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Abstract. Cloud Computing is an emerging paradigm in Information
Technologies that enables the delivery of infrastructure, software and
platform resources as services. It is an environment with automatic
service provisioning and management. In these last years autonomic man-
agement of Cloud services is receiving an increasing attention. Mean-
while, optimization of autonomic managers remains not well explored.
In fact, almost all the existing solutions on autonomic computing have
been interested in modeling and implementing of autonomic environ-
ments without paying attention on optimization. In this paper, we pro-
pose a new efficient algorithm to optimize autonomic managers for the
management of service-based applications. Our algorithm allows to deter-
mine the minimum number of autonomic managers and to assign them to
services that compose managed service-based applications. The realized
experiments proves that our approach is efficient and adapted to service-
based applications that can be not only described as architecture-based
but also as behavior-based compositions of services.

Keywords: Cloud computing - Autonomic managers - Service-based
applications + Optimization

1 Introduction

Cloud computing is a new computing paradigm that refers to a model for
enabling convenient, on demand network access to a shared pool of config-
urable computing resources (e.g. servers, storage, applications and services).
These resource can be rapidly provisioned and released with minimal manage-
ment effort or service provider interaction [13]. In this paradigm, there are basi-
cally three levels for Cloud services’ provision, which are Infrastructure as a
Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS).
At this later level, the effort is made to model, develop, deploy and manage
applications and components/services that compose them. These applications
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are also known as service-based applications (SBAs). Their service composition
can be architecture-based (e.g. described in Service Component Architecture [12]
or UML component diagram [4]) or behavior-based (e.g. described in Business
Process Execution Language [11] (BPEL) or Business Process Model and Nota-
tion [16] (BPMN)).

Over the last years, autonomic computing got an increasing attention. It has
been widely used in Cloud computing for dynamically adapting Cloud resources
and service to changes in Cloud environments. Indeed, it aims at managing Cloud
resources with minimal human intervention. Autonomic management usually relies
on a MAPE-K (Monitor, Analyze, Plan, Execute and Knowledge) loop. This loop
consists in collecting monitoring data from Cloud resources, analyzing them and
producing series of planned changes to be executed on managed Cloud resources.

Managing SBAs according to principals of autonomic management, consists
in determining and assigning MAPE-K loops to services that compose managed
SBAs. To do that, two naive solutions can be considered. The first one consists
in assigning one MAPE-K loop to a managed SBA. The second one consists in
assigning one MAPE-K loop to each service of the managed SBA. It is obvi-
ous that the later solution is resource consuming while the former one may
cause a bottleneck in managing SBAs. Consequently, it is of interest to optimize
MAPE-K loopse consumption by minimizing the number of them while avoiding
management bottlenecks.

When we visited the existing works on autonomic management and opti-
mization of Cloud resources, we found out that they are not suitable to the
considered problem of this paper. Indeed, on one hand, existing works on auto-
nomic computing have been interested in modeling and implementing of auto-
nomic environments without paying any attention to optimization. On the other
hand optimization approaches are not adequate since they consider a number of
resources known in advance.

In our previous works we have been interested in modeling, deployment and
management of SBAs in Cloud environment [14,23]. In this paper, we are inter-
ested in the optimization of number of autonomic managers (i.e. autonomic
control loops) for SBAs. We propose a new algorithm consists of two steps. In
the first step we determine all sets of services of a given SBA that can be run in
parallel, which aims at determining the lower bound of the number of MAPE-K
loops. In the second step, MAPE-K loops are determined, based on results from
step one, and assigned to services of the managed SBA.

The rest of this paper is organized as follows. In Section 2, we present some
preliminary notions on autonomic computing and we represent SBAs as graphs.
Our proposed efficient algorithm for MAPE-K loops optimization is presented
in Section 3. Experiments conducted on realistic data are detailed in Section 4.
In Section 5, we present the state of art. Finally, we conclude the paper and we
give directions for future works in Section 6.
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2 Autonomic Management of Service-Based Applications

In this section, we present the background of our work, in which we aim at
optimizing autonomic managers for the management of SBAs. We start with
defining MAPE-K loop, then, we define service-based applications. After that,
we show how these applications are represented as graphs. Finally, we present
the problem of optimizing autonomic managers in SBAs.

2.1 The MAPE-K Control Loop

To achieve autonomic computing, IBM has suggested a reference model for auto-
nomic control loops [1], which is called the MAPE-K (Monitor, Analyze, Plan,
Execute, Knowledge) loop as depicted in Fig. 1.

_ Autonomic Manager __

Analyse

Knowledge

Cloud

- Resource )j
Fig. 1. Autonomic loop for a Cloud resource

This loop consists on harvesting monitoring data, analyzing them and generat-
ing reconfiguration actions to correct violations (self-healing and self-protecting)
or to target a new state of the system (self-configuring and self-optimizing).

2.2 Service-Based Application

SBAs consists in composing a set of services using appropriate service composi-
tion specifications that can be architecture-based or behavior-based like. In the
following we define these two types of compositions.

A SBA composed using an architecture-based composition can be described
as a set of linked components. A component provides one or more services. It
may consume one or several references, which are services provided by other
components. As an example, we consider the online store example illustrated
in Fig. 2 using a SCA assembly view. In the following sections, we use to this
example in order to explain our concepts and motivate our work.
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Fig. 2. Example of an on-line store (source [20])

The example is a composition of four services. The Store service provides the
interface of the on-line store. The Catalog service which the Store service can
ask for catalog items provides the item prices. The CurrencyConverter service
does the currency conversion for the Catalog service. The ShoppingCart service
is used to include items chosen from the Catalog service.

A SBA composed using a behavior-based specification can be described as
a structured process which consists of a set of process nodes and transitions
between them. A process node can be service, Or-Join, Or-Split, And-Split or
And-Join. Fig. 3 depicts a BPMN business process of an online purchasing pro-
cess of a clothing store.
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Fig. 3. Example of a SBA application modelled as a process

The customer sends a purchase order request with details about the required
products and the needed quantity. Upon receipt of customer order, the seller
checks product availability. If some of the products are not in stock, the alterna-
tive branch ordering from suppliers is executed. When all products are available,
the choice of a shipper and the calculation of the initial price of the order are
launched. Afterwards, the shipping price and the retouch price are computed
simultaneously. The total price is then computed in order to send invoice and
deliver the order. Finally, a notification is received from the shipper assuring
that the order is already delivered.
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The above-presented two types of compositions can be represented by graphs
that we present in the following section.

2.3 SBA Graphs

The semantics of a graph that represents a SBA (called SBA graph) is described
as follows. If s1 and s, are nodes of graph and s; is connected to s, then the exe-
cution of sy follows the execution of s1 or s; runs and references the services of s
during its execution. For instance, the later semantics reflects architecture-based
compositions (e.g. SCA specification) while the former reflects behavior-based
compositions (e.g. BPMN specification). Based on the above considerations, we
can model a SBA like the one presented in Fig. 3 as a directed graph. Services,
Or-Split, Or-Join, And-Split and And-Join nodes will be represented by graph
nodes and connections/transitions between services will be represented by edges.
Nodes are identified by an ID (a number).

Definition 1 (SBA graph). A SBA graph is a 3 tuple (S, E,v) where:

e S is a set of services, Or-Split, Or-Join, And-Split and And-Join nodes com-
posing the considered application (when the application is architecture-based
S does not contain Or-Join, Or-Split, And-Split and And-Join nodes);

e [ C S xS is the vertex connection set;

e v is the initial vertex of the graph.

Fig. 4 represents the SBA graph of the SBA of Fig. 2 (v=Store).

Curreny

ShoppingCart

Fig. 4. The SBA graph of the on-line store

According to the semantics presented above, if the composition is behavior-
based the execution of Catalog and ShoppingCart services are performed in paral-
lel. Indeed, when the Store service is finished, Catalog and ShoppingCart services
will be launched in parallel. Nevertheless, if the composition is architecture-based
they may be run in sequence or in parallel. In fact, the Store service may refer-
ence both Catalog and ShoppingCart services in parallel or in sequence. We say
in this later case that Catalog and ShoppingCart services may run in parallel.

2.4 Problem Statement

In this paper we present an approach for optimizing autonomic managers for
the management of SBAs. Let’s consider the example of Fig. 4 that presents a
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SBA composed of four services. To determine the number of MAPE-K loops that
can be assigned to the four services, two naive solutions can be considered. The
first one, represented by Figure 5-(a), consists in considering one MAPE-K loop
assigned to the four services that compose the managed SBA. The second solu-
tion, represented by Figure 5-(b), consists in considering four MAPE-K loops so
that each one is assigned to one service. It is obvious that the later solution is
resource consuming while the former one may cause a bottleneck in the manage-
ment. It is, consequently, of interest to optimize MAPE-K loops consumption
while avoiding management bottlenecks.

¥ . % %

|
ShoppingCart |
Stormingcor) o)

Fig. 5. Two naive solutions can be considered, (a) one MAPE-K loop assigned to the
four services, (b) one MAPE-K loop assigned to each service

A solution, that can make a tradeoff between MAPE-K loops consumption,
on one hand, and avoiding management bottleneck, on the other hand, would
consist in considering two MAPE-K loops, one dedicated to Store and Shopping-
Cart services and one dedicated to Catalog and Currency Converter services.
This later solutions minimize the number of used MAPE-K loops while not
assigning one MAPE-K loop to more than one running service at a time.

Based on the above-mentioned illustrations, we can state the problem we
tackle in this paper. Given a SBA graph, our objective is to determine the
minimum number of MAPE-K loops needed to manage its services with the
following requirement and assumption. Two services running in parallel should
be provided with two different MAPE-K loops for their management to avoid the
bottleneck problem. Two services that may run in parallel are considered running
in parallel. This later assumption allows us to consider both types of composition
semantics and cover different situations of service compositions whatever they
are architecture-based or behavior-based.

3 Algorithm for an Efficient Optimization of MAPE-K
Loops in SBAs

3.1 Approach Overview

In this section, we propose an algorithm for the optimization of autonomic
managers (MAPE-K loops) in SBAs. This algorithm is based on four pro-
cedures called Predecessor, LowerBound, ServiceRelatedParallelSets and Auto-
nomicLoopsAssignement. The Predecessor procedure consists in determining
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for each service the number of its predecessors. This procedure is used when the
application is behavior-based where a service begins execution only when all its
predecessors have finished execution. The LowerBound procedure consists in
determining a set of sets of services that satisfy the following property. Services
that belong to one set can be run in parallel. The ServiceRelatedParallelSets
procedure consists in determining for each service the set of services that can be
run in parallel with it. AutonomicLoopsAssignement consists in assigning to each
service a MAPE-K loop which is different from loops that are already assigned
to services to be run in parallel with it. In the following we present these four
above-mentioned procedures.

3.2 Predecessor Procedure

The Predecessor procedure, presented in Algorithm 1, takes as input a SBA
graph. It returns an array containing for each service the number of its prede-
cessors. Initially, the number of predecessors of each service is equal to zero (see
Algorithm 1, lines 1-3). For each service s, the number of its predecessors is
incremented by 1 if there is a service s successor of s; (see lines 4-6).

Algorithm 1. Predecessor procedure
Require: (S, E,v): SBA graph
Ensure: Predecessors: array containing for each service the number of its
predecessors
for all s € S do
Predecessors[ID of s] < 0;
end for
for all (s;,s) € E do
Predecessors[ID of s] <« Predecessors[ID of s]+ 1;
end for

3.3 LowerBound Procedure

The LowerBound procedure, presented in Algorithm 2, takes as input a SBA
graph and an array containing for each service the number of its predecessors.
It returns a set of sets of services that can be run in parallel and the maximum
cardinality of its elements which constitutes a lower bound number of MAPE-K
loops. The initial vertex of the SBA graph v is assigned to an initial set (see
Algorithm 2, line 1). The LowerBound procedure is to be executed while the
current set of services that can be run in parallel is not empty and is not a subset
of a set that is already made in a previous iteration (see line 24). The current set
of services composed of services, which are successors of services of the previous
set where all its predecessor services are already treated in the previous sets (see
lines 10-11). Otherwise, the number of predecessors is decremented by 1 (see line
13). If the current set is not already made in a previous iteration, then it is added
to the set of sets (see lines 18-19). The lower bound number is possibly updated
(see lines 20-22). This number is the maximum number of services that can be
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run in parallel. When the application is architecture-based the current set of
services is composed of services, which are successors of services of the previous
set (doesn’t exist a test to check for each service s; that all its predecessors are
treated (see line 10)).

Algorithm 2. LowerBound procedure
Require: (S, E,v): SBA graph
Require: Predecessors: array containing for each service the number of its
predecessors
Ensure: ParallelSets: set of sets of services that can be run in parallel
Ensure: [bn: the lower bound number
1: CurrentParallelSet «— {v};
2: ParallelSets «— {CurrentParallelSet};
3: lbn «— 1;
4: repeat
5. PreviousParallelSet «— CurrentParallelSet;
6
7
8

CurrentParallelSet «— 0;
for all s; € PreviousParallelSet do
for all s; € S do

9: if (s;,s;) € E then
10: if Predecessors[ID of sj] =1 then
11: CurrentParallelSet — CurrentParallelSet U {s;};
12: else
13: Predecessors[ID of s;] « Predecessors[ID of s;] — 1;
14: end if
15: end if
16: end for
17 end for
18:  if A set s.t.(set € ParallelSets and CurrentParallelSet C set) then
19: ParallelSets < ParallelSets U CurrentParallelSet;
20: if |CurrentParallelSet| > lbn then
21: lbn «— |CurrentParallelSet|;
22: end if
23:  end if

24: until (CurrentParallelSet =
0 or 3 set s.t.(set € ParallelSets and CurrentParallelSet C set))

The needed MAPE-K loops for a given SBA graph may be greater than
the lower bound number. To give an example of such situation let’s consider
the example of Fig. 6 when the application is architecture-based as depicted in
Section 2.3 if s; and sy are nodes of graph and s; is connected to so then s
runs and references the services of sy during its execution.

Applied to this later example, the LowerBound procedure produces the fol-
lowing results:

— ParallelSets: {{s1},{s2,53},{54,55},{55, 6}, {56,593}, {53,595} }
— lbn= 2
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Fig. 6. Example of a SBA graph of a SCA-based Application

With respect to the semantics of applications specified in SCA, First, s5 and
s¢ may run in parallel. Second, s¢ and s3 may run in parallel. Third, s3 and s5
may run in parallel. To satisfy these requirements, on one hand, and to assign
different MAPE-K loops for services running in parallel, on the other hand, it
is obvious that the number of needed MAPE-K loops for this example is equal
to 3, while the lower bound number is equal to 2. Therefore, we need additional
computing based the result of the LowerBound procedure to determine the num-
ber of needed MAPE-K loops for a given SBA and their assignment. This is the
objective of the following algorithms.

3.4 ServiceRelatedParallelSets Procedure

The ServiceRelatedParallel Sets procedure, presented in Algorithm 3, takes as
input a SBA graph and a set of sets of services that can be run in parallel. It
returns for each services s the set of services which can be run in parallel with
it. This set is the union of all sets that belong to ParallelSets and that contain
s (see Algorithm 3, lines 5-9).

Algorithm 3. ServiceRelatedParallelSets procedure
Require: (S, FE,v): SBA graph
Require: ParallelSets: set of sets of services that can be run in parallel
Ensure: ServiceRelatedParallelSets : array of < servicelndex, serviceSet >

1: 1 1;
2: for all s € S do
3:  ServiceRelatedParallelSets[i].serviceIndex < ID of s;
4:  ServiceRelatedParallelSets[i].serviceSet — 0;
5:  for all set € ParallelSets do
6: if s € set then
7: ServiceRelatedParallelSets]i].serviceSet «—
ServiceRelatedParallelSets[i] U(set — {s});
8: end if
9:  end for
10: i — 1+ 1
11: end for

3.5 AutonomicLoopsAssignement Procedure

The AutonomicLoopsAssignement procedure, presented in Algorithm 4, takes
as input a SBA graph and an array containing for each service the set of services
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that can be run in parallel with it. It returns an array containing for each service
the MAPE-K loop assigned to it and the number of MAPE-K loops used for
the managed SBA represented by the input SBA graph. AutonomicLoops is
an array that will contain for each service s, the number of the MAPE-K loop
assigned to it. Initially, the elements of this array are equal to zero, which means
that loops are not yet assigned to services (see Algorithm 4, lines 1-3). MAPE-
K loops assignment begins with the service whose related parallel set has the
biggest cardinality. Consequently, the array ServiceRelatedParallelSets is sorted
in decreasing order according to the cardinality of sets of its elements (see line
4). For each service s (see lines 6-14), the variable currentLoop is initialized with
the value 1. This is a tentative to assign the loop number 1 to the s (see line
7). If this currentLoop isn’t already assigned to a service that belongs to the
set of services that can be run in parallel with s, then currentLoop is assigned
to s (see line 10). Otherwise, currentLoop is incremented by 1. This is done to
try assigning the next loop to s (see line 12). This computing is repeated until
assigning a loop to s (see line 14). The number of autonomic loops needed to
manage the given SBA is then computed (see lines 15-17).

Algorithm 4. AutonomicLoopsAssignement procedure

Require: (S, FE,v): SBA graph

Require: ServiceRelatedParallelSets : array of < servicelndex, serviceSet >

Ensure: AutonomicLoops: array containing for each service the MAPE-K loop

assigned to it
Ensure: number AutonomicLoops: number of MAPE-K loops
1: for alli € {1,2,...]|5|} do

AutonomicLoops|i] «— 0;
end for
sortDecreasingOrderOfCardinalityOfSets(Service Related Parallel Sets);
number AutonomicLoops «+ 0;
for all: € {1,2,...|S|} do

currentLoop «— 1;

repeat

if # s s.t. (s € ServiceRelatedParallelSets|i].serviceSet
and AutonomicLoops[ID of s| = currentAutonomicLoop) then
AutonomicLoops[ServiceRelatedParallelSets]i].serviceIndex]«
currentLoop;
11: else
12: currentLoop «— currentLoop + 1;
13: end if
14:  until s s.t. (s € ServiceRelatedParallelSetsli].serviceSet
and AutonomicLoops[ID of s] = currentAutonomicLoop)

H
e

15: if currentLoop > number AutonomicLoops then
16: number AutonomicLoops < currentLoop;

17: end if

18: end for

Applied to our running example presented in Fig. 4:
- The LowerBound procedure gives the following results:
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— ParallelSets: {{Store}, {Catalog, ShoppingCart}, {Curreny Converter}}
— lbn= 2 which is the cardinality of the second element in the ParallelSets
{Catalog, ShoppingCart}

- The ServiceRelatedParallelSets procedure gives the following results:

Services [ Store [ Catalog [ ShoppingCart [Curreny Converter\
[ServiceRelatedParallelSets[< 1,0 >[< 2, {ShoppingCart} >[< 3,{Catalog} >| < 4,0 > |

- The AutonomicLoopsAssignement procedure gives the following results:
number AutonomicLoops= 2

Services Catalog|ShoppingCart|Store| Curreny Converter
AutonomicLoops 1 2 1 1

Applied to our running example presented in Fig. 6:
- The ServiceRelatedParallelSets procedure gives the following results:

Services [ 51 Sa [ S3 [ Sy [ Ss [ Se ‘
[ParallelSets[< 1,0 >[< 2,{S3} >|< 3,{52,55,56} >[<4,{S5} >|<5,{S3,54,56} >[<6,{S3,55} >|

- The AutonomicLoopsAssignement procedure gives the following results:
number AutonomicLoops= 3

Services Sg S5 Sﬁ Sz S4 S1
AutonomicLoops| 1|23 |2|1]|1

4 Experiments

In service research field, there are two types of compositions of services: behavior-
based and architecture-based compositions. Behavior-based compositions of ser-
vices are generally sparse graphs where nodes represent services and operators
and links represent dependencies between services and operators. Architecture-
based compositions of services can be sparse or dense graphs where nodes rep-
resent services and links represent dependencies between services.

To evaluate our algorithm for the optimization of MAPE-K loops for SBAs
in the cloud, we have considered two datasets, one for architecture-based compo-
sitions and one for behavior-based compositions. At the best of our knowledge,
there is no public and open source dataset for architecture-based compositions of
services. Therefore, in Section 4.1, we give the results of experiments performed
on a realistic dataset based on randomly generated graphs, which represented
architecture-based compositions of services. But in Section 4.2 we give results
related to a real dataset from IBM that contains 560 BPMN business process.
All the computation times are achieved on intel® Core™ i5 CPU a 2.53 GHz
2.53GHz, RAM 4Go.
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As we will explain in Section 5, at the best of our knowledge none of the
existing approaches tackles the problem of optimizing the number of autonomic
managers whiles avoiding the bottleneck problem. Consequently, we are not able
to cover any comparison with an existing approach. Therefore, for both experi-
ments, we studied the time complexity of our algorithms and the quality of their
results in the sense of the closeness of results to the lower bound numbers results
of the Lower Bound procedure.

4.1 Experiments on Architecture-Based Compositions

To consider a realistic dataset, we have covered different graphs to represent
different types of compositions of services. In fact, our generated graphs are
constructed as follows. For each graph of order n we consider to represent a
SBA that should be connected. Consequently, this later should contain at least
n — 1 edges (when it is a tree). To cover different types of SBAs with the same
order n, we have considered different graphs with different number of edges
starting from n— 1 edges until 3.2 (n—1) (i. e. 320% of (n—1)). In fact, we did
not consider additional graphs with more edges, since we found out that beyond
2.2 (n—1), the lower bound number is n. Then the number of needed loops for
a graph of order n, in this case, is n.

For our experimentation, we have varied graphs’ order 10 times from 10 to
100. Real datasets, such as the IBM DataSet [7], show that 99% of service-based
applications are within this order range (less than 100). In addition for each
order n, we considered 12 densities (from 100% of (n — 1) to 320% of (n — 1))
and for each density, we considered 10 randomly generated graphs. In total, we
have considered 1200 generated graphs. Table 1 summarize the characteristics
of our dataset.

Table 1. Characteristics of generated graphs (the values presented in this table are
the number of edges of the graph and n is the number of nodes)

n of n-1 100% |120% |140%|160%|180%|200% |220% |240% |260% |280% |300%|320%
10 9 11 13 14 16 18 20 22 23 25 27 29
20 19 23 27 30 34 38 42 46 49 53 57 61
30 29 35 41 46 52 58 64 70 75 81 87 93
40 39 47 55 62 70 78 86 94 101 109 117 125
50 49 59 69 78 88 98 108 118 127 137 147 157
60 59 71 83 94 106 118 130 142 153 165 177 189
70 69 83 97 110 124 138 152 166 179 193 207 | 221
80 79 95 111 126 142 158 174 190 | 205 221 237 | 253
90 89 107 125 142 160 178 196 | 214 | 231 249 267 | 285
100 99 119 139 158 178 198 218 | 238 | 257 | 277 | 297 | 317

As depicted in Fig. 7, that presents the evolution of percentage of the lower
bound number with respect to the service number using different densities, when
the number of edges for a graph of order n is beyond 2.2 * (n — 1), the lower
bound number is n. Then the number of needed loops is n. Therefore, we limited
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our experimentations’analysis for quality of results, of the AutonomicLoopsAs-
signement procedure, to graphs with number of edges are starting from n — 1
up to 2.2 % (n — 1), for graphs of order n.

120,00%

100,00% s &

80,00% /v

60,00% /
40,00% /

20,00%

% of lower bound number /
service number

0,00%
100% 120% 140% 160% 180% 200%220% 240% 260% 280% 300% 320%

% of (service number -1)

Fig. 7. Evolution of % of lower bound number/service number using different densities

Complexity. It is obvious that the time complexity of Algorithms 1, 3 and 4
is polynomial whereas the theoretical time complexity of Algorithm 2 is expo-
nential (i.e. 0o(2™) where n is the order of the considered graph). In fact, the
time complexity is equal to o(|ParallelSets|) which is bounded by 0(2"). Nev-
ertheless, from a practical point of view, the execution time of our algorithm is
reasonable. For the 1200 considered graphs the execution time does not exceed
0.24 seconds.

40,00
35,00
30,00

25,00
20,00
15,00
10,00 I/‘
5,00 1
0,00

| ParallelSets|

10 20 30 40 50 60 70 80 90 100

Service Number
Fig. 8. Evolution of ParallelSets’cardinality using different type of graphs

As it is shown in Fig. 8, the number of sets of services that can be run in
parallel (|ParallelSets|) is small with respect to graphs’ order. For instance, the
number of parallel sets for graphs of order 100 does not exceed 37. In addition,
the curve of |ParallelSets| is linear with a very low slope.
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Quality. According to our assumptions depicted in Section 2.4,when the num-
ber of MAPE-K loops result of the AutonomicLoopsAssignement procedure is
equal to the lower bound number result of the Lower Bound procedure, then this
former number is optimal. Applied to our dataset, our algorithm gives excellent
results since it obtained optimal results, in the above sense, for 94% of the con-
sidered graphs. Beyond optimal results, let’s analyze the quality of non-optimal
ones (6% of the considered graphs). The quality of a given result is measured by
the difference, in terms of number of assigned loops, between the lower bound
obtained by the Lower Bound procedure, on one hand, and the number of loops
obtained by the AutonomicLoopsAssignement procedure on the other hand.
The lower this difference is the better it is.

diff=5 diff=6
2% 2%
diff- 4
11%
diff=3
% diff=1
49%
diff=2
27%

Fig. 9. Average of difference percentages

As it is shown in Fig. 9, the difference for non-optimal results (which con-
stitute themselves 6% or the whole results) does not exceed 6 loops, where for
49% among them, the difference is equal to one. Note as it is shown in Fig. 6,
the needed assigned loops for a given SBA can be greater than the lower bound
obtained by the Lower Bound procedure.

4.2 Experiments on Behavior-Based Compositions

To evaluate our Algorithms, we also used an IBM DataSet that contains 560
BPMN business processes, which represent a real dataset of behavior-based com-
positions of services available in the IBM WebSphere Business Modeler tool.
A process node can be startEvent, endEvent, task, exclusiveGateway, parallel-
Gateway, inclusiveGateway or subProcess. The number of process nodes varies
between 7 and 533 while the number of task varies between 2 and 106.

Complexity. From a practical point of view, the execution time of our algo-
rithm on the IBMs dataset is reasonable. In fact, for the 560 considered business
processes, the execution time does not exceed 0.1 second.
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Quality. According to our assumptions depicted in Section 2.4, when the num-
ber of MAPE-K loops result of the AutonomicLoopsAssignement procedure is
equal to the lower bound number result of the Lower Bound procedure, then this
former number is optimal. Applied to the IBMs dataset, our algorithm gives
excellent results since it obtained optimal results, with respect to the above
sense, for 100% of the considered business processes.

5 Related Work

In Cloud and distributed environments, there are several research works related
to autonomic computing as well as optimization of Cloud resource consumption.
At the best of our knowledge, these proposals treat the two areas separately. In
the following, we give an overview of some of these works.

5.1 Autonomic Computing

One of the pioneers in the Autonomic Computing field is IBM that proposed a
dedicated toolkit [18]. In this work, authors gave the IBMs definition of Auto-
nomic Computing as well as the needed steps to define autonomic resources for
the management of components. The proposed toolkit is a collection of technolo-
gies and tools that allows a user to develop autonomic behavior for his/her sys-
tems. One of the basic tools is the Autonomic Management Engine that includes
representations of the MAPE-K loop that provides self-management properties
to managed resources.

Beside the IBMs work, Buyya et al. proposed a conceptual architecture to
enhance autonomic computing for Cloud environments [5]. The proposed archi-
tecture is basically composed of a SaaS web application used to negotiate the
SLA between the provider and its customers, an Autonomic Management System
(AMS) located in the PaaS layer. The AMS incorporates an Application sched-
uler responsible of assigning Cloud resources to applications. It also incorporates
an Energy efficient scheduler that aims to minimize the energy consumption of
all the system. The AMS implements the logic for provisioning and managing
virtual resources.

In [21], authors proposed an Autonomic Network-aware Meta-scheduling
(ANM) architecture capable of adapting its behavior to the current status of
the environment. This work is based on a Grid Network Broker (GNB) that
represents the autonomic network-aware meta-scheduler. GNB chooses the most
appropriate resource to run jobs. An autonomic loop is implemented to adjust
the scheduling task to improve job completion times and resources utilization.
Whenever the selected resource did not respond to the required QoS, other
resources are checked until a suitable resource is found.

In [19], authors introduced a framework that tackle management and adapta-
tion strategies for component-based applications. In their approach, the authors
separate Monitoring, Analysis, Planning and Execution concerns by implement-
ing each one of them as separate components that could be attached to a man-
aged component.
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de Oliveira et al [15] proposed a framework for self-management of systems
which focuses on the coordination of autonomic managers in the Cloud. The
authors proposed an architectural model for autonomic managers coordination
that meets the Cloud architectural constraints from the perspective of loose cou-
pling and information hiding. Two kinds of autonomic managers are presented
in this paper. The first kind consists in managing the applications at the SaaS
layer, which is called Application Autonomic Manager (AAM). The second kind
consists in managing the IaaS layer, which is called Infrastructure Autonomic
Manager (IAM). In this paper, authors proposed to assign one AM to each
managed system that can be one application or the whole infrastructure.

All these autonomic computing approaches have been interested in model-
ing and implementing of autonomic environments without making any effort
for optimizing autonomic managers used for the management of applications.
In contrast, in our work, we propose a novel approach to optimize autonomic
resources used for the management of service-based applications.

5.2 Optimization of Cloud Resources

In their work [6], Chaisiri et al. proposed an optimal Cloud resource provisioning
(OCRP) algorithm for the management of virtual machines. This work can help
the consumer to decide whether to purchase reserved or on-demand instances of
Cloud computing resources in each time slot with the objective of reducing the
total provisioning cost.

Babu et al. [3] introduced a generic algorithm to allocate virtual machines
optimally in Cloud environments. Initially they proposed to assign each applica-
tion to a virtual machine and compute the remaining capacity. Therefore they
apply a genetic algorithm in order to have an optimal allocation to the virtual
machines, with the maximum remaining capacity.

Yusoh et al. [9], presented a service deployment strategies for efficient execu-
tion of Composite SaaS applications in the Cloud. The objective was to deter-
mine which services should be assigned to which virtual machines. To achieve
this objective, authors took inter-service communication and parallelism among
services into consideration. They proposed an approach to minimize communi-
cation costs by assigning interrelated services in the same virtual machine and
increasing the potential execution parallelism by assigning two independent ser-
vices in different virtual machines when application is modeled as a Directed
Acyclic Graph (DAG).

In [8], authors presented a novel approach to schedule elastic processes in the
cloud. They define a system model and an optimization model which is aiming at
minimizing the total leasing cost for Cloud-based computational resources. The
problem addressed is to determine which services should be assigned to which
virtual machines.

In [10], authors proposed an algorithm for scheduling of workflow applica-
tions in geographically distributed Clouds taking into account interdependence
between workflow steps and permits to assign each tasks to Cloud resources in
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order to minimizing cost and execution time according to the preferences of the
user.

In [17,22], authors presented a Particle Swarm Optimization (PSO) based
algorithm to optimize the schedules tasks in workflow applications among Cloud
services that takes computation cost and data transmission cost into account in
order to minimize the execution cost when application is modeled as a DAG.

Arya et al. [2], reviewed the basis workflow scheduling algorithms that are
important for cloud environments. Different methods are used in these algorithm
(i.e., Particle Swarm Optimization, Heuristic based Genetic Algorithms, etc.)
and several factors are considered such as the execution time, resource utilization,
cost optimization, etc.

At the best of our knowledge, in the works related to optimization of Cloud
resource mainly those we cite above the number of Cloud resources is assumed to
be known in advance. While one can imagine adapting these proposed algorithms
to optimize autonomic managers? consumption, by considering an autonomic
manager as a cloud resource, these works can not address our objective. In fact,
in these work, the number of Cloud resources is assumed to be known in advance,
while in our work the number of autonomic managers is not known in advance.
In addition, some of these works don’t address applications with dependency
relationships. The work we present in this paper is novel in the sense that (1)
it tackles the problem of optimization at the SaaS level (particularly for SBPs)
while considering applications with dependency relationship and (2) it tackles
the problem of autonomic computing when the number of autonomic managers
isn’t known in advance.

6 Conclusion and Future Work

In this paper, we present a novel approach to optimize autonomic managers
used for the management of service-based applications. Our approach consists
in (1) determining all sets of services for a given SBA that can be run in parallel,
which aims to determine the lower bound number of MAPE-K loops, and (2)
assigning MAPE-K loops to services. The proposed algorithms are of acceptable
time complexity from a practical point of view. The execution time on graphs of
different types and orders does not exceed 0.24 seconds. To evaluate the quality
of results, we have conducted more than 1200 of experiments on graphs of a
realistic dataset. Experiments results show that our algorithm has an excellent
behavior for architecture-based compositions and for those based on behavior.
The work we achieved is very promising and several perspectives are under
study. Among others, we aim, in the short term, at considering estimations
on execution time of service when determining and assigning MAPE-K loops
to services. Another possible extension, if such information is not available, is
an online approach that consists in determining and assigning, within a time
window, MAPE-K loops to services during their execution. In a longer term, we
aim at considering an approach to determine and assign MAPE-K components,
rather than loops, to services. Since monitors, analyzers, planners, executers, and
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knowledge bases component may not be used in the same way in the management
of services, we can envisage to assign some MAPE-K components to several
services running in parallel and dedicate some others to one service at a time
depending on their usage.
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