
Chapter 2
Distributed Data Association

Abstract In this chapter, we address the association of features observed by the
robots in a network with limited communications. At every time instant, each robot
can only exchange data with a subset of the robot team that we call its neighbors.
Initially, each robot solves a local data association with each of its neighbors. After
that, the robots execute the proposed algorithm to agree on a data association between
all their local observations. One inconsistency appears when chains of local asso-
ciations give rise to two features from one robot being associated among them. In
finite time, the algorithm finishes with a data association which is free of inconsistent
matches. We show the performance of the proposed algorithms through simulations.
Experiments with real data can be found in the last chapter.

Keywords Data association · Limited communication · Distributed systems · Par-
allel computation

2.1 Introduction

In multi-robot systems, a team of robots cooperatively perform some task in a more
efficient way than a single robot would do. In this chapter, we address the data
association problem. It consists of establishing correspondences between different
measurements or estimates of a common element. It is of high interest in localiza-
tion, mapping, exploration, and tracking applications [4]. There exists a wide variety
of matching functions. The Nearest Neighbor (NN), and the Maximum Likelihood
(ML), are widely used methods which associate each observation with its closest
feature in terms of the Euclidean or the Mahalanobis distance [13, 15, 24]. Other
popular method is the Joint Compatibility Branch and Bound (JCBB) [19], which
considers the compatibility ofmany associations simultaneously. The combined con-
straint data association [5] builds a graphwhere the nodes are individually compatible
associations and the edges relate binary compatible assignments. Over this graph, a
maximal common subgraph problem is solved for finding the maximum clique in the
graph. Scan matching and iterative closest point (ICP) [8] are popular methods for
comparing two laser scans. Other methods, like the multiple hypothesis tracking, and
the joint probabilistic data association, maintain many association hypothesis instead
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12 2 Distributed Data Association

of selecting one of them. And there exists many variations of these techniques that
combine RANSAC [11] for higher robustness. All these matching functions operate
on elements from two sets. One set usually contains the current observations, and
the other one consists of the feature estimates. These sets may be two images, two
laser scans, or two probabilistic maps.

Lately, many localization, mapping, and exploration algorithms for multi-robot
systems have been presented. However, they have not fully addressed the problem of
multi-robot data association. Some solutions have been presented for merging two
maps [22, 24] that do not consider a higher number of robots. Many approaches rely
on broadcasting all controls and observations measured by the robots. Then, the data
association is solved like in a single robot scenario, using scan matching and ICP
for laser scans [12, 14, 16, 21], or NN, ML, and visual methods for feature-based
maps [13, 17]. Solutions based on submaps usually transform one of them into an
observation of another. The local submaps are merged with the global map following
a sequence [23], or in a hierarchical binary tree fashion [7].

In these methods, the problem of inconsistent data associations is avoided by
forcing a cycle-free merging order. This limitation has also been detected in the
computer vision literature. In [10] they approach an inconsistent association problem
for identifying equal regions in different views. They consider a centralized scenario,
where each two views are compared among them in a 2-by-2 way. Then, their results
are arranged on a graph where associations are propagated and conflicts are solved.
The work in [9], from the target tracking literature, simultaneously considers the
association of all local maps. It uses an expectation-maximization method for both,
computing the data association and the final global map. The main limitation of this
work is that the data from all sensors needs to be processed together, what implies a
centralized scheme, or a broadcast method.

All the previous methods rely on centralized schemes, full communication
between the robots, or broadcasting methods. However, in multi-robot systems,
distributed approaches are more interesting. They present a natural robustness to
individual failures since there are no central nodes. Besides, they do not rely on any
particular communication scheme, and they are robust to changes in the topology.
On the other hand, distributed algorithms introduce an additional level of complexity
in the algorithm design. Although, the robots make decisions based on their local
data, the system must exhibit a global behavior.

In this chapter, we address the data association problem for distributed robot
systems. Each of our robots posse a local observation of the environment. Instead
of forcing a specific order for associating their observations, we allow the robots
to compute its data association with each of its neighbors in the graph. Although
this scenario is more flexible, it may lead to inconsistent global data associations
in the presence of cycles in the communication graph. These inconsistencies are
detected when chains of local associations give rise to two features from one robot
being associated among them. These situations must be correctly identified and
solved before merging the data. Otherwise, the merging process would be wrong
and could not be undone. We approach this problem under limited communications.
So, instead of comparing any two local observations among them, only the local
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observations of neighboring robots can be compared. Besides, there is no central node
that has knowledge of all the local associations and each robot exclusively knows
the associations computed by itself. Then, each robot updates its local information
by communicating with its neighbors. We present an algorithm where, finally, each
robot is capable of detecting and solving any inconsistent association that involves
any of its features.

2.2 Problem Description

We consider, a robotic team composed of n ∈ N robots. The n robots have commu-
nication capabilities to exchange information with the other robots. However, these
communications are limited. Let Gcom = (Vcom,Ecom) be the undirected communi-
cation graph. The nodes are the robots, Vcom = {1, . . . , n}. If two robots i , j can
exchange information then there is an edge between them, (i, j) ∈ Ecom . Let Ni be
the set of neighbors of robot i ,

Ni = { j | (i, j) ∈ Ecom}.

Each robot i has observed a setSi of mi features,

Si = { f i
1 , . . . , f i

mi
}.

It can compute the local data association between its own set Si , and the sets of its
neighborsS j , with j ∈ Ni . However, these data associations are not perfect. There
may appear inconsistent data associations relating different features from the same
set Si (Fig. 2.1). If the robots merge their data as soon as they solve the local data
association, inconsistent associations cannot be managed since the merging cannot
be undone. The goal of the algorithm is to detect and resolve these inconsistent
associations before executing the merging.

In order to make the reading easy, along the chapter we use the indices i, j , and k
to refer to robots and indices r, r ′, s, s′, to refer to features. The r th feature observed
by the i th robot is denoted as f i

r . Given, a matrix A, the notations Ar,s and [A]r,s

Fig. 2.1 Robots A, B, C ,
and D associate their
features comparing their
maps in a two-by-two way.
As a result, there is a path
(dashed line) between f D

1
and f D

2 . This is an
inconsistent association
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correspond to the (r, s) entry of the matrix, whereas, Ai j denotes the (i, j) block
when the matrix is defined by blocks. We let Ik be the k × k identity matrix, and
0k1×k2 a k1 × k2 matrix with all entries equal to zero.

2.2.1 Matching Between Two Cameras

Let F be a function that computes the local data association between any two sets
of features, Si and S j , and returns an association matrix F(Si ,S j ) = Ai j where
Ai j ∈ N

mi ×m j ,

[Ai j ]r,s =
{
1 if f i

r and f j
s are associated,

0 otherwise,

for r = 1, . . . , mi and s = 1, . . . , m j . We assume that F satisfies the following
conditions.

Assumption 1 (Self Association) When F is applied to the same set Si , it returns
the identity, F(Si ,Si ) = Ai i = I. �

Assumption 2 (Unique Association) The returned association Ai j has the property
that the features are associated in a one-to-one way,

mi∑
r=1

[Ai j ]r,s ≤ 1 and

m j∑
s=1

[Ai j ]r,s ≤ 1,

for all r = 1, . . . , mi and s = 1, . . . , m j . �

Assumption 3 (Symmetric Association) Robots i and j associate their features in
the same way. Given two sets Si and S j it holds that F(Si ,S j ) = Ai j = AT

ji =
(F(S j ,Si ))

T . �

Additionally, the local matching function may give information of the quality of
each associations. The management of this information is discussed in Sect. 2.6.

We do not make any assumptions about the sets of features used by the cameras.
However, we point out that the better the initial matching is, the better the global
matching will be.

2.2.2 Centralized Matching Between n Cameras

Let us consider now the situation in which there are n cameras and a central unit
with the n sets of features available. In this case, F can be applied to all the pairs of
sets of features,Si ,S j , for i, j ∈ {1, . . . , n}. The results of all the associations can
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Camera A Camera B

Camera D Camera C

Camera A Camera B

Camera D Camera C

Camera A Camera B

Camera D Camera C

(a) (b) (c)

Fig. 2.2 Different association graphs. a Centralized matching with perfect association function.
The graph is formed by disjoint cliques. b Centralized matching with imperfect association. Some
links are missed, ( f A

1 , f B
1 ) and ( f A

2 , f B
2 ), and spurious links appear, ( f A

2 , f B
1 ).As a consequence,

a subset of the features form a conflictive set. c Matching with limited communications. Now, the
links between A and C , and B and D cannot be computed because they are not neighbors in Gcom .

Moreover, the information available to each camera is just the one provided by its neighbors

be represented by an undirected graph Gcen = (Fcen,Ecen). Each node inFcen is a
feature f i

r , for i = 1, . . . , n, r = 1, . . . , mi . There is an edge between two features

f i
r , f j

s iff [Ai j ]r,s = 1.
For a perfect matching function, the graph Gcen exclusively contains disjoint

cliques, identifying features observed by multiple cameras (Fig. 2.2a). However, in
real situations, the matching function will miss some matches and will consider as
good correspondences some spurious matches (Fig. 2.2b). As a consequence, incon-
sistent associations relating different features from the same set Si may appear.

Definition 1 An association set is a set of features such that they form a connected
component in Gcen . Such set is a conflictive set or an inconsistent association if there
exists a path in Gcen between two or more features observed by the same camera. A
feature is inconsistent or conflictive if it belongs to an inconsistent association. �

Centralized solutions to overcome this problem are found in [3]. The latter one
is also well suited for a distributed implementation but yet requires that any pair of
images can be matched. In camera networks this implies global communications,
which is not always possible.

2.2.3 Distributed Matching Between n Cameras

Let us consider now that there is no central unit with all the information and there are
n robots, each onewith a camera and a process unitwith limited communication capa-
bilities. The robots are scattered forming a network with communications described
with the undirected communication graph Gcom = (Vcom,Ecom) introduced at the
beginning of this section.

In this case, due to communication restrictions, local matches can only be found
within direct neighbors. As a consequence, the matching graph computed in this
situation will be a subgraph of the centralized one, Gdis = (Fdis,Edis) ⊆ Gcen,
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(Fig. 2.2c). It has the same set of nodes, Fdis = Fcen, but it has an edge between
two features f i

r , f j
s only if the edge exists inGcen and the robots i and j are neighbors

in the communication graph,

Edis = {( f i
r , f j

s ) | ( f i
r , f j

s ) ∈ Ecen ∧ (i, j) ∈ Ecom}.

Along this chapter, we name msum the number of features, |Fdis | = ∑n
i=1 mi =

msum . We name d f the diameter of Gdis , the length of the longest path between
any two nodes in Gdis, and we name dv the diameter of the communication graph,
Gcom . The diameters satisfy d f ≤ msum and dv ≤ n. We name A ∈ N

msum×msum the
adjacency matrix of Gdis ,

A =
⎡
⎢⎣

A11 . . . A1n
...

. . .
...

An1 . . . Ann

⎤
⎥⎦, (2.1)

where

Ai j =
{

F(Si ,S j ) if j ∈ {Ni ∪ i},
0 otherwise.

(2.2)

Let us note that in this case none of the robots has the information of the whole
matrix. Robot i has only available the submatrix corresponding to its own local
matches Ai j , j = 1, . . . , n. Under these circumstances the problem is formulated
as follows: Given a network with communications defined by a graph, Gcom, and
an association matrix A scattered over the network, find the global matches and
the possible inconsistencies in a distributed way. In case there are conflicts, find
alternative associations free of them.

2.3 Propagation of Local Associations

Considering Definition 1 (Sect. 2.2.2), we observe that in order to find the data asso-
ciation sets with the relationship between the features observed by the different
robots, it is required to compute the paths that exist among the elements in Gdis . We
show a process where robots start considering their local matches, and incrementally
they propagate these local matches and discover all the paths between the features
observed by the robot team. This information allows them as well to detect incon-
sistent associations (Definition 1). As the following lemma states [6], given a graph
Gdis , the powers of its adjacency matrix contains the information about the number
of paths existing between the nodes of Gdis :

Lemma 1 (Lemma 1.32 [6]) Let Gdis be a weighted graph of order |V | with un-
weighted adjacency matrix A ∈ {0, 1}|V |×|V |, and possibly with self loops. For all
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i, j ∈ {1, . . . , |V |} and t ∈ N the (i, j) entry of the tth power of A, At , equals the
number of paths of length t (including paths with self-loops) from node i to node j.

Algorithm 1 The computation of the powers of A requires, a priori, the information
about the whole matrix. We show now that this computation can also be done in
a distributed manner [1]. Let each robot i ∈ Vcom maintain the blocks within At

associated to its own features, Xi j (t) ∈ N
mi ×m j , j = 1, . . . , n, t ≥ 0, which are

initialized as

Xi j (0) =
{

I, j = i,
0, j 	= i,

(2.3)

and are updated, at each time step, with the following algorithm

Xi j (t + 1) =
∑

k∈{Ni ∪i}
Aik Xk j (t), (2.4)

with Aik as defined in (2.2). It is observed that the algorithm is fully distributed
because the robots only use information about its direct neighbors in the communi-
cation graph.

Theorem 1 Let [At ]i j ∈ N
mi ×m j be the block within At related to the associations

between robot i and robot j . The matrices Xi j (t) computed by each robot i using
the distributed algorithm (2.4) are exactly the submatrices [At ]i j ,

Xi j (t) = [At ]i j , (2.5)

for all i, j ∈ {1, . . . , n} and all t ∈ N.

Proof The proof is done using induction. First, we show that Eq. (2.5) is satisfied
for t = 0. In this case, we have that A0 = I, thus for all i, j ∈ {1, . . . , n}, [A0]i i = I
and [A0]i j = 0, which is exactly the initial value of the variables Xi j (Eq. (2.3)).

Now we have that for any t > 0,

[At ]i j =
n∑

k=1

Aik[At−1]k j =
∑

k∈{Ni ∪i}
Aik[At−1]k j ,

becauseAik = 0 for k /∈ {Ni ∪ i}. Assuming that for all i, j ∈ {1, . . . , n} and a given
t > 0, Xi j (t − 1) = [At−1]i j is true, then

Xi j (t) =
∑

k∈{Ni ∪i}
Aik Xk j (t − 1) =

∑
k∈{Ni ∪i}

Aik[At−1]k j = [At ]i j .

Then, by induction, Xi j (t) = [At ]i j is true for all t > 0. �
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Corollary 1 The variables Xi j (t) contain the information about all the paths of
length t between features observed by robots i and j.

Proof By direct application of Lemma 1. �

Analyzing the previous algorithm the first issue to deal with is how to simplify
the computation of the matrices in order to avoid high powers of A. In the case,
we are studying it is just required to know if there is a path between two elements
in Gdis and not how many paths are. This means that in this situation it is enough
that [Xi j (t)]r,s > 0 in order to know that features f i

r and f j
s are connected by a

path. Another issue is to decide when the algorithm in (2.4) must stop. Since the
maximum length of a path between any two nodes in a graph is its diameter, then
after d f iterations the algorithm should stop.However, in general situations the robots
will not know neither d f nor msum , which makes this decision hard to be made a
priori.

Definition 2 We will say that two matrices A and Ā of the same dimensions are
equivalent, A ∼ Ā, if for all r and s it holds

[A]r,s > 0 ⇔ [Ā]r,s > 0 and [A]r,s = 0 ⇔ [Ā]r,s = 0. �

In practice any equivalent matrix to the Xi j (t)will provide the required information,
which allows to simplify the computations simply by changing any positive value in
the matrices by 1. Moreover, the equivalency is also used to find a criterion to stop
the algorithm:

Proposition 1 For a robot i, let ti be the first time instant, t, such that Xi j (t) ∼
Xi j (t − 1) for all j = 1, . . . , n. Then robot i can stop to execute the algorithm at
time ti .

Proof Let X̄i j (t) be the components in Xi j (t), such that [Xi j (t − 1)]r,s = 0 and

[Xi j (t)]r,s > 0. The cardinal, |X̄i j (t)|, represents the number of features f j
s ∈ S j

such that the minimum path length in Gdis between them and one feature f i
r ∈ Si is

t . At time ti , Xi j (ti ) ∼ Xi j (ti − 1) ∀ j for the first time, and then
∑n

j=1 |X̄i j (ti )| = 0
because no component has changed its value from zero to a positive. This means that
there is no path of minimum distance ti linking any feature f i

r with any other feature
in Gdis . By the physical properties of a path, it is obvious that if there are no features
at minimum distance ti , it will be impossible that a feature is at minimum distance
ti + 1 and all the paths that connect features of robot i with any other feature have
been found. �

Corollary 2 All the robots end the execution of the iteration rule (2.4) in at most in
d f + 1 iterations.

Proof Recalling that the maximum distance between two nodes in Gdis is the diame-
ter of the graph, denoted by d f , then

∑n
j=1 |X̄i j (d f + 1)| = 0 for all

i = 1, . . . , n. �
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If a robot j at time t does not receive the information Xi j (t) from robot i then it
will use the last matrix received, because robot i has already finished computing its
paths and Xi j (t) ∼ Xi j (t − 1).

When the algorithm finishes, each robot i has the information about all the asso-
ciation paths of its features and the features of the rest of the robots in the network
in the different variables Xi j (ti ). It remains to analyze which features are conflictive
and which are not.

Algorithm 2 The robots detect all the conflictive features using two simple rules.
A feature f i

r is conflictive if and only if one of the following conditions are satisfied:

(i) There exists other feature f i
r ′ , with r 	= r ′, such that

[Xii (ti )]r,r ′ > 0; (2.6)

(ii) There exist features f j
s and f j

s′ , s 	= s′, such that

[Xi j (ti )]r,s > 0 and [Xi j (ti )]r,s′ > 0. (2.7)

In conclusion, the proposed algorithm will be able to find all the inconsistencies
in a finite number of iterations. The algorithm is distributed and it is based only
on local interactions between the robots. Each robot only needs to know its local
data associations. It updates its information based on the data exchanged with its
neighbors.When the algorithmfinishes, each robot i can extract from its ownmatrices
Xi j (ti ) all the information of any conflict that involves any of its features. If the
robot has any conflictive feature, it also knows the rest of features that belong to the
conflictive set independently of the robot that observed such features. An algorithm
to carry out the same process, but exploiting local information through the use of
logical operations can also be used [18].

2.4 Algorithm Based on Trees

The resolution of inconsistent associations consists of deleting edges from Gdis so
that the resulting graph is conflict-free.

Definition 3 LetC denote the number of conflictive sets inGdis .We say a conflictive
set C is detectable by a robot i if there exists a r ∈ {1, . . . , mi } such that f i

r ∈ C.

The set of robots that detect a conflictive set C is R ⊆ Vcom . The number of features
from each robot i ∈ R involved in C is m̃i . We say Gdis is conflict-free if C = 0. �

All the edges whose deletion transforms Gdis into a conflict-free graph, belong
to any of the C conflictive sets of Gdis . Since the conflictive sets are disjoint, they
can be considered separately. From now on, we focus on the resolution of one of
the conflictive sets C . The other conflictive sets are managed in the same way.
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The resolution problem consists of partitioning C into a set of disjoint conflict-free
components Cq such that

∪
q
Cq = C , and Cq ∩Cq ′ = ∅,

for all q, q ′ = 1, 2, . . . . The number of such conflict-free components is a priori
unknown and it will be discussed later in this section.

Obtaining an optimal partition thatminimizes the number of deleted edges is com-
plicated. If there were only two inconsistent features f i

r , f i
r ′ , it could be approached

as a max-flow min-cut problem [20]. However, in general there will be more incon-
sistent features, m̃i ≥ 2, within C associated to a robot i ∈ R. Besides, there may
also be m̃ j ≥ 2 inconsistent features belonging to a different robot j ∈ R. The appli-
cation of [20] separately to any pair of inconsistent features does not necessarily
produce an optimal partition. It may happen that a single edge deletion simultane-
ously resolvesmore than one inconsistent association. Therefore, an optimal solution
should consider multiple combinations of edge deletions, what makes the problem
computationally intractable, and imposes a centralized scheme. The algorithm pre-
sented is not optimal but is efficient and is proven to be correct and can be applied
in distributed systems.

Proposition 2 Let R be the set of robots that detect C . Let i� be the root robot with
the most features involved in C ,

i� = argmax
i∈R

m̃i . (2.8)

The number of conflict-free components in which C can be decomposed is lower
bounded by m̃i� .

Proof Each conflict-free component can contain, at most, one feature from a robot
i ∈ R. Then, there must be at least, maxi∈R m̃i = m̃i� components. �

The resolution algorithm [1] constructs m̃i� conflict-free components using a strat-
egy close to a BFS tree construction. Initially, each robot i detects the conflictive sets
for which it is the root using its local information Xi1(ti ), . . . , Xin(ti ). The root robot
for a conflictive set is the onewith themost inconsistent features involved. In case two
robots have the same number of inconsistent features, the one with the lowest robot
id is selected. Then, each robot executes the resolution algorithm (Algorithm 2.4.1).

The root robot creates m̃i� components and initializes each component Cq with
one of its features f i� ∈ C . Then, it tries to add to each component Cq the features

directly associated to f i� ∈ Cq . Let us consider that f j
s has been assigned to Cq . For

all f i
r such that [Ai j ]r,s = 1, robot j sends a component request message to robot i .

When robot i receives it, it may happen that

(a) f i
r is already assigned to Cq ;

(b) f i
r is assigned to a different component;
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Algorithm 2.4.1 Spanning Trees - Robot i
1: – Initialization
2: for each conflictive set C for which i is root (i = i�) do
3: create m̃i� components
4: assign each inconsistent feature f i�

r ∈ C to a different component Cq
5: send component request to all its neighboring features
6: end for
7:
8: – Algorithm
9: for each component request from f j

s to f i
r do

10: if (b) or (c) then
11: [Ai j ]r,s = 0
12: send reject message to j
13: else if (d) then
14: assign f i

r to the component
15: send component request to all its neighboring features
16: end if
17: end for
18: for each component reject from f j

s to f i
r do

19: [Ai j ]r,s = 0
20: end for

(c) other feature f i
r ′ is already assigned to Cq ;

(d) f i
r is unassigned and no feature in i is assigned to Cq .

In case (a), f i
r already belongs to the componentCq and robot i does nothing. In cases

(b) and (c), f i
r cannot be added to Cq ; robot i deletes the edge [Ai j ]r,s and replies

with a reject message to robot j ; when j receives the reject message, it deletes the
equivalent edge [A j i ]s,r . In case (d), robot i assigns its feature f i

r to the component
Cq and the process is repeated.

Theorem 2 Let us consider that each robot i ∈ Vcom executes the distributed reso-
lution algorithm (Algorithm 2.4.1) on Gdis , obtaining G ′

dis ,

(i) after t = n iterations no new features are added to any component Cq and the
algorithm finishes;

(ii) each obtained Cq is a connected component in G ′
dis ;

(iii) Cq is conflict free;
(iv) Cq contains at least two features;

for all q ∈ {1, . . . , m̃i�} and all conflictive sets.

Proof (i) The maximal depth of a conflict-free component is n since, if there were
more features, at least two of them would belong to the same robot. Then, after at
most n iterations of this algorithm, no more features are added to any component Cq

and the algorithm finishes.
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(i i) There is a path in Gdis between any two features belonging to a conflictive
set C . Therefore, there is also a path in Gdis between any two features assigned to
the same component Cq . Since the algorithm does not delete edges from Gdis within
a component (case (a)), then Cq it is also connected in G ′

dis . Since none feature can
be assigned to more than one component (case (b)), the components are disjoint.
Therefore, Cq is a connected component in G ′

dis .
(i i i) By construction, two features from the same robot are never assigned to the

same component Cq (case (c)). Therefore, each component is conflict-free.
(iv) Each conflictive set has more than one feature. Because of Assumptions 1

and 2, each feature and its neighbors are conflict free. Therefore, each component
Cq contains, at least, its originating feature, and a neighboring feature. Thus, it has
at least two features. �

Corollary 3 After executing Algorithm 2.4.1, the size of each conflict set C is
reduced by at least 2 m̃i� , where m̃i� ≥ 2. �

When the algorithm finishes, each original conflictive set C has been partitioned
into m̃i� conflict-free components. It may happen that a subset of features remains
unassigned. These features may still be conflictive in G ′

dis . The detection algorithm
(Algorithm 2) can be executed on the subgraph defined by this smaller subset of
features.

Proposition 3 Consider each robot i iteratively executes the detection (Sect.2.3)
and the resolution (Sect.2.4) algorithms. Then, in a finite number of iterations, all
conflictive sets disappear.

Proof After each execution of the resolution algorithm, the size of each conflict setC
is reduced by, at least, 2 m̃i� ≥ 4 (Corollary 3). Then, in a finite number of iterations,
it happens that |C | < 4. A set with 3 features f i

r , f i
r ′ , f j

s cannot be conflictive; this

would require the existence of edges ( f i
r , f j

s ) and ( f i
r ′ , f j

s ), what is impossible
(Assumption 2). A set with 2 features cannot be conflictive (Assumptions 1 and 2),
and a set with a single feature cannot be inconsistent by definition. Therefore, there
will be no remaining inconsistencies or conflictive sets. �

Themain interest of the presented resolution algorithm is that it is fully distributed
and it works on local information. Each robot uses its own Xi j (ti ) for detecting the
root robot of each conflictive set. During the resolution algorithm, the decisions,
and actions taken by each robot are based on its local associations Ai j , and the
components assigned to its local features. Moreover, each robot is responsible of
deleting the edges from its local association matrices Ai j , with j ∈ {1, . . . , n}. In
addition, the presented algorithm works in finite time. Let us note that although we
presented the algorithm for a single conflictive set, all conflictive sets are managed
in parallel.
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2.5 Feature Labeling

Simultaneously to the data association process, the robots assign labels to their fea-
tures. After checking feature f i

r is consistent, robot i assigns it a label Li
r = (i�, r�) ∈

N
2 composed of a robot identifier i� and a feature index r� as follows [2]. Assume f i

r

and features f j
s , f j ′

s′ , . . . form a consistent association set in Gdis , and thus, they are
observations of a common landmark in the environment taken by robots i, j, j ′, . . . .
Among all the candidates (i, r), ( j, s), ( j ′, s′), . . . , a unique label (i�, r�) is selected
by the robots, e.g., the one with the lowest robot id. Then, robot i assigns this label to
f i
r , Li

r = (i�, r�); the other robots j, j ′, . . . , proceed in a similar way so that finally,

Li
r = L j

s = L j ′
s′ = · · · = (i�, r�) .

We say a feature f i
r is exclusive if it is isolated in Gdis , corresponding to a landmark

observedbya single robot i ; in this case, its label Li
r is simply (i, r).Otherwise,we say

f i
r is nonexclusive and it may either be consistent or conflictive. Consistent features

are labeled as explained above, whereas robots wait until conflicts are resolved for
labeling its conflictive features. The data association and labeling process finishes
with an association graph Gdis free of any inconsistent association and with all
the features labeled. When the algorithm finishes, two features f i

r , f j
s have the

same label, Li
r = L j

s , iff they are connected by a path in the resulting conflict-
free Gdis . The distributed data association and labeling algorithm is summarized
in Algorithm 2.5.1. This strategy makes use of two subroutines to detect features and
resolve inconsistencies that we explained in the previous sections.

Throughout this section, we use S̃i ⊆ Si for the set of unlabeled features at
robot i ∈ {1, . . . , n} and let |S̃i | be its cardinality, i.e., the number of unlabeled
features at robot i . The set of labels Li consists of the labels Li

r already assigned
to the features f i

r ∈ Si \ S̃i . Given a matrix Xi j of size |S̃i | × |S̃ j |, we define
the function r̄ = row

(
f i
r

)
that takes an unlabeled feature f i

r ∈ S̃i and returns its

associated row in Xi j , with r̄ ∈ {1, . . . , |S̃i |}. Equivalently, we define the function
s̄ = col( f j

s ) for features in S̃ j . We let Ãi j ∈ N
|S̃i |×|S̃ j | be like the local association

matrixAi j , but containing exclusively the rows and columns of the unlabeled features
of robots i and j .

Initially, all the features of each robot i are unlabeled,

S̃i = { f i
1 , . . . , f i

mi
}, Li = ∅.

Each robot i solves a local data association with each of its neighbors j ∈ Ni and
obtains the association matrix Ai j ∈ N

mi ×m j . Then, the robot locally detects its
exclusive features f i

r which have not been associated to any other feature,

[Ai j ]r,s = 0 for all j ∈ Ni , j 	= i, and all s ∈ {1, . . . , m j }. (2.9)
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Algorithm 2.5.1 Data association and labeling - Robot i

1: S̃i ← { f i
1 , . . . , f i

mi
}, Li ← ∅

2: Solve the local data association
3: Assign_label(Li

r = (i, r), f i
r ) to each exclusive feature f i

r
4: while |S̃i | > 0 do
5: Run the detection algorithm 2
6: Find each consistent feature f i

r and its root f i�
r�

7: Assign_label(Li
r = (i�, r�), f i

r )
8: Run the resolution algorithm
9: Find each resolved feature f i

r and its component id [i�, r�]
10: Assign_label(Li

r = (i�, r�), f i
r )

11: Find each exclusive feature f i
r

12: Assign_label(Li
r = (i, r), f i

r )
13: end while
14: function Assign_label(Li

r , f i
r )

15: Li ← Li ∪ {Li
r }, S̃i ← S̃i \ { f i

r }
16: end function

Since an exclusive feature f i
r is always consistent, robot i assigns a label Li

r to
it, composed of its own robot id and feature index and removes it from the set of
unlabeled features,

Li
r = (i, r), Li = Li ∪ Li

r , S̃i = S̃i \ { f i
r }. (2.10)

Since its unlabeled features in S̃i may be conflictive, it executes the detection algo-
rithm (2.4) on this subset.

The detection algorithm (Algorithm 2) is executed on the subgraph ofGdis involv-
ing the features in S̃i , for i ∈ {1, . . . , n}. When it finishes, robot i has the power

matrices Xi j ∈ N
|S̃i |×|S̃ j |, for j = 1, . . . , n, which contain the entries in Adiam(Gdis )

associated to the features in S̃i and S̃ j . There is a path between f i
r and f j

s iff

[Xi j ]r̄ ,s̄ > 0, (2.11)

being r̄ = row( f i
r ) and s̄ = col( f j

s ). These matrices give robot i the information
about all the association paths of its features and the features of the rest of the robots
in the network.

Then, each robot i detects its consistent features. After a feature f i
r has been

classified as consistent, its robot i proceeds to assign it a label. Here, we show how
robot i decides the feature label (i�, r�). Let us first give a general definition of the
root robot of an either consistent or conflictive association set.

Definition 4 The root robot i� for an association set is the one that has the most
features in it. In case there are multiple candidates, it is the one with the lowest
identifier. Equivalently, we define the root features f i�

r�
, f i�

r ′
�
, . . . as the features from

the root robot that belong to the association set. �
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Using the power matrices Xi1, . . . , Xin , robot i can find the number of features
m̃ j from a second robot j that belong to the same association set than f i

r with
r̄ = row( f i

r ) as follows,

m̃ j =
∣∣∣{ f j

s | [Xi j ]r̄ ,s̄ > 0, with s̄ = col( f j
s )

}∣∣∣ . (2.12)

If we let m̃� be the maximum m̃ j for j ∈ {1, . . . , n}, then the root robot i� and root
features f i�

r�
, f i�

r ′
�
, . . . for the association set of f i

r with r̄ = row( f i
r ) are

i� = min
{

j | m̃ j = m̃�

}
, {r�, r ′

�, . . . } =
{

s | [Xii� ]r̄ ,s̄ > 0 with s̄ = col( f i�
s )

}
.

(2.13)

When f i
r belongs to a consistent set, the root i� corresponds to the robot with a single

feature f i�
r�

in the association set that has the lowest identifier,

i� = min
{

j | [Xi j ]r̄ ,s̄ > 0 for some s̄ ∈ {1, . . . , |S̃ j |}
}

r� =
{

s | [Xii� ]r̄ ,s̄ > 0 with s̄ = col( f i�
s )

}
,

(2.14)

where r̄ = row( f i
r ). Robot i assigns to its feature f i

r the label Li
r = (i�, r�) and

removes it from the set of unlabeled features,

Li
r = (i�, r�), Li = Li ∪ Li

r , S̃i = S̃i \ { f i
r }. (2.15)

Thus, all features in the association set are assigned the same label. The robots
proceed with all its consistent features in a similar fashion. For the features classified
as conflictive, the resolution method (Algorithm 2.4.1) presented in the previous
section is executed to solve the inconsistencies.

Let each componentCq in Algorithm 2.4.1 have the identifier (i�, r�) composed of
the root robot i� and root feature r� responsible of creating the component. When the
resolution algorithm finishes, each feature f i

r that has been assigned to a component
(i�, r�) has become consistent due to the edge removals. We say that such features
are resolved. Thus, all the resolved features with the same component id form a
consistent association set. Each robot i uses the component id of f i

r as its label,

Li
r = (i�, r�), Li = Li ∪ Li

r , S̃i = S̃i \ { f i
r }. (2.16)

Additionally, due to edge removal, some unlabeled features f i
r ∈ S̃i may have

become exclusive. Robot i detects such features f i
r by checking that

[Ãi j ]r̄ ,s̄ = 0, for all j ∈ Ni , j 	= i, all s̄ ∈ {1, . . . , |S̃ j |},
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being r̄ = row( f i
r ), and it manages them as in (2.10). The remaining features may

still be conflictive. Each robot i executes a new detection-resolution iteration on these
still unlabeled features S̃i .

In a finite number of iterations, all features of all robots have been labeled, and the
algorithm finishes. The interest of the presented algorithm is that it is fully distributed
and works on local information. Each robot i uses its own Xi j to classify its features.

2.6 Algorithm Based on the Maximum Error Cut

The previous resolution algorithmhas the advantage of solving all the inconsistencies
in an easy way. However, the algorithm does not use information about the quality
of the matches. When this information is available, it can be used to select which
links should be broken to get rid of the inconsistent associations.

Most of the matching functions in the literature are based on errors between the
matched features. These errors can be used to find a better partition of C . Let E be
the weighted symmetric association matrix

[E]r,s =
{

ers if [A]r,s = 1,
−1 otherwise,

(2.17)

with ers the error of the match between fr and fs .

Assumption 4 The error between matches satisfies:

• err = 0,∀r ;
• Errors are nonnegative, ers ≥ 0,∀r, s;
• Errors are symmetric, ers = esr ,∀r, s;
• Errors of different matches are different, ers = er ′s′ ⇔ [r = r ′ ∧ s = s′] ∨ [r =

s′ ∧ s = r ′];
�

Since the inconsistency is already known there is no need to use the whole matrix but
just the submatrix related with the inconsistency, EC . Although all the errors in EC
are small enough to pass the matching between pairs of images, we can assume that
the largest error in the path between two conflictive features is, with most probability,
related to the spurious match.

Definition 5 Given two conflictive features,we define a bridge as a single link whose
deletion makes the conflict between those two features disappear. �
Note that not all the links in one inconsistency are bridges. There are links that, if
deleted, would not break the inconsistency because:

• They do not belong to the path between the features to separate;
• They belong to the path, but they also belong to a cycle in the association graph,
and therefore, they are not bridges.
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Our goal is, for each pair of conflictive features, find and delete the bridge that links
them with the maximum error.

Algorithm 2.6.1 shows a solution to find the bridges using local interactions.
Along the section we explain in detail how it works. As we did in the detec-
tion algorithm (2.4), let each robot initialize its own rows of elements as zr (0) =
{[EC ]r,1, . . . , [EC ]r,c}, r ∈ {1, . . . , m̃i }. Each robot manages the m̃i rows corre-
sponding to the conflictive features it has observed. The update rule executed by
every robot and every feature is

zr (t + 1) = max
s∈C , [EC ]r,s≥0

(zr (t), zs(t)Prs), (2.18)

where the maximum is done element to element and Prs is the permutation matrix
of the columns r and s. We have dropped the super indices corresponding to robots
because the limited communications are implicit in the error caused by direct asso-
ciations, Eq. (2.17).

Algorithm 2.6.1 Maximum Error Cut - Robot i
Require: Set of C different conflictive sets
Ensure: Gdis is conflict free
1: for all C do
2: – Error transmission
3: zr (0) = {[EC ]r,1, . . . , [EC ]r,c}, r = 1, . . . , m̃i
4: repeat
5: zr (t + 1) = maxs∈C , [EC ]r,s≥0(zr (t), zs(t)Prs)

6: until zr (t + 1) = zr (t), ∀r ∈ m̃i
7: – Link Deletion
8: while robot i has conflictive features r and r ′ do
9: Find the bridges (s, s′) :
10: (a) [zr ]s = [zr ′ ]s′ , s 	= s′,
11: (b) For all s′′ 	= s, [zr ]s 	= [zr ]s′′ ,
12: (c) For all s′′ 	= s′, [zr ′ ]s′ 	= [zr ′ ]s′′
13: Select the bridge with largest error
14: Send message to break it
15: end while
16: end for

Proposition 4 The dynamic system defined in (2.18) converges in a finite number
of iterations and for any r, s ∈ C such that [EC ]r,s ≥ 0 the final value of zr is the
same than zsPrs .

Proof The features involved in the inconsistency form a strongly connected graph.
For a given graph, the max consensus update is proved to converge in a finite num-
ber of iterations [6]. For any r, s ∈ C such that [EC ]r,s ≥ 0, by Eq. (2.18) and the
symmetry of EC , the final consensus values of zr and zs satisfy, element to element
that
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zr ≥ zsPrs and zs ≥ zr Psr (2.19)

Using the properties of the permutation matrices, Prs = Psr = P−1
sr , we see that

zsPrs ≥ zr , which combined with Eq. (2.19) yields to zr = zsPrs . �

Let us see the convergence values of the different elements. Considering again
Eq. (2.18) for a given feature fr , we can express it as a function of its elements and
the uth component, [zr (t + 1)]u, is updated as follows:

[zr (t + 1)]u

=
⎧⎨
⎩
max([zr (t)]u, [zs(t)]s) if [EC ]r,s ≥ 0 ∧ u = r
max([zr (t)]u, [zs(t)]r ) if [EC ]r,s ≥ 0 ∧ u = s
max([zr (t)]u, [zs(t)]u) if [EC ]r,s ≥ 0 ∧ r 	= u 	= s

,
(2.20)

where the two first rows are due to the permutations. Let us first analyze the case in
which the inconsistency does not contain any cycle.

Theorem 3 If C is cycle free, then:

(i) For any r ∈ C , [zr (t)]r = 0,∀t ≥ 0.
(ii) [zr (t)]s′ → [EC ]r ′,s′ = er ′s′ , where

r ′ = argmin
[A]r ′′,s′=1

d(r, r ′′),

and d(r, r ′′) is the distance in links to reach node r ′′ starting from node r. In
other words, fr ′ is the closest feature to fr directly associated to fs′ .

Proof For any feature, fr , taking into account Eq. (2.20), the update of the r th ele-
ment of zr , [zr (t + 1)]r , is

[zr (t + 1)]r = max
s∈C , [EC ]r,s≥0

([zr (t)]r , [zs(t)]s).

Recalling the first point in Assumption 4, the initial value of [zr (0)]r = err = 0, for
all r, then [zr (t)]r = 0,∀t ≥ 0.

The inconsistency does not have any cycles and there is a path between any two
features, the conflict is a spanning tree. Let us consider one link, ( fr ′ , fs′). The link
creates a partition of C in two strongly connected, disjoint subsets

Cr ′ = {r | d(r, r ′) < d(r, s′)},

Cs′ = {s | d(s, s′) < d(s, r ′)}.

In the above equations it is clear that r ′ ∈ Cr ′ and s′ ∈ Cs′ .
We will focus now on the values of the s′th element of the state vector for the

nodes in Cr ′ and the r ′th element for the nodes in Cs′ ,
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[zr (t)]s′, r ∈ Cr ′ , and [zs(t)]r ′, s ∈ Cs′ .

In the first case, for any r ∈ Cr\r ′, update rule (2.20) is equal to

[zr (t + 1)]s′ = max
r ′′∈Cr ′ , [EC ]r,r ′′≥0

([zr (t)]s′, [zr ′′(t)]s′),

because r 	= s′ 	= r.′′ The nodes in Cs′ are not taken into account because that would
mean that C has a cycle. The special case of feature fr ′ has an update rule equal to

[zr ′(t + 1)]s′ = max
r∈Cr ′ ,[EC ]r ′,r ≥0

([zr ′(t)]s′ , [zr (t)]s′, [zs′(t)]r ′).

In a similar way the updates for features in Cs are

[zs(t + 1)]r ′ = max
s′′∈Cs′ , [EC ]s,s′′≥0

([zs(t)]r ′, [zs′′(t)]r ′),

[zs′(t + 1)]r ′ = max
s∈Cs′ ,[EC ]s′,s≥0

([zs′(t)]r ′ , [zs(t)]r ′, [zr ′(t)]s′).

Considering together all the equations and the connectedness of Cr ′ and Cs′ , all
these elements form a connected component and they will converge to

max
r∈Cr ′ , s∈Cs′

([zr (0)]s′ , [zs(0)]r ′).

Since all the features r ∈ Cr ′ \r ′ are not associated with fs′ , [zr (0)]s′ = −1. Anal-
ogously, for all the features s ∈ Cs′ \s′, [zs(0)]r ′ = −1. Finally, for the features r ′
and s′, by the second and third point of Assumption4, [zr ′(0)]s′ = er ′s′ = es′r ′ =
[zs′(0)]r ′ ≥ 0 > −1. Therefore, this subset of c elements of the state vectors con-
verge to the error of the link ( fr ′ , fs′), er ′s′ . From Proposition 4 we can also see that
for any r ∈ Cr ′ , [zr ]s, s ∈ Cs′ \s′, will converge to the final value of [zs′ ]s .

The same argument applies for the rest of the links and the proof is complete. �

Let us see what happens now in the presence of cycles in the inconsistency.

Theorem 4 Let us suppose the inconsistency has a cycle involving � features. Let
C� be the subset of features that belong to the cycle. After the execution of (2.18) it
holds that:

(i) ∀r ′, s′ ∈ C�, s′ 	= r ′
[zr ′ ]s′ → max

r,s∈C�

ers .

(ii) ∀r ′ /∈ C�, s′ ∈ C�, s′ 	= argmins∈C�
d(r ′, s),

[zr ′ ]s′ → max
r,s∈C�

ers .
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Proof In the proof, we will denote r1, . . . , r�, the set of features in C�. Without
loss of generality we will assume that the links that form the cycle are ( fr1 , fr2),
( fr2 , fr3), . . ., ( fr�

, fr1). For an easy reading of the proof of this result we will omit
the time indices in the update equations. Let us consider the update rule (2.20) for
element r2 of feature fr1 ,

[zr1 ]r2 = max([zr1 ]r2 , [zr2 ]r1 , [zr�
]r2),

where we have also omitted other possible features that are directly linked to fr1
because if they are also linked to fr2 they belong to C� and if not they do not affect
to the final result.

From the above equation we observe that [zr1 ]r2 depends on the value of [zr2 ]r1 .
At the same time this value is updated with

[zr2 ]r1 = max([zr2 ]r1 , [zr1 ]r2 , [zr3 ]r1),

which depends on the value of [zr3 ]r1 . If we keep with the chain of associations we
reach the point in which [zr�−1 ]r1 depends on [zr�

]r1 , which has update rule equal to

[zr�
]r1 = max([zr�

]r1 , [zr�−1 ]r1 , [zr1 ]r�
).

As we have proved in Proposition 4, in the end [zr1 ]r2 = [zr2 ]r1 , [zr2 ]r1 =
[zr3 ]r1 , . . . , [zr�−1 ]r1 = [zr�

]r1 and [zr�
]r1 = [zr1 ]r�

because they are direct neigh-
bors. This means that after the execution of enough iterations of (2.18), [zr1 ]r2 =
[zr1 ]r�

= [zr ]r1,∀r ∈ C�\r1. By applying the same argument for any other fea-
ture in C� we conclude that after the execution of the update, for any r ∈ C�,

[zr ]r ′ = [zr ]r ′′ ,∀r ′, r ′′ ∈ C�\r. Thus, each feature inside the cycle will end with
� − 1 elements in its state vector with the same value (the maximum of all the con-
sidered links) and (i) is true. If there are any additional links inside the cycle the
result is the same including in the max consensus the weights of these links.

Now let us consider the rest of the features in the inconsistency, C̄� = C \C�.

Given a feature s ∈ C̄� two things can happen:

• ∃ unique r ∈ C� such that fr and fs are directly associated;
• s is not directly associated with any feature in C� but there exists at least one path
of features ∈ C̄� that ends in a unique feature r ∈ C�.

The uniqueness of r comes from the fact that if there were another feature r ′ ∈ C�,

reachable from s without passing through r, that would mean that s is also part of the
cycle. Note that this does not discard the possibility that r and s belong to another
cycle different than C�.

As we have seen in the proof of Theorem3, due to the fact that r is the only
connection with C�, for any r ′ ∈ C�\r, [zs]r ′ will have final value equal to [zr ]r ′
which proves (ii). On the other hand, [zs]r will have the value of the link that connects
it to feature r or, if fr and fs belong to another cycle different thanC�, the maximum
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error of all the links that form the second cycle. In both cases, doing a change in the
names of the indices, we can see that (ii) is also true. �

At this point we are ready to define the bridges in terms of the variables zr and to
propose a criterion to select the bridge to break. The bridges, ( fs, fs′), for any pair
of conflictive features fr and fr ′ satisfy

(a) [zr ]s = [zr ′ ]s′ , s 	= s′,
(b) for all s′′ 	= s, [zr ]s 	= [zr ]s′′ ,
(c) for all s′′ 	= s′, [zr ′ ]s′ 	= [zr ′ ]s′′ .

The first condition comes from Theorem3 and the other two come from Theorem4.
Note that for any bridge, the error of the bridge is the same as the value of [zr ]s,

[zr ]s = [zr ′ ]s′ = ess′ . Therefore, each node can look in a local way at its own rows
and choose the best bridge that breaks the conflict, the one with the largest error. In
case one robot has more than two features in the same conflict, finding the optimal
cut becomes NP-hard. In this chapter, we use a greedy approach that returns good
results. Our solution chooses two of the m̃i inconsistent features and selects the best
bridge for them. The bridge separates all the m̃i features in two disconnected subsets.
The process is repeated with each of the subsets until the inconsistencies are solved.

Note that we are considering only single-link deletions. Cycles in the association
graph are sets of features strongly associated, and therefore, it is better not to break
links there. If two conflictive features belong to the same cycle, then there are no
bridges. However, the algorithm is also able to detect this situation and the Spanning
Trees can be used to solve the conflict.

In conclusion, this algorithm is able to detect in a local way the best bridge to break
each inconsistency. This provides a more solid criterion to solve the inconsistencies
than just cutting arbitrary edges. Each robot is able to detect which set of links is best
to cut in order to solve the conflicts regarding its own features. The algorithm also
finishes in finite time and does not require much additional bandwidth because, as
in the detection algorithm, the amount of transmitted information can be optimized.
An example of execution of the algorithm is given in Fig. 2.3 and more details can
be found in [18].
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Fig. 2.3 Example of execution of the resolution of one inconsistency using the two approaches.
a Inconsistency. b Solution obtained using the Spanning Trees algorithm. c Solution obtained using
the Maximum Error Cut approach
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2.7 Simulations

We have carried out several simulations with a team composed by 7 robots exploring
an environment of 20 × 20m with 300 features (Fig. 2.4). Each robot executes 70
motion steps along a path of approximately 30m. The robots estimate their motion
based on odometry information that is corrupted with a noise of standard deviation
σx , σy = 0.4cm for the translations and σθ = 1 degree for the orientations. They
sense the environment using an omnidirectional camera that gives bearing measure-
ment to features within 360 degrees around the robot and within a distance of 6m.
Themeasurements are corrupted with a noise of 0.5 degrees standard deviation. Each
robot explores the environment and builds its local map (Fig. 2.4b). Due to the pres-
ence of obstacles (gray areas), each robot may have not observed some landmarks.

When they finish the exploration, they execute the distributed data association
algorithm explained in this chapter under the communication graph in Fig. 2.5a. The
local data associations F(Si ,S j ) are obtained by applying the JCBB method [19]
to the local maps of any pair of neighboring robots (i, j) ∈ Ecom . Since all the trajec-
tories followed by the robots traverse the main corridor (Fig. 2.4) there is a high over-
lapping between their local maps (Table2.1). Given any 2 local maps with approx.
122 features, there are approximately 89 true matches (ground truth). Although, the
local data association method has found a high amount of the ground truth links
(good links or true positives), it has also missed a few of them (missing links or false
negatives). In addition, some additional links have been detected that link together
different features (spurious links or false positives). From the 858 features within all
the local maps, there are 300 different features in the ground truth sense (association
sets). From them, 184 were observed by a single robot (ground truth exclusive fea-
tures), and the remaining where observed by around 6 robots (ground truth size of the
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Fig. 2.4 A team of 7 robots explore an environment of 20 × 20m. a Gray areas are walls and
red dots are the ground truth location of landmarks. The robots (triangles) start in the left (black
box region) and finish in the right. b Local map estimated by robot 2. The landmarks close to its
trajectory (red line) have been estimated (blue crosses and ellipses) with a high precision. Due to
the presence of obstacles (gray areas) some of the landmarks have not been observed, or have been
estimated with high uncertainty
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Fig. 2.5 a Communication graph associated to the final robot poses in Fig. 2.4. There is a link (blue
solid line) between any pair of robot poses (red triangles) that are within a distance of 3m. b Global
map obtained after merging the local maps. Red dots and triangles are the ground truth position
of the features and robot poses. The estimated feature positions are shown with blue crosses and
ellipses. The map merging process is explained in detail in Chap. 4; here we display the global map
estimated by robot 2 after t = 5 iterations of the map merging algorithm

Table 2.1 Local data associations

Features Per local map Total

Features observed 122 858

Data associations Per pair of local maps Total

Links (ground truth) 89 2860

Links 88 2820

Good links 85 2750

Missing links 3 110

Spurious links 2 70

Association sets Obtained Ground truth

Association sets 296 300

Exclusive features 187 184

Nonexclusive assoc. 109 116

Size of nonexclusive 6.1 5.8

nonexclusive). In the data association graph Gdis however, only 296 association sets
have been obtained, whichmeans that different features have beenmixed up together.
There are 184 exclusive features (ground truth exclusive features), although the local
data association algorithm has found 187 exclusive features. These additional three
exclusive features appear due to the presence of the three outliers, the features with
high covariance ellipses in Fig. 2.5b. Since their positions have been wrongly esti-
mated, the local data association method has failed to correctly associate them.

The robots execute Algorithm 2.5.1 on the nonexclusive features to propagate
the local matches and discover the associations between their features and the ones

http://dx.doi.org/10.1007/978-3-319-25886-7_4
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Table 2.2 Detection and resolution of inconsistent associations

Detection Conflictive Consistent nonexclusive Consistent exclusive

Association sets 7 102 187

Features 80 591 187

Resolution Conflictive Consistent nonexclusive Consistent exclusive

Association sets 0 116 (+14) 187

Features 0 671 (+80) 187

observed by the other team members. In addition, they establish the labels for their
features, and they detect and solve any inconsistent associations. From the 109 nonex-
clusive association sets, 102 of them are consistent, and its associated 591 features
are classified as consistent (Table2.2). The remaining seven sets are conflictive, and
they have associated 80 conflictive features. After executing the resolution algorithm
on the 80 conflictive features, all of them are resolved and the process finishes. The
original seven conflictive sets are partitioned into 14 consistent nonexclusive sets.
Due to these additional sets, the number of consistent nonexclusive association sets
(Table 2.2, third row), which initially was 102 (Table 2.2, first row), is increased into
116 (102 + 14) after executing the algorithm. Equivalently, the number of consistent
nonexclusive features (Table2.2, fourth row) which was 591 (Table2.2, second row)
becomes 671 (591 + 80) since the 80 inconsistent features are resolved.

Table2.3 compares the final data association graph and the ground truth informa-
tion. Since the resolution algorithm is based on link deletion, the number of links
here is lower than in Table2.1. However, the number of association sets is closer
to the ground truth results. From the 303 obtained association sets, three of them

Table 2.3 Results after detecting and solving the inconsistencies

Features Per local map Total

Features observed 122 858

Data associations Per pair of local maps Total

Links (ground truth) 89 2860

Links 87 2794 (−26)

Good links 85 2746 (−4)

Missing links 3 114 (+4)

Spurious links 2 48 (−22)

Association sets Obtained Ground truth

Association sets 303 300

Exclusive features 187 184

Nonexclusive assoc. 116 116

Size of nonexclusive 5.7 5.8
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are due to the three outliers in Fig. 2.5b. Thus, there are 300 remaining association
sets, which is exactly the same number of association sets in the ground truth data.
The same behavior is observed regarding their sizes. This means that the resulting
associations are similar to the ground truth ones in spite of the fact that they have
less links. From the 26 links erased from Gdis , 22 were spurious links, and only 4
where good links that now are missing. Robots use the obtained data association for
computing the global map (Fig. 2.5b) as described in Chap.4.

2.8 Closure

In this chapter, we have presented a distributed technique to match sets of features
observed by a team of robots in a consistent way under limited communications.
Local associations are found only within robots that are neighbors in the communi-
cation graph. After that, a fully distributed method to compute all the paths between
local associations is carried out, allowing the robots to detect all the inconsistencies
related with their observations. For every conflictive set detected, in a second step the
method is able to delete local associations to break the conflict using only local com-
munications. The whole method is proved to finish in a finite amount of time finding
and solving all the inconsistent associations. We have studied the performance of the
method for robots equipped with omnidirectional cameras in a simulated environ-
ment. Additional experiments with real data acquired with RGB-D and conventional
cameras are presented in Chap.5.
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