Chapter 2
Discrete Delta Fractional Calculus and Laplace
Transforms

2.1 Introduction

At the outset of this chapter we will be concerned with the (delta) Laplace transform,
which is a special case of the Laplace transform studied in the book by Bohner and
Peterson [62]. We will not assume the reader has any knowledge of the material
in that book. The delta Laplace transform is equivalent under a transformation
to the Z-transform, but we prefer the definition of the Laplace transform given
here, which has the property that many of the Laplace transform formulas will
be analogous to the Laplace transform formulas in the continuous setting. We will
show how we can use the (delta) Laplace transform to solve initial value problems
for difference equations and to solve summation equations. We then develop the
discrete delta fractional calculus. Finally, we apply the Laplace transform method
to solve fractional initial value problems and fractional summation equations.

The continuous fractional calculus has been well developed (see the books by
Miller and Ross [147], Oldham and Spanier [152], and Podlubny [153]). But only
recently has there been a great deal of interest in the discrete fractional calculus (see
the papers by Atici and Eloe [32-36], Goodrich [88-96], Miller and Ross [146],
and M. Holm [123-125]). More specifically, the discrete delta fractional calculus
has been recently studied by a variety of authors such as Atici and Eloe [31, 32,
34, 35], Goodrich [88, 89, 91, 92, 94, 95], Miller and Ross [147], and M. Holm
[123-125]. As we shall see in this chapter, one of the peculiarities of the delta
fractional difference is its domain shifting properties. This property makes, in
certain ways, the study of the delta fractional difference more complicated than
its nabla counterpart, as a comparison of the present chapter to Chap. 3 will
demonstrate.
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88 2 Discrete Delta Fractional Calculus and Laplace Transforms
2.2 The Delta Laplace Transform

In this section we develop properties of the (delta) Laplace transform. First we give
an abstract definition of this transform.

Definition 2.1 (Bohner—Peterson [62]). Assume f : N, — R. Then we define the
(delta) Laplace transform of f based at a by
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for all complex numbers s # —1 such that this improper integral converges.

The following theorem gives two useful expressions for the Laplace transform
of f.
Theorem 2.2. Assume f : N, — R. Then
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for all complex numbers s # —1 such that this improper integral (infinite series)
converges.

Proof. To see that (2.1) holds note that
LA = [ clot.armar

= Z (=] (U (t)v a)f(t)

t=a

=Y [+ es"7 )

[0

. fla+k)
- Z (1 + s)k+1°



2.2 The Delta Laplace Transform 89

This also gives us that

% fla+k)

ﬁa{f}(S)Z/(; EE

O
To find functions such that the Laplace transform exists on a nonempty set we
make the following definition.

Definition 2.3. We say that a function f : N, — R is of exponential order » > 0
(at 0o) if there exists a constant A > 0 such that

[f(t)] <Ar, forreN, sufficiently large.

Now we can prove the following existence theorem.

Theorem 2.4 (Existence Theorem). Suppose f : N, — R is of exponential order
r> 0. Then L, {f} (s) converges absolutely for |s + 1| > r.

Proof. Assume f : N, — R is of exponential order » > 0. Then there is a constant
A > 0 and an m € Ny such that for each r € N,4,,, |[f(r)] < Ar'. Hence for
s+ 1| >r,

f(k + a)

[f(k +a)l
(S+ 1)k+1 Z

|S+ 1|k+1
o Arkta

< —
Z |S+ 1|k+l

k=m

N |sA£a1|§(|sil|)k
o+ (i)
|S+ - (\ fm)

A ra+m

0o
k=m

T s+ 1 —r

< Q.

Hence, the Laplace transform of f converges absolutely for |s + 1| > r. O
We will see later (see Remark 2.57) that the converse of Theorem 2.4 does not hold
in general.

In this chapter, we will usually consider functions f of some exponential order
r > 0, ensuring that the Laplace transform of f does in fact converge somewhere
in the complex plane—specifically, it converges for all complex numbers outside
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the closed ball of radius r centered at negative one, that is, for |s + 1| > r. We
will abuse the notation by sometimes writing £,{f(¢)}(s) instead of the preferred
notation L,{f}(s).

Example 2.5. Clearly, e, (t,a) , p # —1, a constant, is of exponential order r =
|1 + p| > 0. Therefore, we have for |s + 1| > r = |1 + p|,

Lolep(t,a)} () = Lo {(1+p) ™} (5)

B (1+p)
- Z (S + 1)k+1

1 i p+1 ¢
s+ 1 s+ 1

k=0

Hence
1
Latept@}6) = -, Is+ 11> 1+l
An important special case (p = 0) of the above formula is
1
L1} () =—, for [s+1|>1.
s

In the next theorem we see that the Laplace transform operator £, is a linear
operator.

Theorem 2.6 (Linearity). Suppose f, g : N, — R and the Laplace transforms of f
and g converge for |s + 1| > r, where r > 0, and let ¢y, ¢, € C. Then the Laplace
transform of c\f + c,g converges for |s + 1| > r and

Loieif + 28} () = c1La{f} (5) + c2La{g} (5) (23)

for|s+ 1| > r.

Proof. Since f,g : N, — R and the Laplace transforms of f and g converge for
|s + 1| > r, where r > 0, we have that for |s + 1| > r
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1L if} (s) + calaig) (s)

fla+k) gla+ k)
2( +1 )k+1+ ZZ( + D)kt

_N(f +agath
- Z (s + 1)kt

= Laierf + cag}(s).

This completes the proof. O
The following uniqueness theorem is very useful.

Theorem 2.7 (Uniqueness). Assumef,g : N, — R and there is an r > 0 such that
Laif(s) = Laig} (s)
for|s+ 1| > r. Then
f() =g(t), forall teN,.
Proof. By hypothesis we have that
Laif} () = Laig} (s)

for |s + 1| > r. This implies that

o0

— (S + 1)k+l (S + )k+l
for |s + 1| > r. It follows from this that

fla+k)=gla+k), keNy,

and this completes the proof. O
Next we give the Laplace transforms of the (delta) hyperbolic sine and cosine
functions.

Theorem 2.8. Assume p # +1 is a constant. Then

(i) Lafeoshy (. a)}(s) = =2
(ii) L,{sinhy(t,a)}(s) = peml

for|s + 1| > max{|1 + p|, |1 — p|}.
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Proof. To see that (ii) holds, consider

L4{sinh, (¢, a)}(s)

3 [Lute(t.a}6) — Liey0.0}0)]

IR
T 2s—p 2s4p
_p
S2_p2

for [s+ 1] > max{|1 + p|, |1 —p|}. The proof of (i) is similar (see Exercise 2.5). O
Next, we give the Laplace transforms of the (discrete) sine and cosine functions.

Theorem 2.9. Assume p # +i. Then

() Lafcosy(t,a)}(s) = i+
(i) ‘Cu{Sinp(tv a)}(s) = #7

for |s 4+ 1| > max{|1 + ip|, |1 — ip|}.
Proof. To see that (i) holds, note that

La{cos,(t,a)}(s) = La{cosh,(t, a)}(s)

3 [Laten (. @}6) + Lle 0,0} 0]

1 1 1 1
:Es—ip+§s+ip
_ s

s2+p2’

for |s + 1| > max{|1 + ip|, |1 — ip|}. For the proof of part (ii) see Exercise 2.6. O
Theorem 2.10. Assume o # —1 and % # +1. Then
(i) Latea(t.a)cosh 5 (La)}(s) = =ty
1+a .
(i) Lalea(t.a)sinh s (1,@)}(s) = b
1+«
Sor|s 4+ 1] > max{[l +a + B, |1 +a — B]}.
Proof. To see that (i) holds, for |s + 1| > max{|l + « + B], |1 + o — B]}, consider

L {eq(t,a) cosh% (t,a)}(s)
_ %,ca{eaa, e s (t.a)}(s) + ~Latealt.ade s (1.a)}(5)
T+a 2 TFa

= Lty o (DY) + 3 Lale,q s (L))



2.2 The Delta Laplace Transform 93

= 3 Lalewrp (6@} + 3 Lateap(a)} )

1 1 1 1
= — +_
2s—a—fB 2s—a+p
_ s—ao
R
The proof of (ii) is Exercise 2.7. O

Similar to the proof of Theorem 2.10 one can prove the following theorem.
Theorem 2.11. Assume o # —1 and 1+ia # +i. Then
(1) Lifeq(t,a) cos% (t,a)}(s) = ﬁ,
(i) Lofea(t.a)sin g (1a)}(s) = =g
Sor|s 4+ 1] > max{|1 +a +iB|, |1 +a —if|}.

When solving certain difference equations one frequently uses the following
theorem.

Theorem 2.12. Assume that f is of exponential order r > 0. Then for any positive
integer N

N—1

LAY} (5) = sV Fa(s) = Y S AN T (a), (2.4)

j=0
for|s+ 1| > r.

Proof. By Exercise 2.2 we have for each positive integer N, the function AVf is of
exponential order r. Hence, by Theorem 2.4 the Laplace transform of AVf for each
N > 1 exists for |s + 1| > r. Now integrating by parts we get

LAAFYs) = / con(0 (1), ) () At
= ot a)f (]2 — / Eseas(t. a)f (Al

= —f(a) +s / eos (@ (). a)f ()AL

= sFu(s) —f(a)

for |s + 1| > r. Hence (2.4) holds for N = 1. Now assume N > 1 and (2.4)
holds. Then

LANYTIfY(s) = Lot (AYS)}(s)
= sL{AYf}(s) — AV (a)
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N—1
=5 | $"Fa(s) = D IA T (@) | - AV (@)

j=0
(N+1)—1
=M"F() - Y AV (a).
j=0
Hence (2.4) holds for each positive integer by mathematical induction. O

The following example is an application of formula (2.4).
Example 2.13. Use Laplace transforms to solve the IVP
A1) —3Ay(1) + 2y(t) =2-4', reN,
y(0) =2, Ay(0) =4.

Assume y(7) is the solution of the above IVP. We have, by taking the Laplace
transform of both sides of the difference equation in this example,

2

[s*Yo(s) — s9(0) — Ay(0)] = 3[sYo(s) — y(0)] + 2Yo(s) = T3

Applying the initial conditions and simplifying we get

2
(s> =35 +2)Yo(s) =25 —2 + —
T

Further simplification leads to

2
(s — D)(s = D¥ols) = 282
s—3
Hence
o 2(s—2)
=6
o ]
Ts—1 * s—3

It follows that the solution of our IVP is given by

y(1) = e1(1,0) + e3(2,0)
=244 te Np.

Now that we see that our solution is of exponential order we see that the steps we
did above are valid.
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The following corollary gives us a useful formula for solving certain summation
(delta integral) equations.

Corollary 2.14. Assume f : N, — R is of exponential order r > 1. Then

Fa(s)
N

ca { [ f(r)Ar} () = LLuiF}s) =
; s

for|s+ 1| > r.

Proof. Since f : N, — R is of exponential order » > 1, we have by Exercise 2.3
that the function £ defined by

h(t) = /tf(r)Ar, reN,

is also of exponential order » > 1. Hence the Laplace transform of % exists for
|s + 1| > r. Then

Laif}(s) = La{Ah}(s)
= sLa{h}(s) — h(a)

= 5L, {/atf(‘l:)A‘L'} (s).

It follows that

' 1 Fa(s)
e [ rad 0 = Lo = =
for |s 4+ 1| > r. |
Example 2.15. Solve the summation equation
—1
Y() =2-4+2% y(k). teN,. (2.5)
k=0
Equation (2.5) can be written in the equivalent form
t
(1) =2-e3(1,0) + 2/ y(k)Ak, te Ny. (2.6)
0

Taking the Laplace transform of both sides of (2.6) we get, using Corollary 2.14,

2 2
Y()(S) = — 4 - Y()(S).
s—3 s
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Solving for Yy (s) we get
2s
(s=2)(s—3)
6 4
s—3 s=2°

Yo(s) =

It follows that
y(t) = 6es(t,0) — 4e,(2,0)
=6-4—-4.3, teN,.
is the solution of (2.5).

Next we introduce the Dirac delta function and find its Laplace transform.

Definition 2.16. Let ¢ € N,. We define the Dirac delta function at ¢ on N, by

t=c

5.(t) =
® 0, t#c.

Theorem 2.17. Assume ¢ € N,. Then

La{dc}(s) = for |s+1]>0.

Proof. For |s+ 1| > 0,
Sc(a+ k)
La{8:3(s) = Z G+

1
- (S+ 1)c—a+1 :

This completes the proof. O
Next we define the unit step function and later find its Laplace transform.

Definition 2.18. Let ¢ € N,. We define the unit step function on N, by

0, t e Ne~!
uc([) = “
1, t € N,.

We now prove the following shifting theorem.
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Theorem 2.19 (Shifting Theorem). Let c € N, and assume the Laplace transform
of f : N, — R exists for |s + 1| > r. Then the following hold:

(i) Lalf(t = (c = )ue(}s) = i Lalf}(5);
(i) Lo+ (= aN}s) = (s + D [ L3 00) — DiZy™ Lkt ]

for |s + 1| > r. (In (i) we have the convention that f(t — (¢ — a))u.(t) = 0 for
ZGNZ_I ifc>a+1.)

Proof. To see that (i) holds, consider

U k
LAf(t+a—cuc()}(s) = Zf(Za G+1 C))k+$a £

B fQRa+k—oc)
- Z (s+l)k+1

k=c—a

> fRa+k+c—a—c)
=2

k+c—a+1
= (Dt

fla+k)
o Z (S + 1)kteatl

B 1 2. fla+k)
- (S + 1)c—a ; (S + ])k-H

(+Wﬁ£mm

for |s 4+ 1| > r.
Part (ii) holds since

o0 k _
L+ = apye) = Y T

k=0

flk+c¢)
Z (S + 1)k+1

fla+k)
= Za (S+ ])k cta+1

c—a fla+k)
ey Lot

k=c—a
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c—a—1

p— fla+k) fla+k)
=G+ |:Z( 1)k Z G+l )k+1:|

c—a—1
=@+ |:£a{f}(s) Z (f(_i —;)lf:)—l:|

for |s 4+ 1| > r. |
In the following example we will use part (i) of Theorem 2.19 to solve an IVP.

Example 2.20. Solve the IVP

Ay(t) —3y(t) = 2050(t), t€ N
y(0) = 5.

Taking the Laplace transform of both sides, we get

sYo(s) — y(0) — 3Yo(s) = GO

Using the initial condition and solving for Y, (s) we have that

fos) = oy 2]
o= s—3(s+ 1)1

Taking the inverse transform of both sides we get the desired solution

(1) = 5e5(t,0) + 2e3(t — 51, 0)us; (2)
= 54" +2(4)lus (1), teN.

In the following example we will use part (ii) of Theorem 2.19 to solve an IVP.

Example 2.21. Use Laplace transforms to solve the IVP

yit+2)+y(t+1)—6y(t) =0, reNy
y(0) =5, y(1)=2.

Assume y(7) is the solution of this IVP and take the Laplace transform of both sides
of the given difference equation to get (using part (ii) of Theorem 2.19) that

5

2 5

(s+1)° |:Y0(s) aln
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Solving for Yy (s) we get

55 + 12
(s—D(s+4)

17 1 8 1
=5s-1 5514

Yo(s) =

Taking the inverse transform of both sides we get

17 8
y(1) = —e1(1,0) + —e_4(1,0)
5 5

17

8
= 2"+ —(-3)", teN,.
5 +5( ) 0

Theorem 2.22. The following hold for n > 0:

() Latha(t.a)}(s) = <A for s+ 1] > 1
(i) Lot —a)"}(s) = 2 for|s+ 1] > 1.

Proof. The proof of this theorem follows from Corollary 2.14 and the fact that
L{1}(s) = %for ls+ 1] > 1. |

2.3 Fractional Sums and Differences

The following theorem will motivate the definition of the n-th integer sum, which
will in turn motivate the definition of the v-th fractional sum. We will then define
the v-th fractional difference in terms of the v-th fractional sum.

Theorem 2.23 (Repeated Summation Rule). Lerf : N, — R be given, then

/ar/;rl --'/ar"lf(rn)Afn"'Aszfl = /ath,,l(t,a(s))f(s)As. 2.7)

Proof. We will prove this by induction on n for n > 1. The case n = 1 is trivially
true. Assume (2.7) holds for some n > 1. It remains to show that (2.7) then holds
when n is replaced by n + 1. To this end, let

t 7] Tn—1 Tn
y(1) 12// / /f(fn+1)ATn+1ATn'"AszT1~

Let g(z,) = far" f(Tut1) AtTyt1, then it follows from the induction assumption that



100 2 Discrete Delta Fractional Calculus and Laplace Transforms

¥(0) = / s (1.0.(5))g(5) As

- | WA As,
where
W) = 8. Av(s) = et (1,05)).
It follows (using Theorem 1.61, (v)) that
Au(s) =£(5) 06) = —ha(t,),  D(@() = —ha(t.56)).

Hence, integrating by parts, it follows that
s t
Y0 = ~0.5) [ F) S50,
t
+ [ moereas

-/ (0 () (5)As.

a

This completes the proof. O
Motivated by (2.7), we define the n-th integer sum A "f(¢) for positive integers
n, by

AZF() = / s (1, 0 (D) (5) s,

But, since
hp1(t,o(s)) =0, s=t—1,t—2,---, t—n+1,

we obtain

t—n—+1
870 = [ hao@)roAs 2.8)

which we consider the correct form of the n-th integer sum of f(¢). Before we use
the definition (2.8) of the n-th integer sum to motivate the definition of the v-th
fractional sum, we define the v-th fractional Taylor monomial as follows.
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Definition 2.24. The v-th fractional Taylor monomial based at s is defined by

(t—s)*

W) = 5oy

whenever the right-hand side is well defined.
We can now define the v-th fractional sum.

Definition 2.25. Assume f : N, — R and v > 0. Then the v-th fractional sum of f
(based at a) is defined by

t—v+1
ATVF(t) = / hy—1(t,0(0)f (r) AT

= Zhv_l(t, o (0)f (),

T=a

for t € N,+,. Note that by our convention on delta integrals (sums) we can extend
the domain of A} "f to N,4,_n, where N is the unique positive integer satisfying
N —1 < v <N, by noting that

A =0, teNT—L.

The expression “fractional sum” is actually is misnomer as we define the v-th

fractional sum of a function for any v > 0. Expressions like A;/gy(t) and AT y(z)
are well defined.

Remark 2.26. Note that the value of the v-th fractional sum of f based at a is a
linear combination of f(a), f(a + 1),--- ,f(t — v), where the coefficient of f(z — v)
is one. In particular one can check that A "f() has the form

AVf() = hy—(t,0(@)f (@) + -+ vf(t—v—1) +f(r—v). (2.9)

The following formulas concerning the fractional Taylor monomials generalize
the integer version of this theorem (Theorem 1.61).

Theorem 2.27. Lett,s € N,. Then
(i) hy(1,0) =0
(i) Ahy(t,a) = hy—i(t, a);
(iii) Ashy(t,5) = —hy—1(t,0(5));
(iv) [ ho(t,@)At = hy4 (2, a) + C;
V) [ ho(t,0(s)As = —hy41(t,5) + C,

whenever these expressions make sense.
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Proof. To see that (iii) holds, note that

Ashy(t,s) = h,(t,s + 1) — h,(t,s)
_=s=D" (t—s)*
T Tw+1) T@+1
B T'(t—ys) re—s+1)
T T(—s—)T(w+1) T@—s+1—-0)T(+1)

L(r—s)
[(t—s—v)‘(t_s)}r(wr DI —s—v+1)
(v+ DI —s)

T T —s—vTt1)
. -y

T TWl(—s—v+1)
(1=
T T

—hy—1(t,0(5)).

The rest of the proof of this theorem is Exercise 2.16. O
Example 2.28. Using the definition of the fractional sum (Definition 2.25), find
_1
AL
Using Theorem 2.27, part (v), we get

_1 +3

Ayl / h_%(t,a(s))-l As
0

s=t+%

= _h% (t’ S) |s=0

1
—h%(l‘,l-i- E) +h%([,0)

_1y1 3
rg)  re
2 1
= 12.
J

Later we will give a formula (2.16) that also gives us this result.

Next we define the fractional difference in terms of the fractional sum.
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Definition 2.29. Assume f : N, — R and v > 0. Choose a positive integer N such
that N — 1 < v < N. Then we define the v-th fractional difference by

ALF(t) := AVATVOF(@), 1€ Nopyy.

Note that our fractional difference agrees with our prior understanding of whole-
order differences—that is, for any v = N € Ny

NJf(@) := AVAZNTIF () = ANAF () = AVF (), (2.10)
for t € N,. This is called the Riemann-Liouville definition of the v-th delta

fractional difference.

Remark 2.30. We will see in the proof of Theorem 2.35 below that the value of the

fractional difference Af () depends on the values of f on Nf:;_ ~- This full history

nature of the value of the v-th fractional difference of f is one of the important
features of this fractional difference. In contrast if one is studying an n-th order
difference equation, the term A"f(r) only depends on the values of f at the n + 1
points t,t + 1,1+ 2,--- ,t + n.

1
Example 2.31. Use Definition 2.29 to find A; 1. Using Example 2.28, we have that

Later we will give a formula (see (2.22)) that also gives us this result.
The following Leibniz formulas will be very useful.

Lemma 2.32 (Leibniz Formulas). Assume f : Nyy, x N, — R. Then

t—p+1 t—u+1
A[/ f([,‘C)A‘L’] =/ Af(t,D)AT+ft+ 1, t—pu+1) (2.11)
and
t—p+1 t—pu+2
A|:/ f(, ‘L’)AT] = / Aft,0)At+ft,t—pn+1)  (2.12)

fort € Nyy,, where the Af(t,s) inside the integral means the difference of f(t,T)
with respect to t.
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Proof. To see that (2.11) holds, note that, for r € Ny,

t—p+1 t—pu+2 t—iu+1
A|:[ g f(t,r)Ar] =/ g f(t+1,r)At—/ : [t t)At

t—p+1
=/ A TAT +f+ 11+ 1— ).

The proof of (2.12) is Exercise 2.19. O
In the next theorem we give a very useful formula for A (¢). We call this formula
the alternate definition of A’f(#) (see Holm [123, 124]).

Theorem 2.33. Letf : N,— R and v > 0 be given, with N — 1 < v < N. Then

[, (ro(r)f()Ar, N—1<v <N

BfO= ey v =N

(2.13)

fOV[ € Na+N—v~

Proof. First note that if v = N € Ny, then using (2.10), we have that
ALty = ANATNTIF () = AVAZF () = AV ().

Now assume N — 1 < v < N. Our proof of (2.13) will follow from N applications
of the Leibniz formula (2.12). To see this we have for r € N,y n_,,

AL (t) = AV A NTIF(r)

t—(N—v)+1
= AN |:/ hy—v—1 (t’ O(T))f(T)AT:|

t—(N—v)+1
=AM A[/ hN—v—l(taO(T))f(T)Af}'

Using the Leibniz rule (2.12), we get
—(N—v—1)+1
sy =av| | s (.0 (D) (£) AT

+ -1 (1.1 = (N =v = 2))f(t = (N —v — 1))]

—(N—v—1)+1
= ANT! |:/ hN_U_z(t,o(r))f(r)At] .
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Applying the Leibniz formula (2.12) again we get
—(N—v—2)+1
AYF() = AN / It 0 (D) (1) At
a

+ vy (t.t = (N —v =3)f(t = (N —v — 2))]

—(N—v—2)+1
= AN7? [/ hy——3(t, G(I))f(f)Af] .

Repeating these steps N — 2 more times, we find that
—(N—v—N)+1
AYF(r) = ANN / vyt (1,0 (D) (1) At
+ hy—yn (@t = (N —v = (N + D)f(r = (N —v —N))}
v+l
= / h_y_1(t,0(0)f()AT + h_,(t,t + v + )f(t + v)
a

t+v+1
_ / heyr (1.0 () (1) At

This completes the proof. O

Remark 2.34. By Theorem 2.33 we get for all v > 0, v ¢ N; that the formula for
A}f(t) can be obtained from the formula for A Vf(¢) in Definition 2.25 by replacing
v by —v and vice-versa, but the domains are different.

Theorem 2.35 (Existence-Uniqueness Theorem). Assume q,f : Ng — R, v >0
and N is a positive integer such that N — 1 < v < N. Then the initial value problem
Ay_yy(t) + gyt +v—N) =f(1), t €Ny (2.14)
yv—-—N+i)=A;, 0<i<N-1, (2.15)

where A;, 0 < i < N — 1, are given constants, has a unique solution on N,,_y.

Proof. Note that by Remark 2.26, for each fixed 1, A:ﬁlx,_")y(t) is a linear combina-
tion of y(v —N),y(v =N 4+ 1),--- , y(t — N + v) with the coefficient of y(t — N + v)
being one. Since
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AY_y(0) = ANATNTy(),

we have for each fixed 7, A}_,¥(7) is a linear combination of y(v —N), y(v =N + 1),
-++,y(t + v), where the coefficient of y(r + v) is one. Now define y(r) on N'Z}
by the initial conditions (2.15). Then note that y(7) satisfies the fractional difference
equation (2.14) at r = 0 iff

A, _yy(0) + g(0)y(v — N) = f(0).

But this holds iff
(W =N)+ (- )y =N+1+---+y©) + q0)y(v —N) =£(0),
which is equivalent to the equation
(A0 + ()AL + -+ (A + y(v) + g(0)Ag = f(0).

Hence if we define y(v) to be the solution of this last equation, then y(¢) satisfies the
fractional difference equation at r = 0. Summarizing, we have shown that knowing
y(t) at the points v — N 4+ i, 0 < i < N — 1 uniquely determines what the value of
the solution is at the next point v. Next one uses the fact that the values of y(¢) on
NJ_, uniquely determine the value of the solution at v + 1. An induction argument
shows that the solution is uniquely determined on N, _. O

Remark 2.36. We could easily extend Theorem 2.35 to the case whenf, g : N, - R
instead of the special case @ = 0 that we considered in Theorem 2.35. Also, the term
q(t)y(t + v — N) in equation (2.14) could be replaced by ¢(¢)y(t + v — N + i) for any
0 <i < N — 1. Note that we picked the nice set Ny so that the fractional difference
equation needs to be satisfied for all # € Ny, but then solutions are defined on the
shifted set N, _y. By shifting the set on which the fractional difference equation is
defined, we can evidently obtain solutions that are defined on the nicer set Ny. In this
book our convention when considering fractional difference equations is to assume
the fractional difference equation is satisfied for # € N, and the solutions are defined
on Na-i-v—N~

In a standard manner one gets the following result that follows from Theo-
rem 2.35.

Theorem 2.37. Assume q : Ny — R. Then the homogeneous fractional difference
equation

AL _yu(t) +gq@u(t+v—N) =0, reN,_y
has N linearly independent solutions u;(t), 1 <i < N, on Ny and

u(t) = crur(t) + coun(t) + -+ + eyun(t),
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where ¢y, ca, -+ ,Cy are arbitrary constants, is a general solution of this homoge-
neous fractional difference equation on Ny. Furthermore, if in addition, y,(t) is a
particular solution of the nonhomogeneous fractional difference equation (2.14) on
Ny, then

y(1) = crur(t) + caup(t) + -+ + eyun(t) + v, (1),

where ¢y, ¢y, -+ , cy are arbitrary constants, is a general solution of the nonhomo-
geneous fractional difference equation (2.14).

2.4 Fractional Power Rules

Using the Leibniz formula we will prove the following fractional sum power rule.
Later in this chapter (see Theorem 2.71) we will use discrete Laplace transforms to
give an easier proof of this theorem. Later we will see that the fractional difference
power rule (Theorem 2.40) will follow from this fractional sum power rule.

Theorem 2.38 (Fractional Sum Power Rule). Assume u > 0 andv > 0. Then

F(/’L + 1) H+U

-V —a)t=— (t—
A, (t—a) F(/L—I—v+1)(t a) (2.16)
forte Na+u+u-
Proof. Let
R F(M_’_ 1) _ Uty
gi(n) = —F(M—i—v—l—l)(t a)F=—,
and
1) = A, (=)t = ) hya(1.0(5)(s — @), (2.17)
s=a+u

for t € Nyq,+v. To complete the proof we will show that both of these functions
satisfy the initial value problem

(t—a—(n+v)+1DAg) = (u+v)g) (2.18)
gla+pn+v)y=T(u+1). (2.19)
Since
— F(/L—f— 1) +v
gila+p+v) = Titv e 1)(M+v)’“‘

F(p+1)
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and

at+
1 I3

@pa+p+v)= = o) Y @t p+v—o(s) s —ak
s=a+p

v—1
e )( — )= uk

C(p+1)

we have that g;(r), i = 1, 2 both satisfy the initial condition (2.19).
We next show that g;(¢) satisfies the difference equation (2.18). Note that

F(/"l’ + 1) (t_a\ﬂ‘f'l)—l'

81 = (14 V) e S

Multiplying both sides by r —a — (1 + v) + 1 we obtain

(t—a—(u+v)+1)Ag (1)

. F(/L + 1) o _ _ +v—1
= (n+ V)—F(MJr " 1)[t a—(u+v—D]t—a)==—
=(u+ U)%(I —a)*™ by Exercise (1.9)
= (L +v)gi()

fort € Nyy,4,. Thatis, g;(f) is a solution of (2.18).
It remains to show that g,(¢) satisfies (2.18). Using (2.17) we have that

2(0)
= ﬁ ,¢=;+u [(t—0(s) — (v—=2)](t — 0 ()*=2(s — @)™

- 1"; Z [t—a—(u+v)+1)—(s—a—p]t—o(s)=2(s—a)
=a+p

t—a—(n+v)+1 — B 2,

= TO) sz%ﬂ(t o(s) (s —a)™
o V=206 g — s—a

- m S=§u+u(f —0(s)—(s p( e

= h(1) — k(),
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where
Ct—a— ()l - B
h(r) = o) Yo (t—a() s —a)t
s=a+u
and
k() == —— F( . ;M(t —0() = 2(s—a—p)(s —a)
-5 )S;(r—o(s»” 2t
Using (2.17) and (2.11) we get
Ags (1)
1"( ) 3 ;M(Z— 0(5)2(s — a) + (lv) v—D"Yt4+1—v—a)t
Z (t—0()2(s—a)-+ (t+1—v—a)
F( ) s=a+p
It follows that
(t—a+ (+v)+DAg0) = (v—Dh@) + (1 + 1 —v —a)FL (2.20)

Also, integrating by parts we get (here we also use Lemma 2.32)

—v

k“)—m > (t—0(s)=2s — )ttt

s=a-+u
R T RO LT T
T T | v—1 —ats
M + 1 — v—1
— (t—o()—(s—a)k
oot 2
(t+1—v—apt!t uw+1 —

ST T Teonre & e

s=a+pu
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It follows that
(t+1—v—a)* = —(v — Dk@) + (u + 1)ga2(0). (2.21)
Finally, from (2.21) and (2.20), we get

(t—a+ (n+v)+ DAg(t) = v —Dh(t) + (t+ 1 —v —a)ttL
= (V= Dh@) — (v = Dk(®) + (1 + 1g2(7)
= (1 +v)ga2(1).
This completes the proof. O
Example 2.39. Find

_3 1
Aiz(z—Z)i, teN,.
2

Consider
_% 1 _% 1
— 2 — _ 2
A% (t—2)2 = A2+%(t 2)2
r'(3)
= 1—2)%
F(3)( )
= ﬁ(l‘—Z);
4
= ﬁ(tz —5t+6),
4
forr € N,.

Theorem 2.40 (Fractional Difference Power Rule). Assume @ > 0 and v > 0,
N—1<v <N.Then

(t — a)=" (2.22)

r 1
AV, (t—a)t = e+
a Fp—v+1)
fort € Nyt pyn—v-

Proof. To see that (2.22) holds, note that

(r—a)yt = ANA (1 - a)t

= A" Mt 1) (t — a)ltN=
F(w+1+N-v) .

v
Aa-l—u
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_ F(p+1) AN (t — gytN=y
'w+1+N-v)

C(p+ D+ N—-v)¥

= t—a)t™
Fp+14+N—-v) ( )
r 1
= &([_a)#*".
'w+1-v)
This completes the proof. O
Example 2.41. Find
1 3
Ai(t—1)2, reNy.
2
Consider
1 3 1 3
Ai(t—D2=A° (-1
3 I+3
'
= (2)0— )"
I'(2)
37
=—(0-1),
=)
fort € Nj.

The fractional power rules in terms of Taylor monomials take a nice form as we
see in the following theorem.

Theorem 2.42. Assume > 0, v > 0, then the following hold:

(1) A;-;ip_h;t(t’ a) = hu+v (t’ Cl), re Na+#+v;
(i) ALy h(t.@) = hyoy(t,@). 1€ Nogyums.

Proof. To see that (i) follows from Theorem 2.38 note that for r € Ny, 4,

— 0
Batuln®-0) = Beiu (1)

B 1 F'(w+1) v

CT(e+1) F(M+U+1)(t A"
(t —a)tt

F(pw+v+1)

= h}l"l‘l) (t, a)'

Similarly, part (ii) follows from Theorem 2.40 (see Exercise 2.22). O
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Theorem 2.43. Assume p > 0 and N is a positive integer such that N—1 < pu < N.
Then for any constant a

() =it =)l + oyt — a2 - eyt — @)Y
for all constants cy,ca,-+- ,cn, is a solution of the fractional difference equation
AZ—F/L—Ny(t) =0on Nyt —n.
Proof. Let n and N be as in the statement of this theorem. If © = N, then for
1 <k < N, we have that

Al = a)f = = AN — o) = 0.

Now assume that N — 1 < u < N. Then we want to consider the expression

—k
AZ_HL_N(t —a)l=£,

Note that since the subscript and the exponent do not match up in the correct
way we cannot immediately apply formula (2.22) to the above expression. To
compensate for this we do the following.

t+p
Ay t—af == " ho (o) (s —a)tt

s=a+pu—N

t+p

Z h—p.—l (tv U(S))(S - a)L_k’

s=a+pu—k
since
(s—a)=* =0, for s=a+pu—-Na+pu—N+1,---,a+pn—k—1.
Therefore, we have that

—k
a+/L—N (t—a)t=t = a+u Lt —a)=

_T(u—k+1)
T T -k
=0.

(t—a)y=*

The conclusion of the theorem then follows from the fact that AL is a linear
operator. O
It follows from Theorem 2.43 that

x(t) = athy—1(t.a) + arhy—s(t,a) + -+ + ayh,—n(t, a)

is a general solution of A4 ,—ny(f) = 0.
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Theorem 2.44 (Continuity of Fractional Differences). Lerf : N, — R be given.
Then the fractional difference Af is continuous with respect to v for v > 0. By this
we mean for each fixed m € Ny,

Alf(a+ [v] —v +m),

where [V] denotes the ceiling of v, is continuous for v > 0.
Proof. To prove this theorem it suffices to prove the following:

(i) Alf(a+ N —v + m) is continuous with respect to v on (N — 1, N);
(i) limy_y- ALf(a+ N —v +m) = AVf(a + m);
(i) lim, ,y_py+ Apfl@a+N—v +m) = ANTIf (@ +m+1).

First we show that (i) holds. For any fixed v > O with N — 1 < v < N, we have

t+v
Af(a+N—v+m) =Y h, 1(t.6(s)f(s)
s=a t=a+N—v+m
a+N+m
= Y hoa@a+N—v+mo(s))f(s)
a-i;N+m—1

Y. hei@+N—v+mo@) () +f@+N+m)

S=a

a+N+m—1 —v—1
(a@a+N—-v+m—o(s))
= ; T f) +f(a+N+m)
a+N+m—1

Fra+N—-v+m—ys)
Za Fa+N+m—s+ I'(—v)

s=

a+N+m—1
(@a+N—-v+m—s—1)---(-v)
Z ( (@a+N+m—s)! f(s))

f(s) +f(a+ N+ m)

S=a

+fla+ N+ m)

i (a+N+m—i))

Ni’:"((i—l—u)---(—wl)(—v)f
i=1

+fla+ N+ m).
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It follows from this last expression that A)f(a+ N —v +m) is a continuous function
ofv,forN —1<v <N.

vl_i)l[‘{lli Af(a+N—v+m)

& (= 1=) (=)

:ul—ig/]—[z( f f(a+N+m—i))

_ (i—l—N)-~~(—N)f(a+N+m_i))-|-f(a+N—|—m)

(i—1-N)---(=N)

f(a+N+m—i)) +f(a+ N+ m),

(—1) f f(a+N+m—i)) +f(a+N +m)

(—1)i(]j)f(a +N+m— z))

+fla+ N+ m)

Y N
= Z(—l)’(i)f(a—i-N—i-m—i)
i=0

( (N)---(N—i+1)

l N

= Z(—l)’(i)f((a +m) + N —i)
i=0

= Af(a + m).

Hence, (ii) holds.
Finally, we show (iii) holds. To see this consider

lim Alf(a+N—v+m)

v—>(N—1)*+
N+m .
. (i=1=v)-- (-v) )
= lim a+N-+m—i
v—>(N—1)+ |: ; ( i! f )

+f(a+N+m):|



2.4 Fractional Power Rules 115

N+m

i—N)---(— 1
:Z(( il i!( N+ )f(a+N+m—i))+f(a+N+m)

—_

2

—1
((Z_N) l‘(_N+1)f(a+N+m—i)) +fa+N+m)
1 !

L

2

—1 .
(( 1)’(N_1)'i"'(N_l)f(a+N+m—i))
1 !

+f(a+ N+ m)

2

—1

(-1 ( ; )f(a+N+m—z))+f(a+N+m)

1

—1
(( 1)( )(a+M+1+(N—1)—l)>

= A" fa+m+1).

=

|
(]

i

2 1

Hence, (iii) holds. O
The binomial expression for AVf(#) is given by

PRI T £ B
AP =Y e+ N =)

i=0

In the following theorem we give the binomial expressions for fractional
differences and fractional sums.

Theorem 2.45 (Fractional Binomial Formulas). Assume N —1 < v < N and
f:N, = R. Then

t+v—a
A=) (—D"(Z)f(rw—k), r € Notw— (223)
k=0
and
Af(0) = Z( 1>k( )f(t—v—k) (2.24)

3 (v+]]§_l)f(t—v—k), t€Noto. (2.25)

k=0
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Proof. Assume f : N, - Rand0 <v < N.Fixt € Nyyy—,. Thent = a+ N —
v + m, for some m € Ny. Then
Hv+1
a0 = [ hao@rmar

—=+v v—

_Z(r o) Lo

t+v F(l‘—‘[)
- 2:: Tr—t+vrnry

_a%m 'a+N—-v+m—r1)
N —t Fra+N+m—1t+ HI'(—v)

f(©)

N TN+ m—t—v)

B XZ:O T(N+m—1+ )I(=v)

fla+7)

N+m—1

. N+m—1—1t—v)---(-V)
=fla+N+m)+ Z Ty AR
=fla+N+m)

N+m—1

Nam—r W) O =(N+m—1)+1)

i ;)( D FWtm—ctn  @TD
N+m v
= > (=Dt f(N m )f(a+r)

=0

N+m y
- Z(—l)k(k)f(a +N+m—k)
k=0

N+m

= Z( 1)"( )f((a+N—v+m)+v—k)

t—a+tv
_ kY _
= > D (k)f(t+v k).

k=0

Hence (2.23) holds. Since we can obtain the formula for A_"f(¢) from the formula
for AYf(¢) by replacing v by —v we get that (2.24) holds with the appropriate change
in domains. Finally, since
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—V v+k—1
()= ()

(2.25) follows immediately from (2.24). O
Note that if we let v = N in (2.23), we get the following integer binomial
expression for AVf(¢), that is

ANf(r) = i(—l)k(N)f(t+N—k) teN
= L i W
k=0

2.5 Composition Rules

Theorem 2.46 (Composition of Fractional Sums). Assume f is defined on N,
and ., v are positive numbers. Then

(AL, (A7 0 = (A7) 0 = [ A1, (A7)] 0

forte Na+u+v«

Proof. Fort € N4+, consider

—p

(A (AN = D hua(t.0(5)) (A7"F) (5)

s=a+v

t—[ s—Vv
D huei(,0(9)) Y b (s, 0 (N)f (1)

s=a+v
1 =@ s—v
= IOt 0D = o@)E s — o ()= ()
s=a+v r=a
1 t—(n+v) t—p

o IR
= Tro) > (= oYL — o ()= ().

r=a s=r+v

where in the last step we interchanged the order of summation. Letting x = s — o (r)
we obtain

(A5 (AN @)

1 t—(u+v) [t—p—r—1 1 1
— Y — g — p—t,v=1
= T ; [;1 (t—x—r—2)L"1y ]f(r)
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1 t—(u+v) | (—r—1)—p 1 |
- T() —r—1- polyr=l
Fe) ; T(w) ; (@t —r=1-o@)y==1/0
1 t—(pu+v) -
- F(\)) Z [A"fltv_l]t—n—r—lf(r)
But by Theorem 2.38
A i +v—1
Av—lt - F(U T /L) e
and therefore
— 1 —(u+v) r
[25 (A0N10 = 155 2 %“—r—nw—vm
1 t—(ju+v)
= m Z (t— o (M)A ()
= (A7) ().

t € Ngqy4,, which is one of the desired conclusions. Interchanging i and v in the
above formula we also get the result

[Act, (A7) | 0 = (A7) ()
fort e N0+/L+U‘ O
In the next lemma we give composition rules for an integer difference with a
fractional sum and with a fractional difference. Atici and Eloe proved (2.26) with

the additional assumption that 0 < k < v and Holm [123, 125] proved (2.26) in this
more general setting.

Lemma 2.47. Assumef:N, — R, v>0,N—1<v <N.Then
[AY(AF)] ) = (ASYF) (). te€ N (2.26)
and
[A%(AL)] (1) = (AET"F) (o), € Noynoy. (2.27)

Proof. First we prove that

[A (A7 )] (1) =f(@). 1€ N (2.28)
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by induction for £ € Nj. For the base case we have

AATF () = A[ / f(r)Ar} )

for t € N,41. Now assume k£ > 1 and (2.28) holds. Then
AFIAR Y (1) = AT AL AT () using Theorem 2.46
= AN AALIA (1)
= AkA; f(t) by the base case with base a + k
=f(1) by the induction assumption (2.28)

for t € Nyyr+1. Therefore, for k > N
ANATNF(r) = ATVAN AN (1) = ANF()
and fork < N
AAVF(t) = ANAE AL NI (@) = ALY = ATV ()
for t € N, 4. Hence for all k € N; we have that (2.26) holds for the case v = N.
It is also true that (2.27) holds when v = N. Assume for the rest of this proof that

N —1 < v < N. We will now show by induction that (2.27) holds for k € N;. For
the base case k = 1 we have using the Leibniz rule (2.11)

AN ()
t+v+1
_ A[ / hvla,a(r))f(r)m}

t+v+1

- / ey (1, 6 (D) (D)AT + hyey (0 (D)1 + v + Df(+v + 1)
t+v+1

— f heva (6, 0 (D) (D) AT + £t + v + 1)

t+v+2
_ / heya(t.0 () (1) AT

=A%)
= AT (@).

Hence the base case

AALF (1) = AVTF(1)
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holds. Now assume k£ > 1 and
AAL () = AT (1) (2.29)
holds. It follows from the induction hypothesis (2.29) and the base case that

AFTALF(0) = AN AT (1)
= AATf ()
= AT,
Hence (2.27) holds for all k € N;. The proof of (2.26) is very similar and is left as
an exercise (Exercise 2.23). O

We now prove a composition rule that appears in Holm [125] for a fractional
difference with a fractional sum.

Theorem 2.48. Assumef :N, - R,v,u>0and N—1 <v <N, N € N;. Then

AL AT = AU, 1€ Nagyges (2.30)

Proof. Note that for t € Nyq 4 n—0,

Al ATy = AVATET AT (1)

= ANA;(N_”+“)f(t) by Theorem 2.46
= ANW=HOE) by (2.26)
= A7)

Hence (2.30) holds. O

Remark 2.49. From Theorem 2.46 we saw that we can take fractional sums of
fractional sums by adding exponents and by Theorem 2.48 we can take fractional
differences of fractional sums by adding exponents. The fundamental theorem of
calculus gives us that

ATAf(D) = / AF(2) = £(5) — f(a) = A (1) — f(a).

Hence we should not expect the fractional sum of a fractional difference can be
obtained by adding exponents.

In the next theorem we give a formula for a fractional sum of an integer
difference. The first formula in the following Theorem 2.50 is given in Atici et al.
[34] and the second formula appears in Holm [125].
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Theorem 2.50. Assumef : N, - R, k€ Nyandv,u > OwithN —1 < pu < N.
Then

k—1

AJVAY () = A = Y hoki(t @) NF (a), (2.31)

j=0
fort € Ny, and
A Auf (1) = AT (@)

N—1

- Z hy—n1i(t =N + v, @) NV f(a + N — ).
=0
(2.32)

Jort € Nogn—ptv.

Proof. We first prove that (2.31) holds by induction for k£ € N;. For the base case
k = 1 we have using integration by parts and

hy—i1(t,t—v+1)=1=h,,(t,t—v+2)

that for r € N4,

t—v+1
5780 = [ b o)A@

—v+1

= hy—1(t. ) (1)

t—v+1
+ / By (2.0 (0)f (1) At

=hy_(t,t—v+ Df(t—v + 1) —hy—i(t,a)f (a)
t—v—+1
+ / hy—s (1.0 (1)) At
t—v+1
— = v+ 1) — hyy (@) (@) + / hy—a (1.0 () (1) AT
t—v+2
_ f hy—s (1, 0 (D) (D) AT — hys (1. @)f (@)

= A};”f(t) —hy—1(t, a)f (a)

which proves (2.31) for the base case k = 1. Now assume k£ > 1 and (2.31) holds
for that k. Then we have that
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ATVARTIR() = ALV ARAF()
k—1

= ATAF(D) =Y he ()N (@) (by (2.31)

j=0
k—1

= AF(0) = Y bk (. @) AT (@) — by (1, ) (a)

=0
k
= A"AT(n) - Z hy—i—14j(t. a) Nf(a),
Jj=0

for t € Nyyn—,. Hence (2.31) holds. Next we show that (2.32) holds. To see this
suppose now that v > Oand i > O with N—1 < p < N. Letting g(¢r) = A;(N_”)f(t)
and b = a + N — p (the first point in the domain of g), we have for r € Noin_;4y,

AY N, ALT ()
= Ay AV (AN @)

= Afn-, AVg()

N—1
= ANV 80 =D hy_yi(t.b)Ng(b) by (2.32)
Jj=0
N—1
= ANV ATVTORW) = by (6. D) AT AN (b)
j=0
N—1
= AT = ) hoeneg (= N+ v, @) ATV f (@ + N = ),
j=0
where in this last step, we applied 2.31. O

Finally, we give a composition formula for composing two fractional differences.
Note that the rule for this composition is nearly identical to the rule (2.32) for the
composition A_Y,, Al Theorem 2.51 is given for the specific case u € Ny by
Atici and Eloe in [34].

Theorem 2.51. Letf : N, — R be given and suppose v, v > 0, with N — 1 <v <
Nand M —1 <y <M. Then fort € Nyyy—py+n—v,
Ay DLf (1) = AVTEf(0)—
M—1

D hovmi(t =M+ p @) NS (@ + M — ) (2.33)
Jj=0
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for N —1 < v < N.Ifv =N, then (2.33) simplifies to

AZ-FM—;LAgf(t) = AZ—HLf(t)’ re Na+M—IL-

Proof. Let f,v, and  be given as in the statement of the theorem. Lemma 2.47
has already proven the case when v = N.
IfN—1<v <N,thenfort € Nyjypy—py+n-v, we have

Aopy—p, AL ()

— AV [ AN A;;f(r)] , and now using (2.50),

— AN |:A;N+v+uf(t)

M—1
_ Z A{;MJr“f(a +M— phy—yp it =M+, a):|
j=0
= A AN hy (0 — M+ p)f (1) —

M—1

Z NI (@ + M — W) ANhy—y—p4j(t — M + ., a) (Lemma 2.47)

j=0
= AT ()

M—1

Z ANTMERf (@ 4+ M = pOhoy—yj(t = M + 1, @)

j=0
= A0

M—1

= D AT oy (0= M+ f (@ + M = ).

J=0
a

Theorem 2.52 (Variation of Constants Formula). Assume N > 1 is an integer
and N —1 <v < N.Iff : Ny — R, then the solution of the IVP

Av_yy(t) =f(1), te€Ng (2.34)
yw—N+i)=0, 0<i<N-—1 (2.35)

is given by

Y(O) = AF(@0) =Y hy1(to(s)f(s). teN, .

s=0



124 2 Discrete Delta Fractional Calculus and Laplace Transforms

Proof. Let
t—v
Y(O) = AT =Y hyi(t,0(5) £(5).
s=0
Then by our convention on sums
—N+i
YO =N+ =3 ha(v =N +i.0(s)) f(s) =0
s=0

for 0 < i < N — 1, and hence the initial conditions (2.35) are satisfied.
Also, for t € Ny,

v —(N—v
Ay = AVATOTy()
t—(N—v)

=&Y Y hyea(o(s) ()

s=v—N
t—(N—v)

=AY Y vt o(s) ¥(s),

S=v

where in the last step we used the initial conditions (2.35). Hence,

A_yy(t) = AVATNy(0)
= AVATI AT ()
= AYAGf ()
=f().
Therefore y is a solution of the fractional difference equation (2.34) on Ny. ad

Next we use the fractional variation of constants formula to solve a simple
fractional IVP.

Example 2.53. Use the variation of constants formula in Theorem 2.52 to solve the
fractional IVP

N\._.

l()_S t e Ny
2

y(=3) =37
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The solution of this IVP is defined on N_
neous fractional difference equation

1. Note that the corresponding homoge-

1
A’ y(1) =0, teNp
2
has the general fractional equation form

Avy, () =0, teN,

in Theorem 2.43, where
! N=1 + N !
= =1, a+v—-N=—-.
2 2
_1 1
Hence r—2 is a solution of the homogeneous equation A* , y(f) = 0 and hence (using
2

1
Theorem 2.52) a general solution of A, y(f) = 5 is given by
2

_1
W) = =2+ A5

_1 -1
=ct—2+ 57,71 (2.36)
By formula (2.16) we have that
Ao%l ;%Q—F(i) 2= 2 2,
INE)) VT

_1
which is the expression that we got for A, > 1 in Example 2.28. It follows from (2.36)
that

_1 10 1
y(t) = ct—2 + —12.

N

Using the initial condition y (—%) = 3/ we get that ¢ = 3. Therefore, the solution
of the given IVP is

_1 10
() = 3t—5 + 2,
T

fort e N_

1.
2
Also, it is often necessary to know how a shifted Laplace transform with respect

to its base relates to the original Laplace transform with base a, as is described in
the following theorem.
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Theorem 2.54. Let m € Ny be given and suppose f : N,—,, > Rand g : N, - R
are of exponential order r > 0. Then for |s + 1| > r,

\fla+ k—m)
Lonif}6) = 77 1) ——— L, AfH () + ; Cr DT (2.37)
and
Lopn {8} () =G+ 1" Lalgh ) =Y s+ D" "Fga+h. (239
k=0

Proof. Let f,g,r, and m be given as in the statement of this theorem. Then for
s+ 1] > r,

fla—m+k)
Lomift(s) =) —7
% (+1)k+l

= (S"f_ 1)k+] pre (S+ 1)k+1

fla+k) f(a+k m)
Z (S+ 1)k+m+l % (s_l_ 1)k+l

\fla+k—m)
(+1) E{f}()+ZT,

and hence (2.37) holds.
Next, consider

— g (a+m+k)
Lotmig(s) =) —7
+ ; (S+ 1)k+l
gla+k)
- Z (s + l)k —m+1
glath) T ga+h
Z (S+ l)k m+1 Z (S+ l)k m+1
m—1

=G+ D"Ladg} ) =Y s+ D" Fga+h),

k=0

and thus (2.38) holds. O
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We leave it as an exercise to verify that applying formulas (2.37) and (2.38) yields
Liatmy—m 1} (8) = Lig—m+m i} (s) = La{f} (),

for |s + 1] > r.

Recall the definition of the fractional Taylor monomials (Definition 2.24).
Definition 2.55. For each & € R\ (—N)), define the p-th order Taylor monomial,
h,(t, a), by

(t—a)t

——, for teN,.
C(p+1)

h(t,a) =

Theorem 2.56. If i < 0 and ju ¢ (—Ny), then h, (1, a) is bounded (and hence is of
exponential order r = 1). If i > 0, then for every r > 1, h,(t, a) is of exponential
orderr.

Proof. First consider the case that u < 0 with i & (—Ny). Then for all large r € N,

Ft—a+1) _ 1
T+ Dl(—atl—p) —T(ptl)

hy (t,a) =

implying that £, is of exponential order one (i.e., bounded).
Next assume that u© > 0, with N € Ny chosen so that N — 1 < u < N. Then for
any fixed r > 1,

, C—at T(t—a+1)
W) = S T T D —at 1=
ret—a+1)

ST+ DG—ati—N)
(t—a)---(t—a—N+1)
F(p+1)

t—a)
“Te+D

rt

<—’
“ e+

for sufficiently large t € N,,.
Therefore, h, (, a) is of exponential order r for each 1 € R\ (=N;) and r > 1.
It follows from Theorem 2.4 that £, {h, (t,a)} (s) exists for |s + 1| > 1. O

Remark 2.57. Note that the fractional Taylor monomials, £, (t,a) for ;1 > 0 are
examples of functions that are of order r for all » > 1, but are not of order 1 (see
Exercise 2.4).
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Theorem 2.58. Let i € R\ (—N,). Then

(s + D"
Loyp {hy (ta)} (s) = T (2.39)
for|s+ 1] > 1.
Proof. For |s + 1| > 1, consider
D" 1 s 1 1 T
| s s+ s+1 '
Since |ﬁ| < 1, we have by the binomial theorem that
(s + H* 1 o1 —1 1 \F
shtl _s—l—lz( D s+ 1
o0
—n—1 1
= Z(—l)"( )—k-H (2.40)
= k (s+1)
But

(1) (—p=D(=p—=2)---(—pn—k)
k!

_ e+ tk=D--(p+1
k!

(u+ Rt
k!

k k
_ (MZ‘ ) _ (M_i_ ) by Exercise 1.12, (v)
m

(1 + )=
F'(p+1)
_la+p+k) —ar
-~ T+

=hy(a+ p+ka). (2.41)
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Using (2.40) and (2.41), we have that

o

(s+Dr Z hy(a+ p+k, a)
Gutl (s + 1)kt
= Loty {hy (1.@)} (9),
for |s + 1] > 1. O

2.6 The Convolution Product

The following definition of the convolution product agrees with the convolution
product defined for general time scales in [62], but it differs from the convolution
product defined by Atici and Eloe in [32] (in the upper limit). We demonstrate
several advantages of using Definition 2.59 in the following results.

Definition 2.59. Letf, g : N, — R be given. Define the convolution product of f
and g to be

t—1

(fxg) (1) =) f(r)gt—o(r) +a). forteN, (2.42)

r=a

(note that (f * g) (@) = 0 by our convention on sums).

Example 2.60. For p # 0,—1, find the convolution product e,(t,a) * 1, and use
your answer to find L{e,(, a) * 1}(s). By the definition of the convolution product

t—1

(ep(t.a) x 1)(1) = Y _e,(r.a)

r=a
t
= / e,(r,a)Ar
a
1
= I;ep(r, a)l,
= —e,(t,a) — —.

It follows that

1 1 11 1
Latep(t,a)  13(s) = ;;S—p ps - (s—p)s’




130 2 Discrete Delta Fractional Calculus and Laplace Transforms

Note from Example 2.60 we get that

Laleplt.a) + 1H0) = = = —— = Ll 1l (OLATIO)

which is a special case of the following theorem which gives a formula for the
Laplace transform of the convolution product of two functions. Later we will show
that this formula is useful in solving fractional initial value problems. In this theorem
we use the notation F,(s) := L,{f}(s), which was introduced earlier.

Theorem 2.61 (Convolution Theorem). Let f,g : N, — R be of exponential
order ry > 0. Then

LAf =g} () = Fu(s)Gu(s), for|s+1|>ry. (2.43)
Proof. We have

() a+k) (f * g) (a+Kk)
Lo{f %8} (s) = ;—(S O ; o
a+k—1

Z( +1)k+1 Zf(r)g(a+k o(r) +a)

oo k—1

fla+rgla+k—r—1)
_;; (s + Dk
B A fla+r)gla+k—r—1)
_;; (S+1)k+1 :

Making the change of variables T = k — r — 1 gives us that

Ea{f*g}(S)=ZZf(Z::1)—ff(f_,T

=0 r=0
fla+r) gla+ 1)
Z (S + 1)r+1 Z (S + 1)r+1
= Fu(5)Gal(s),
for |s + 1| > ro. O

Example 2.62. Solve the (Volterra) summation equation

YO =3+12) " [277 1] (). teN (2.44)
r=0
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using Laplace transforms. We can write equation (2.44) in the equivalent form

t—1

Y(O) =3+ 12 [er(t —r—1,0) = 1]y(r)

r=0

=34+ 12 [(e;(t,0) = 1) x y(1)], te€ Ny. (2.45)
Taking the Laplace transform (based at 0) of both sides of (2.45), we obtain

F 12 [L - 1] Yo(s)
s—1 s

Yo(s) =

N 12
s(s—1)

3
N
3
- Yo (S) .
S

Solving for Yy(s), we get

3(s—1)
(s+3)(s—4)
_12/7 . 9/7
- s+3+s—4'

Yo(s) =

Taking the inverse Laplace transform of both sides, we get

12 9
y(t) = 76—3(t, 0) + 764(l, 0)

12 9
= (=2 4+ =5
7Y+

2.7 Using Laplace Transforms to Solve Fractional Equations

When solving certain summation equations one uses the formula

L {ANf} (s) = FS—I(VS) (2.46)

where N is a positive integer. Since the summation equation (2.5) can be written in
the form

t
y(t)=2-4’—|—2/ y(s) As, t€ Ny,
0

this is an example of a summation equation for which we want to use the
formula (2.46) with N = 1.
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We will now set out to generalize formulas (2.4) and (2.46) to the fractional case
so that we can solve fractional difference and summation equations using Laplace
transforms.

We will show (see Theorem 2.65) that if f : N, — R is of exponential order, then
A;’f and A)f are of a certain exponential order and hence their Laplace transforms
will exist. We will use the following lemma, which gives an estimate for #* in the
proof of Theorem 2.65.

Lemma 2.63. Assumev > —1and N —1 <v < N. Then
<N, fort sufficiently large. (2.47)

Proof. In this proof we use the fact that I'(x) > 0 for x > 0 and I'(x) is strictly
increasing for x > 2. First consider the case —1 < v < 0. Then, since t + 1 —v >
t 4+ 1, we have for large ¢

. Ta+1)
S T(t+1-v)
<1=7~ ="

Next, consider the case v > 0. Then for large r we have

, @+ 1) e+
il v e d 7oy iy kA Gl R Gl U D

This completes the proof. O

Remark 2.64. Thus far whenever we have considered a function f : N, — R, we
have always taken the domain of A} ”f to be the set N,,4,. However, it is sometimes
convenient to take the domain of A_"f to be the set N, ,_n, where v > 0, and
N —1 < v < N. By our convention on sums we see that

A'fla+v—N+k =0, for 0<k<N-1.
Later (see, for example, Theorem 2.67) we will consider both of the

Lar{A'f3(s) and Loy n{A"f(5).

Note that A"f : Ny, — Rand A"f : N,q,—y — R are of the same exponential
order. Theorem 2.67 will give a relationship between these two Laplace transforms.

Theorem 2.65. Suppose that f : N, — R is of exponential order r > 1, and let
v>0,N—1<v <N, be given. Then for each fixed e > 0, A "f : Ny, — R,
A Nypv—nv = R, and A)f : Nypn—, — R are of exponential order r + €.
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Proof. First we show if f : N, — R is of exponential order r = 1, then A"f :
Ny+» — R is of exponential order r = 1 + €, for each € > 0. By Exercise 2.1 it
suffices to show that f is bounded on N, implies A, "f : N 4, — R is of exponential
order r = 1 + ¢, for each € > 0. To this end assume

If()] <N, teN,.

Then, fort € N4,

t—v+1
AT F()] = / Bt (6,0 (9))f (5) As

—v+1
< / hoet (1, 0 () |f () As

t—v+1
< N/ hy—1(t,0(s))As

= —Nh, (¢, s)|§z’a_”+1, by Theorem 2.27, part (v)
= —Nh,(t,t —v + 1) + Nh,(t, a)
= Nh,(t,a).

Since, by Theorem 2.56, h,(t, a) is of exponential order 1 + € for each € > 0, it
follows that A7 Vf : N,1, — Ris of exponential order 1 4 €, for each € > 0.

Next assume f is of exponential order r > 1, there existan A > Oanda 7T € N,
such that

[F()] <AF, forall te Ny (2.48)

For t € Ny4,, sufficiently large, consider

A7 @] = D h—i(t. 0 ()f (5)
<3 hei (o))

T—1 t—v
=Y hei OO @)+ D hmr (0 ()IF(5)]

s=a s=T

T—1 _
(VO e A= e
_<;F(v))(t "'+ =15, /T P As

T—1 -
— f (s)] _ At — a)V™! R R
- (g F(u)) (=o' + T(v) [r_ 1}

s=T
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T—1
_ [ ()l o, A=
= (Z r@)) e e RO LA

-1
- IF ()] e A=V
- (Zm) (=
=B(lt—a)V' +C(t—a)V '/,

where B and C are constants. But for any fixed € > 0 we get by applying L’Hdpital’s
rule, that

. Bt—a)V '+ Ct—a)V
lim
t—00 (r+e)

=0.

Therefore, A "f : N,4, — R is of exponential order r + € for each fixed ¢ > 0. By
Remark 2.64, we also have A,"f : N,y,_y — R is of exponential order r + € for
each fixed € > 0.

Finally, we show Alf : Nyyy—, — R, where N —1 < v < N, is of exponential
order r + € for each fixed € > 0. Since

A @) = AVANTIF (@)
and by the first part of the proof, A, =) f(¢) is of exponential order r + €, we have
by Exercise 2.2 that A’f is of exponential order r + €. O
Corollary 2.66. Suppose that f : N, — R is of exponential order r > 1 and let

v > 0be givenwithN —1 <v <N. Then

»Ca+v {A; f} (S), £a+v—N {A;vf} (S), and [’a-i-N—u {AZf} (S)

converge for all |s 4+ 1| > r.

Proof. Suppose f,r, and v are as in the statement of this corollary and fix sy so
that |so + 1| > r. Then there is an ¢y > 0 so that |so + 1| > r + €. Since
we know by Theorem 2.65 that A"f : Noyp, — R, A7Vf @ Nypy—y — R, and
Auf : Ngyn—y — Rare of exponential order ¢, it follows from Theorem 2.4 that

Loty {AF} (50)s Larv—n {A;"f} (s0), and Loy {ALf} (s9) converge. Since
|so + 1| > ris arbitrary, we have that

Ea-i—v {A;Uf} (5)9 Eu-i—v—N {A;Uf} (5)7 and La-i-N—v {AZf} (S)

all converge for all |s + 1| > r. O
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2.8 The Laplace Transform of Fractional Operators

With Corollary 2.66 in hand to insure the correct domain of convergence for the
Laplace transform of any fractional operator, we may now safely develop formulas
for applying the Laplace transform to fractional operators. This is the content of the
next theorem.

Theorem 2.67. Suppose f : N, — R is of exponential order r > 1, and let v > 0
be given with N — 1 < v < N. Then for |s + 1| > r,

(s+1"
SU

Loty {0} (5) = F,(s), (2.49)

and

Lot {ATf} (5) Fo(s). (2.50)

(S + 1)v—N
= =
Proof. Since f : N, — R is of exponential order r > 1, F,(s) exists for |s + 1| > r
and by Corollary 2.66 both £, {A;"f} (s) and L,4y—n {A;"f} () exist for |s +
1| > r. First, we find a relationship between the left-hand sides of equations (2.49)
and (2.50). Using (2.37), we get

£a+v—N {Aa_‘}f} (S)

1 . A f(a+v—N+k
T G+ 1)N£a+v (AL} () + ; (s + i

1
= m£a+v {Ag_vf} (s), (2.51)

using the fact that A Vf(a +v —N+ k) = 0for 0 < k < N — 1, by our convention
on sums.
To see that (2.49) holds, note that

Lot {Af}(5)

= Afla+k+v)
00 1 k+a
= ; (S+—1)k+1 Zhv—l (a+k+v,o)f(r)
k+a

> 1
— ZWZf(r)hv_l ((a+k+1)—o() +aa—(—1)

k=0 r=a
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:Z(f*hv_l(t,a—(V—l)))(a+1+k), by (2.42)
k=0

(s + 1)k+1
= Lop1 {f xhy1(t,a— (v — 1))} (5)
=6+ 1) L{f *h,—1(t,a— (v —1))}(s), using (2.38) and (2.42)
= (54 1) Fa (5) Loty (t,a — (v — 1)} (s). by (2.43)
_ G+

SU

F, (s), applying (2.38), since r > 1

proving (2.49). Finally, using (2.51) and (2.49), we get

Layv-n {A"f} () = mﬁaw {AF) ()
v—N
= %Fa (S) s
s
for |s + 1| > r, proving (2.50). |

Example 2.68. Find Lo +.{A5} f}(s) given that
f(t)=@—=5% 1€Nsy,.
First note that
J@ =T+ Dha(2,5), 1€ Nsyn,

and hence using (2.39) we have that

s+ )7
Fiin(®) = T+ DEsithe 6.9 = T + 1) Y
for |s + 1] > 1.
Then using (2.50) gives us
Lotrte {ATLf} () = Lisgmtes{ATLfH(s)
e—3 b4
:(s+l) (F(n+1)(s+1) )
5¢ sl

1 T+e—3
=T(r + 1)L

gTetl

for |s + 1| > 1.
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Remark 2.69. Note that when v = N in (2.50), the correct well-known for-
mula (2.46) for N = 1, is obtained. This holds true for the Laplace transform of
a fractional difference as well, as the following theorem shows (Holm [123]).

Theorem 2.70. Suppose f : N, — R is of exponential order r > 1, and let v > 0
be given with N — 1 < v < N. Then for |s + 1| > r

Latn—v {AZf} (s) = s (s + I)N_V Fou(s)
N—1
=Y IAT T (@ + N —v). (2.52)

=0

Proof. Let f,r,v, and N be given as in the statement of the theorem. By Exer-
cise 2.28 we have that (2.52) holds when v = N. Hence we assume N—1 < v < N.
To see this, consider

£a+N—v {A:;f} (T)
= ['a-l-N—u {ANA;(N_U)f} (S)

= Lo {A7V 0} )

N—1

=Y IANTTIATNTIf (0 + N - v)
j=0
N—v
GRS
=S S]V——VFa (s)
N—1
=Y SAVTTIATNTIf (a4 N —v)
j=0
N—1
=s" (s + D" F () =Y JAT T @+ N—v).
j=0
This completes the proof. O

2.9 Power Rule and Composition Rule

In this section (see Atici and Eloe [34], Holm [123, 125]), we present a number
of properties and formulas concerning fractional sum and difference operators are
developed. These include composition rules and fractional power rules, whose
proofs employ a variety of tools, none of which involves the Laplace trans-
form. However, some of these results may also be proved using the Laplace
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transform. The following are two previously known results for which the Laplace
transform provides a significantly shorter and cleaner proof than the original ones
found in [34, 123].

Theorem 2.71 (Power Rule). Let v, i > 0 be given. Then fort € Ny vy,

F(H’ + 1) +v
a-Ht(t_ a)t = m( t—a)k

or equivalently

ALYt a) = hyqo (2, a).

Proof. Applying Remark 2.57 together with Lemma 2.63, we conclude that for
each € > 0, (t—a) is of exponential order 1 + € and therefore we have that

A, = a)L is of exponential order 1 + 2¢. Thus, after employing an argument
similar to that given in Corollary 2.66, we conclude that both £, , {(t — a)*} and

Lo ptv {A;‘;H (t— a)ﬁ} converge for |s + 1| > 1. Hence, for |s + 1| > 1, we have

Laturo {AT, (1= @) ()

= O - @M @), wsing 2.49)
= tul)v D(p+ D Loy {hy ()} (5)

(H GED h +1)u, applying (2.39)
gy EDT
= T+ Dt (s (@)} ()
— Loty %(x—aw*” (5).

Since the Laplace transform is injective, it follows that

F(p+1)
F'w+14+v)

a+lL (t - )M ( - a)M+V s fort e Na+ﬂ+v-

This completes the proof. O
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Theorem 2.72. Suppose that f : N, — R is of exponential order r > 1, and let
v, ;0 > 0 be given. Then

AL AT = AR = ALY Af(0), forall t € Nuyypy.

Proof. Letf,r,v, and u be given as in the statement of the theorem. It follows from
Corollary 2.66 that each of

Lot p+v { !l-HL Mf} Latp {A;Mf} and Lo v+ {A;(U+M)f}

exists for |s + 1| > r. Therefore, we may apply (2.49) multiple times to write for
s+ 1] > r,

1
Lot {7007} ) = & +U S L (05} )

(s + 1)’ (s + 1)”
sU

1 v+u
- (StT)Hca 716

= Latm {878} (9)
= £a+;/_+v {A;v_ﬂf} (S) .

—La i (s)

The result follows from symmetry and the fact that the operator L,y +, is injective
(see Theorem 2.7). O

2.10 The Laplace Transform Method

The tools developed in the previous sections of this chapter enable us to solve a
general fractional initial value problem using the Laplace transform. The initial
value problem (2.53) below is identical to that studied and solved using the
composition rules in Holm [123, 125]. In Theorem 2.76 below, we present only
that part of the proof involving the Laplace transform method.

Theorem 2.73. Assume f : N, — R is of exponential order r > 1 and v > 0 with
N — 1 < v < N. Then the unique solution of the IVP

AZ+V—Ny(t) =f(t), re Na
A'ya+v—-N)=0, 0<i<N-—I,
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is given by
!
Y0 = 8770 = [ hato @Ak
a

fOl"t S Na+v—N-

Proof. Since

A;+U—Ny(t) :f(t)s te Na’

we have that

Ea{AZ+quy}(s) = Fu(s)

for |s + 1| > r. Assume for the moment that the Laplace transform (based at
a + v — N) of the solution of the given IVP converges for |s + 1| > r. It follows
from (2.52) that

N—1

Lo{AL L, yHs) =5"(s+ DV Yoy w(s) = Y SAL Ty(a)
j=0

=s"(s + D" Yarun(s).

where we have used the initial conditions. It follows that

Ea+v—N{y}(S) = a+v—N(S)

(s —i—sl)U NF )

= ‘Ca-i-v—N{A;vf}(s)’ by (250)

It then follows from the uniqueness theorem for Laplace transforms, Theo-
rem 2.7, that

y(t) = A; f(t)v re Na+v—N~

From this we now know that y is of exponential order r and hence the above
arguments hold and the proof is complete. O
Using Theorem 2.73 and Theorem 2.43 it is easy to prove the following result.

Theorem 2.74. Assume f : N, — R is of exponential order r > 1 and v > 0 with
N —1 < v < N. Then a general solution of the nonhomogeneous equation

AZ-Fv—Ny(t) :f(t)’ te Na
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is given by

N
YO =) clt— )= + ATf()

k=1

fOVt € Na+v7N~

Example 2.75. Solve the IVP

Note this IVP is of the form of the IVP in Theorem 2.74, where

Vv =

1 1
> N=1, a—i—N—v:a—z, f(t):h%(t,a).

1
From Theorem 2.74 a general solution of the fractional equation A? ,y(r) =
a=3

h 1 (t,a) is given by

W) = e1(t — a)*=t + Az%h%(t, a)
= cl(t—a)j—}- (t—a).

Applying the initial condition we get c; = ﬁ Hence the solution of the given IVP
in this example is given by

1 _1
) = —=(-a)=+ (—a)

7=

forr e N,_1.
The following theorem appears in Ahrendt et al. [3].

Theorem 2.76. Suppose that f : N, — R is of exponential order r > 1, and let
v > 0 be given with N — 1 < v < N. The unique solution to the fractional initial
value problem

Aqv-l—v—Ny(t) :f(t)a re Na (2 53)
Ay(@+v—N)=4;, i€{0,1,--- ,N—1}:A, €R '
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is given by

N—1

y(O) =Y et —a)=N 4+ ATUF(D), fort € Nogoow.
i=0

where

forie{0,1,--- ,N—1}.

Proof. Since f is of exponential order r, we know that F,(s) = L, {f} (s) exists
for [s + 1| > r. So, applying the Laplace transform to both sides of the difference
equation in (2.53), we have for |s + 1| > r

La{As-ny} (5) = Fa(s).
Using (2.52), we get

N—1

S+ DY Yagow(9) = Y SALIT v(a) = Fu(s).
j=0

This implies that

F,(s) Ni (@)
s' (s + DYV s (s + DV

J=0

Ya+v—N(s) =

From (2.50), we have immediately that

Fa(s)

oo DV Lt (A} (s)

Considering next the terms in the summation, we have for each fixed j € {0,---,
N — 1},

1 _ 1 (s + l)V—j—l
sv—j (S+ l)N—U - (S+ 1)N—j—1 Sy_j
1
= Gt l—)N_j_] Latv—j1 {hy—jm1 (t. @)} (5), by (2.39)

=Loyv—n {hv—j—l (t, a)} (s)
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N—j—2

hy_ji—1(k+a+v—N,a)
— ,by (2.37)
Z s+ )T y
= Lopv—n {hv—jm1 (t.@)} (s),
since
(k+v— Nyt
hy—jiy(k+a+v—N,a) = ————
! INCES)

3 Tk+v—N+1)
S Tkk—WN—-j—2)T(—))
:(),

fork € {0,--- ,N —j — 2} . It follows that for |s + 1| > r,
Lov—n{y} (5)

N—1

= Lot {D7F} )+ D A L@ Larvn {humymr (L0} (5)

Jj=0
= Latv-n § O Aufay(@huejo (t,0) + AT £ (5) -
Since the Laplace transform is injective, we conclude that for t € N 4, _y,

v = Z AT @y (t.a) + A (1)

N ly() A
=2 r+(v N]) (1= @)=+ A ()
=0

¥ ( A @

i+v—N -
Ti+v—N+ 1)) (t—a)=—+ Af ().

i=0

Moreover, Holm [125] showed that

143

AL y(a) _i B (=1)k AiN(i-p) .
F(l+v—N+1)_ZZ (=R Bl A'y(a+v —N),

p=0 k=0

fori € {0,1,--- ,N — 1}, concluding the proof.
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Theorem 2.76 shows how we can solve the general IVP (2.53) using the discrete
Laplace transform method. We offer a brief example.

Example 2.77. Consider the IVP given by

AT_ () =n', te N

Yy —4) =2, Ay(mr —4) =3, Ay(r —4) =5, Ady(r —4) = 7. (2.54)

Note that (2.54) is a specific case of (2.53) from Theorem 2.76, with

a=0, v=mn, N=4,f({) =n*?
Ay=2,A1 =3, A, =5A="1.

After applying the discrete Laplace transform method as described in Theorem 2.76,
we have

y(t) = Zat’+” —4 + A" (Jr4t2)

i=0

—Zat‘+” —t + A7 (n*?),since 2 =1 (t — 1),

i=0

~ 0.3035=% + 5. 04053 + 6. 977~=2 + 4. 876 %=L + 3.272/7+2,

where in this last step, we calculated

I 1y ( )(i;p)Ap,fori=0,1,2a3’

p=0 k=0

for the first four terms and applied the power rule (Theorem 2.71) on the last term.

2.11 Exercises

2.1. Show that f : N, — R is of exponential order r = 1 iff f is bounded on N,,.

2.2. Prove thatif f : N, — R is of exponential order r > 0, then A"f : N, — R is
also of exponential order r for n € Nj.

2.3. Show that if f : N, — R is of exponential order r > 1, then h(r) := faf
f(r)At, t € N, is also of exponential order r.

2.4. Show that hy(t, a) is of exponential order 1 and for each n > 0, h, (¢, a) is of
exponential order 1 4 € for all € > 0.
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2.5. Prove formula (i) in Theorem 2.8, that is

La{cosh,(t,a)}(s) =

52— p?
for |s + 1] > max{|1 + p|, |1 — p|}.
2.6. Prove formula (ii) in Theorem 2.9, that is
Lafsin, (. a)}(s) = 5——
s2 +p2

for |s + 1| > max{|l + ip|, |1 —ip|}.

2.7. Prove formula (ii) in Theorem 2.10, that is

Laeq(t,a) sinh% (t,a)}(s) = ( P
for |s + 1| > max{|l + o + B|, |1 + o — B|}.
2.8. Prove Theorem 2.11.
2.9. For each of the following find y(¢) given that
(i) Yal(s) = 2525
(i) Yo(s) = 52—
2.10. Use Laplace transforms to solve the following IVPs
@
y(E+2) =Tyt + 1)+ 12y(r) =0,
y(0)=2, y(1)=4.

(ii)

y(t+1)—2y@) =3, teNy:

y(0) = 5.
(iii)
y(t+2) —6y(t + 1) + 8y(r) = 20(4)",
y(0) =0, y(1)=4.

145
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2.11. Use Laplace transforms to solve the IVP

ut+1)4+v(@)=0
—u(t)+v(@+1)=0
u(0) =1, v(0) =0.

2.12. Solve each of the following [VPs:

®
Ay(t) = 2y(t) = 84(), 1 € No;
¥(0) =2,

(ii)
Ay(t) — 5y(t) = 3ueo(t), t€Ny
y(0) =4, reN,.

2.13. Solve the following summation equations using Laplace transforms:
() () =2+4X2 3. 1€No;

(i) y(r) =3-5—4377,5 7" 'y, 1eNg;

(iii) Y(0) =1+ Y Zgy(). 1€ No;

(iv) y(0) =27+ 32, 47 v(0). reNa.

2.14. Use Laplace transforms to solve each of the following:

(i) y@) =3 + Y01 3k ly, . re Ny
(i) y(0) =3 + Yo 4y, reN.

2.15. Show that

1) Af(a+v) = f(a);
@) Afla+v+1) =vf(a) +fla+1).

2.16. Complete the proof of Theorem 2.27.

2.17. Work each of the following:

(i) Use the definition of the v-th fractional sum (Definition 2.25) to find A, 3 1;

(i) Use the definition of the fractional difference (Definition 2.29) and part (2.32)
to find A§ 1.

2.18. Show that the following hold:

D) Ay, —a)f = p="(1—a)"™, 1€ Nupyss;

(ii) AZJrM(t —a)f = pr(t-a)=, te Natp+n-v-




2.11 Exercises 147

2.19. Verify that (2.12) holds.

2.20. Show thath,(t,t —pu +k) =0forke N, u—k+1¢1{0,-1,-2,---}.
2.21. Evaluate each of the following using Theorem 2.38 and Theorem 2.40

() AT -1 reNg

2
(i) A;7(r— 172, 1eNyy;
(iii) A25(t—3)%2, 1€ Ns;
1

(v) At(t—1)(t—2), t€ N;.
2.22. Prove that part (ii) of Theorem 2.42, follows from Theorem 2.40.
2.23. Prove (2.26).

2.24. Solve each of the following IVPs:

(i) A% x(t) =1, teN
x(—0.3) = x(0.7) = x(1.7) = 0;
(i) AL x() =1, teN
x(—0.4) = x(0.6) = 0;
(i) A% x(n =12, teN
x(—0.1) = 0.

2.25. Use Theorems 2.54 and 2.58 to show that L,{h(t,a)} = Siz Evaluate the
convolution product 1 * 1 and show directly (do not use the convolution theorem)
that L, {1 * 1}(s) = L{1}(s) L.{1}(s).

2.26. Assume p € R and p # 0. Using the definition of the convolution product
(Definition 2.59), find

[ (2. @) * e, (1. @)](2).

2.27. Assume p,q € R and p # g. Using the definition of the convolution product
(Definition 2.59), find

le, (1, a) * e,(t, a)](1).

2.28. For N a positive integer, use the definition of the Laplace transform to prove
that (2.4) holds (that is, (2.52) holds when v = N).
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