
Chapter 2
Discrete Delta Fractional Calculus and Laplace
Transforms

2.1 Introduction

At the outset of this chapter we will be concerned with the (delta) Laplace transform,
which is a special case of the Laplace transform studied in the book by Bohner and
Peterson [62]. We will not assume the reader has any knowledge of the material
in that book. The delta Laplace transform is equivalent under a transformation
to the Z-transform, but we prefer the definition of the Laplace transform given
here, which has the property that many of the Laplace transform formulas will
be analogous to the Laplace transform formulas in the continuous setting. We will
show how we can use the (delta) Laplace transform to solve initial value problems
for difference equations and to solve summation equations. We then develop the
discrete delta fractional calculus. Finally, we apply the Laplace transform method
to solve fractional initial value problems and fractional summation equations.

The continuous fractional calculus has been well developed (see the books by
Miller and Ross [147], Oldham and Spanier [152], and Podlubny [153]). But only
recently has there been a great deal of interest in the discrete fractional calculus (see
the papers by Atici and Eloe [32–36], Goodrich [88–96], Miller and Ross [146],
and M. Holm [123–125]). More specifically, the discrete delta fractional calculus
has been recently studied by a variety of authors such as Atici and Eloe [31, 32,
34, 35], Goodrich [88, 89, 91, 92, 94, 95], Miller and Ross [147], and M. Holm
[123–125]. As we shall see in this chapter, one of the peculiarities of the delta
fractional difference is its domain shifting properties. This property makes, in
certain ways, the study of the delta fractional difference more complicated than
its nabla counterpart, as a comparison of the present chapter to Chap. 3 will
demonstrate.
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88 2 Discrete Delta Fractional Calculus and Laplace Transforms

2.2 The Delta Laplace Transform

In this section we develop properties of the (delta) Laplace transform. First we give
an abstract definition of this transform.

Definition 2.1 (Bohner–Peterson [62]). Assume f W Na ! R: Then we define the
(delta) Laplace transform of f based at a by

Laff g.s/ D
Z 1

a
e�s.�.t/; a/f .t/�t

for all complex numbers s ¤ �1 such that this improper integral converges.

The following theorem gives two useful expressions for the Laplace transform
of f .

Theorem 2.2. Assume f W Na ! R. Then

La ff g .s/ D Fa.s/ WD
Z 1

0

f .a C k/

.s C 1/kC1�k (2.1)

D
1X

kD0

f .a C k/

.s C 1/kC1 ; (2.2)

for all complex numbers s ¤ �1 such that this improper integral (infinite series)
converges.

Proof. To see that (2.1) holds note that

La ff g .s/ D
Z 1

a
e�s.�.t/; a/f .t/�t

D
1X

tDa

e�s.�.t/; a/f .t/

D
1X

tDa

Œ1C �s��.t/�af .t/

D
1X

tDa

f .t/

.1C s/t�aC1

D
1X

kD0

f .a C k/

.1C s/kC1 :



2.2 The Delta Laplace Transform 89

This also gives us that

La ff g .s/ D
Z 1

0

f .a C k/

.1C s/kC1�k:

ut
To find functions such that the Laplace transform exists on a nonempty set we

make the following definition.

Definition 2.3. We say that a function f W Na ! R is of exponential order r > 0

(at 1) if there exists a constant A > 0 such that

jf .t/j 	 Art; for t 2 Na; sufficiently large.

Now we can prove the following existence theorem.

Theorem 2.4 (Existence Theorem). Suppose f W Na ! R is of exponential order
r > 0. Then La ff g .s/ converges absolutely for js C 1j > r:

Proof. Assume f W Na ! R is of exponential order r > 0. Then there is a constant
A > 0 and an m 2 N0 such that for each t 2 NaCm; jf .t/j 	 Art. Hence for
js C 1j > r,

1X
kDm

ˇ̌
ˇ̌ f .k C a/

.s C 1/kC1

ˇ̌
ˇ̌ D

1X
kDm

jf .k C a/j
js C 1jkC1

	
1X

kDm

ArkCa

js C 1jkC1

D Ara

js C 1j
1X

kDm

�
r

js C 1j
�k

D Ara

js C 1j

�
r

jsC1j
�m

1 �
�

r
jsC1j

�

D A
jsC1jm

raCm

js C 1j � r

< 1:

Hence, the Laplace transform of f converges absolutely for js C 1j > r. ut
We will see later (see Remark 2.57) that the converse of Theorem 2.4 does not hold
in general.

In this chapter, we will usually consider functions f of some exponential order
r > 0; ensuring that the Laplace transform of f does in fact converge somewhere
in the complex plane—specifically, it converges for all complex numbers outside
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the closed ball of radius r centered at negative one, that is, for js C 1j > r: We
will abuse the notation by sometimes writing Laff .t/g.s/ instead of the preferred
notation Laff g.s/:
Example 2.5. Clearly, ep .t; a/ ; p ¤ �1; a constant, is of exponential order r D
j1C pj > 0: Therefore, we have for js C 1j > r D j1C pj;

La
˚
ep.t; a/

�
.s/ D La

˚
.1C p/t�a� .s/

D
1X

kD0

.1C p/k

.s C 1/kC1

D 1

s C 1

1X
kD0

�
p C 1

s C 1

�k

D 1

s C 1

 
1

1 � pC1
sC1

!

D 1

s � p
:

Hence

Lafep.t; a/g.s/ D 1

s � p
; js C 1j > j1C pj:

An important special case (p D 0) of the above formula is

La f1g .s/ D 1

s
; for js C 1j > 1:

In the next theorem we see that the Laplace transform operator La is a linear
operator.

Theorem 2.6 (Linearity). Suppose f ; g W Na ! R and the Laplace transforms of f
and g converge for js C 1j > r, where r > 0, and let c1; c2 2 C. Then the Laplace
transform of c1f C c2g converges for js C 1j > r and

La fc1f C c2gg .s/ D c1La ff g .s/C c2La fgg .s/ ; (2.3)

for js C 1j > r:

Proof. Since f ; g W Na ! R and the Laplace transforms of f and g converge for
js C 1j > r, where r > 0, we have that for js C 1j > r
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c1La ff g .s/C c2La fgg .s/

D c1

1X
kD0

f .a C k/

.s C 1/kC1 C c2

1X
kD0

g.a C k/

.s C 1/kC1

D
1X

kD0

.c1f C c2g/.a C k/

.s C 1/kC1

D Lafc1f C c2gg.s/:

This completes the proof. ut
The following uniqueness theorem is very useful.

Theorem 2.7 (Uniqueness). Assume f ; g W Na ! R and there is an r > 0 such that

La ff g .s/ D La fgg .s/

for js C 1j > r. Then

f .t/ D g.t/; for all t 2 Na:

Proof. By hypothesis we have that

La ff g .s/ D La fgg .s/

for js C 1j > r. This implies that

1X
kD0

f .a C k/

.s C 1/kC1 D
1X

kD0

g.a C k/

.s C 1/kC1

for js C 1j > r. It follows from this that

f .a C k/ D g.a C k/; k 2 N0;

and this completes the proof. ut
Next we give the Laplace transforms of the (delta) hyperbolic sine and cosine

functions.

Theorem 2.8. Assume p ¤ ˙1 is a constant. Then

(i) Lafcoshp.t; a/g.s/ D s
s2�p2

I
(ii) Lafsinhp.t; a/g.s/ D p

s2�p2
;

for js C 1j > maxfj1C pj; j1 � pjg:
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Proof. To see that (ii) holds, consider

Lafsinhp.t; a/g.s/ D 1

2


Lafep.t; a/g.s/ � Lfe�p.t; a/g.s/
�

D 1

2

1

s � p
� 1

2

1

s C p

D p

s2 � p2

for js C1j > maxfj1C pj; j1� pjg: The proof of (i) is similar (see Exercise 2.5). ut
Next, we give the Laplace transforms of the (discrete) sine and cosine functions.

Theorem 2.9. Assume p ¤ ˙i. Then

(i) Lafcosp.t; a/g.s/ D s
s2Cp2

I
(ii) Lafsinp.t; a/g.s/ D p

s2Cp2
;

for js C 1j > maxfj1C ipj; j1 � ipjg:
Proof. To see that (i) holds, note that

Lafcosp.t; a/g.s/ D Lafcoship.t; a/g.s/

D 1

2


Lafeip.t; a/g.s/C Lfe�ip.t; a/g.s/
�

D 1

2

1

s � ip
C 1

2

1

s C ip

D s

s2 C p2
;

for js C 1j > maxfj1C ipj; j1� ipjg: For the proof of part (ii) see Exercise 2.6. ut
Theorem 2.10. Assume ˛ ¤ �1 and ˇ

1C˛ ¤ ˙1: Then

(i) Lafe˛.t; a/ cosh ˇ
1C˛

.t; a/g.s/ D s�˛
.s�˛/2�ˇ2 I

(ii) Lafe˛.t; a/ sinh ˇ
1C˛

.t; a/g.s/ D ˇ

.s�˛/2�ˇ2 ;

for js C 1j > maxfj1C ˛ C ˇj; j1C ˛ � ˇjg:
Proof. To see that (i) holds, for js C 1j > maxfj1C ˛ C ˇj; j1C ˛ � ˇjg; consider

Lafe˛.t; a/ cosh ˇ
1C˛

.t; a/g.s/

D 1

2
Lafe˛.t; a/e ˇ

1C˛

.t; a/g.s/C 1

2
Lafe˛.t; a/e �ˇ

1C˛

.t; a/g.s/

D 1

2
Lafe

˛˚ ˇ
1C˛

.t; a/g.s/C 1

2
Lafe

˛˚ �ˇ
1C˛

.t; a/g.s/
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D 1

2
Lafe˛Cˇ.t; a/g.s/C 1

2
Lafe˛�ˇ.t; a/g.s/

D 1

2

1

s � ˛ � ˇ C 1

2

1

s � ˛ C ˇ

D s � ˛
.s � ˛/2 � ˇ2 :

The proof of (ii) is Exercise 2.7. ut
Similar to the proof of Theorem 2.10 one can prove the following theorem.

Theorem 2.11. Assume ˛ ¤ �1 and ˇ

1C˛ ¤ ˙i: Then

(i) Lafe˛.t; a/ cos ˇ
1C˛

.t; a/g.s/ D s�˛
.s�˛/2Cˇ2 I

(ii) Lafe˛.t; a/ sin ˇ
1C˛

.t; a/g.s/ D ˇ

.s�˛/2Cˇ2 ;

for js C 1j > maxfj1C ˛ C iˇj; j1C ˛ � iˇjg:
When solving certain difference equations one frequently uses the following

theorem.

Theorem 2.12. Assume that f is of exponential order r > 0. Then for any positive
integer N

La
˚
�Nf

�
.s/ D sNFa.s/ �

N�1X
jD0

sj�N�1�jf .a/; (2.4)

for js C 1j > r.

Proof. By Exercise 2.2 we have for each positive integer N, the function �Nf is of
exponential order r. Hence, by Theorem 2.4 the Laplace transform of �Nf for each
N � 1 exists for js C 1j > r. Now integrating by parts we get

Laf�f g.s/ D
Z 1

a
e�s.�.t/; a/�f .t/�t

D e�s.t; a/f .t/jb!1
a �

Z 1

a
�se�s.t; a/f .t/�t

D �f .a/C s
Z 1

a
e�s.�.t/; a/f .t/�t

D sFa.s/ � f .a/

for js C 1j > r: Hence (2.4) holds for N D 1. Now assume N � 1 and (2.4)
holds. Then

Laf�NC1f g.s/ D Laf� ��Nf
�g.s/

D sLaf�Nf g.s/ ��Nf .a/
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D s

2
4sNFa.s/ �

N�1X
jD0

sj�N�1�jf .a/

3
5 ��Nf .a/

D sNC1Fa.s/ �
.NC1/�1X

jD0
sj�.NC1/�1�jf .a/:

Hence (2.4) holds for each positive integer by mathematical induction. ut
The following example is an application of formula (2.4).

Example 2.13. Use Laplace transforms to solve the IVP

�2y.t/ � 3�y.t/C 2y.t/ D 2 � 4t; t 2 N0

y.0/ D 2; �y.0/ D 4:

Assume y.t/ is the solution of the above IVP. We have, by taking the Laplace
transform of both sides of the difference equation in this example,

Œs2Y0.s/ � sy.0/ ��y.0/� � 3ŒsY0.s/ � y.0/�C 2Y0.s/ D 2

s � 3 :

Applying the initial conditions and simplifying we get

.s2 � 3s C 2/Y0.s/ D 2s � 2C 2

s � 3 :

Further simplification leads to

.s � 1/.s � 2/Y0.s/ D 2.s � 2/2
s � 3 :

Hence

Y0.s/ D 2.s � 2/
.s � 1/.s � 3/

D 1

s � 1 C 1

s � 3 :

It follows that the solution of our IVP is given by

y.t/ D e1.t; 0/C e3.t; 0/

D 2t C 4t; t 2 N0:

Now that we see that our solution is of exponential order we see that the steps we
did above are valid.
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The following corollary gives us a useful formula for solving certain summation
(delta integral) equations.

Corollary 2.14. Assume f W Na ! R is of exponential order r > 1. Then

La

�Z t

a
f .�/��



.s/ D 1

s
Laff g.s/ D Fa.s/

s

for js C 1j > r.

Proof. Since f W Na ! R is of exponential order r > 1, we have by Exercise 2.3
that the function h defined by

h.t/ WD
Z t

a
f .�/��; t 2 Na

is also of exponential order r > 1. Hence the Laplace transform of h exists for
js C 1j > r. Then

Laff g.s/ D Laf�hg.s/
D sLafhg.s/ � h.a/

D sLa

�Z t

a
f .�/��



.s/:

It follows that

La

�Z t

a
f .�/��



.s/ D 1

s
Laff g.s/ D Fa.s/

s

for js C 1j > r: ut
Example 2.15. Solve the summation equation

y.t/ D 2 � 4t C 2

t�1X
kD0

y.k/; t 2 N0: (2.5)

Equation (2.5) can be written in the equivalent form

y.t/ D 2 � e3.t; 0/C 2

Z t

0

y.k/�k; t 2 N0: (2.6)

Taking the Laplace transform of both sides of (2.6) we get, using Corollary 2.14,

Y0.s/ D 2

s � 3 C 2

s
Y0.s/:
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Solving for Y0.s/ we get

Y0.s/ D 2s

.s � 2/.s � 3/

D 6

s � 3 � 4

s � 2 :

It follows that

y.t/ D 6e3.t; 0/ � 4e2.t; 0/

D 6 � 4t � 4 � 3t; t 2 N0:

is the solution of (2.5).

Next we introduce the Dirac delta function and find its Laplace transform.

Definition 2.16. Let c 2 Na. We define the Dirac delta function at c on Na by

ıc.t/ D
(
1; t D c

0; t ¤ c:

Theorem 2.17. Assume c 2 Na. Then

Lafıcg.s/ D 1

.s C 1/c�aC1 for js C 1j > 0:

Proof. For js C 1j > 0;

Lafıcg.s/ D
1X

kD0

ıc.a C k/

.s C 1/kC1

D 1

.s C 1/c�aC1 :

This completes the proof. ut
Next we define the unit step function and later find its Laplace transform.

Definition 2.18. Let c 2 Na. We define the unit step function on Na by

uc.t/ D
(
0; t 2 N

c�1
a

1; t 2 Nc:

We now prove the following shifting theorem.
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Theorem 2.19 (Shifting Theorem). Let c 2 Na and assume the Laplace transform
of f W Na ! R exists for js C 1j > r: Then the following hold:

(i) Laff .t � .c � a//uc.t/g.s/ D 1
.sC1/c�a Laff g.s/I

(ii) Laff .t C .c � a//g.s/ D .s C 1/c�a
h
Laff g.s/ �Pc�a�1

kD0
f .aCk/
.sC1/kC1

i
;

for js C 1j > r: (In (i) we have the convention that f .t � .c � a//uc.t/ D 0 for
t 2 N

c�1
a if c � a C 1.)

Proof. To see that (i) holds, consider

Laff .t C a � c/uc.t/g.s/ D
1X

kD0

f .2a C k � c/uc.a C k/

.s C 1/kC1

D
1X

kDc�a

f .2a C k � c/

.s C 1/kC1

D
1X

kD0

f .2a C k C c � a � c/

.s C 1/kCc�aC1

D
1X

kD0

f .a C k/

.s C 1/kCc�aC1

D 1

.s C 1/c�a

1X
kD0

f .a C k/

.s C 1/kC1

D 1

.s C 1/c�a
Laff g.s/

for js C 1j > r:
Part (ii) holds since

Laff .t C .c � a//g.s/ D
1X

kD0

f .a C k C c � a/

.s C 1/kC1

D
1X

kD0

f .k C c/

.s C 1/kC1

D
1X

kDc�a

f .a C k/

.s C 1/k�cCaC1

D .s C 1/c�a
1X

kDc�a

f .a C k/

.s C 1/kC1
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D .s C 1/c�a

" 1X
kD0

f .a C k/

.s C 1/kC1 �
c�a�1X

kD0

f .a C k/

.s C 1/kC1

#

D .s C 1/c�a

"
Laff g.s/ �

c�a�1X
kD0

f .a C k/

.s C 1/kC1

#

for js C 1j > r: ut
In the following example we will use part (i) of Theorem 2.19 to solve an IVP.

Example 2.20. Solve the IVP

�y.t/ � 3y.t/ D 2ı50.t/; t 2 N0

y.0/ D 5:

Taking the Laplace transform of both sides, we get

sY0.s/ � y.0/ � 3Y0.s/ D 2

.s C 1/51
:

Using the initial condition and solving for Y0.s/ we have that

Y0.s/ D 5

s � 3 C 2

s � 3
1

.s C 1/51
:

Taking the inverse transform of both sides we get the desired solution

y.t/ D 5e3.t; 0/C 2e3.t � 51; 0/u51.t/
D 5.4t/C 2.4/t�51u51.t/; t 2 N0:

In the following example we will use part (ii) of Theorem 2.19 to solve an IVP.

Example 2.21. Use Laplace transforms to solve the IVP

y.t C 2/C y.t C 1/ � 6y.t/ D 0; t 2 N0

y.0/ D 5; y.1/ D 2:

Assume y.t/ is the solution of this IVP and take the Laplace transform of both sides
of the given difference equation to get (using part (ii) of Theorem 2.19) that

.s C 1/2
�

Y0.s/ � 5

s C 1
� 2

.s C 1/2

	
C .s C 1/

�
Y0.s/ � 5

s C 1

	
� 6Y0.s/ D 0:



2.3 Fractional Sums and Differences 99

Solving for Y0.s/ we get

Y0.s/ D 5s C 12

.s � 1/.s C 4/

D 17

5

1

s � 1 C 8

5

1

s C 4
:

Taking the inverse transform of both sides we get

y.t/ D 17

5
e1.t; 0/C 8

5
e�4.t; 0/

D 17

5
2t C 8

5
.�3/t; t 2 N0:

Theorem 2.22. The following hold for n � 0:

(i) Lafhn.t; a/g.s/ D 1

snC1 for js C 1j > 1I
(ii) Laf.t � a/ng.s/ D nŠ

snC1 for js C 1j > 1:
Proof. The proof of this theorem follows from Corollary 2.14 and the fact that
Lf1g.s/ D 1

s for js C 1j > 1: ut

2.3 Fractional Sums and Differences

The following theorem will motivate the definition of the n-th integer sum, which
will in turn motivate the definition of the 
-th fractional sum. We will then define
the 
-th fractional difference in terms of the 
-th fractional sum.

Theorem 2.23 (Repeated Summation Rule). Let f W Na ! R be given, then

Z t

a

Z �1

a
� � �
Z �n�1

a
f .�n/��n � � ���2��1 D

Z t

a
hn�1.t; �.s//f .s/�s: (2.7)

Proof. We will prove this by induction on n for n � 1. The case n D 1 is trivially
true. Assume (2.7) holds for some n � 1. It remains to show that (2.7) then holds
when n is replaced by n C 1. To this end, let

y.t/ WD
Z t

a

Z �1

a
� � �
Z �n�1

a

Z �n

a
f .�nC1/��nC1��n � � ���2��1:

Let g.�n/ D R �n

a f .�nC1/��nC1, then it follows from the induction assumption that
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y.t/ D
Z t

a
hn�1.t; �.s//g.s/�s

D
Z t

a
u.s/�v.s/�s;

where

u.s/ WD g.s/; �v.s/ D hn�1.t; �.s//:

It follows (using Theorem 1.61, (v)) that

�u.s/ D f .s/ v.s/ D �hn.t; s/; v.�.s// D �hn.t; �.s//:

Hence, integrating by parts, it follows that

y.t/ D �hn.t; s/
Z s

a
f .�nC1/��nC1

ˇ̌
ˇ
t

a

C
Z t

a
hn.t; �.s//f .s/�s

D
Z t

a
hn.t; �.s//f .s/�s:

This completes the proof. ut
Motivated by (2.7), we define the n-th integer sum ��n

a f .t/ for positive integers
n, by

��n
a f .t/ D

Z t

a
hn�1.t; �.s//f .s/�s:

But, since

hn�1.t; �.s// D 0; s D t � 1; t � 2; � � � ; t � n C 1;

we obtain

��n
a f .t/ D

Z t�nC1

a
hn�1.t; �.s//f .s/�s; (2.8)

which we consider the correct form of the n-th integer sum of f .t/. Before we use
the definition (2.8) of the n-th integer sum to motivate the definition of the 
-th
fractional sum, we define the 
-th fractional Taylor monomial as follows.
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Definition 2.24. The 
-th fractional Taylor monomial based at s is defined by

h
.t; s/ D .t � s/


�.
 C 1/
;

whenever the right-hand side is well defined.

We can now define the 
-th fractional sum.

Definition 2.25. Assume f W Na ! R and 
 > 0. Then the 
-th fractional sum of f
(based at a) is defined by

��

a f .t/ WD

Z t�
C1

a
h
�1.t; �.�//f .�/��

D
t�
X
�Da

h
�1.t; �.�//f .�/;

for t 2 NaC
: Note that by our convention on delta integrals (sums) we can extend
the domain of ��


a f to NaC
�N , where N is the unique positive integer satisfying
N � 1 < 
 	 N; by noting that

��

a f .t/ D 0; t 2 N

aC
�1
aC
�N :

The expression “fractional sum” is actually is misnomer as we define the 
-th
fractional sum of a function for any 
 > 0. Expressions like �

p
3

a y.t/ and �	
a y.t/

are well defined.

Remark 2.26. Note that the value of the 
-th fractional sum of f based at a is a
linear combination of f .a/; f .a C 1/; � � � ; f .t � 
/; where the coefficient of f .t � 
/
is one. In particular one can check that ��


a f .t/ has the form

��

a f .t/ D h
�1.t; �.a//f .a/C � � � C 
f .t � 
 � 1/C f .t � 
/: (2.9)

The following formulas concerning the fractional Taylor monomials generalize
the integer version of this theorem (Theorem 1.61).

Theorem 2.27. Let t; s 2 Na. Then

(i) h
.t; t/ D 0

(ii) �h
.t; a/ D h
�1.t; a/I
(iii) �sh
.t; s/ D �h
�1.t; �.s//I
(iv)

R
h
.t; a/�t D h
C1.t; a/C CI

(v)
R

h
.t; �.s//�s D �h
C1.t; s/C C;

whenever these expressions make sense.
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Proof. To see that (iii) holds, note that

�sh
.t; s/ D h
.t; s C 1/ � h
.t; s/

D .t � s � 1/

�.
 C 1/

� .t � s/


�.
 C 1/

D �.t � s/

�.t � s � 
/�.
 C 1/
� �.t � s C 1/

�.t � s C 1 � 
/�.
 C 1/

D
�
.t � s � 
/ � .t � s/

	
�.t � s/

�.
 C 1/�.t � s � 
 C 1/

D � .
 C 1/�.t � s/

�.
/�.t � s � 
 C 1/

D � �.t � s/

�.
/�.t � s � 
 C 1/

D � .t � �.s//
�1

�.
/

D �h
�1.t; �.s//:

The rest of the proof of this theorem is Exercise 2.16. ut
Example 2.28. Using the definition of the fractional sum (Definition 2.25), find

�
� 1
2

0 1:

Using Theorem 2.27, part (v), we get

�
� 1
2

0 1 D
Z tC 1

2

0

h� 1
2
.t; �.s// � 1 �s

D �h 1
2
.t; s/

ˇ̌sDtC 1
2

sD0

D �h 1
2
.t; t C 1

2
/C h 1

2
.t; 0/

D � .�
1
2
/
1
2

�. 3
2
/

C t
1
2

�. 3
2
/

D 2p
	

t
1
2 :

Later we will give a formula (2.16) that also gives us this result.

Next we define the fractional difference in terms of the fractional sum.
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Definition 2.29. Assume f W Na ! R and 
 > 0. Choose a positive integer N such
that N � 1 < 
 	 N. Then we define the 
-th fractional difference by

�

af .t/ WD �N��.N�
/

a f .t/; t 2 NaCN�
:

Note that our fractional difference agrees with our prior understanding of whole-
order differences—that is, for any 
 D N 2 N0

�

af .t/ WD �N��.N�
/

a f .t/ D �N��0
a f .t/ D �Nf .t/; (2.10)

for t 2 Na. This is called the Riemann–Liouville definition of the 
-th delta
fractional difference.

Remark 2.30. We will see in the proof of Theorem 2.35 below that the value of the
fractional difference�


af .t/ depends on the values of f on N
tC

aC
�N . This full history

nature of the value of the 
-th fractional difference of f is one of the important
features of this fractional difference. In contrast if one is studying an n-th order
difference equation, the term �nf .t/ only depends on the values of f at the n C 1

points t; t C 1; t C 2; � � � ; t C n.

Example 2.31. Use Definition 2.29 to find �
1
2

0 1: Using Example 2.28, we have that

�
1
2

0 1 D ��
� 1
2

0 1

D �
2p
	

t
1
2

D 1p
	

t�
1
2 :

Later we will give a formula (see (2.22)) that also gives us this result.

The following Leibniz formulas will be very useful.

Lemma 2.32 (Leibniz Formulas). Assume f W NaC� � Na ! R. Then

�

� Z t��C1

a
f .t; �/��

	
D
Z t��C1

a
�tf .t; �/�� C f .t C 1; t � �C 1/ (2.11)

and

�

� Z t��C1

a
f .t; �/��

	
D
Z t��C2

a
�tf .t; �/�� C f .t; t � �C 1/ (2.12)

for t 2 NaC�; where the �tf .t; s/ inside the integral means the difference of f .t; �/
with respect to t.



104 2 Discrete Delta Fractional Calculus and Laplace Transforms

Proof. To see that (2.11) holds, note that, for t 2 NaC�,

�

� Z t��C1

a
f .t; �/��

	
D
Z t��C2

a
f .t C 1; �/�� �

Z t��C1

a
f .t; �/��

D
Z t��C1

a
�tf .t; �/�� C f .t C 1; t C 1 � �/:

The proof of (2.12) is Exercise 2.19. ut
In the next theorem we give a very useful formula for�


af .t/. We call this formula
the alternate definition of �


af .t/ (see Holm [123, 124]).

Theorem 2.33. Let f W Na! R and 
 > 0 be given, with N � 1 < 
 	 N: Then

�

af .t/ WD

( R tC
C1
a h�
�1.t; �.�//f .�/��; N � 1 < 
 < N
�Nf .t/; 
 D N

(2.13)

for t 2 NaCN�
:

Proof. First note that if 
 D N 2 N0; then using (2.10), we have that

�

af .t/ D �N��.N�
/

a f .t/ D �N��0
a f .t/ D �Nf .t/:

Now assume N � 1 < 
 < N: Our proof of (2.13) will follow from N applications
of the Leibniz formula (2.12). To see this we have for t 2 NaCN�
;

�

af .t/ D �N��.N�
/

a f .t/

D �N

"Z t�.N�
/C1

a
hN�
�1.t; �.�//f .�/��

#

D �N�1 ��
� Z t�.N�
/C1

a
hN�
�1.t; �.�//f .�/��

	
:

Using the Leibniz rule (2.12), we get

�

af .t/ D �N�1

"Z t�.N�
�1/C1

a
hN�
�2.t; �.�//f .�/��

C hN�
�1.t; t � .N � 
 � 2//f .t � .N � 
 � 1//
#

D �N�1
"Z t�.N�
�1/C1

a
hN�
�2.t; �.�//f .�/��

#
:
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Applying the Leibniz formula (2.12) again we get

�

af .t/ D �N�2

"Z t�.N�
�2/C1

a
hN�
�3.t; �.�//f .�/��

C hN�
�2.t; t � .N � 
 � 3//f .t � .N � 
 � 2//
#

D �N�2
"Z t�.N�
�2/C1

a
hN�
�3.t; �.�//f .�/��

#
:

Repeating these steps N � 2 more times, we find that

�

af .t/ D �N�N

"Z t�.N�
�N/C1

a
hN�
�N�1.t; �.�//f .�/��

C hN�
�N.t; t � .N � 
 � .N C 1//f .t � .N � 
 � N//

#

D
Z tC
C1

a
h�
�1.t; �.�//f .�/�� C h�
.t; t C 
 C 1/f .t C 
/

D
Z tC
C1

a
h�
�1.t; �.�//f .�/��:

This completes the proof. ut
Remark 2.34. By Theorem 2.33 we get for all 
 > 0, 
 … N1 that the formula for
�


af .t/ can be obtained from the formula for��

a f .t/ in Definition 2.25 by replacing


 by �
 and vice-versa, but the domains are different.

Theorem 2.35 (Existence-Uniqueness Theorem). Assume q; f W N0 ! R, 
 > 0
and N is a positive integer such that N � 1 < 
 	 N. Then the initial value problem

�


�Ny.t/C q.t/y.t C 
 � N/ D f .t/; t 2 N0 (2.14)

y.
 � N C i/ D Ai; 0 	 i 	 N � 1; (2.15)

where Ai, 0 	 i 	 N � 1; are given constants, has a unique solution on N
�N :

Proof. Note that by Remark 2.26, for each fixed t, ��.N�
/

�N y.t/ is a linear combina-

tion of y.
� N/; y.
� N C 1/; � � � ; y.t � N C 
/ with the coefficient of y.t � N C 
/

being one. Since
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�


�Ny.t/ D �N�

�.N�
/

�N y.t/;

we have for each fixed t,�


�Ny.t/ is a linear combination of y.
�N/; y.
�N C1/,

� � � ; y.t C 
/, where the coefficient of y.t C 
/ is one. Now define y.t/ on N

�1

�N

by the initial conditions (2.15). Then note that y.t/ satisfies the fractional difference
equation (2.14) at t D 0 iff

�


�Ny.0/C q.0/y.
 � N/ D f .0/:

But this holds iff

.� � � /y.
 � N/C .� � � /y.
 � N C 1/C � � � C y.
/C q.0/y.
 � N/ D f .0/;

which is equivalent to the equation

.� � � /A0 C .� � � /A1 C � � � C .� � � /An�1 C y.
/C q.0/A0 D f .0/:

Hence if we define y.
/ to be the solution of this last equation, then y.t/ satisfies the
fractional difference equation at t D 0. Summarizing, we have shown that knowing
y.t/ at the points 
 � N C i, 0 	 i 	 N � 1 uniquely determines what the value of
the solution is at the next point 
. Next one uses the fact that the values of y.t/ on
N



�N uniquely determine the value of the solution at 
 C 1. An induction argument

shows that the solution is uniquely determined on N
�N : ut
Remark 2.36. We could easily extend Theorem 2.35 to the case when f ; q W Na ! R

instead of the special case a D 0 that we considered in Theorem 2.35. Also, the term
q.t/y.t C
� N/ in equation (2.14) could be replaced by q.t/y.t C
� N C i/ for any
0 	 i 	 N � 1: Note that we picked the nice set N0 so that the fractional difference
equation needs to be satisfied for all t 2 N0, but then solutions are defined on the
shifted set N
�N : By shifting the set on which the fractional difference equation is
defined, we can evidently obtain solutions that are defined on the nicer set N0. In this
book our convention when considering fractional difference equations is to assume
the fractional difference equation is satisfied for t 2 Na and the solutions are defined
on NaC
�N :

In a standard manner one gets the following result that follows from Theo-
rem 2.35.

Theorem 2.37. Assume q W N0 ! R. Then the homogeneous fractional difference
equation

�


�Nu.t/C q.t/u.t C 
 � N/ D 0; t 2 N
�N

has N linearly independent solutions ui.t/, 1 	 i 	 N, on N0 and

u.t/ D c1u1.t/C c2u2.t/C � � � C cNuN.t/;
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where c1; c2; � � � ; cN are arbitrary constants, is a general solution of this homoge-
neous fractional difference equation on N0. Furthermore, if in addition, yp.t/ is a
particular solution of the nonhomogeneous fractional difference equation (2.14) on
N0, then

y.t/ D c1u1.t/C c2u2.t/C � � � C cNuN.t/C yp.t/;

where c1; c2; � � � ; cN are arbitrary constants, is a general solution of the nonhomo-
geneous fractional difference equation (2.14).

2.4 Fractional Power Rules

Using the Leibniz formula we will prove the following fractional sum power rule.
Later in this chapter (see Theorem 2.71) we will use discrete Laplace transforms to
give an easier proof of this theorem. Later we will see that the fractional difference
power rule (Theorem 2.40) will follow from this fractional sum power rule.

Theorem 2.38 (Fractional Sum Power Rule). Assume � � 0 and 
 > 0. Then

��

aC�.t � a/� D �.�C 1/

�.�C 
 C 1/
.t � a/�C
 (2.16)

for t 2 NaC�C
:

Proof. Let

g1.t/ WD �.�C 1/

�.�C 
 C 1/
.t � a/�C
;

and

g2.t/ WD ��

aC�.t � a/� D

t�
X
sDaC�

h
�1.t; �.s//.s � a/�; (2.17)

for t 2 NaC�C
: To complete the proof we will show that both of these functions
satisfy the initial value problem

.t � a � .�C 
/C 1/�g.t/ D .�C 
/g.t/ (2.18)

g.a C �C 
/ D �.�C 1/: (2.19)

Since

g1.a C �C 
/ D �.�C 1/

�.�C 
 C 1/
.�C 
/�C


D �.�C 1/
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and

g2.a C �C 
/ D 1

�.
/

aC�X
sDaC�

.a C �C 
 � �.s//
�1.s � a/�

D 1

�.
/
.
 � 1/
�1��

D �.�C 1/

we have that gi.t/, i D 1; 2 both satisfy the initial condition (2.19).
We next show that g1.t/ satisfies the difference equation (2.18). Note that

�g1.t/ D .�C 
/
�.�C 1/

�.�C 
 C 1/
.t � a/�C
�1:

Multiplying both sides by t � a � .�C 
/C 1 we obtain

.t � a � .�C 
/C 1/�g1.t/

D .�C 
/
�.�C 1/

�.�C 
 C 1/
Œt � a � .�C 
 � 1/�.t � a/�C
�1

D .�C 
/
�.�C 1/

�.�C 
 C 1/
.t � a/�C
 by Exercise (1.9)

D .�C 
/g1.t/

for t 2 NaC�C
: That is, g1.t/ is a solution of (2.18).
It remains to show that g2.t/ satisfies (2.18). Using (2.17) we have that

g2.t/

D 1

�.
/

t�
X
sDaC�



.t � �.s// � .
 � 2/�.t � �.s//
�2.s � a/�

D 1

�.
/

t�
X
sDaC�



.t � a � .�C 
/C 1/ � .s � a � �/�.t � �.s//
�2.s � a/�

D t � a � .�C 
/C 1

�.
/

t�
X
sDaC�

.t � �.s//
�2.s � a/�

� 1

�.
/

t�
X
sDaC�

.t � �.s//
�2.s � a � �/.s � a/�

D h.t/ � k.t/;
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where

h.t/ WD t � a � .�C 
/C 1

�.
/

t�
X
sDaC�

.t � �.s//
�2.s � a/�

and

k.t/ WD 1

�.
/

t�
X
sDaC�

.t � �.s//
�2.s � a � �/.s � a/�

D 1

�.
/

t�
X
sDaC�

.t � �.s//
�2.s � a/�C1:

Using (2.17) and (2.11) we get

�g2.t/

D 
 � 1
�.
/

t�
X
sDaC�

.t � �.s//
�2.s � a/� C 1

�.
/
.
 � 1/
�1.t C 1 � 
 � a/�

D 
 � 1
�.
/

t�
X
sDaC�

.t � �.s//
�2.s � a/� C .t C 1 � 
 � a/�:

It follows that

.t � a C .�C 
/C 1/�g2.t/ D .
 � 1/h.t/C .t C 1 � 
 � a/�C1: (2.20)

Also, integrating by parts we get (here we also use Lemma 2.32)

k.t/ D 1

�.
/

t�
X
sDaC�

.t � �.s//
�2.s � a/�C1

D 1

�.
/

"
� .s � a/�C1.t � s/
�1


 � 1

#sDtC1�


sDaC�

C �C 1

.
 � 1/�.
/
t�
X

sDaC�
.t � �.s//
�1.s � a/�

D � .t C 1 � 
 � a/�C1


 � 1 C �C 1

.
 � 1/�.
/
t�
X

sDaC�
.t � �.s//
�1.s � a/�:
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It follows that

.t C 1 � 
 � a/�C1 D �.
 � 1/k.t/C .�C 1/g2.t/: (2.21)

Finally, from (2.21) and (2.20), we get

.t � a C .�C 
/C 1/�g2.t/ D .
 � 1/h.t/C .t C 1 � 
 � a/�C1

D .
 � 1/h.t/ � .
 � 1/k.t/C .�C 1/g2.t/

D .�C 
/g2.t/:

This completes the proof. ut
Example 2.39. Find

�
� 3
2

5
2

.t � 2/ 12 ; t 2 N2:

Consider

�
� 3
2

5
2

.t � 2/ 12 D �
� 3
2

2C 1
2

.t � 2/ 12

D �.3
2
/

�.3/
.t � 2/2

D
p
	

4
.t � 2/2

D
p
	

4
.t2 � 5t C 6/;

for t 2 N2:

Theorem 2.40 (Fractional Difference Power Rule). Assume � > 0 and 
 � 0;

N � 1 < 
 < N. Then

�

aC�.t � a/� D �.�C 1/

�.� � 
 C 1/
.t � a/��
 (2.22)

for t 2 NaC�CN�
:

Proof. To see that (2.22) holds, note that

�

aC�.t � a/� D �N�

�.N�
/
aC� .t � a/�

D �N

�
�.�C 1/

�.�C 1C N � 
/ .t � a/�CN�

�
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D �.�C 1/

�.�C 1C N � 
/ �
N.t � a/�CN�


D �.�C 1/.�C N � 
/N
�.�C 1C N � 
/ .t � a/��


D �.�C 1/

�.�C 1 � 
/.t � a/��
:

This completes the proof. ut
Example 2.41. Find

�
1
2
5
2

.t � 1/ 32 ; t 2 N1:

Consider

�
1
2
5
2

.t � 1/ 32 D �
1
2

1C 3
2

.t � 1/ 32

D �.5
2
/

�.2/
.t � 1/1

D 3
p
	

4
.t � 1/;

for t 2 N1:

The fractional power rules in terms of Taylor monomials take a nice form as we
see in the following theorem.

Theorem 2.42. Assume � > 0; 
 > 0, then the following hold:

(i) ��

aC�h�.t; a/ D h�C
.t; a/; t 2 NaC�C
 I

(ii) �

aC�h�.t; a/ D h��
.t; a/; t 2 NaC��
:

Proof. To see that (i) follows from Theorem 2.38 note that for t 2 NaC�C


��

aC�h�.t; a/ D ��


aC�
.t � a/�

�.�C 1/

D 1

�.�C 1/

�.�C 1/

�.�C 
 C 1/
.t � a/�C


D .t � a/�C


�.�C 
 C 1/

D h�C
.t; a/:

Similarly, part (ii) follows from Theorem 2.40 (see Exercise 2.22). ut
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Theorem 2.43. Assume� > 0 and N is a positive integer such that N�1 < � 	 N.
Then for any constant a

x.t/ D c1.t � a/��1 C c2.t � a/��2 C � � � C cN.t � a/��N

for all constants c1; c2; � � � ; cN, is a solution of the fractional difference equation
�
�
aC��Ny.t/ D 0 on NaC��N :

Proof. Let � and N be as in the statement of this theorem. If � D N, then for
1 	 k 	 N, we have that

�
�
aC��N.t � a/��k D �N.t � a/N�k D 0:

Now assume that N � 1 < � < N. Then we want to consider the expression

�
�
aC��N.t � a/��k:

Note that since the subscript and the exponent do not match up in the correct
way we cannot immediately apply formula (2.22) to the above expression. To
compensate for this we do the following.

�
�
aC��N .t � a/��k D

tC�X
sDaC��N

h���1.t; �.s//.s � a/��k

D
tC�X

sDaC��k

h���1.t; �.s//.s � a/��k;

since

.s � a/��k D 0; for s D a C � � N; a C � � N C 1; � � � ; a C � � k � 1:

Therefore, we have that

�
�
aC��N .t � a/��k D �

�
aC��k.t � a/��k

D �.� � k C 1/

�.1 � k/
.t � a/�k

D 0:

The conclusion of the theorem then follows from the fact that ��
a is a linear

operator. ut
It follows from Theorem 2.43 that

x.t/ D a1h��1.t; a/C a2h��2.t; a/C � � � C aNh��N.t; a/

is a general solution of �aC��Ny.t/ D 0:
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Theorem 2.44 (Continuity of Fractional Differences). Let f W Na ! R be given.
Then the fractional difference�


af is continuous with respect to 
 for 
 > 0: By this
we mean for each fixed m 2 N0,

�

af .a C d
e � 
 C m/;

where d
e denotes the ceiling of 
, is continuous for 
 > 0:

Proof. To prove this theorem it suffices to prove the following:

(i) �

af .a C N � 
 C m/ is continuous with respect to 
 on .N � 1;N/I

(ii) lim
!N� �

af .a C N � 
 C m/ D �Nf .a C m/I

(iii) lim
!.N�1/C �

af .a C N � 
 C m/ D �N�1f .a C m C 1/:

First we show that (i) holds. For any fixed 
 > 0 with N � 1 < 
 < N, we have

�

af .a C N � 
 C m/ D

tC
X
sDa

h�
�1.t; �.s//f .s/

ˇ̌
ˇ̌
ˇ
tDaCN�
Cm

D
aCNCmX

sDa

h�
�1.a C N � 
 C m; �.s//f .s/

D
aCNCm�1X

sDa

h�
�1.a C N � 
 C m; �.s//f .s/C f .a C N C m/

D
aCNCm�1X

sDa

.a C N � 
 C m � �.s//�
�1

�.�
/ f .s/C f .a C N C m/

D
aCNCm�1X

sDa

�.a C N � 
 C m � s/

�.a C N C m � s C 1/�.�
/ f .s/C f .a C N C m/

D
aCNCm�1X

sDa

�
.a C N � 
 C m � s � 1/ � � � .�
/

.a C N C m � s/Š
f .s/

�

C f .a C N C m/

D
NCmX
iD1

�
.i � 1 � 
/ � � � .�
 C 1/ .�
/

iŠ
f .a C N C m � i/

�

C f .a C N C m/:
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It follows from this last expression that�

af .aCN �
Cm/ is a continuous function

of 
, for N � 1 < 
 < N.

lim

!N�

�

af .a C N � 
 C m/

D lim

!N�

h NCmX
iD1

�
.i � 1 � 
/ � � � .�
/

iŠ
f .a C N C m � i/

�

C f .a C N C m/
i

D
NCmX
iD1

�
.i � 1 � N/ � � � .�N/

iŠ
f .a C N C m � i/

�
C f .a C N C m/

D
NX

iD1

�
.i � 1 � N/ � � � .�N/

iŠ
f .a C N C m � i/

�
C f .a C N C m/;

D
NX

iD1

�
.�1/i .N/ � � � .N � i C 1/

iŠ
f .a C N C m � i/

�
C f .a C N C m/

D
NX

iD1

 
.�1/i

 
N

i

!
f .a C N C m � i/

!

C f .a C N C m/

D
NX

iD0
.�1/i

 
N

i

!
f .a C N C m � i/

D
NX

iD0
.�1/i

 
N

i

!
f ..a C m/C N � i/

D �Nf .a C m/:

Hence, (ii) holds.
Finally, we show (iii) holds. To see this consider

lim

!.N�1/C

�

af .a C N � 
 C m/

D lim

!.N�1/C

"
NCmX
iD1

�
.i � 1 � 
/ � � � .�
/

iŠ
f .a C N C m � i/

�

C f .a C N C m/

#
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D
NCmX
iD1

�
.i � N/ � � � .�N C 1/

iŠ
f .a C N C m � i/

�
C f .a C N C m/

D
N�1X
iD1

�
.i � N/ � � � .�N C 1/

iŠ
f .a C N C m � i/

�
C f .a C N C m/

D
N�1X
iD1

�
.�1/i .N � 1/ � � � .N � i/

iŠ
f .a C N C m � i/

�

Cf .a C N C m/

D
N�1X
iD1

 
.�1/i

 
N � 1

i

!
f .a C N C m � i/

!
C f .a C N C m/

D
N�1X
iD0

 
.�1/i

 
N � 1

i

!
f .a C m C 1C .N � 1/ � i/

!

D �N�1f .a C m C 1/.

Hence, (iii) holds. ut
The binomial expression for �Nf .t/ is given by

�Nf .t/ D
NX

iD0
.�1/i

 
N

i

!
f .t C N � i/:

In the following theorem we give the binomial expressions for fractional
differences and fractional sums.

Theorem 2.45 (Fractional Binomial Formulas). Assume N � 1 < 
 	 N and
f W Na ! R. Then

�

af .t/ D

tC
�aX
kD0

.�1/k
 



k

!
f .t C 
 � k/; t 2 NaCN�
 (2.23)

and

��

a f .t/ D

t�a�
X
kD0

.�1/k
 

�

k

!
f .t � 
 � k/ (2.24)

D
t�a�
X

kD0

 

 C k � 1

k

!
f .t � 
 � k/; t 2 NaC
: (2.25)
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Proof. Assume f W Na ! R and 0 	 
 	 N. Fix t 2 NaCN�
 . Then t D a C N �

 C m; for some m 2 N0: Then

�

af .t/ D

Z tC
C1

a
h�
�1.t; �.�//f .�/��

D
tC
X
�Da

.t � �.�//�
�1

�.�
/ f .�/

D
tC
X
�Da

�.t � �/
�.t � � C 
 C 1/�.�
/ f .�/

D
aCNCmX
�Da

�.a C N � 
 C m � �/
�.a C N C m � � C 1/�.�
/ f .�/

D
NCmX
�D0

�.N C m � � � 
/
�.N C m � � C 1/�.�
/ f .a C �/

D f .a C N C m/C
NCm�1X
�D0

.N C m � 1 � � � 
/ � � � .�
/
�.N C m � � C 1/

f .a C �/

D f .a C N C m/

C
NCm�1X
�D0

.�1/NCm�� .
/ � � � .
 � .N C m � �/C 1/

�.N C m � � C 1/
f .a C �/

D
NCmX
�D0

.�1/NCm��
 




N C m � �

!
f .a C �/

D
NCmX
kD0

.�1/k
 



k

!
f .a C N C m � k/

D
NCmX
kD0

.�1/k
 



k

!
f ..a C N � 
 C m/C 
 � k/

D
t�aC
X

kD0
.�1/k

 



k

!
f .t C 
 � k/:

Hence (2.23) holds. Since we can obtain the formula for ��

a f .t/ from the formula

for�

af .t/ by replacing 
 by �
 we get that (2.24) holds with the appropriate change

in domains. Finally, since
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�

k

!
D .�1/k

 

 C k � 1

k

!
;

(2.25) follows immediately from (2.24). ut
Note that if we let 
 D N in (2.23), we get the following integer binomial

expression for �Nf .t/, that is

�Nf .t/ D
NX

kD0
.�1/k

 
N

k

!
f .t C N � k/; t 2 Na:

2.5 Composition Rules

Theorem 2.46 (Composition of Fractional Sums). Assume f is defined on Na

and �; 
 are positive numbers. Then



�

��
aC


�
��


a f
��
.t/ D �

��.�C
/
a f

�
.t/ D

h
��


aC�
�
���

a f
�i
.t/

for t 2 NaC�C
:

Proof. For t 2 NaC�C
 , consider



�

��
aC


�
��


a f
��
.t/ D

t��X
sDaC


h��1.t; �.s//
�
��


a f
�
.s/

D
t��X

sDaC

h��1.t; �.s//

s�
X
rDa

h
�1.s; �.r//f .r/

D 1

�.�/�.
/

t��X
sDaC


s�
X
rDa

.t � �.s//��1.s � �.r//
�1f .r/

D 1

�.�/�.
/

t�.�C
/X
rDa

t��X
sDrC


.t � �.s//��1.s � �.r//
�1f .r/;

where in the last step we interchanged the order of summation. Letting x D s ��.r/
we obtain



�

��
aC


�
��


a f
��
.t/

D 1

�.�/�.
/

t�.�C
/X
rDa

"
t���r�1X

xD
�1
.t � x � r � 2/��1x
�1

#
f .r/
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D 1

�.
/

t�.�C
/X
rDa

2
4 1

�.�/

.t�r�1/��X
xD
�1

.t � r � 1 � �.x//��1x
�1
3
5 f .r/

D 1

�.
/

t�.�C
/X
rDa



�

��

�1t


�1�
t!t�r�1 f .r/:

But by Theorem 2.38

�
��

�1t


�1 D �.
/

�.
 C �/
t�C
�1

and therefore



�

��
aC


�
��


a f
��
.t/ D 1

�.
/

t�.�C
/X
rDa

�.
/

�.�C 
/
.t � r � 1/�C
�1f .r/

D 1

�.�C 
/

t�.�C
/X
rDa

.t � �.r//�C
�1f .r/

D �
��.�C
/

a f
�
.t/;

t 2 NaC
C�; which is one of the desired conclusions. Interchanging � and 
 in the
above formula we also get the result

h
��


aC�
�
���

a f
�i
.t/ D �

��.�C
/
a f

�
.t/

for t 2 NaC�C
: ut
In the next lemma we give composition rules for an integer difference with a

fractional sum and with a fractional difference. Atici and Eloe proved (2.26) with
the additional assumption that 0 < k < 
 and Holm [123, 125] proved (2.26) in this
more general setting.

Lemma 2.47. Assume f W Na ! R, 
 > 0, N � 1 < 
 	 N: Then



�k
�
��


a f
��
.t/ D �

�k�

a f

�
.t/; t 2 NaC
: (2.26)

and



�k
�
�


af
��
.t/ D �

�kC

a f

�
.t/; t 2 NaCN�
: (2.27)

Proof. First we prove that


�k
�
��k

a f
��
.t/ D f .t/; t 2 NaCk (2.28)



2.5 Composition Rules 119

by induction for k 2 N1. For the base case we have

���1
a f .t/ D �

� Z t

a
f .�/��

	
D f .t/

for t 2 NaC1: Now assume k � 1 and (2.28) holds. Then

�kC1�kC1
a f .t/ D �kC1��1

aCk�
�k
a f .t/ using Theorem 2.46

D �kŒ���1
aCk��

�k
a f .t/

D �k��k
a f .t/ by the base case with base a C k

D f .t/ by the induction assumption (2.28)

for t 2 NaCkC1: Therefore, for k � N

�k��N
a f .t/ D �k�N Œ�N��N

a �f .t/ D �k�Nf .t/

and for k < N

�k��N
a f .t/ D �k��k

aCN�kŒ�
�.N�k/
a �f .t/ D ��.N�k/

a f .t/ D �k�N
a f .t/

for t 2 NaCN : Hence for all k 2 N1 we have that (2.26) holds for the case 
 D N:
It is also true that (2.27) holds when 
 D N: Assume for the rest of this proof that
N � 1 < 
 < N. We will now show by induction that (2.27) holds for k 2 N1: For
the base case k D 1 we have using the Leibniz rule (2.11)

��

af .t/

D �

� Z tC
C1

a
h�
�1.t; �.�//f .�/��

	

D
Z tC
C1

a
h�
�2.t; �.�//f .�/�� C h
�1.�.t/; t C 
 C 1/f .t C 
 C 1/

D
Z tC
C1

a
h�
�2.t; �.�//f .�/�� C f .t C 
 C 1/

D
Z tC
C2

a
h�
�2.t; �.�//f .�/��

D ��.�
�1/
a f .t/

D �1C

a f .t/:

Hence the base case

��

af .t/ D �1C


a f .t/



120 2 Discrete Delta Fractional Calculus and Laplace Transforms

holds. Now assume k � 1 and

�k�

af .t/ D �kC


a f .t/ (2.29)

holds. It follows from the induction hypothesis (2.29) and the base case that

�kC1�

af .t/ D ��k�1C


a f .t/

D ��kC

a f .t/

D �kC1C

a f .t/:

Hence (2.27) holds for all k 2 N1: The proof of (2.26) is very similar and is left as
an exercise (Exercise 2.23). ut

We now prove a composition rule that appears in Holm [125] for a fractional
difference with a fractional sum.

Theorem 2.48. Assume f W Na ! R; 
; � > 0 and N � 1 < 
 	 N, N 2 N1: Then

�

aC����

a f .t/ D �
��
a f .t/; t 2 NaC�CN�
: (2.30)

Proof. Note that for t 2 NaC�CN�
 ,

�

aC����

a f .t/ D �N�
�.N�
/
aC� ���

a f .t/

D �N��.N�
C�/
a f .t/ by Theorem 2.46

D �N�.N�
C�/
a f .t/ by (2.26)

D �
��
a f .t/:

Hence (2.30) holds. ut
Remark 2.49. From Theorem 2.46 we saw that we can take fractional sums of
fractional sums by adding exponents and by Theorem 2.48 we can take fractional
differences of fractional sums by adding exponents. The fundamental theorem of
calculus gives us that

��1
a �f .�/ D

Z t

a
�f .�/ D f .t/ � f .a/ D �0

af .t/ � f .a/:

Hence we should not expect the fractional sum of a fractional difference can be
obtained by adding exponents.

In the next theorem we give a formula for a fractional sum of an integer
difference. The first formula in the following Theorem 2.50 is given in Atici et al.
[34] and the second formula appears in Holm [125].
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Theorem 2.50. Assume f W Na ! R, k 2 N0 and 
; � > 0 with N � 1 < � 	 N:
Then

��

a �kf .t/ D �k�


a f .t/ �
k�1X
jD0

h
�kCj.t; a/�
jf .a/; (2.31)

for t 2 NaC
 , and

��

aCN����

a f .t/ D ���

a f .t/

�
N�1X
jD0

h
�NCj.t � N C 
; a/�j�.N��/
a f .a C N � �/;

(2.32)

for t 2 NaCN��C
:

Proof. We first prove that (2.31) holds by induction for k 2 N1: For the base case
k D 1 we have using integration by parts and

h
�1.t; t � 
 C 1/ D 1 D h
�2.t; t � 
 C 2/

that for t 2 NaC


��

a �f .t/ D

Z t�
C1

a
h
�1.t; �.�//�f .�/��

D h
�1.t; �/f .t/
ˇ̌
ˇ̌
t�
C1

�Da

C
Z t�
C1

a
h
�2.t; �.�//f .�/��

D h
�1.t; t � 
 C 1/f .t � 
 C 1/ � h
�1.t; a/f .a/

C
Z t�
C1

a
h
�2.t; �.�//��

D f .t � 
 C 1/ � h
�1.t; a/f .a/C
Z t�
C1

a
h
�2.t; �.�//f .�/��

D
Z t�
C2

a
h
�2.t; �.�//f .�/�� � h
�1.t; a/f .a/

D �1�

a f .t/ � h
�1.t; a/f .a/

which proves (2.31) for the base case k D 1: Now assume k � 1 and (2.31) holds
for that k. Then we have that
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��

a �kC1f .t/ D ��


a �k�f .t/

D �k�

a �f .t/ �

k�1X
jD0

h
�k�j.t; a/�
jC1f .a/ .by (2.31)/

D �k�

a f .t/ �

k�1X
jD0

h
�kCj.t; a/�
jC1f .a/ � h
�k�1.t; a/f .a/

D ��

a �kC1�


a f .t/ �
kX

jD0
h
�k�1Cj.t; a/�

jf .a/;

for t 2 NaCN�
: Hence (2.31) holds. Next we show that (2.32) holds. To see this
suppose now that 
 > 0 and� > 0with N�1 < � 	 N: Letting g.t/ D �

�.N��/
a f .t/

and b D a C N � � (the first point in the domain of g), we have for t 2 NaCN��C
;

��

aCN����

a f .t/

D ��

aCN���N

�
��.N��/

a f .t/
�

D ��

aCN���Ng.t/

D �N�

aCN��g.t/ �

N�1X
jD0

h
�NCj.t; b/�
jg.b/ by (2.32)

D �N�

aCN����.N��/

a f .t/ �
N�1X
jD0

h
�NCj.t; b/�
j��.N��/

a f .b/

D ���

a f .t/ �

N�1X
jD0

h
�NCj.t � N C 
; a/�j�NC�
a f .a C N � �/;

where in this last step, we applied 2.31. ut
Finally, we give a composition formula for composing two fractional differences.

Note that the rule for this composition is nearly identical to the rule (2.32) for the
composition ��


aCM���
�
a : Theorem 2.51 is given for the specific case � 2 N0 by

Atici and Eloe in [34].

Theorem 2.51. Let f W Na ! R be given and suppose 
; � > 0; with N � 1 < 
 	
N and M � 1 < � 	 M: Then for t 2 NaCM��CN�
;

�

aCM����

a f .t/ D �
C�
a f .t/�

M�1X
jD0

h�
�MCj.t � M C �; a/�j�MC�
a f .a C M � �/ (2.33)
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for N � 1 < 
 < N: If 
 D N, then (2.33) simplifies to

�

aCM����

a f .t/ D �
C�
a f .t/; t 2 NaCM��:

Proof. Let f ; 
, and � be given as in the statement of the theorem. Lemma 2.47
has already proven the case when 
 D N:

If N � 1 < 
 < N, then for t 2 NaCM��CN�
 , we have

�

aCM����

a f .t/

D �N
h
�

�.N�
/
aCM���

�
a f .t/

i
, and now using (2.50),

D �N

"
��NC
C�

a f .t/

�
M�1X
jD0

�j�MC�
a f .a C M � �/hN�
�MCj.t � M C �; a/

#

D �
C�
a �NhN�
�MCj.t � M C �/f .t/�

M�1X
jD0

�j�MC�
a f .a C M � �/�NhN�
�MCj.t � M C �; a/ (Lemma 2.47)

D �
C�
a f .t/�

M�1X
jD0

�j�MC�
a f .a C M � �/h�
�MCj.t � M C �; a/

D �
C�
a f .t/

�
M�1X
jD0

�j�MC�
a h�
�MC�.t � M C �/f .a C M � �/:

ut
Theorem 2.52 (Variation of Constants Formula). Assume N � 1 is an integer
and N � 1 < 
 	 N. If f W N0 ! R, then the solution of the IVP

�


�Ny.t/ D f .t/; t 2 N0 (2.34)

y.
 � N C i/ D 0; 0 	 i 	 N � 1 (2.35)

is given by

y.t/ D ��

0 f .t/ D

t�
X
sD0

h
�1.t; �.s//f .s/; t 2 N
�N :
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Proof. Let

y.t/ D ��

0 f .t/ D

t�
X
sD0

h
�1.t; �.s// f .s/:

Then by our convention on sums

y.
 � N C i/ D
�NCiX
sD0

h
�1.
 � N C i; �.s// f .s/ D 0

for 0 	 i 	 N � 1; and hence the initial conditions (2.35) are satisfied.
Also, for t 2 N0,

�


�Ny.t/ D �N�

�.N�
/

�N y.t/

D �N
t�.N�
/X
sD
�N

hN�
�1.t; �.s// y.s/

D �N
t�.N�
/X

sD

hN�
�1.t; �.s// y.s/;

where in the last step we used the initial conditions (2.35). Hence,

�


�Ny.t/ D �N��.N�
/


 y.t/

D �N�
�.N�
/
0C
 ��


0 f .t/

D �N��N
0 f .t/

D f .t/:

Therefore y is a solution of the fractional difference equation (2.34) on N0: ut
Next we use the fractional variation of constants formula to solve a simple

fractional IVP.

Example 2.53. Use the variation of constants formula in Theorem 2.52 to solve the
fractional IVP

�
1
2

� 1
2

y.t/ D 5; t 2 N0

y

�
�1
2

�
D 3

p
	:
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The solution of this IVP is defined on N� 1
2
: Note that the corresponding homoge-

neous fractional difference equation

�
1
2

� 1
2

y.t/ D 0; t 2 N0

has the general fractional equation form

�

aC
�Ny.t/ D 0; t 2 Na

in Theorem 2.43, where

a D 0; 
 D 1

2
N D 1; a C 
 � N D �1

2
:

Hence t�
1
2 is a solution of the homogeneous equation�

1
2

� 1
2

y.t/ D 0 and hence (using

Theorem 2.52) a general solution of �
1
2

� 1
2

y.t/ D 5 is given by

y.t/ D ct�
1
2 C�

� 1
2

0 5

D ct�
1
2 C 5�

� 1
2

0 1 (2.36)

By formula (2.16) we have that

�
� 1
2

0 1 D �
� 1
2

0 t0 D �.1/

�.3
2
/

t
1
2 D 2p

	
t
1
2 ;

which is the expression that we got for�
� 1
2

0 1 in Example 2.28. It follows from (2.36)
that

y.t/ D ct�
1
2 C 10p

	
t
1
2 :

Using the initial condition y
�� 1

2

� D 3
p
	 we get that c D 3. Therefore, the solution

of the given IVP is

y.t/ D 3t�
1
2 C 10p

	
t
1
2 ;

for t 2 N� 1
2
:

Also, it is often necessary to know how a shifted Laplace transform with respect
to its base relates to the original Laplace transform with base a, as is described in
the following theorem.
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Theorem 2.54. Let m 2 N0 be given and suppose f W Na�m ! R and g W Na ! R

are of exponential order r > 0. Then for js C 1j > r,

La�m ff g .s/ D 1

.s C 1/m
La ff g .s/C

m�1X
kD0

f .a C k � m/

.s C 1/kC1 (2.37)

and

LaCm fgg .s/ D .s C 1/m La fgg .s/ �
m�1X
kD0

.s C 1/m�1�k g .a C k/ : (2.38)

Proof. Let f ; g; r, and m be given as in the statement of this theorem. Then for
js C 1j > r,

La�m ff g .s/ D
1X

kD0

f .a � m C k/

.s C 1/kC1

D
1X

kDm

f .a � m C k/

.s C 1/kC1 C
m�1X
kD0

f .a � m C k/

.s C 1/kC1

D
1X

kD0

f .a C k/

.s C 1/kCmC1 C
m�1X
kD0

f .a C k � m/

.s C 1/kC1

D 1

.s C 1/m
La ff g .s/C

m�1X
kD0

f .a C k � m/

.s C 1/kC1 ;

and hence (2.37) holds.
Next, consider

LaCm fgg .s/ D
1X

kD0

g .a C m C k/

.s C 1/kC1

D
1X

kDm

g .a C k/

.s C 1/k�mC1

D
1X

kD0

g .a C k/

.s C 1/k�mC1 �
m�1X
kD0

g .a C k/

.s C 1/k�mC1

D .s C 1/m La fgg .s/ �
m�1X
kD0

.s C 1/m�1�k g .a C k/ ;

and thus (2.38) holds. ut
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We leave it as an exercise to verify that applying formulas (2.37) and (2.38) yields

L.aCm/�m ff g .s/ D L.a�m/Cm ff g .s/ D La ff g .s/;

for js C 1j > r.
Recall the definition of the fractional Taylor monomials (Definition 2.24).

Definition 2.55. For each � 2 Rn .�N1/, define the �-th order Taylor monomial,
h�.t; a/; by

h�.t; a/ WD .t � a/�

�.�C 1/
; for t 2 Na:

Theorem 2.56. If � 	 0 and � … .�N1/, then h�.t; a/ is bounded (and hence is of
exponential order r D 1). If � > 0, then for every r > 1; h�.t; a/ is of exponential
order r:

Proof. First consider the case that � 	 0with � 62 .�N0/. Then for all large t 2 Na;

h� .t; a/ D �.t � a C 1/

�.�C 1/�.t � a C 1 � �/ 	 1

�.�C 1/
;

implying that h� is of exponential order one (i.e., bounded).
Next assume that � > 0, with N 2 N0 chosen so that N � 1 < � 	 N: Then for

any fixed r > 1,

h� .t; a/ D .t � a/�

�.�C 1/
D �.t � a C 1/

�.�C 1/�.t � a C 1 � �/

	 �.t � a C 1/

�.�C 1/�.t � a C 1 � N/

D .t � a/ � � � .t � a � N C 1/

�.�C 1/

	 .t � a/N

�.�C 1/

	 rt

�.�C 1/
,

for sufficiently large t 2 Na.
Therefore, h�.t; a/ is of exponential order r for each � 2 Rn .�N1/ and r > 1.

It follows from Theorem 2.4 that La
˚
h� .t; a/

�
.s/ exists for js C 1j > 1: ut

Remark 2.57. Note that the fractional Taylor monomials, h�.t; a/ for � > 0 are
examples of functions that are of order r for all r > 1, but are not of order 1 (see
Exercise 2.4).
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Theorem 2.58. Let � 2 Rn .�N1/ : Then

LaC�
˚
h� .t; a/

�
.s/ D .s C 1/�

s�C1 (2.39)

for js C 1j > 1:
Proof. For js C 1j > 1; consider

.s C 1/�

s�C1 D 1

s C 1

�
s C 1

s

��C1
D 1

s C 1

�
1 � 1

s C 1

����1
:

Since j 1
sC1 j < 1, we have by the binomial theorem that

.s C 1/�

s�C1 D 1

s C 1

1X
kD0
.�1/k

 
�� � 1

k

!�
1

s C 1

�k

D
1X

kD0
.�1/k

 
�� � 1

k

!
1

.s C 1/kC1 : (2.40)

But

.�1/k
 

�� � 1
k

!
D .�1/k .�� � 1/k

kŠ

D .�1/k .�� � 1/.�� � 2/ � � � .�� � k/

kŠ

D .�C k/.�C k � 1/ � � � .�C 1/

kŠ

D .�C k/k

kŠ

D
 
�C k

k

!
D
 
�C k

�

!
by Exercise 1.12, (v)

D .�C k/�

�.�C 1/

D Œ.a C �C k/ � a��

�.�C 1/

D h�.a C �C k; a/: (2.41)
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Using (2.40) and (2.41), we have that

.s C 1/�

s�C1 D
1X

kD0

h�.a C �C k; a/

.s C 1/kC1

D LaC�
˚
h� .t; a/

�
.s/;

for js C 1j > 1: ut

2.6 The Convolution Product

The following definition of the convolution product agrees with the convolution
product defined for general time scales in [62], but it differs from the convolution
product defined by Atici and Eloe in [32] (in the upper limit). We demonstrate
several advantages of using Definition 2.59 in the following results.

Definition 2.59. Let f ; g W Na ! R be given. Define the convolution product of f
and g to be

.f 
 g/ .t/ WD
t�1X
rDa

f .r/g.t � �.r/C a/; for t 2 Na (2.42)

(note that .f 
 g/ .a/ D 0 by our convention on sums).

Example 2.60. For p ¤ 0;�1, find the convolution product ep.t; a/ 
 1; and use
your answer to find Lfep.t; a/ 
 1g.s/: By the definition of the convolution product

.ep.t; a/ 
 1/.t/ D
t�1X
rDa

ep.r; a/

D
Z t

a
ep.r; a/�r

D 1

p
ep.r; a/jta

D 1

p
ep.t; a/ � 1

p
:

It follows that

Lafep.t; a/ 
 1g.s/ D 1

p

1

s � p
� 1

p

1

s
D 1

.s � p/s
:
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Note from Example 2.60 we get that

Lafep.t; a/ 
 1g.s/ D 1

.s � p/s
D 1

s � p

1

s
D Lafep.t; a/g.s/Laf1g.s/;

which is a special case of the following theorem which gives a formula for the
Laplace transform of the convolution product of two functions. Later we will show
that this formula is useful in solving fractional initial value problems. In this theorem
we use the notation Fa.s/ WD Laff g.s/; which was introduced earlier.

Theorem 2.61 (Convolution Theorem). Let f ; g W Na ! R be of exponential
order r0 > 0. Then

La ff 
 gg .s/ D Fa.s/Ga.s/; for js C 1j > r0 : (2.43)

Proof. We have

La ff 
 gg .s/ D
1X

kD0

.f 
 g/ .a C k/

.s C 1/kC1 D
1X

kD1

.f 
 g/ .a C k/

.s C 1/kC1

D
1X

kD1

1

.s C 1/kC1
aCk�1X

rDa

f .r/g.a C k � �.r/C a/

D
1X

kD1

k�1X
rD0

f .a C r/g.a C k � r � 1/
.s C 1/kC1

D
1X

rD0

1X
kD0

f .a C r/g.a C k � r � 1/
.s C 1/kC1 :

Making the change of variables � D k � r � 1 gives us that

La ff 
 gg .s/ D
1X
�D0

1X
rD0

f .a C r/g.a C �/

.s C 1/�CrC2

D
1X

rD0

f .a C r/

.s C 1/rC1
1X
�D0

g.a C �/

.s C 1/�C1

D Fa.s/Ga.s/;

for js C 1j > r0: ut
Example 2.62. Solve the (Volterra) summation equation

y.t/ D 3C 12

t�1X
rD0



2t�r�1 � 1� y.r/; t 2 N0 (2.44)
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using Laplace transforms. We can write equation (2.44) in the equivalent form

y.t/ D 3C 12

t�1X
rD0
Œe1.t � r � 1; 0/ � 1�y.r/

D 3C 12 Œ.e1.t; 0/ � 1/ 
 y.t/�; t 2 N0: (2.45)

Taking the Laplace transform (based at 0) of both sides of (2.45), we obtain

Y0.s/ D 3

s
C 12

�
1

s � 1 � 1

s

	
Y0.s/

D 3

s
C 12

s.s � 1/Y0.s/:

Solving for Y0.s/; we get

Y0.s/ D 3.s � 1/
.s C 3/.s � 4/

D 12=7

s C 3
C 9=7

s � 4 :

Taking the inverse Laplace transform of both sides, we get

y.t/ D 12

7
e�3.t; 0/C 9

7
e4.t; 0/

D 12

7
.�2/t C 9

7
5t:

2.7 Using Laplace Transforms to Solve Fractional Equations

When solving certain summation equations one uses the formula

La
˚
��N

a f
�
.s/ D Fa.s/

sN
; (2.46)

where N is a positive integer. Since the summation equation (2.5) can be written in
the form

y.t/ D 2 � 4t C 2

Z t

0

y.s/ �s; t 2 N0;

this is an example of a summation equation for which we want to use the
formula (2.46) with N D 1:
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We will now set out to generalize formulas (2.4) and (2.46) to the fractional case
so that we can solve fractional difference and summation equations using Laplace
transforms.

We will show (see Theorem 2.65) that if f W Na ! R is of exponential order, then
��


a f and�

af are of a certain exponential order and hence their Laplace transforms

will exist. We will use the following lemma, which gives an estimate for t
 in the
proof of Theorem 2.65.

Lemma 2.63. Assume 
 > �1 and N � 1 < 
 	 N. Then

t
 	 tN ; for t sufficiently large: (2.47)

Proof. In this proof we use the fact that �.x/ > 0 for x > 0 and �.x/ is strictly
increasing for x � 2: First consider the case �1 < 
 	 0. Then, since t C 1 � 
 �
t C 1, we have for large t

t
 D �.t C 1/

�.t C 1 � 
/
	 1 D t0 D tN :

Next, consider the case 
 > 0. Then for large t we have

t
 D �.t C 1/

�.t C 1 � 
/ 	 �.t C 1/

�.t C 1 � N/
D t .t � 1/ � � � .t � .N � 1// 	 tN :

This completes the proof. ut
Remark 2.64. Thus far whenever we have considered a function f W Na ! R, we
have always taken the domain of��


a f to be the set NaC
 . However, it is sometimes
convenient to take the domain of ��


a f to be the set NaC
�N , where 
 > 0, and
N � 1 < 
 	 N: By our convention on sums we see that

��

a f .a C 
 � N C k/ D 0; for 0 	 k 	 N � 1:

Later (see, for example, Theorem 2.67) we will consider both of the

LaC
f��

a f g.s/ and LaC
�Nf��


a f g.s/:

Note that ��

a f W NaC
 ! R and ��


a f W NaC
�N ! R are of the same exponential
order. Theorem 2.67 will give a relationship between these two Laplace transforms.

Theorem 2.65. Suppose that f W Na ! R is of exponential order r � 1, and let

 > 0, N � 1 < 
 	 N, be given. Then for each fixed � > 0; ��


a f W NaC
 ! R,
��


a f W NaC
�N ! R, and �

af W NaCN�
 ! R are of exponential order r C �.
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Proof. First we show if f W Na ! R is of exponential order r D 1; then ��

a f W

NaC
 ! R is of exponential order r D 1 C �; for each � > 0. By Exercise 2.1 it
suffices to show that f is bounded on Na implies��


a f W NaC
 ! R is of exponential
order r D 1C �; for each � > 0. To this end assume

jf .t/j 	 N; t 2 Na:

Then, for t 2 NaC
;

j��

a f .t/j D

ˇ̌
ˇ̌
Z t�
C1

a
h
�1.t; �.s//f .s/�s

ˇ̌
ˇ̌

	
Z t�
C1

a
h
�1.t; �.s//jf .s/j�s

	 N
Z t�
C1

a
h
�1.t; �.s//�s

D �Nh
.t; s/jsDt�
C1
sDa ; by Theorem 2.27, part (v)

D �Nh
.t; t � 
 C 1/C Nh
.t; a/

D Nh
.t; a/:

Since, by Theorem 2.56, h
.t; a/ is of exponential order 1 C � for each � > 0; it
follows that ��


a f W NaC
 ! R is of exponential order 1C �; for each � > 0.
Next assume f is of exponential order r > 1, there exist an A > 0 and a T 2 Na

such that

jf .t/j 	 Art; for all t 2 NT : (2.48)

For t 2 NTC
 , sufficiently large, consider

ˇ̌
��


a f .t/
ˇ̌ D

ˇ̌
ˇ̌
ˇ

t�
X
sDa

h
�1.t; �.s//f .s/

ˇ̌
ˇ̌
ˇ

	
t�
X
sDa

h
�1.t; �.s//jf .s/j

D
T�1X
sDa

h
�1.t; �.s//jf .s/j C
t�
X
sDT

h
�1.t; �.s//jf .s/j

	
 

T�1X
sDa

jf .s/j
�.
/

!
.t � a/N�1 C A.t � a/N�1

�.
/

Z t�
C1

T
rs�s

D
 

T�1X
sDa

jf .s/j
�.
/

!
.t � a/N�1 C A.t � a/N�1

�.
/

�
rs

r � 1
	sDt�
C1

sDT
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D
 

T�1X
sDa

jf .s/j
�.
/

!
.t � a/N�1 C A.t � a/N�1

.r � 1/�.
/ Œr
t�
C1 � rT �

	
 

T�1X
sDa

jf .s/j
�.
/

!
.t � a/N�1 C A.t � a/N�1r1�


.r � 1/�.
/ rt

D B.t � a/N�1 C C.t � a/N�1rt;

where B and C are constants. But for any fixed � > 0we get by applying L’Hôpital’s
rule, that

lim
t!1

B.t � a/N�1 C C.t � a/N�1rt

.r C �/t
D 0:

Therefore,��

a f W NaC
 ! R is of exponential order r C � for each fixed � > 0. By

Remark 2.64, we also have ��

a f W NaC
�N ! R is of exponential order r C � for

each fixed � > 0.
Finally, we show �


af W NaCN�
 ! R, where N � 1 < 
 	 N, is of exponential
order r C � for each fixed � > 0: Since

�

af .t/ D �N��.N�
/

a f .t/

and by the first part of the proof, ��.N�
/
a f .t/ is of exponential order r C �, we have

by Exercise 2.2 that �

af is of exponential order r C �. ut

Corollary 2.66. Suppose that f W Na ! R is of exponential order r � 1 and let

 > 0 be given with N � 1 < 
 	 N: Then

LaC

˚
��


a f
�
.s/; LaC
�N

˚
��


a f
�
.s/; and LaCN�


˚
�


af
�
.s/

converge for all js C 1j > r:

Proof. Suppose f ; r, and 
 are as in the statement of this corollary and fix s0 so
that js0 C 1j > r. Then there is an �0 > 0 so that js0 C 1j > r C �0: Since
we know by Theorem 2.65 that ��


a f W NaC
 ! R, ��

a f W NaC
�N ! R, and

�

af W NaCN�
 ! R are of exponential order rC�0, it follows from Theorem 2.4 that

LaC

˚
��


a f
�
.s0/, LaC
�N

˚
��


a f
�
.s0/, and LaCN�


˚
�


af
�
.s0/ converge. Since

js0 C 1j > r is arbitrary, we have that

LaC

˚
��


a f
�
.s/; LaC
�N

˚
��


a f
�
.s/; and LaCN�


˚
�


af
�
.s/

all converge for all js C 1j > r: ut
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2.8 The Laplace Transform of Fractional Operators

With Corollary 2.66 in hand to insure the correct domain of convergence for the
Laplace transform of any fractional operator, we may now safely develop formulas
for applying the Laplace transform to fractional operators. This is the content of the
next theorem.

Theorem 2.67. Suppose f W Na ! R is of exponential order r � 1, and let 
 > 0

be given with N � 1 < 
 	 N. Then for js C 1j > r,

LaC

˚
��


a f
�
.s/ D .s C 1/


s

Fa .s/ ; (2.49)

and

LaC
�N
˚
��


a f
�
.s/ D .s C 1/
�N

s

Fa.s/: (2.50)

Proof. Since f W Na ! R is of exponential order r � 1, Fa.s/ exists for js C 1j > r
and by Corollary 2.66 both LaC


˚
��


a f
�
.s/ and LaC
�N

˚
��


a f
�
.s/ exist for js C

1j > r: First, we find a relationship between the left-hand sides of equations (2.49)
and (2.50). Using (2.37), we get

LaC
�N
˚
��


a f
�
.s/

D 1

.s C 1/N
LaC


˚
��


a f
�
.s/C

N�1X
kD0

��

a f .a C 
 � N C k/

.s C 1/kC1

D 1

.s C 1/N
LaC


˚
��


a f
�
.s/ ; (2.51)

using the fact that ��

a f .a C 
 � N C k/ D 0 for 0 	 k 	 N � 1, by our convention

on sums.
To see that (2.49) holds, note that

LaC

˚
��


a f
�
.s/

D
1X

kD0

��

a f .a C k C 
/

.s C 1/kC1

D
1X

kD0

1

.s C 1/kC1
kCaX
rDa

h
�1.a C k C 
; �.r//f .r/

D
1X

kD0

1

.s C 1/kC1
kCaX
rDa

f .r/h
�1 ..a C k C 1/ � �.r/C a; a � .
 � 1//
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D
1X

kD0

.f 
 h
�1.t; a � .
 � 1/// .a C 1C k/

.s C 1/kC1 ; by (2.42)

D LaC1 ff 
 h
�1.t; a � .
 � 1//g .s/
D .s C 1/La ff 
 h
�1.t; a � .
 � 1//g .s/ ; using (2.38) and (2.42)

D .s C 1/Fa .s/La fh
�1.t; a � .
 � 1//g .s/ ; by (2.43)

D .s C 1/


s

Fa .s/ , applying (2.38), since r � 1

proving (2.49). Finally, using (2.51) and (2.49), we get

LaC
�N
˚
��


a f
�
.s/ D 1

.s C 1/N
LaC


˚
��


a f
�
.s/

D .s C 1/
�N

s

Fa .s/ ;

for js C 1j > r, proving (2.50). ut
Example 2.68. Find L2C	Cef��e

5C	 f g.s/ given that

f .t/ D .t � 5/	 ; t 2 N5C	 :

First note that

f .t/ D �.	 C 1/h	.t; 5/; t 2 N5C	 ;

and hence using (2.39) we have that

F5C	.s/ D �.	 C 1/L5C	fh	.t; 5/g.s/ D �.	 C 1/
.s C 1/	

s	C1

for js C 1j > 1:
Then using (2.50) gives us

L2C	Ce
˚
��e
5C	 f

�
.s/ D L.5C	/Ce�3f��e

5C	 f g.s/

D .s C 1/e�3

se

�
�.	 C 1/

.s C 1/	

s	C1

�

D �.	 C 1/
.s C 1/	Ce�3

s	CeC1

for js C 1j > 1:
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Remark 2.69. Note that when 
 D N in (2.50), the correct well-known for-
mula (2.46) for N D 1, is obtained. This holds true for the Laplace transform of
a fractional difference as well, as the following theorem shows (Holm [123]).

Theorem 2.70. Suppose f W Na ! R is of exponential order r � 1, and let 
 > 0

be given with N � 1 < 
 	 N. Then for js C 1j > r

LaCN�

˚
�


af
�
.s/ D s
 .s C 1/N�
 Fa.s/

�
N�1X
jD0

sj�
�1�j
a f .a C N � 
/: (2.52)

Proof. Let f ; r; 
, and N be given as in the statement of the theorem. By Exer-
cise 2.28 we have that (2.52) holds when 
 D N. Hence we assume N �1 < 
 < N.
To see this, consider

LaCN�

˚
�


af
�
.s/

D LaCN�

n
�N��.N�
/

a f
o
.s/

D sNLaCN�

n
��.N�
/

a f
o
.s/

�
N�1X
jD0

sj�N�1�j��.N�
/
a f .a C N � 
/

D sN .s C 1/N�


sN�
 Fa .s/

�
N�1X
jD0

sj�N�1�j��.N�
/
a f .a C N � 
/

D s
 .s C 1/N�
 Fa .s/ �
N�1X
jD0

sj�
�1�j
a f .a C N � 
/ :

This completes the proof. ut

2.9 Power Rule and Composition Rule

In this section (see Atici and Eloe [34], Holm [123, 125]), we present a number
of properties and formulas concerning fractional sum and difference operators are
developed. These include composition rules and fractional power rules, whose
proofs employ a variety of tools, none of which involves the Laplace trans-
form. However, some of these results may also be proved using the Laplace
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transform. The following are two previously known results for which the Laplace
transform provides a significantly shorter and cleaner proof than the original ones
found in [34, 123].

Theorem 2.71 (Power Rule). Let 
; � > 0 be given. Then for t 2 NaC�C
;

��

aC� .t � a/� D �.�C 1/

�.�C 1C 
/
.t � a/�C


or equivalently

��

aC�h�.t; a/ D h�C
.t; a/:

Proof. Applying Remark 2.57 together with Lemma 2.63, we conclude that for
each � > 0, .t � a/� is of exponential order 1 C � and therefore we have that
��


aC� .t � a/� is of exponential order 1 C 2�. Thus, after employing an argument
similar to that given in Corollary 2.66, we conclude that both LaC� f.t � a/�g and

LaC�C

n
��


aC� .t � a/�
o

converge for js C 1j > 1. Hence, for js C 1j > 1, we have

LaC�C

n
��


aC� .t � a/�
o
.s/

D .s C 1/


s

LaC� f.t � a/�g .s/ ; using (2.49)

D .s C 1/


s

�.�C 1/LaC�

˚
h� .t; a/

�
.s/

D .s C 1/


s

�.�C 1/

.s C 1/�

s�C1 ; applying (2.39)

D �.�C 1/
.s C 1/�C


s�C
C1

D �.�C 1/LaC�C

˚
h�C
 .t; a/

�
.s/

D LaC�C

�

�.�C 1/

�.�C 
 C 1/
.t � a/�C




.s/ .

Since the Laplace transform is injective, it follows that

��

aC� .t � a/� D �.�C 1/

�.�C 1C 
/
.t � a/�C
 , for t 2 NaC�C
:

This completes the proof. ut



2.10 The Laplace Transform Method 139

Theorem 2.72. Suppose that f W Na ! R is of exponential order r � 1, and let

; � > 0 be given. Then

��

aC����

a f .t/ D ��
��
a f .t/ D �

��
aC
�

�

a f .t/; for all t 2 NaC�C
:

Proof. Let f ; r; 
, and � be given as in the statement of the theorem. It follows from
Corollary 2.66 that each of

LaC�C

n
��


aC����
a f

o
; LaC�

˚
���

a f
�

and LaC.
C�/
˚
��.
C�/

a f
�

exists for js C 1j > r: Therefore, we may apply (2.49) multiple times to write for
js C 1j > r,

LaC�C

n
��


aC����
a f

o
.s/ D .s C 1/


s

LaC�

˚
���

a f
�
.s/

D .s C 1/


s

.s C 1/�

s�
La ff g .s/

D .s C 1/
C�

s
C� La ff g .s/

D LaC.
C�/
˚
��.
C�/

a f
�
.s/

D LaC�C

˚
��
��

a f
�
.s/ .

The result follows from symmetry and the fact that the operator LaC�C
 is injective
(see Theorem 2.7). ut

2.10 The Laplace Transform Method

The tools developed in the previous sections of this chapter enable us to solve a
general fractional initial value problem using the Laplace transform. The initial
value problem (2.53) below is identical to that studied and solved using the
composition rules in Holm [123, 125]. In Theorem 2.76 below, we present only
that part of the proof involving the Laplace transform method.

Theorem 2.73. Assume f W Na ! R is of exponential order r � 1 and 
 > 0 with
N � 1 < 
 	 N: Then the unique solution of the IVP

�

aC
�Ny.t/ D f .t/; t 2 Na

�iy.a C 
 � N/ D 0; 0 	 i 	 N � 1;
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is given by

y.t/ D ��

a f .t/ D

Z t

a
h
�1.t; �.k//f .k/�k;

for t 2 NaC
�N :

Proof. Since

�

aC
�Ny.t/ D f .t/; t 2 Na;

we have that

Laf�

aC
�Nyg.s/ D Fa.s/

for js C 1j > r: Assume for the moment that the Laplace transform (based at
a C 
 � N) of the solution of the given IVP converges for js C 1j > r. It follows
from (2.52) that

Laf�

aC
�Nyg.s/ D s
.s C 1/N�
YaC
�N.s/ �

N�1X
jD0

sj�
�1�j
a y.a/

D s
.s C 1/N�
YaC
�N.s/;

where we have used the initial conditions. It follows that

LaC
�Nfyg.s/ D YaC
�N.s/

D .s C 1/
�N

s

Fa.s/

D LaC
�Nf��

a f g.s/; by (2.50):

It then follows from the uniqueness theorem for Laplace transforms, Theo-
rem 2.7, that

y.t/ D ��

a f .t/; t 2 NaC
�N :

From this we now know that y is of exponential order r and hence the above
arguments hold and the proof is complete. ut

Using Theorem 2.73 and Theorem 2.43 it is easy to prove the following result.

Theorem 2.74. Assume f W Na ! R is of exponential order r � 1 and 
 > 0 with
N � 1 < 
 	 N: Then a general solution of the nonhomogeneous equation

�

aC
�Ny.t/ D f .t/; t 2 Na
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is given by

y.t/ D
NX

kD1
ck.t � a/
�k C��


a f .t/

for t 2 NaC
�N :

Example 2.75. Solve the IVP

�
1
2

a� 1
2

y.t/ D h 1
2
.t; a/; t 2 Na

y

�
a � 1

2

�
D 1

2
:

Note this IVP is of the form of the IVP in Theorem 2.74, where


 D 1

2
; N D 1; a C N � 
 D a � 1

2
; f .t/ D h 1

2
.t; a/:

From Theorem 2.74 a general solution of the fractional equation �
1
2

a� 1
2

y.t/ D
h 1
2
.t; a/ is given by

y.t/ D c1.t � a/
�1 C�
� 1
2

a h 1
2
.t; a/

D c1.t � a/�
1
2 C .t � a/:

Applying the initial condition we get c1 D 1p
	
: Hence the solution of the given IVP

in this example is given by

y.t/ D 1p
	
.t � a/�

1
2 C .t � a/

for t 2 Na� 1
2
:

The following theorem appears in Ahrendt et al. [3].

Theorem 2.76. Suppose that f W Na ! R is of exponential order r � 1, and let

 > 0 be given with N � 1 < 
 	 N: The unique solution to the fractional initial
value problem

�
�


aC
�Ny.t/ D f .t/; t 2 Na

�iy.a C 
 � N/ D Ai; i 2 f0; 1; � � � ;N � 1g I Ai 2 R
(2.53)
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is given by

y.t/ D
N�1X
iD0

˛i.t � a/iC
�N C��

a f .t/; for t 2 NaC
�N ;

where

˛i WD
iX

pD0

i�pX
kD0

.�1/k
iŠ

.i � k/N�

 

i

p

! 
i � p

k

!
Ap;

for i 2 f0; 1; � � � ;N � 1g :
Proof. Since f is of exponential order r, we know that Fa.s/ D La ff g .s/ exists
for js C 1j > r. So, applying the Laplace transform to both sides of the difference
equation in (2.53), we have for js C 1j > r

La
˚
�


aC
�Ny
�
.s/ D Fa.s/:

Using (2.52), we get

s
 .s C 1/N�
 YaC
�N.s/ �
N�1X
jD0

sj�

�j�1
aC
�Ny.a/ D Fa.s/:

This implies that

YaC
�N.s/ D Fa.s/

s
 .s C 1/N�
 C
N�1X
jD0

�

�j�1
aC
�Ny.a/

s
�j .s C 1/N�
 :

From (2.50), we have immediately that

Fa.s/

s
 .s C 1/N�
 D LaC
�N
˚
��


a f
�
.s/ :

Considering next the terms in the summation, we have for each fixed j 2 f0; � � � ,
N � 1g,

1

s
�j .s C 1/N�
 D 1

.s C 1/N�j�1
.s C 1/
�j�1

s
�j

D 1

.s C 1/N�j�1LaC
�j�1
˚
h
�j�1 .t; a/

�
.s/; by (2.39)

D LaC
�N
˚
h
�j�1 .t; a/

�
.s/
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�
N�j�2X

kD0

h
�j�1 .k C a C 
 � N; a/

.s C 1/kC1 ; by (2.37)

D LaC
�N
˚
h
�j�1 .t; a/

�
.s/;

since

h
�j�1 .k C a C 
 � N; a/ D .k C 
 � N/
�j�1

�.
 � j/

D �.k C 
 � N C 1/

�.k � .N � j � 2// �.
 � j/

D 0,

for k 2 f0; � � � ;N � j � 2g : It follows that for js C 1j > r;

LaC
�N fyg .s/

D LaC
�N
˚
��


a f
�
.s/C

N�1X
jD0

�

�j�1
aC
�Ny.a/LaC
�N

˚
h
�j�1 .t; a/

�
.s/

D LaC
�N

8<
:

N�1X
jD0

�

�j�1
aC
�Ny.a/h
�j�1 .t; a/C��


a f

9=
; .s/ :

Since the Laplace transform is injective, we conclude that for t 2 NaC
�N ;

y .t/ D
N�1X
jD0

�

�j�1
aC
�Ny.a/h
�j�1 .t; a/C��


a f .t/

D
N�1X
jD0

�

�j�1
aC
�Ny.a/

�.
 � j/
.t � a/
�j�1 C��


a f .t/

D
N�1X
iD0

 
�iC
�N

aC
�Ny.a/

�.i C 
 � N C 1/

!
.t � a/iC
�N C��


a f .t/:

Moreover, Holm [125] showed that

�iC
�N
aC
�Ny.a/

�.i C 
 � N C 1/
D

iX
pD0

i�pX
kD0

.�1/k
iŠ

.i � k/N�

 

i

p

! 
i � p

k

!
�iy.a C 
 � N/;

for i 2 f0; 1; � � � ;N � 1g ; concluding the proof. ut
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Theorem 2.76 shows how we can solve the general IVP (2.53) using the discrete
Laplace transform method. We offer a brief example.

Example 2.77. Consider the IVP given by

�
�	
	�4y.t/ D 	4t2, t 2 N0

y.	 � 4/ D 2; �y.	 � 4/ D 3; �2y.	 � 4/ D 5; �3y.	 � 4/ D 7:
(2.54)

Note that (2.54) is a specific case of (2.53) from Theorem 2.76, with

a D 0; 
 D 	; N D 4; f .t/ D 	4t2

A0 D 2; A1 D 3; A2 D 5 A3 D 7:

After applying the discrete Laplace transform method as described in Theorem 2.76,
we have

y .t/ D
3X

iD0
˛it

iC	�4 C��	
0

�
	4t2

�

D
3X

iD0
˛it

iC	�4 C��	
2

�
	4t2

�
, since t2 D t .t � 1/ ;

� 0:303t	�4 C 5: 040t	�3 C 6: 977t	�2 C 4: 876t	�1 C 3: 272t	C2;

where in this last step, we calculated

˛i D
iX

pD0

i�pX
kD0

.�1/k
iŠ

.i � k/4�	
 

i

p

! 
i � p

k

!
Ap, for i D 0; 1; 2; 3,

for the first four terms and applied the power rule (Theorem 2.71) on the last term.

2.11 Exercises

2.1. Show that f W Na ! R is of exponential order r D 1 iff f is bounded on Na.

2.2. Prove that if f W Na ! R is of exponential order r > 0, then �nf W Na ! R is
also of exponential order r for n 2 N0:

2.3. Show that if f W Na ! R is of exponential order r > 1, then h.t/ WD R t
a

f .�/�� , t 2 Na is also of exponential order r.

2.4. Show that h0.t; a/ is of exponential order 1 and for each n � 0, hn.t; a/ is of
exponential order 1C � for all � > 0.
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2.5. Prove formula (i) in Theorem 2.8, that is

Lafcoshp.t; a/g.s/ D s

s2 � p2

for js C 1j > maxfj1C pj; j1 � pjg:
2.6. Prove formula (ii) in Theorem 2.9, that is

Lafsinp.t; a/g.s/ D p

s2 C p2

for js C 1j > maxfj1C ipj; j1 � ipjg:
2.7. Prove formula (ii) in Theorem 2.10, that is

Lafe˛.t; a/ sinh ˇ
1C˛

.t; a/g.s/ D ˇ

.s � ˛/2 � ˇ2 ;

for js C 1j > maxfj1C ˛ C ˇj; j1C ˛ � ˇjg:
2.8. Prove Theorem 2.11.

2.9. For each of the following find y.t/ given that

(i) Ya.s/ D 14�s
s2C2s�8 I

(ii) Y0.s/ D 2s2

s2�p
2sC1 :

2.10. Use Laplace transforms to solve the following IVPs

(i)

y.t C 2/ � 7y.t C 1/C 12y.t/ D 0; t 2 N0I
y.0/ D 2; y.1/ D 4:

(ii)

y.t C 1/ � 2y.t/ D 3t; t 2 N0I
y.0/ D 5:

(iii)

y.t C 2/ � 6y.t C 1/C 8y.t/ D 20.4/t; t 2 N0

y.0/ D 0; y.1/ D 4:
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2.11. Use Laplace transforms to solve the IVP

u.t C 1/C v.t/ D 0

� u.t/C v.t C 1/ D 0

u.0/ D 1; v.0/ D 0:

2.12. Solve each of the following IVPs:

(i)

�y.t/ � 2y.t/ D ı4.t/; t 2 N0I
y.0/ D 2;

(ii)

�y.t/ � 5y.t/ D 3u60.t/; t 2 N0

y.0/ D 4; t 2 N0:

2.13. Solve the following summation equations using Laplace transforms:

(i) y.t/ D 2C 4
Pt�1

rD0 3t�r�1y.r/; t 2 N0I
(ii) y.t/ D 3 � 5t � 4Pt�1

rD0 5t�r�1y.r/; t 2 N0I
(iii) y.t/ D t CPt�1

rD0 y.r/; t 2 N0I
(iv) y.t/ D 2t�a CPt�1

rDa 4
t�r�1y.r/; t 2 Na:

2.14. Use Laplace transforms to solve each of the following:

(i) y.t/ D 3t CPt�1
mD0 3k�m�1ym; t 2 N0I

(ii) y.t/ D 3t CPt�1
mD0 4k�m�1ym; t 2 N0:

2.15. Show that

(i) ��

a f .a C 
/ D f .a/I

(ii) ��

a f .a C 
 C 1/ D 
f .a/C f .a C 1/:

2.16. Complete the proof of Theorem 2.27.

2.17. Work each of the following:

(i) Use the definition of the 
-th fractional sum (Definition 2.25) to find �
� 1
3

a 1I
(ii) Use the definition of the fractional difference (Definition 2.29) and part (2.32)

to find �
2
3
a 1:

2.18. Show that the following hold:

(i) ��

aC�.t � a/� D ��
.t � a/�C
; t 2 NaC�C
 I

(ii) �

aC�.t � a/� D �
.t � a/��
; t 2 NaC�CN�
:



2.11 Exercises 147

2.19. Verify that (2.12) holds.

2.20. Show that h�.t; t � �C k/ D 0 for k 2 N1, � � k C 1 … f0;�1;�2; � � � g:
2.21. Evaluate each of the following using Theorem 2.38 and Theorem 2.40

(i) ��1
3
2

.t � 1/ 12 ; t 2 N 5
2
I

(ii) ��:7
4 .t � 1:7/2:3; t 2 N4:7I

(iii) �:5
5:5.t � 3/2:5; t 2 N5I

(iv) �
1
2

3 t.t � 1/.t � 2/; t 2 N 5
2
:

2.22. Prove that part (ii) of Theorem 2.42, follows from Theorem 2.40.

2.23. Prove (2.26).

2.24. Solve each of the following IVPs:

(i) �2:7�0:3x.t/ D t2; t 2 N0

x.�0:3/ D x.0:7/ D x.1:7/ D 0I
(ii) �1:6�0:4x.t/ D t4; t 2 N0

x.�0:4/ D x.0:6/ D 0I
(iii) �0:9�0:1x.t/ D t5; t 2 N0

x.�0:1/ D 0:

2.25. Use Theorems 2.54 and 2.58 to show that Lafh1.t; a/g D 1
s2

. Evaluate the
convolution product 1 
 1 and show directly (do not use the convolution theorem)
that Laf1 
 1g.s/ D Laf1g.s/ Laf1g.s/:
2.26. Assume p 2 R and p ¤ 0. Using the definition of the convolution product

(Definition 2.59), find

Œh1.t; a/ 
 ep.t; a/�.t/:

2.27. Assume p; q 2 R and p ¤ q. Using the definition of the convolution product
(Definition 2.59), find

Œep.t; a/ 
 eq.t; a/�.t/:

2.28. For N a positive integer, use the definition of the Laplace transform to prove
that (2.4) holds (that is, (2.52) holds when 
 D N).
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