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Abstract. In this paper, we principally devote our effort to proposing a novel
MapReduce-based approach for efficient similarity search in big data. Specifi-
cally, we address the drawbacks of using inverted index in similarity search with
MapReduce and then propose a simple yet efficient redundancy-free MapRe-
duce scheme, which not only takes advantages over the baseline inverted
index-based procedures but also adapts to various similarity measures and
similarity searches. Additionally, we present other strategic methods in order to
potentially contribute to eliminating unnecessary data and computations. Last
but not least, empirical evaluations are intensively conducted with real massive
datasets and Hadoop framework in the cluster of commodity machines to verify
the proposed methods, whose promising results show how much beneficial they
are when dealing with big data.
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1 Introduction

While consecutively playing the important role in the wide scopes of applications such
as duplicate detection, plagiarism exposure, recommendation systems, data cleaning,
data clustering [9], to name a few, similarity search has also to cope with challenges in
the era of big data by its “three Vs” characteristics as follows: (1) Volume demonstrates
the large amount of data; (2) Velocity denotes the high speed of data; and (3) Variety
represents the various data forms [11, 22]. The issue has gained lots of attention and
effort whilst there are many studies which never stop experiencing and looking for
favorable solutions [3, 6, 8, 13, 15, 16, 19-21]. Most of them, to the best of our
knowledge, only concentrate on scalability by employing divide and conquer strategies
on parallel mechanisms, such as MapReduce paradigm [5], to deal with enormous data.
Many studies [6, 8, 10, 12—-16, 19, 20], on the other hand, additionally utilize a data
index structure known as an inverted index or a postings list to allow fast text searches,
which is widely-used in the area of information retrieval in general and in similarity
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search in particular. Nevertheless, inverted index-based methods encounter three main
problems when they are performed in MapReduce paradigm as following: (1) Every
key-value pair in the inverted index has to be scanned sequentially because of the
full-scan manner of MapReduce as well as the structure of the inverted index;
(2) Processing data from the inverted index brings much redundancy to identify can-
didate pairs among documents due to their duplicate values; and (3) It is not convenient
to derive the total length of each document for fast set-based similarity computing, like
Jaccard or Dice [18, 19] for example, in order to speed up the similarity computing
process. These problems implicitly lead to complicated data processing and affect the
overall performance. Motivated from finding out an efficient similarity search under the
big data context, we propose a novel MapReduce-based approach, in this paper, not
only to support resolving scalability but also to take care of data redundancy and
intensive data-driven processing manners which originally exist in MapReduce para-
digm. Other than improving the overall performance of similarity search, our goal
basically aims at what various kinds of applications might benefit and facilitate from
our methods. Hence, our main contributions can be generally summarized as follows:

1. We address the three common problems with which inverted index-based methods
usually encounter.

2. We then propose a simple yet efficient redundancy-free MapReduce scheme, which
not only overcomes the problems from the baseline inverted index-based proce-
dures but also has its adaptability to diverse similarity measures as well as different
similarity searches such as pairwise similarity, range query, and K-Nearest
Neighbor (K-NN) query.

3. We consider promising strategies that contribute to eliminating dissimilar candidate
pairs and unnecessary computations as well as diminishing data redundancy
throughout MapReduce processes in order to improve the effectiveness of similarity
search.

4. We intensively conduct empirical experiments with real massive datasets to verify
our proposed methods, whose results shows how potentially beneficial the methods
are when dealing with big data.

The rest of the paper is organized as follows: Sect. 2 presents state-of-the-art which
are pointed out how close and different they are when compared to our research work.
Section 3 introduces the general concepts related to similarity search and MapReduce
as well as some definitions and notations we use in the paper. Next, the proposed
clustering scheme, the redundancy-free capability, and other collaborative strategies are
given in Sect. 4. Afterwards, several empirical experiments are measured and evaluated
in Sect. 5 before our remarks in Sect. 6.

2 Related Work

Efficiently doing similarity search and improving performance are of the main objec-
tives in which much work is interested and calls for much attention. Dittrich et al. [7]
do research related to Hadoop efficient processing. Their aim is to improve Hadoop
performance in many different ways such as partitioning data layouts and building
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indices. In order to achieve the goal, they have to, however, change the Hadoop
pipelines and get involved in many low-level components inside Hadoop as well as
Hadoop distributed file system. Having a different approach but still towards the same
objective, we approach performance improvement from the point of view of high-level
layers, i.e., algorithms and schemes, such that we build indices and exploit them for
candidate search during the MapReduce jobs run time. Besides, Deng et al. [6] present
a three-phase MapReduce-based algorithm for string similarity joins in that the first
MapReduce operation is for the filter stage and the last two MapReduce operations are
for the verification stage. In the verification stage, their algorithm needs, however, to
re-access the original datasets whilst our approach only accesses the datasets once from
the beginning stage. Rong et al. [19] also introduce a three-phase MapReduce algo-
rithm for string similarity join. Their objective is to reduce the number of candidate
string pairs as well. In order to do that, they apply multiple prefix filtering technique,
which is based on different global orderings, to their algorithm. Nevertheless, the
algorithm behaves in a full-scan manner while our method performs a clustering
technique which helps access the right data. Additionally, there is no mention of
resolving the redundancy of string pairs as we do in our approach.

Meanwhile, Zadeh and Goel show how to assess MapReduce algorithms.
According to their work in [21], the two main complexity measures for MapReduce are
the largest bucket reduce because of “the curse of the last reducer” and the shuffle size
because of the total file I/O. Thus, it emerges an essential need to reduce candidate sizes
as much as possible throughout MapReduce processes. In order to deal with this
problem, Kolb et al. [10] focus on how to eliminate redundant similarity comparison
between pairs. At REDUCE task, when considering candidate pairs, the reducers only
compare those which are disjoint from the list of smaller keys. In contrast to our
approach, we do not attach any additional data to intermediate key-value pairs for
duplicate-pairs detection at reducers. As an alternative, we keep them identically output
in a natural way from mappers and then immediately derive the similarity score
between a pair of document. In addition, Metwally and Faloutsos from the work [13]
propose a scalable MapReduce-based framework for discovering all-pairs similarity.
This method, however, suffers heavy storage and transmission costs due to redun-
dant data in key-value pairs, which is avoided by our method. In another work
engaging in diminishing unnecessary data and computations, Phan et al. [15, 16]
propose MapReduce-based filtering schemes in an effort of dealing with scalability and
improving similarity search with MapReduce. The schemes are shown to generally
adapt to the most common similarity search cases such as pairwise similarity, pivot
case, range query, and k-Nearest Neighbor query while assuring unqualified candidates
are sooner discarded. Meanwhile, Lin in [12] studies three MapReduce algorithms for
brute force, large-scale ad-hoc retrieval, and Cartesian product of postings lists. Nev-
ertheless, their concern is typically about scalability aiming at the large amount of data.
In the scope of this paper, we not only integrate collaborative strategic refinements to
reduce the search space but also address the standard problems of the baseline inverted
index-based procedures and data redundancy. Furthermore, our proposed approach
easily adapts to different similarity measures thanks to the document indexing-based
data structures which interchangeably denote the term as document indexes.
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3 Preliminaries

3.1 Similarity Search

Consider a universal set Q = {D;, D,, D3, ..., D,}, which represents a set of n docu-
ments. In the scope of this paper, we employ the concept k-Shingles from the work
in [18, 20] instead of terms to represent a document, whose idea is that a near dupli-
cate object can be identified by the shingles starting with stop words. Furthermore,
k-shingles originating from natural language processing are commonly exploited to
better represent documents than using terms because of their continuous order while
two documents might have the same number of terms but they turn out to appear in
different positions which lead to different similarity in terms of meaning. As a con-
sequence, a document from now on is represented by a set of shingles D; = {SH,
SH,, ..., SH/, and the length of a document ||D,| is known as the total number of
shingles belonging to the document.

Definition 1 (k-Shingles). Given a document D; as a string of characters, k-shingles
are defined as any sub-string having the length k found in the document.

Definition 2 (Similarity Search). Given a document D; and a similarity threshold e,
the similarity search looks for all document pairs (D;, D;) in the universal set €, such
that their similarity scores SIM(D;, D;) 2 &.

In order to derive the similarity score between a document pair, we utilize the most
widely-used similarity measure known as Jaccard coefficient [13, 16, 18, 19, 21] for
fast set-based similarity computing. The form of Jaccard is given below:

DiND;
SIM (D;, D;) = DiUDj- (1)

The value domain of SIM(D;, D;) is within the range [0, 1]. If the document D; is
more similar to the document D, their similarity score is close to 1. Otherwise, their
similarity score is close to 0. Last but not least, in the scope of this paper, we use the
sign [.] to demonstrate a list, the sign [[.], [.]] to specify a list of lists.

3.2 MapReduce Paradigm

Dean and Ghemawat in [S] present MapReduce (MR) as an effective parallel pro-
gramming paradigm dealing with scalability. The basic idea is to divide a big problem
into smaller ones which can be easily done in parallel in a cluster of commodity
machines. The main parts of MapReduce constitute a MAP function, which produces
intermediate key-value pairs, and a REDUCE function, which deliver results from the
key-value pairs. When the MapReduce paradigm is deployed in the cluster, one
machine plays the role of master while the others take the responsibility as workers.
The master dynamically assigns MapReduce tasks to free workers in the system. Those
which are assigned MAP tasks are called mappers whilst those which are assigned
REDUCE tasks named as reducers. The principle data flow of a MapReduce phase is
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briefly described as follows: (1) Input data whose form is of key-value pairs [key;,
value; ] from the distributed file system is split into m Map tasks; (2) Mappers execute
MAP function and produce r local files carrying intermediate key-value pairs [key,
value,]; (3) The shuffling process is then in charge of grouping these pairs into [key,,
[value,]] according to the keys; and (4) Reducers execute REDUCE function to
aggregate the key-value pairs and derive the final results which are eventually written
back to the distributed file system. To avoid ambiguity, we use the term MapReduce
operations when generally mentioning both of them as a whole. Otherwise, they
are separately referred as MAP and REDUCE tasks. Additionally, the terms candidate
pairs refer to candidate key-value pairs. In other cases, either candidate clusters or
candidate document pairs are explicitly pointed out.

4 The Proposed Methods

4.1 The Clustering Scheme

Due to the fact that MapReduce paradigm itself performs a full-scan fashion to the data,
it would be slow to directly work with every single shingle as a unit in order to check
whether it matches to the set of query shingles. Even though an inverted index, also
known as a postings list, is widely-used in information retrieval and well-employed in
lots of research work [6, 8, 10, 12-16, 19, 20] to achieve fast text searches, this method
has three main drawbacks, in terms of MapReduce paradigm, for application domains
in general and for similarity search in particular. Firstly, when a document is popularly
represented by a set of terms or shingles, they are then performed in a full-scan manner
from the inverted index. Secondly, the inverted index produces redundant data
throughout MapReduce operations, which we will later on give our further analysis in
Sect. 4.2. Finally, it is not easy to derive the total length of each document without
adding any further information, additional processing, or at least another MapReduce
operation. Hence, a research concern related to the former matter emerges such that
either “Is there a way not to sequentially scan every data unit but still get data in
need?” or “Is it possible to only access the right data from the portion of the whole?”

To cope with these issues, one possible method comes from clustering techniques.
The basic idea is that elemental objects are group into different clusters according to
their preferred properties. Thus, a cluster becomes the representative of a group, or in
other words, it plays the role of a pivot. Since then, pivots partition the search space
into sub-spaces in that they navigate data access to the right objects. In our approach,
we cluster shingles into different compartments, which is based on their own docu-
ments, so that we can decrease the number of unnecessary data-accessing times. From
this point of view, we build the data structure where a document contains a set of its
shingles in an incremental manner. That is to say, a document from now on is a cluster
of its own shingles and plays the role of a pivot. In comparison with the inverted index,
this way of clustering shingles brings three big advantages as follows: (1) To deal with
the atomic full-scan from MapReduce paradigm, we model data into a two-layer data
access in that the objects we firstly check in regard to a given query are clusters instead
of shingles. If the query conditions are met, the shingles of the particular clusters are
retrieved for further processing; (2) At the same time, we easily derive the total number
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of shingles a document has to carry on in order to support length-based filtering as well
as similarity computing afterwards; and (3) This method promotes REDUCE-2 task to
be transparent. In other words, it makes REDUCE-2 task get rid out of its burden
processing as usual while only play the role of a transmitter writing the final result to
the distributed file system.

Figure 1 illustrates two candidate-identifying processes for an inverted index and a
document index, respectively in the same dataset. When given a query D, and a
threshold, let us say, with 70 % similarity, the candidates when we apply the inequality 3
in Sect. 4.3 are those whose number of shingles should greater than 3. Consequently,
only D;, D,, D,, and D5 satisfy this filtering condition and are then combined with the
query to be candidate pairs. In the case of the inverted index, the list of checking objects
sequentially includes /T, N, D;, D5, R, H, D;, D4, O, A, D;, D4, D5, G]. On the contrary,
the process in the case of the document index performs the checking only on keys. Once
a key is matched, it becomes a candidate. Hence, the list of checking objects for this case
is much shorter and sequentially includes [D;, D,, D3, D, Ds, D¢, D;]. It is worth noting
that a number of shingles in the universe set are usually so many than that of documents.
For instance, 4000 Gutenberg files in Fig. 6b have 6358196 shingles in total. Therefore,
the document index approach significantly reduces the number of checking objects. Last
but not least, its checking process becomes independent of the number of shingles in
each document.
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Fig. 1. Candidate-identifying processes

4.2 Redundancy-Free Compatibility

When observing data processed in MapReduce operations from the inverted
index-based methods, we find out that there are lots of redundant data inner either a
mapper or a reducer as well as amongst them. It is totally possible due to the fact that
each mapper or reducer only processes a portion of the whole datasets. As a conse-
quence, multiple mappers or reducers may emit duplicate key-value pairs at the same
processing phase. On the other hand, because a document contains a set of shingles, or
in other words, many different shingles may belong to the same document, each shingle
in the inverted index carries the same information. So the research problem here is that
“How to avoid redundancy throughout MapReduce operations?” In our research work,
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we classify the redundancy into two classes as follows: (1) QOuter redundancy is the
case that there are at least two mappers or reducers emit the same key-value pairs; and
(2) Inner redundancy is the case that duplicate data are emitted by only either one
mapper or one reducer. Figure 2 illustrates how redundant data appear in MapReduce
when the inverted index is used to search for candidate pairs. Assume that there are two
mappers named mapper, and mapper; and one reducer in a MapReduce operation
computing candidate similarity pairs. The inverted index, which contains references to
documents D; for each shingle represented by an upper-case letter, is fed to them as the
input in MAP task. When given a query D, the two mappers look up the inverted index
the documents sharing the same shingles with D,. As a result, mapper, finds the
candidate pairs as [D,;, D,4] and mapper), has its candidate pairs as [D,;, D,4 D7,
D, Dg7]. We see that mapper;, produce duplicate pairs D,; and D7, which leads to
the case of inner redundancy. Meanwhile, both mapper, and mapper, emit the same
candidate pairs D,; and D4, which gives us the case of outer redundancy. Both cases
emerge very easily and frequently and add extra costs to data transmission and data
computing when one works with MapReduce. Recall that other than MAP task and
REDUCE task, the shuffle phase implicitly between them also suffers such a burden in
the two cases.

D, = {SH,| SH, € [P, H, A, N]}

Key  Value Key  Value
T | 0,0, 0 Dy | * —

[D,, D)) Dy | * Key  Value
R [D,, D,, D, Dy | * D, | SIM(D,, D,)

0, 0, | | r> Dy | * [ \\ D, | SIM(D,, D,)
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[D,, D5, Dl D,

Fig. 2. Data redundancy with the inverted index

Aiming at improving performance, our proposed methods completely avoid the
redundancy scenarios when seeking for candidate pairs. To keep away from the case of
outer redundancy, one might look for a solution in that once mappers or reducers have
emitted the pair Dj;, the other mappers or reducers should not emit the same pair D;.
Our research work, however, does not need to do that. Actually, our methods look
candidate pairs up from the clustering scheme, which is based on clusters instead of
shingles themselves. As soon as there is an intersection between a pair, mappers emit it
with its similarity score. Since a cluster is unique in the cluster universe, there is no
chance for mappers to emit duplicate pairs. Our methods are, therefore, different from
the inverted index-based ones in that shingles are not distinctive in the shingle universe
due to the fact that two similar documents share the same set of shingles. Meanwhile,
the case of inner redundancy impossibly takes place in our methods. The reason is that
a document involving in the computing process contains distinct shingles when
duplicates are sooner discarded by filtering in Sect. 4.3. In addition, the experimental
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result from Fig. 9b in Sect. 5.2 shows that the collision probability of the same doc-
ument is higher than that of the same shingle. In short, our methods naturally stay away
from the redundancy scenarios while without adding any further information when
compared to the work in [10]. Moreover, the methods easily adapt to other popular
similarity searches such as pairwise similarity, range query, and K-NN query without
essentially changing the scheme.

4.3 Filtering Strategies

As we know that while I/O operations are very expensive in MapReduce, useless pairs
give extra-overheads not only to overall performance but also to data storage. In order
to tackle this problem, we actually aim at shrinking the output from mappers. Firstly,
we observe that when given a query object, a similarity search process looks for other
similar ones based on their signatures, and duplicate signatures do not make sense to
the similarity between a pair of objects. Moreover, it is totally redundant if we count
duplicate signatures when computing similarity scores. In this paper, we use a set of
shingles as the signatures of a document. We discard these duplicate shingles, there-
fore, from the very beginning of Map tasks, where data are at the first time read by
mappers. Once the duplicates are removed, the list of shingles becomes the set of
shingles, and the similarity problem turns out to be the overlap set problem [19].
Secondly, when obtaining candidate pairs, it would be useful to refine them in regard to
the query object. According to a particular query, range query or K-NN query for
example, we utilize the query parameters to sooner prune unnecessary candidate pairs
before associating them as true similar pairs and deriving their similarity scores. More
concretely, the pruning process is conducted at MAP-2 task. For instance, when given a
similarity threshold ¢, L is the length of a candidate document, and L, is the length of a
query document, the candidate pairs are the ones satisfying the below inequality, which
is known as length-based filtering from the work in [18]:

L;
e (2)
L,

In our method, each cluster contains the number of shingles NOS. The candidate
clusters should, therefore, satisfy the below inequality:

INOS|| = [[NOSquery | * & (3)

On the other side, in the case of K-NN query, we simply exploit the parameter k to
control the emission quantity of each mapper. This can be easily achieved if the keys in
the document indexes are ordered by NOS. Consequently, we can employ this index
structure to have key-value pairs in the ascending ordered manner. In other words,
we will try to find those pairs having smallest NOS in order to maximize their similarity
scores. Then for K-NN queries, the mappers emit the number of candidate pairs until
they reach the top-k.
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4.4 Examples on the Fly

Our proposed methods are packaged into two MapReduce phases. The first phase is to
ahead of time prepare the data whilst the second one is to on-demand process the
queries. Each phase consists of Map and Reduce tasks. In order to get insight of the
proposed methods, we introduce a step-by-step example in a nutshell. Assuming that
there are two different data sources where the set of documents {Doc;, Doc,, Docs)}
belongs to the first one whereas the set of documents {Doc,, Docs, Docs} belongs to
the other. As showed in Fig. 3, each document owns a set of shingles where a shingle is
represented by an upper-case letter. Through MAP-1 task, mappers emit their inter-
mediate key-value pairs of the form [URL, SH;J. It is worth noticing that common
shingles which are very popular or high-frequency shingles across the whole datasets
should be, besides duplicate shingles, filtered in this phase. Common shingles can be
obtained by datasets statistics or experiences. In addition, pre-defined symbols, blank
space between two letters, should also be removed so that clear shingles can be easily
acquired. For instance, assuming that the letter “N” is the common shingle, it should be
then discarded at mappers. After MAPREDUCE-1 operation, local data are readily
prepared in the form of document indexes. When given Doc, as a query document, the
same MAP-1 task and REDUCE-1 task is executed to analyze the query. These pro-
cesses are put on display in Fig. 4. At MAP-2 task, only qualified candidate pairs are
emitted. On the running example, the query whose NOS is equal to 5 maintains a list of
its shingles /K, O, D, E, R].

URL,  SH, URL  SH, Key e

) O |z | URL,@3 ZHT

URL,@2 5.2

WRL, T URL (S

URL,@1 1s)
URL SH, URL | SH,
Key Value
URL, D | URL O
Doc,: [D, D, E,N,R,E,N] URL,@3 [D,ER]
Docs: [K, 0, N) MAP-L URL, | E WL, O REDUCE-1 —— Kol
" URL.
:[v,0,0, * .
Docg: [N, 0,0, M) URL, R | URL M
URL,@2 [o, M)
URL; K

Fig. 3. MAPREDUCE-1 operation

Before finding out the intersection between the query and a document object, the
length-based filtering is firstly double-checked against NOS values. More concretely,
assuming that the similarity threshold ¢ is equal to 60 % as in Fig. 5, the candidate pairs
are those satisfying the candidate pruning, i.e., the inequality 3 in Sect. 4.3. In other
words, the selected pairs have to have their NOS equal or greater than 3. Consequently,
none of candidates in the first local data source is taken because URL, and URL; do not
satisfy the pruning condition whilst URL; does not have any shingles in common with
the query. At the same time, only URL, in the second local data source is chosen for
further examining. Even though the shingles of URLs and URL in the second local
data source are in the set of the query clusters, they are sooner discarded due to the
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Key Value
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Fig. 4. MAPREDUCE-1 operation with Doc,
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Fig. 5. MAPREDUCE-2 operation

candidate pruning. Once the candidate pairs are identified, mappers then perform
similarity computing. Finally, the reducers from REDUCE-2 task output the final
result. For the instance in Fig. 5, we have Docy, which is at least 60 % similar to Doc,
with the similarity score as 3/5. The overview of MapReduce operations and their
related information are showed in Table 1. We use a special character, e.g., @, to
simply illustrate the separate sub-values.

5 Emperical Experiments

5.1 Environment Settings

To setup our experiments, we use DBLP [4] as real datasets where documents con-
taining a number of publications are searched for their similarity. On the other side,
we use other real datasets from Gutenberg Project [17], the first provider of free
electronic books, to experience a large number of text files.

With DBLP Datasets. The datasets are synthetically partitioned into four packages
whose sizes are exponentially increased to 9000 MB (8 x DBLP), 13500 MB
(12 x DBLP), 18000 MB (16 x DBLP), and 22500 MB (20 x DBLP), respectively.
Since recommended in the work [18], the size of a shingle, i.e., the K parameters for
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Table 1. The overview of MapReduce operations

MapReduce | Task Input Output
MAP-1 [Di] [URL;, SHy]
REDUCE-1 | [URL;, SH,] | [URL;@NOS;, [SH,]]
MAP-2 [URL;@NOS;, [SH(]] | [DiD;, SIM;j]
REDUCE-2 | [D;D;, SIMjj] [D:D;, SIMj]
Acronym |- Dy, D;: a document object

- SHy: a k-shingle

- URL;: an uniform resource locator of D;

- NOS;: the total number of shingles of D;

- SIM;;: the similarity score between D; and D;

- A special symbol such as “@” is used to separate the

values
a) b)
140000 4500000
w 4000000
$ 120000 3
T‘:‘ » 3500000
£ 100000 £ 3000000
5 80000 ~=9000MB S 2500000 ~—1000 Files
2 60000 —»—13500MB £ 2000000 ~—2000 Files
£ H
2 40000 —+—18000M8 2 1500000 3000 Files
H
s T 1000000
2 2

20000 ~-22500MB 500000 ~==4000 Files
0 0 D=4
60 80 100 120 140 160 180 More 1 2 4 5 6 7

Bin Range Bin Range

Fig. 6. Shingles Histograms; (a) DBLP datasets; (b) Gutenberg datasets

large documents, are chosen as 9 in DBLP datasets and as 4 in Gutenberg datasets.
Figure 6a illustrates the number of shingle frequencies among the datasets. It gives a
clear vision about the shingle frequency histogram with the bin range representing the
interval of shingle frequency in that the majority of shingles falls into the range
[60, 100], [140, 180], and above the range 180 while most of the shingle frequencies
are from the two former ranges.

With Gutenberg Datasets. The datasets are divided into four packages separately
including 1000 files, 2000 files, 3000 files, and 4000 files. These files which are
randomly selected from the Gutenberg repository have their sizes ranging from 15 KB
to 100 KB. In the meantime, Fig. 6b indicates the number of shingle frequencies among
the Gutenberg datasets. It gives a clear vision that the majority of shingles falls under
the range 4, and most of the shingle frequencies are from the range 1 to 3.

In addition, we employ the stable version 1.2.1 of Hadoop [2] as a fundamental
implementation of MapReduce and deploy the Hadoop framework on the cluster of
commodity machines named Alex, which has 48 nodes and 8 CPU cores and either 96
or 48 GB RAM for each node [1]. The configured capacity is set to 5 GB per node,
which leads to the total 240 GB for the 48-node cluster. Besides, the number of
reducers for a reduce task is set to 168. Moreover, the possible heap size of the cluster
is about 629 MB, and each HDEFS file has 64 MB Block Size. Last but not least, even
though some parameters can be tuned or optimized to make the best fit to a particular
cluster like Alex, we leave other configurations in their default mode as much as
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possible due to the fact that we really want to measure the general performance with
such initial settings in that whatever a cluster of commodity machines might initially
have. It is worth noticing that the power of Alex is not exclusively employed for our
experiments. In other words, these nodes share their computing resources to other
coordinating parallel tasks in the cluster. Hence, we conduct an experiment ten times to
obtain average values and their corresponding deviations. Additionally, each bench-
mark meets the fresh-running condition, where old benchmarks are removed before
new ones start running. Furthermore, the same types of experiments are consecutively
executed in order for them to have the closest running environment as much as pos-
sible. Last but not least, the benchmarks are designed to closely fit and reflex the
processing capacity of the cluster.

5.2 Evaluation

In this section, we conduct our experiments with the real datasets and streaming
computation models helping us pass data between MapReduce operations via the
standard input and output. Figure 7 presents the performance of MapReduce opera-
tions. Figure 7a demonstrates the processing time of MR-1, MR-2, MR-Query, and the
total, which turn by turn corresponds to the four DBLP dataset packages. The left
vertical axis measures the average processing time of MR-1, MR-2, and MR-Query
while the right vertical axis measures the average processing time of all MR-1, MR-2,
and MR-Query as the whole. In general, the total costs slightly grow though the dataset
sizes are doubled for each test. As we see that the cost of MR-Query is steady
throughout the data packages. Besides, the cost of MR-2 does not significantly grow
when the dataset size increases from 9000 MB to 22500 MB. The reason comes from
the collaborative filtering where it effectively refines the candidate pairs from MR-1
and leaves the rest but small for MR-2. On the contrary, the cost of MR-1 keeps
linearly rising when the dataset size keeps increasing. There are two main reasons for
this. Firstly, MR-1 has to deal with enormous original data input from the very first
stage, which heavily adds the processing cost. And secondly, although some filters are
additionally taken, not many shingles are thrown out in comparison with the rest
because of the assurance of exact similarity search. Consequently, the majority of
shingles are kept for further procedures. In the meantime, Fig. 7b shows the perfor-
mance of MapReduce operations on Gutenberg benchmarks. The results we get have
the same trend like that on DBLP datasets. The costs of MR-Query and MR-2 seem to
be stable and not much affected by the large number of files. On the contrary, the cost
of MR-1 is linearly high when the number of files is increased from 1000 to 4000. It is
worth noting that the cost for reducers is usually higher than that for mappers because
mappers take their responsibility to tokenize the data while reducers pull intermediate
key-value pairs, process them to achieve the goal, and write them into the distributed
file system. Moreover, the number of mappers is usually driven by the number of
distributed file system blocks in the input files whilst the number of reducers is chosen
by either experiences or evaluations to a particular cluster of commodity machines. As
a consequence, if the number of reducers is not suitably set, it affects the total cost in
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the end. We put, therefore, main-point processing on mappers at MAP-2 task and at the
same time make reducers at REDUCE-2 task be transparent when doing similarity
search, which brings an advantage to the overall performance.

On the other hand, Fig. 8 shows how much data saved from the computing pro-
cesses. In an overall, the total output of MR-1 and MR-2 on DBLP datasets is much
less than the input size, which accounts for 5.35 % rate of the input on the average. The
total output of MR-1 and MR-2, nevertheless, accounts for 79.22 % rate of the input on
the average. When the next data package in DBLP datasets is doubled, MR 1-Output of
this package is as nearly 1.36 times larger on the average as that of the previous
package. Because of preserving as much data as possible from the datasets, the size of
MRI1-Output is non-trivial while that of MR2-Output is negligible, for it is around
62 KB to 161 KB. On the other hand, when the number of files is increased in
Gutenberg datasets, MR1-Output of this package is as nearly 1.97 times larger on the
average as that of the previous package while MR2-Output keeps its small size around
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67 KB to 272 KB. Thus, the size of the entire output is totally decided by that of
MRI1-Output. Again, the power of filtering is completely verified at MAP-2 task. It is
worth noticing that if the first MapReduce phase can be alternatively put in offline
mode, the cost of the second phase is, therefore, promising in online mode. Meanwhile,
Fig. 9a shows the range query case where the inequality 3 in Sect. 4.1 is applied on
Gutenberg datasets. In overview, the number of candidates without filtering approxi-
mately equals to the number of input files while the number of filtered candidates is
more and more when the similarity threshold increases from 60 % to 90 %. More
specifically, about 37.83 % on the average unnecessary candidates are discarded in case
of 90 % similarity, about 31.16 % of that number are ignored in case of 80 % similarity,
about 24.39 % of that number are removed in case of 70 % similarity, and about
19.01 % of that number are filtered in case of 60 % similarity. Another experiment
whose results are displayed on Fig. 9b indicates the relevance between the document
index approach and the inverted index approach. Normally, the average processing
time is not much different between them. The total MapReduce outputs between the
two approaches significantly have, however, a big gap. The experimental result shows
that building the inverted index produces approximately 3 times as many MapReduce
outputs as building the document index. Hence, the document index saves more data
for further processing than the inverted index.

6 Summary

In this paper, we propose a novel MapReduce-based approach for efficient similarity
search. Apart from dealing with scalability, we also consider the drawbacks of the
inverted index in terms of similarity search. In addition, we promote a simple yet
efficient redundancy-free MapReduce scheme, which shows its advantages when
compared to inverted index-based procedures. Furthermore, we present strategic
methods to cope with unnecessary data and computations. Last but not least, the results
from intensive empirical evaluations with massive real datasets promote the efficiency
of our methods. For our future work, we identify a distributed MapReduce-based
architecture to which our approach conforms in order to cope with the “three Vs” of big
data. Additionally, we further evaluate our proposed methods with other
state-of-the-arts as well as more empirical experiments in other popular cases of sim-
ilarity search and similarity measures.
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