22 0.21 0.22 0.22 0.21 0.22

improvement. A large problem for this approach are formulations that have a
different grammatical structure than those inside the DBpedia abstracts. Thus,
a system with a better understanding of the internal structure of the sentence,
e.g., by using parse trees, could avoid these problems.

Comparing both type linking approaches, it can be seen that both have
a similar precision (see Table 6). But the YAGO-based approach has a higher
recall leading to a slightly higher F1 score. The FOX-based type linking lacks
the identification of types different to persons, organizations and locations. The
YAGO-based type linking suffers from two main problems. First, some of the
extracted local types cannot be matched to YAGO types. This might be solved
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by using a better search strategy for finding YAGO types with a similar label,
e.g., trigram similarity. The second point of failure is the mapping from YAGO
to DOLCE types. For some YAGO types there are no linked DOLCE types while
for others the linked DOLCE types are very high inside the hierarchy leading to
a coarse typing result and, thus, to a lower precision. A further improvement of
the mapping between YAGO and DOLCE types could reduce these problems.

8 Conclusion

We presented CETUS—a pattern based type extraction that can be used as
baseline for other approaches. Both versions—CETUSY AGO and CETUSFOX—
have been explained in detail and we showed the performance of FOX also on
task 1. We showed how the first one uses a label matching for determining a
super type for the automatically generated classes while the second is based on
one of the various, existing entity typing tools. Both versions outperformed the
competing systems during the OKE Challenge 2015. However, the evaluation
pointed out several possibilities for further improvement.
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