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Abstract. This paper is focused on studying the modulated semi-
synchronous integrated flow of events which is one of the mathematical
models for incoming streams of events (claims) in computer communi-
cation networks and is related to the class of doubly stochastic Poisson
processes (DSPPs). The flow is considered in conditions of its incomplete
observability, when the dead time period of a constant duration T is gen-
erated after every registered event. In this paper we propose a technique
for obtaining the formulas for calculation the probability density of the
interval length between two neighboring flow events and the joint prob-
ability density of the length of two successive intervals. Also we find the
conditions of the flow recurrence.
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1 Introduction

Mathematical models of the queueing theory have found wide application in
describing real physical, technical and other objects and systems. It is worthwhile
to note that the conditions of the real objects and systems operation are such
that we can assert that the servers parameters are known and stable as time
goes, but we can not tell this about the intensity processes of the input flows
of events that come to the servers. Moreover, the intensities of the input flows
usually vary within time and frequently their changes are accidental. As a result,
it is necessary to consider the mathematical models of doubly stochastic Poisson
processes (DSPPs), which are characterized by having the number of events in
any given time interval as being Poisson distributed, conditionally to another
positive stochastic process λ (t) called intensity [1–5].
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There are two known classes of doubly stochastic flows of events. The first
class contains the flows of events, which intensity process is a continuous random
process. The second class contains flows, which intensity is a piecewise constant
stationary random process with a finite number of states. The second-class flows
are most typical for telecommunication networks. They were considered for the
first time and independently presented in works [6,7]. Since the early 1990s to
date, these flows of events are called as doubly stochastic flows of events or
MAP-flows, or MC-flows [8–13].

In turn, MC-flows may be divided into three groups depending on how the
intensity process changes its state from one to another: (1) synchronous flows –
flows, which intensity process changes its state from one state to another at
random times, which are the time moments of the flow events arrival [14–16];
(2) asynchronous flows – flows, which intensity process changes its state from
one state to another at random times, which do not depend on the time moments
of the flow events arrival [17–19]; (3) semi-synchronous flows – flows, for which
for the one set of states the first definition is valid and for another set of states
the second definition is valid [20–22]. We shall emphasize that synchronous,
asynchronous and semi-synchronous flows can be presented as the mathematical
models of MAP-flows of events with the constraints on the flow parameters [23].

In the recent literature, the problem of estimating the intensity process from
observations of doubly stochastic Poisson processes (DSPPs) has been of a great
interest, since DSPPs have found applications in many fields such as network
theory, peer-to-peer streaming networks and adaptive data streaming, optical
communication systems, statistical modeling, quantitative finance, spatial epi-
demiology, etc. [24–29]. As has been mentioned above, in the real situations the
input flow parameters can be unknown or partially known or, worse, may vary
in time in a random way. That is why, the central problems faced when modeling
these processes are: (1) flow states estimation on monitoring the time moments
of the events occurrence (the filtering of the underlying and unobservable inten-
sity process) [30–33]; (2) flow parameters estimation on monitoring the time
moments of the events occurrence [34–37].

It is worth noting, that in most of the cases researchers consider the mathe-
matical models of the flows, where time moments of the flow events occurrence
are observable. In practice, however, any recording device (server in this context)
spends some finite time for event measurement and registration, during which
server can not handle the next event correctly. In other words, every event reg-
istered by a server causes the period which is called the period of a dead time
[38], during which no other events are observed (they are lost). We may suppose
that this period has a fixed duration (constant dead time). Particularly, we may
find examples of this mathematical model in the real computer networks using
CSMA/CD (Carrier Sense Multiple Access with Collision Detection) protocol.
At the moment of a conflict recording at the in-port of a network node, a jam
signal is transmitted across the network. During the signal transmission, calls
coming to a node of the network are declined and sent to a source of repeated
calls. Here time, during which the network node is closed for calls serving after a
conflict recording, can be interpreted as a dead time of a server, which registers
the conflict in the network nodes.
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In this paper we continue to study the modulated semi-synchronous inte-
grated flow of events [31–33], which is a generalization of the semi-synchronous
flow of events [20] and semi-synchronous integrated flow of events [39] and
belonging to the class of Markovian arrival processes (MAPs). The rest of
the paper is organized as follows. In Sect. 2 we present the modulated semi-
synchronous integrated flow of events, which provides our modeling framework.
In Sects. 3 and 4 we obtain the expressions for probability density of the inter-
val length between two neighboring flow events pT (τ), τ ≥ 0, and the joint
probability density of the length of two successive intervals pT (τ1, τ2), τ1 ≥ 0,
τ2 ≥ 0, explicitly. And finally, in Sect. 5 we obtain the recurrence conditions of
the observable flow of events.

2 Problem Statement

In this paper we consider the modulated semi-synchronous integrated flow of
events (further flow of events), which intensity process is a piecewise constant
stationary random process λ (t) with two states 1, 2 (first, second correspond-
ingly). In the state 1 λ (t) = λ1 and in the state 2 λ (t) = λ2 (λ1 > λ2). The dura-
tion of the process λ (t) staying in the first (second) state is distributed according
to the exponential law with parameter β (α). If at the time moment t the process
λ (t) is found in the first (second) state, then at the interval [t, t + Δt), where Δt
(hereinafter) is sufficiently small, with probability βΔt + o(Δt) (αΔt + o(Δt))
the sojourn time of the process λ (t) in the first (second) state comes to the end
and process λ (t) transits to the second (first) state. During the time interval
when λ (t) = λi, a Poisson flow of events with intensity λi, i = 1, 2, arrives. Also
at any moment of an event occurrence in state 1 of the process λ (t), the process
can change its state to state 2 with probability p (0 ≤ p ≤ 1) or continue to stay
in state 1 with complementary probability 1 − p. I.e., after an event occurrence
the process λ (t) can change or not change its state from state 1 to state 2.
The transition of the process λ (t) from state 2 to state 1 at the moment of an
event occurrence in the second state is impossible. At the moment when the
state changes from the second to the first state, an additional event is assumed
to be initiated with probability δ (0 ≤ δ ≤ 1). Such flows with additional events
initiation are called integrated flows. Under the made assumptions we can assert
that λ (t) is a Markovian process. So the flow can be characterized by {D0,D1},
in terms of the rate matrices,

D0 =
∥
∥
∥
∥

−(λ1 + β) β
(1 − δ)α −(λ2 + α)

∥
∥
∥
∥

, D1 =
∥
∥
∥
∥

(1 − p)λ1 pλ1

δα λ2

∥
∥
∥
∥

.

Intensities of the process λ (t) transitions from state to state with the event
occurrence fill in the matrix D1. Nondiagonal elements of the matrix D0 are
intensities of the process λ (t) transitions from state to state without the event
occurrence. Diagonal elements of the matrix D0 are intensities of the process λ (t)
output from its states taken with the opposite signs. Note also that if β = 0,
then the integrated semi-synchronous flow of events will take place [39].
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Fig. 1. The formation of an observable flow of events

The registration of the flow events is considered in condition of a constant
dead time (of its incomplete observability). The dead time period of a constant
duration T begins after every registered at the moment tk, k ≥ 1, event. During
this period no other events are observed. When the dead time period is over, the
first coming event causes the next interval of a dead time of duration T and so on.
Figure 1 shows the possible variant of the flow operation and observation. Here
1, 2 are the states of the process λ (t); additional events, that may occur at the
moment of the process λ (t) transition from state 2 to state 1, are marked with
letter δ; dead time periods of duration T are marked with hatching; unobserved
events are displayed as black circles, observed events t1, t2, ..., are shown as
white circles.

It should be mentioned that it is not specified exactly, in which state an
additional event is assumed to be initiated with probability δ, when the process
λ (t) changes its state from the second to the first one. This fact is inessential
for further formulas derivation as the event occurrence and the process λ (t)
transition to the first state happens instantly. In practical situations, two variants
are possible: (1) first an additional event is initiated with probability δ in state
2 and thereafter the process λ (t) transition from state 2 to state 1 is made;
(2) first the process λ (t) transition from state 2 to state 1 is made and thereafter
an additional event is initiated with probability δ in state 1. But to obtain
numerical results during simulation procedure, we should take the mentioned
details into account and fix, what occurs first, event or transition.

We should note that the process λ (t) is basically unobservable. We regis-
ter only time moments t1, t2, ... of the events occurrence in observable flow.
The process λ (t) is considered in a steady-state conditions. So under the made
assumptions we can assert that the sequence of the time moments t1, t2, ... cor-
responds to an embedded Markov chain {λ (tk)}, i.e. the flow has the Markov
property if the evolution of the flow is considered from the time moment tk,
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k = 1, 2, ..., of the event occurrence. Denote by τk = tk+1 − tk, k = 1, 2, ..., the
value of the k interval length between two neighboring flow events. In a steady-
state conditions we may take that the probability density of the k interval length
is pT (τk) = pT (τ), τ ≥ 0, for any k (the index T stresses that the probability
density depends on the dead time period duration). Thereby we may also take
that the time moment tk is equal to zero, i.e. the moment of the event occur-
rence is τ = 0. Now let (tk, tk+1), (tk+1, tk+2) be the successive intervals with the
corresponding values of interval length τk = tk+1 − tk, τk+1 = tk+2 − tk+1. Due
to the stationary of the flow, the arrangement of the intervals on a time axis is
arbitrarily. That is why we may consider two successive intervals (t1, t2), (t2, t3)
with the corresponding values of the interval length τ1 = t2 − t1, τ2 = t3 − t2,
τ1 ≥ 0, τ2 ≥ 0, wherein τ1 = 0 corresponds to the time moment t1 and τ2 = 0
corresponds to the time moment t2 of the flow events arrival. The respective
joint probability density is defined as pT (τ1, τ2), τ1 ≥ 0, τ2 ≥ 0.

In that way, the main problem is to obtain the expressions for probability
density pT (τ), τ ≥ 0, and the joint probability density pT (τ1, τ2), τ1 ≥ 0, τ2 ≥ 0,
explicitly, and also to find the recurrence conditions of the observable flow of
events.

3 The Expressions for Probability Density pT(τ )

Let us consider the interval (0, τ) between two neighboring events of the observ-
able flow, which length can be written as τ = T + t, where t is a duration of
the interval between the end of the dead time period and the next observable
event (t ≥ 0). Let pjk(t) be the conditional probability that there is no observ-
able events at the interval (0, t) and λ (t) = λk in condition that at the time
moment t = 0 the value of the process λ (t) is λ (0) = λj , j, k = 1, 2. Denote
the corresponding probability density by p̃jk(t), j, k = 1, 2. Next introduce into
consideration probability qij(T ) – the transitional probability that the process
λ (τ) changes its state from the state i (at the time moment τ = 0) to the
state j (at the time moment τ = T ), i, j = 1, 2, during the dead time period
of the duration T , and probability πi(0|T ) – the conditional probability that
the process λ (τ) sojourns in the state i (i = 1, 2) at the time moment τ = 0
in condition that at this time moment the event of the observable flow arrived
and the dead time period of a constant duration T was generated. With the
above-stated notations the desired probability density pT (τ) can be written as

pT (τ) =

{

0, 0 ≤ τ < T,
∑2

i=1 πi(0|T )
∑2

j=1 qij(T )
∑2

k=1 p̃jk(τ − T ), τ ≥ T.
(1)

Let us obtain the explicit expressions for p̃jk(τ −T ), qij(T ), πi(0|T ), i, j, k =
1, 2.

The probabilities pjk(t) satisfy the following systems of differential equations:

p′
11(t) = −(λ1 + β)p11(t) + α(1 − δ)p12(t), p′

12(t) = βp11(t) − (λ2 + α)p12(t);
p′
21(t) = −(λ1 + β)p21(t) + α(1 − δ)p22(t), p′

22(t) = βp21(t) − (λ2 + α)p22(t);
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with the boundary conditions: p11(0) = 1, p12(0) = 0; p21(0) = 0, p22(0) = 1.
Solving these systems, we find

p11(t) = 1
z2−z1

[(λ2 + α − z1)e−z1t − (λ2 + α − z2)e−z2t],
p12(t) = β

z2−z1
(e−z1t − e−z2t), p21(t) = α(1−δ)

z2−z1
(e−z1t − e−z2t),

p22(t) = 1
z2−z1

[(λ1 + β − z1)e−z1t − (λ1 + β − z2)e−z2t] ,
z1 = 1

2 [λ1 + λ2 + α + β − √

(λ1 − λ2 − α + β)2 + 4αβ(1 − δ)],
z2 = 1

2 [λ1 + λ2 + α + β +
√

(λ1 − λ2 − α + β)2 + 4αβ(1 − δ)],
0 < z1 < z2.

(2)

According to the definition of the modulated semi-synchronous integrated
flow of events we introduce the probability p11(t) e−βΔt(1 − e−λ1Δt)(1 − p) =
p11(t)λ1(1 − p)Δt + o(Δt) – the joint probability that the process λ (t) changes
its state from the first state to the first one at the interval (0, t) without the
event occurring (λ (0) = λ1, λ (t) = λ1), and at the half-interval [t, t + Δt) the
duration of the first state of the process λ (t) does not come to the end, the event
of the Poisson flow with intensity λ1 arrives and the process λ (t) remains in the
first state. The joint probabilities take the following form for different j and k
(j, k = 1, 2)

p11(t)λ1(1 − p)Δt + o(Δt), p12(t)αδΔt + o(Δt),
p11(t)λ1pΔt + o(Δt), p12(t)λ2Δt + o(Δt),
p21(t)λ1(1 − p)Δt + o(Δt), p22(t)αδΔt + o(Δt),
p21(t)λ1pΔt + o(Δt), p22(t)λ2Δt + o(Δt).

The corresponding probability densities take the form

p̃
(1)
11 (t) = p11(t)λ1(1 − p), p̃

(2)
11 (t) = p12(t)αδ,

p̃
(1)
12 (t) = p11(t)λ1p, p̃

(2)
12 (t) = p12(t)λ2,

p̃
(1)
21 (t) = p21(t)λ1(1 − p), p̃

(2)
21 (t) = p22(t)αδ,

p̃
(1)
22 (t) = p21(t)λ1p, p̃

(2)
22 (t) = p22(t)λ2.

Then the probability densities p̃jk(t) that the process λ (t) changes its state
from the state j to the state k without the event occurrence at the interval (0, t)
and with the event occurrence at the time moment t, can be written for different
j and k (j, k = 1, 2) as

p̃11(t) = p11(t)λ1(1 − p) + p12(t)αδ, p̃12(t) = p11(t)λ1p + p12(t)λ2,
p̃21(t) = p21(t)λ1(1 − p) + p22(t)αδ, p̃22(t) = p21(t)λ1p + p22(t)λ2.

(3)

Substituting (2) into (3), we obtain the explicit formulas for probability den-
sities p̃jk(t), j, k = 1, 2.

The probabilities qij(τ), 0 ≤ τ ≤ T , satisfy the following systems of differen-
tial equations:

q′
11(τ) = −(pλ1 + β)q11(τ) + αq12(τ), q′

12(τ) = (pλ1 + β)q11(τ) − αq12(τ);
q′
21(τ) = −(pλ1 + β)q21(τ) + αq22(τ), q′

22(τ) = (pλ1 + β)q21(τ) − αq22(τ);
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with the boundary conditions: q11(0) = 1, q12(0) = 0; q21(0) = 0, q22(0) = 1.
Solving these systems, we obtain for τ = T

q11(T ) = π1 + π2e
−(pλ1+β+α)T , q12(T ) = π2 − π2e

−(pλ1+β+α)T ,
q21(T ) = π1 − π1e

−(pλ1+β+α)T , q22(T ) = π2 + π1e
−(pλ1+β+α)T ,

π1 = α
pλ1+β+α , π2 = pλ1+β

pλ1+β+α .
(4)

Turn now to obtaining the probabilities πi(0|T ), i = 1, 2. Denote by πij the
transitional probability that the process λ (τ) changes its state from state i to
state j (i, j = 1, 2) during the time from the moment τ = 0 till the moment of
the next event arrival in observable flow. Since the sequence of the time moments
of the events occurrence in observable flow corresponds to an embedded Markov
chain, the following system of differential equations for πi(0|T ) takes place:

π1(0|T ) = π1(0|T )π11 + π2(0|T )π21,
π2(0|T ) = π1(0|T )π12 + π2(0|T )π22; π1(0|T ) + π2(0|T ) = 1. (5)

Let us introduce into consideration probability pij – a transitional probability
that the process λ (t) changes its state from state i to state j (i, j = 1, 2) during
the time from the time moment t = 0 (the end of the dead time period) till the
moment of the next observable flow event arrival. Here the probabilities pij are
determined as

pij =
∫ ∞

0

p̃ij(t) dt, (6)

where p̃ij(t) are defined by (3), pij(t) are defined by (2) (i, j = 1, 2). Calculating
the corresponding integrals (6) for different i and j (i, j = 1, 2)

p11 =
∫ ∞
0

p̃11(t) dt = λ1(1 − p)
∫ ∞
0

p11(t) dt + αδ
∫ ∞
0

p12(t) dt,
p12 =

∫ ∞
0

p̃12(t) dt = λ1p
∫ ∞
0

p11(t) dt + λ2

∫ ∞
0

p12(t) dt,
p21 =

∫ ∞
0

p̃21(t) dt = λ1(1 − p)
∫ ∞
0

p21(t) dt + αδ
∫ ∞
0

p22(t) dt,
p22 =

∫ ∞
0

p̃22(t) dt = λ1p
∫ ∞
0

p21(t) dt + λ2

∫ ∞
0

p22(t) dt ,

we obtain
p11 = 1

z1z2
[λ1(1 − p)(λ2 + α) + αδβ],

p12 = 1
z1z2

[λ1p(λ2 + α) + λ2β],
p21 = 1

z1z2
[λ1α(1 − p + pδ) + αδβ],

p22 = 1
z1z2

[λ2(λ1 + β) + pλ1α(1 − δ)],

(7)

where z1z2 = λ1λ2 + λ1α + λ2β + αδβ.
Since the process λ (t) is a Markovian process, the obtained earlier transi-

tional probabilities qij(T ) and pij , i, j = 1, 2, allow us to write the expressions
for transitional probabilities πij , i, j = 1, 2, in the following form

π11 = q11(T )p11 + q12(T )p21, π12 = q11(T )p12 + q12(T )p22,
π21 = q21(T )p11 + q22(T )p21, π22 = q21(T )p12 + q22(T )p22.

(8)
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Substituting first (4) into (8) and next (7) into (8), we obtain

π11 = 1
z1z2

{

λ1(1 − p)(λ2 + α) + αδβ − λ1π2[λ2 − p(λ2 + αδ)]
[

1 − e−(pλ1+β+α)T
]}

,

π12 = 1
z1z2

{

pλ1(λ2 + α) + λ2β + λ1π2[λ2 − p(λ2 + αδ)]
[

1 − e−(pλ1+β+α)T
]}

,

π21 = 1
z1z2

{

α[λ1(1 − p + pδ) + δβ] + λ1π1[λ2 − p(λ2 + αδ)]
[

1 − e−(pλ1+β+α)T
]}

,

π22 = 1
z1z2

{

λ2(λ1 + β) + p λ1α(1 − δ) − λ1π1[λ2 − p(λ2 + αδ)]
[

1 − e−(pλ1+β+α)T
]}

.

(9)

Then, substituting (9) into (5), we obtain the expressions for πi(0|T ), i, j =
1, 2:

π1(0|T ) =
α[λ1(1−p+pδ)+δβ]+λ1π1[λ2−p(λ2+αδ)][1−e−(pλ1+β+α)T ]
λ1α+(pλ1+β)(λ2+αδ)+λ1[λ2−p(λ2+αδ)][1−e−(pλ1+β+α)T ] ,

π2(0|T ) =
pλ1(λ2+α)+λ2β+λ1π2[λ2−p(λ2+αδ)][1−e−(pλ1+β+α)T ]

λ1α+(pλ1+β)(λ2+αδ)+λ1[λ2−p(λ2+αδ)][1−e−(pλ1+β+α)T ] ,
(10)

where π1, π2 are defined in (4).
Substituting first (3) into (1) and next (2), (4) and (10) into (1), carrying

out laborious transformations and considering that t = τ − T , we obtain

pT (τ) =

{

0, 0 ≤ τ < T,

γ(T )z1e−z1(τ−T ) + (1 − γ(T )) z2e
−z2(τ−T ), τ ≥ T,

γ(T ) = 1
z2−z1

[z2 − λ1 + (λ1 − λ2 − αδ)π2(T )] ,
(11)

π1(T ) = π1 + [π2 − π2(0|T )] e−(pλ1+β+α)T ,
π2(T ) = π2 − [π2 − π2(0|T )] e−(pλ1+β+α)T ,

(12)

where zi are defined in (2); πi – in (4); πi(0|T ) – in (10), i = 1, 2.
In particular, by setting T=0 in (11), (12), we obtain the formulas for p(τ)

that were presented in [40].

4 The Expressions for Joint Probability Density pT(τ1, τ2)

Let τ1 = T + t(1), τ2 = T + t(2) be the values of the intervals length for two
successive intervals between the time moments of the events arrival in observable
flow of events, where τ1 = 0 is the arrival time for the first flow event, τ2 = 0
is the arrival time for the second flow event. Since the sequence of the time
moments of the events arrival in observable flow corresponds to an embedded
Markov chain, then with the above notation (see Sect. 3) the joint probability
density pT (τ1, τ2) takes the following form

pT (τ1, τ2) =

⎧

⎪⎨

⎪⎩

0, 0 ≤ τ1 < T, 0 ≤ τ2 < T,
∑2

i=1 πi(0|T )
∑2

j=1 qij(T )
∑2

k=1 p̃jk(τ1 − T )
×∑2

s=1 qks(T )
∑2

n=1 p̃sn(τ2 − T ), τ1 ≥ T, τ2 ≥ T ,
(13)

where p̃jk(τ1 − T ) = p̃jk(t(1)), p̃sn(τ2 − T ) = p̃sn(t(2)) are defined by (3) and t
should be replaced by t(1) and t(2) in expressions for p̃ij(t), i, j = 1, 2. Then sub-
stituting first p̃jk(t(1)), p̃sn(t(2)), that are defined by (3), next pjk(t(1)), psn(t(2)),
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that are defined by (2) for t = t(1) and t = t(2), next qij(T ), qks(T ), that are
defined by (4), and finally πi(0|T ), i = 1, 2, that are defined by (10), into (13)
and carrying out laborious transformations, we obtain

pT (τ1, τ2) = 0, 0 ≤ τ1 < T, 0 ≤ τ2 < T,

pT (τ1, τ2) = pT (τ1)pT (τ2) + e−(pλ1+β+α)T γ(T ) [1 − γ(T )] λ1[λ2−p(λ2+αδ)]
z1z2

× [

z1e
−z1(τ1−T ) − z2e

−z2(τ1−T )
] [

z1e
−z1(τ2−T ) − z2e

−z2(τ2−T )
]

, τ1 ≥ T, τ2 ≥ T,
(14)

where z1z2 = λ1λ2 + λ1α + λ2β + αδβ and γ(T ), pT (τk) are defined by (11) for
τ = τk, k = 1, 2.

It follows from (14) that in general case the modulated semi-synchronous
integrated flow of events is a correlated flow. By taking in (14) T = 0, we get
the formula for the joint probability density p(τ1, τ2) presented in [40].

There is no difficulty in obtaining the probabilistic characteristics of the
observable flow of events, such as mathematical expectation of the interval length
between the neighboring flow events, variance and covariance:

Mτ = T + γ(T )
z1

+ 1−γ(T )
z2

, Dτ = 2
[

γ(T )
z2
1

+ 1−γ(T )
z2
2

]

−
[

γ(T )
z1

+ 1−γ(T )
z2

]2

,

cov(τ1, τ2) = e−(pλ1+β+α)T λ1γ(T ) [1 − γ(T )] [λ2 − p(λ2 + αδ)] (z2−z1)
2

(z1z2)3
.

It is worthwhile to note that there are three types of events in the modulated
semi-synchronous integrated flow of events: (1) events of a Poisson flow with
intensity λ1; (2) events of a Poisson flow with intensity λ2; (3) additional events,
which are indistinguishable. Introduce into consideration probabilities q

(i)
1 (T ) –

stationary probability that the event appeared is the event of a Poisson flow
with intensity λ1 (first type event) and the process λ(t) changes its state from
the state 1 to the state i (i = 1, 2); q2(T ) – stationary probability that the event
appeared is the event of a Poisson flow with intensity λ2 (second type event);
q3(T ) – stationary probability that the event appeared is an additional event
(third type event). Now it is not difficult to obtain the explicit expressions for
the introduced probabilities on the basis of the above results:

q
(1)
1 (T ) = λ1(1 − p)

α + [(λ2 + αδ)π1 − αδ]
[

1 − e−(pλ1+β+α)T
]

z1z2 − λ1 [λ2 − p(λ2 + αδ)] e−(pλ1+β+α)T
,

q
(2)
1 (T ) = λ1p

α + [(λ2 + αδ)π1 − αδ]
[

1 − e−(pλ1+β+α)T
]

z1z2 − λ1 [λ2 − p(λ2 + αδ)] e−(pλ1+β+α)T
,

q2(T ) = λ2

pλ1 + β + λ1(1 − p − π1)
[

1 − e−(pλ1+β+α)T
]

z1z2 − λ1 [λ2 − p(λ2 + αδ)] e−(pλ1+β+α)T
,

q3(T ) = αδ
pλ1 + β + λ1(1 − p − π1)

[

1 − e−(pλ1+β+α)T
]

z1z2 − λ1 [λ2 − p(λ2 + αδ)] e−(pλ1+β+α)T
.
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Then the stationary probability q1(T ) that the event appeared is the event
of a Poisson flow with intensity λ1 (first type event) can be written as

q1(T ) = q
(1)
1 (T ) + q

(2)
1 (T ) = λ1

α + [(λ2 + αδ)π1 − αδ]
[

1 − e−(pλ1+β+α)T
]

z1z2 − λ1 [λ2 − p(λ2 + αδ)] e−(pλ1+β+α)T
.

Finally, note that π1(0|T ) = q
(1)
1 (T ) + q3(T ), π2(0|T ) = q

(2)
1 (T ) + q2(T ).

5 The Conditions of the Observable Flow Recurrence

Let us consider the specific cases, when the modulated semi-synchronous inte-
grated flow of events becomes the recurrent flow. It can be shown by using the
expressions (11), (12) for γ(T ), π1(T ), π2(T ) and (10) for π1(0|T ), π2(0|T ) that

γ(T ) [1 − γ(T )] = (λ1−λ2−αδ)[λ1α+(pλ1+β)(λ2+αδ)][(pλ1+β)π1(0)−απ2(0)]z1z2

(z2−z1)
2(pλ1+β+α)2[z1z2−λ1[λ2−p(λ2+αδ)]e−(pλ1+β+α)T ]2

×{z1z2 − [2z1z2 − (pλ1 + β + α)(z1 + z2)] e−(pλ1+β+α)T

+[z1z2 − (pλ1 + β + α)(λ1(1 − p) + λ2)]e−2(pλ1+β+α)T },

(15)

where πi(0) is the conditional stationary probability that the process λ(τ)
sojourns in the state i (i = 1, 2) at the time moment τ = 0 in condition that
at this time moment the flow event has arrived (π1(0) + π2(0) = 1). And πi(0),
i = 1, 2, are defined as follows

π1(0) = α λ1(1−p+pδ)+δβ
λ1α+(pλ1+β)(λ2+αδ) , π2(0) = pλ1(λ2+α)+λ2β

λ1α+(pλ1+β)(λ2+αδ) .

Note, that the expression enclosed in braces in formula (15), which we denote
by f(T ), after the transformation can be written in form

f(T ) = z1z2
[

1 − e−(pλ1+β+α)T
]2

+ (pλ1 + β + α)e−(pλ1+β+α)T [z1 + z2
−(λ1(1 − p) + λ2)e−(pλ1+β+α)T ] = f1(T ) + f2(T ) = f1(T ) + ϕ1(T )ϕ2(T ).

It is easy to show, that for any T ≥ 0 we have f1(T ) ≥ 0, ϕ1(T ) > 0 and
ϕ2(T ) > 0 and thus f2(T ) > 0. Hence, for any T ≥ 0 we have f(T ) > 0. It
follows from (15) that:

(1) if λ1−λ2−αδ = 0, then the joint probability density (14) becomes factorable:
pT (τ1, τ2) = pT (τ1)pT (τ2); and it follows from (2) that z1 = λ1, z2 = λ2 +
α + β; (11) implies γ(T ) = 1, and then pT (τk) = λ1e

−λ1(τk−T ), τk ≥ T ,
k = 1, 2, i.e. pT (τ) = λ1e

−λ1(τ−T ), τ ≥ T .
(2) if (pλ1+β)π1(0)−απ2(0) = 0, then the joint probability density (14) becomes

factorable: pT (τ1, τ2) = pT (τ1)pT (τ2); and it follows from (2) that z1 = λ1(1−
p+pδ)+δβ; (11) implies γ(T ) = 1, and then pT (τk) = z1e

−z1(τk−T ), τk ≥ T ,
k = 1, 2, i.e. pT (τ) = z1e

−z1(τ−T ), τ ≥ T .

The third condition of the joint probability density pT (τ1, τ2) factorization
follows from (14): λ2 − p(λ2 + αδ) = 0. In this case pT (τ) is defined by the
formula (11), where
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π2(0|T ) = p; π2(T ) =
pλ1 + β

pλ1 + β + α
+

[

p − pλ1 + β

pλ1 + β + α

]

e−(pλ1+β+α)T ; p �= 1.

In particular, if we put p = 1 in the third condition, we have δ = 0. Then
pT (τ) is defined by the formula (11), where

π2(0|T ) = 1; π2(T ) =
1

λ1 + β + α

[

λ1 + β + αe−(pλ1+β+α)T
]

.

Since the sequence of the time moments t1, t2, ..., tk, ... corresponds to an
embedded Markov chain, then upon meeting one of the above-mentioned con-
ditions or their combination we may show that the joint probability density
pT (τ1, ..., τk) becomes factorable for any k. This suggests that in this case the
observable flow of events is a recurrent flow. For, let pT (τ1, ..., τk, τk+1) be the
joint probability density of τ1, ..., τk, τk+1, where τk = tk+1 − tk, k = 1, 2, ....
For k = 2 we have pT (τ1, τ2) = pT (τ1)pT (τ2). Now we proceed by mathematical
induction. Assume that pT (τ1, ..., τk) = pT (τ1)...pT (τk). Since the sequence of
the time moments t1, t2, ..., tk, tk+1 of the flow events occuring is an embedded
Markov chain, then the flow has the Markov property at the moments of the
flow events arrival. Then pT (τ1, ..., τk, τk+1) = pT (τ1, ..., τk)pT (τk+1|τ1, ..., τk) =
pT (τ1, ..., τk)pT (τk+1|τk), where pT (τk+1|τk) = pT (τk, τk+1)/pT (τk). Since for the
neighboring intervals (tk, tk+1) and (tk+1, tk+2), k = 1, 2, ..., which location
on the time axis is arbitraraly, we have pT (τk, τk+1) = pT (τk)pT (τk+1), then
pT (τk+1|τk) = pT (τk+1). This proves the factorization of the joint probability
density pT (τ1, ..., τk, τk+1).

Note that the factorization conditions are identical for T = 0 [40] and T �= 0.
In further discussion of the flow recurrence conditions we should consider

results obtained in [31–33].
For the first recurrence condition a posteriori probability w(λ1|t) behavior

at the intervals (tk, tk+1), k = 1, 2, ..., is determined with the explicit formulas:

w(λ1|t) = π1 − [π1 − w(λ1|tk + 0)] e−(pλ1+β+α)(t−tk), tk < t ≤ tk + T,

w(λ1|t) = w1[w2−w(λ1|tk+T )]−w2[w1−w(λ1|tk+T )] e−b(t−tk−T )

w2−w(λ1|tk+T )−[w1−w(λ1|tk+T )] e−b(t−tk−T ) , tk + T < t ≤ tk+1,
(16)

where

w(λ1|tk + 0) =
αδ + [λ1(1 − p) − αδ] w(λ1|tk − 0)

λ2 + αδ
,

w1 = λ1−λ2+α+β−2αδ−b
2(λ1−λ2−αδ) , w2 = λ1−λ2+α+β−2αδ+b

2(λ1−λ2−αδ) ,

b =
√

(λ1 − λ2 − α + β)2 + 4αβ(1 − δ),
(17)

and π1 is defined by (4). In spite of the fact that the flow becomes recurrent and
probability density pT (τ) is exponential, a posteriori probability w(λ1|t) depends
on prehistory, i.e. it depends on the time moments t1, t2, ..., tk of the events
occurrence in observable flow. In fact, w(λ1|t) depends on the initial condition
at the time moment tk – the value of w(λ1|tk+0), k = 1, 2, ... . In turn w(λ1|tk+0)
depends on the value of w(λ1|tk − 0), of probability w(λ1|t) at the moment tk,
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when w(λ1|t) changes at the half-interval [tk−1, tk) preceding the half-interval
[tk, tk+1), k = 1, 2, .... Thereby, all prehistory of the flow observation from the
time moment t0 = 0 to tk is concentrated in the value of w(λ1|tk + 0). And it
may be stated that the flow is close to a simple stream. If to add an additional
condition λ1(1−p)−αδ = 0, then a posteriori probability w(λ1|t) will not depend
on prehistory, it will depend on the value of w(λ1|t) at the moment of the event
occurrence tk, i.e. on w(λ1|tk + 0) = αδ/(λ2 + αδ), k = 1, 2, ... . In this case we
may state that the flow is more close to a simple stream.

For the second recurrence condition a posteriori probability w(λ1|t) behavior
at the intervals (tk, tk+1), k = 1, 2, ..., is determined with the explicit formulas
(16), where

w(λ1|tk + 0) =
αδ + [λ1(1 − p) − αδ] w(λ1|tk − 0)

λ2 + αδ + (λ1 − λ2 − αδ)w(λ1|tk − 0)
, k = 1, 2, ... .

In spite of the fact that the flow becomes recurrent and probability density pT (τ)
is exponential, a posteriori probability w(λ1|t) also depends on prehistory, i.e. it
depends on the time moments t1, t2, ..., tk of the events occurrence in observable
flow. In this case we may state that the flow is close to a simple stream.

For the third recurrence condition probability density pT (τ) is defined by
the formula (11) and it is not exponential, so there is no closeness with a simple
stream of events.

6 Conclusion

The obtained results provide the possibility to solve the problem of parame-
ters estimation of the modulated semi-synchronous integrated flow of events in
condition of a constant dead time. One of the most interesting and important
problems of the flow parameters estimation is estimating the dead time period
duration. This is necessary to estimate the quantity of the lost flow events (events
carrying useful information). To solve this problem we can apply the following
methods: (1) maximum-likelihood technique; (2) method of moments.

To estimate duration of the dead time period with maximum-likelihood tech-
nique, first of all, the likelihood function is constructed

L(T |τ1, ..., τn) =
n∏

k=1

pT (τk),

where τk, k = 1, n, are the measured values of the intervals length duration
τk = tk+1 − tk, k = 1, n. Then the following task of optimization is resolved

L(T |τ1, ..., τn) =⇒ max
T

, 0 ≤ T ≤ τmin,

where τmin = min τk, k = 1, n. The point of global maximum T ∗ of the likeli-
hood function L(T |τ1, ..., τn) will be the desired estimation T̂ of the dead time
period duration.
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To solve the estimation problem with the method of moments ˆcov(τ1, τ2)
statistic is constructed. ˆcov(τ1, τ2) is the estimation of theoretical covariance

covT (τ1, τ2) =
∫ ∞

T

∫ ∞

T

[τ1 − Mτ1] [τ2 − Mτ2] pT (τ1, τ2)dτ1dτ2,

where Mτk, k = 1, 2, are mathematical expectations of the intervals length τ1 =
t2 − t1 and τ2 = t3 − t2. Then the equation of moments covT (τ1, τ2) = ˆcov(τ1, τ2)
is solved for the unknown T and a solution of this equation is chosen as T̂ .
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